
Digital Design & Computer Arch.

Lecture 19a: VLIW

Prof. Onur Mutlu

ETH Zürich

Spring 2021

7 May 2021

Approaches to (Instruction-Level) Concurrency

◼ Pipelining

◼ Fine-Grained Multithreading

◼ Out-of-order Execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ Systolic Arrays

◼ Decoupled Access Execute

◼ SIMD Processing (Vector and array processors, GPUs)

2

VLIW Architectures

(Very Long Instruction Word)

VLIW Concept

◼ Superscalar

❑ Hardware fetches multiple instructions and checks
dependencies between them

◼ VLIW (Very Long Instruction Word)

❑ Software (compiler) packs independent instructions in a larger
“instruction bundle” to be fetched and executed concurrently

❑ Hardware fetches and executes the instructions in the bundle
concurrently

◼ No need for hardware dependency checking between
concurrently-fetched instructions in the VLIW model

4

VLIW Concept

◼ Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

❑ ELI: Enormously longword instructions (512 bits)
5

VLIW (Very Long Instruction Word)

◼ A very long instruction word consists of multiple
independent instructions packed together by the compiler

❑ Packed instructions can be logically unrelated (contrast with
SIMD/vector processors, which we will see soon)

◼ Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

◼ Traditional VLIW Characteristics

❑ Multiple instruction fetch/execute, multiple functional units

❑ All instructions in a bundle are executed in lock step

❑ Instructions in a bundle statically aligned to be directly fed
into the functional units

6

Carnegie Mellon

7

VLIW Performance Example (2-wide bundles)

lw $t0, 40($s0) add $t1, $s1, $s2
sub $t2, $s1, $s3 and $t3, $s3, $s4
or $t4, $s1, $s5 sw $s5, 80($s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DM
IM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DM
IM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DM
IM

or

sw
80

$s0

+ $s5

Ideal IPC = 2

Actual IPC = 2 (6 instructions issued in 3 cycles)

VLIW Lock-Step Execution

◼ Lock-step (all or none) execution

❑ If any operation in a VLIW instruction stalls, all concurrent
operations stall

◼ In a truly VLIW machine:

❑ the compiler handles all dependency-related stalls

❑ hardware does not perform dependency checking

❑ What about variable latency operations? Memory stalls?

8

VLIW Philosophy & Principles

9Fisher et al., “Parallel Processing: A Smart Compiler and a Dumb Machine,” CC 1984.

VLIW Philosophy & Principles

◼ Philosophy similar to RISC (simple instructions and hardware)

❑ Except multiple instructions in parallel

◼ RISC (John Cocke+, 1970s, IBM 801 minicomputer)

❑ Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

◼ And, to reorder simple instructions for high performance

❑ Hardware does little translation/decoding → very simple

◼ VLIW (Josh Fisher, ISCA 1983)

❑ Compiler does the hard work to find instruction level parallelism

❑ Hardware stays as simple and streamlined as possible

◼ Executes each instruction in a bundle in lock step

◼ Simple → higher frequency, easier to design
10

VLIW Philosophy and Properties

11Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Commercial VLIW Machines

◼ Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

◼ Cydrome Cydra 5, Bob Rau

◼ Transmeta Crusoe: x86 binary-translated into internal VLIW

◼ TI C6000, Trimedia, STMicro (DSP & embedded processors)
and some ATI/AMD GPUs

❑ Most successful commercially

◼ Intel IA-64

❑ Not fully VLIW, but based on VLIW principles

❑ EPIC (Explicitly Parallel Instruction Computing)

❑ Instruction bundles can have dependent instructions

❑ A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

12

VLIW Tradeoffs

◼ Advantages

+ No need for dynamic scheduling hardware → simple hardware

+ No need for dependency checking within a VLIW instruction →

simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units → simple hardware

◼ Disadvantages

-- Compiler needs to find N independent operations per cycle

-- If it cannot, inserts NOPs in a VLIW instruction

-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
13

VLIW Summary

◼ VLIW simplifies hardware, but requires complex compiler
techniques

◼ Solely-compiler approach of VLIW has several downsides
that reduce performance

-- Too many NOPs (not enough parallelism discovered)

-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next

-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

❑ Enable code optimizations

++ VLIW very successful when parallelism is easier to find by
the compiler (traditionally embedded markets, DSPs, GPUs)

14

Example Work: Trace Scheduling

15Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Recommended Paper

16Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

The Bulldog VLIW Compiler

17John Ellis, “Bulldog: A Compiler for VLIW Architectures,” PhD Thesis 1984.

Another Example Work: Superblock

◼ Lecture Video on Static Instruction Scheduling

❑ https://www.youtube.com/watch?v=isBEVkIjgGA

18

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.

The Journal of Supercomputing, 1993.

https://www.youtube.com/watch?v=isBEVkIjgGA

Another Example Work: IMPACT

19Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991.

Another Example Work: Hyperblock

◼ Lecture Video on Static Instruction Scheduling

❑ https://www.youtube.com/watch?v=isBEVkIjgGA

20Mahlke+, “Effective Compiler Support for Predicated Execution Using the Hyperblock,” MICRO 1992.

https://www.youtube.com/watch?v=isBEVkIjgGA

Lecture on Static Instruction Scheduling

21https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Lectures on Static Instruction Scheduling

◼ Computer Architecture, Spring 2015, Lecture 16

❑ Static Instruction Scheduling (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JC
L1TWybTDtKq&index=18

◼ Computer Architecture, Spring 2013, Lecture 21

❑ Static Instruction Scheduling (CMU, Spring 2013)

❑ https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59RE
og9jDnPDTG6IJ&index=21

22https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures

A More Compact Version…

23https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

A More Compact Version…

◼ Computer Architecture, Spring 2015, Lecture 5

❑ Advanced Branch Prediction (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=yDjsr-
jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

24https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Aside: ISA Translation

◼ One can translate from one ISA to another internal-ISA to
get to a better tradeoff space

❑ Programmer-visible ISA (virtual ISA) → Implementation ISA

❑ Complex instructions (CISC) → Simple instructions (RISC)

❑ Scalar ISA → VLIW ISA

◼ Examples

❑ Intel’s and AMD’s x86 implementations translate x86
instructions into programmer-invisible microoperations (simple
instructions) in hardware

❑ Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

◼ Think about the tradeoffs
25

Transmeta: x86 to VLIW Translation

26

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

There Is A Lot More to Cover on ISAs

27https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

There Is A Lot More to Cover on ISAs

28https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Detailed Lectures on ISAs & ISA Tradeoffs

◼ Computer Architecture, Spring 2015, Lecture 3

❑ ISA Tradeoffs (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=QKdiZSfwg-
g&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=3

◼ Computer Architecture, Spring 2015, Lecture 4

❑ ISA Tradeoffs & MIPS ISA (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=RBgeCCW5Hjs&list=PL5PHm2jkkXmi5CxxI7b3J
CL1TWybTDtKq&index=4

◼ Computer Architecture, Spring 2015, Lecture 2

❑ Fundamental Concepts and ISA (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=NpC39uS4K4o&list=PL5PHm2jkkXmi5CxxI7b3J
CL1TWybTDtKq&index=2

29https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures

Digital Design & Computer Arch.

Lecture 19a: VLIW

Prof. Onur Mutlu

ETH Zürich

Spring 2021

7 May 2021

Backup Slides

(for Further Study)

31

Issues in Fast & Wide Fetch

Engines

32

These Issues Covered in This Lecture…

33https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

These Issues Covered in This Lecture…

◼ Computer Architecture, Spring 2015, Lecture 5

❑ Advanced Branch Prediction (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=yDjsr-
jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

34https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Interference in Branch Predictors

35

An Issue: Interference in the PHTs

◼ Sharing the PHTs between histories/branches leads to interference

❑ Different branches map to the same PHT entry and modify it

❑ Interference can be positive, negative, or neutral

◼ Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

◼ How else can you eliminate or reduce interference?

36

Reducing Interference in PHTs (I)

◼ Increase size of PHT

◼ Branch filtering

❑ Predict highly-biased branches separately so that they do not
consume PHT entries

❑ E.g., static prediction or BTB based prediction

◼ Hashing/index-randomization

❑ Gshare

❑ Gskew

◼ Agree prediction

37

Biased Branches and Branch Filtering

◼ Observation: Many branches are biased in one direction
(e.g., 99% taken)

◼ Problem: These branches pollute the branch prediction
structures → make the prediction of other branches difficult

by causing “interference” in branch prediction tables and
history registers

◼ Solution: Detect such biased branches, and predict them
with a simpler predictor (e.g., last time, static, …)

◼ Chang et al., “Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

38

Reducing Interference: Gshare

◼ Idea 1: Randomize the indexing function into the PHT such that
probability of two branches mapping to the same entry reduces

❑ Gshare predictor: GHR hashed with the Branch PC

+ Better utilization of PHT + More context information

- Increases access latency

❑ McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

39

Reducing Interference: Agree Predictor

◼ Idea 2: Agree prediction

❑ Each branch has a “bias” bit associated with it in BTB

◼ Ideally, most likely outcome for the branch

❑ High bit of the PHT counter indicates whether or not the prediction
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)

-- Requires determining bias bits (compiler vs. hardware)

40

Sprangle et al., “The Agree Predictor:

A Mechanism for Reducing Negative

Branch History Interference,” ISCA

1997.

Why Does Agree Prediction Make Sense?

◼ Assume two branches have taken rates of 85% and 15%.

◼ Assume they conflict in the PHT

◼ Let’s compute the probability they have opposite outcomes

❑ Baseline predictor:

◼ P (b1 T, b2 NT) + P (b1 NT, b2 T)

= (85%*85%) + (15%*15%) = 74.5%

❑ Agree predictor:

◼ Assume bias bits are set to T (b1) and NT (b2)

◼ P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree)

= (85%*15%) + (15%*85%) = 25.5%

◼ Works because most branches are biased (not 50% taken)

41

Reducing Interference: Gskew

◼ Idea 3: Gskew predictor

❑ Multiple PHTs

❑ Each indexed with a different type of hash function

❑ Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)

42

Seznec, “An optimized

2bcgskew branch

predictor,” IRISA Tech

Report 1993.

Michaud, “Trading conflict

and capacity aliasing in

conditional branch

predictors,” ISCA 1997

Branch Address

Global BHR

f0

f1

f2

Majority

Final Prediction

PHT0 PHT1 PHT2

More Techniques to Reduce PHT Interference

◼ The bi-mode predictor

❑ Separate PHTs for mostly-taken and mostly-not-taken branches

❑ Reduces negative aliasing between them

❑ Lee et al., “The bi-mode branch predictor,” MICRO 1997.

◼ The YAGS predictor

❑ Use a small tagged “cache” to predict branches that have experienced
interference

❑ Aims to not to mispredict them again

❑ Eden and Mudge, “The YAGS branch prediction scheme,” MICRO 1998.

◼ Alpha EV8 (21464) branch predictor

❑ Seznec et al., “Design tradeoffs for the Alpha EV8 conditional
branch predictor,” ISCA 2002.

43

Another Direction: Helper Threading

◼ Idea: Pre-compute the outcome of the branch with a
separate, customized thread (i.e., a helper thread)

◼ Chappell et al., “Difficult-Path Branch Prediction Using Subordinate
Microthreads,” ISCA 2002.

◼ Chappell et al., “Simultaneous Subordinate Microthreading,” ISCA 1999.

44

Issues in Wide & Fast Fetch

45

I-Cache Line and Way Prediction

◼ Problem: Complex branch prediction can take too long (many
cycles)

◼ Goal

❑ Quickly generate (a reasonably accurate) next fetch address

❑ Enable the fetch engine to run at high frequencies

❑ Override the quick prediction with more sophisticated prediction

◼ Idea: Get the predicted next cache line and way at the time
you fetch the current cache line

◼ Example Mechanism (e.g., Alpha 21264)

❑ Each cache line tells which line/way to fetch next (prediction)

❑ On a fill, line/way predictor points to next sequential line

❑ On branch resolution, line/way predictor is updated

❑ If line/way prediction is incorrect, one cycle is wasted
46

Alpha 21264 Line & Way Prediction

47Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Alpha 21264 Line & Way Prediction

48Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Issues in Wide Fetch Engines

◼ Wide Fetch: Fetch multiple instructions per cycle

◼ Superscalar

◼ VLIW

◼ SIMT (GPUs’ single-instruction multiple thread model)

◼ Wide fetch engines suffer from the branch problem:

❑ How do you feed the wide pipeline with useful instructions in a
single cycle?

❑ What if there is a taken branch in the “fetch packet”?

❑ What is there are “multiple (taken) branches” in the “fetch
packet”?

49

Fetching Multiple Instructions Per Cycle

◼ Two problems

1. Alignment of instructions in I-cache

❑ What if there are not enough (N) instructions in the cache line
to supply the fetch width?

2. Fetch break: Branches present in the fetch block

❑ Fetching sequential instructions in a single cycle is easy

❑ What if there is a control flow instruction in the N instructions?

❑ Problem: The direction of the branch is not known but we
need to fetch more instructions

◼ These can cause effective fetch width < peak fetch width

50

Wide Fetch Solutions: Alignment

◼ Large cache blocks: Hope N instructions contained in the
block

◼ Split-line fetch: If address falls into second half of the
cache block, fetch the first half of next cache block as well

❑ Enabled by banking of the cache

❑ Allows sequential fetch across cache blocks in one cycle

❑ Intel Pentium and AMD K5

51

Split Line Fetch

52

Need alignment logic:

Short Distance Predicted-Taken Branches

53

Techniques to Reduce Fetch Breaks

◼ Compiler

❑ Code reordering (basic block reordering)

❑ Superblock

◼ Hardware

❑ Trace cache

◼ Hardware/software cooperative

❑ Block structured ISA

54

Basic Block Reordering

◼ Not-taken control flow instructions not a problem: no fetch
break: make the likely path the not-taken path

◼ Idea: Convert taken branches to not-taken ones

❑ i.e., reorder basic blocks (after profiling)

❑ Basic block: code with a single entry and single exit point

◼ Code Layout 1 leads to the fewest fetch breaks

55

A

B C

D

T NT

A
99% 1%

B

D

Control Flow Graph Code Layout 1 Code Layout 2

A

C

D

Code Layout 3

A

B

C

D

C B

Basic Block Reordering

◼ Pettis and Hansen, “Profile Guided Code Positioning,” PLDI
1990.

◼ Advantages:

+ Reduced fetch breaks (assuming profile behavior matches
runtime behavior of branches)

+ Increased I-cache hit rate

+ Reduced page faults

◼ Disadvantages:

-- Dependent on compile-time profiling

-- Does not help if branches are not biased

-- Requires recompilation

56

Superblock
◼ Idea: Combine frequently executed basic blocks such that they form a

single-entry multiple exit larger block, which is likely executed as
straight-line code

+ Helps wide fetch

+ Enables aggressive

compiler optimizations

and code reordering

within the superblock

-- Increased code size

-- Profile dependent

-- Requires recompilation

◼ Hwu et al. “The Superblock: An effective technique for VLIW

and superscalar compilation,” Journal of Supercomputing, 1993.
57

Superblock Formation (I)

58

Y

A

100

C

10

B

90

E

90

D

0

F

100

Z

1

90 10

900

0
90

10
99

1

Y

A

100

C

10

B

90

E

90

D

0

F

100

Z

1

90
10

900

0
90

10

99

1

Is this a superblock?

Superblock Formation (II)

59

Y

A

100

C

10

B

90

E

90

D

0

F

90

Z

1

90 10

900

0

90

10

89.1

0.9

Tail duplication:

duplication of basic blocks

after a side entrance to

eliminate side entrances

→ transforms

a trace into a superblock.

F’
10

10

9.9

0.1

Superblock Code Optimization Example

60

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Code After Superblock Formation

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Code After Common

Subexpression Elimination

opC’: mul r3<-r2,3

Techniques to Reduce Fetch Breaks

◼ Compiler

❑ Code reordering (basic block reordering)

❑ Superblock

◼ Hardware

❑ Trace cache

◼ Hardware/software cooperative

❑ Block structured ISA

61

Trace Cache: Basic Idea

◼ A trace is a sequence of executed instructions.

◼ It is specified by a start address and the branch outcomes
of control transfer instructions.

◼ Traces repeat: programs have frequently executed paths

◼ Trace cache idea: Store the dynamic instruction sequence
in the same physical location.

62

Reducing Fetch Breaks: Trace Cache

◼ Dynamically determine the basic blocks that are executed consecutively

◼ Trace: Consecutively executed basic blocks

◼ Idea: Store consecutively-executed basic blocks in physically-contiguous
internal storage (called trace cache)

◼ Basic trace cache operation:
❑ Fetch from consecutively-stored basic blocks (predict next trace or branches)

❑ Verify the executed branch directions with the stored ones

❑ If mismatch, flush the remaining portion of the trace

◼ Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996.

◼ Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.

63

Trace Cache: Example

64

An Example Trace Cache Based Processor

◼ From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar
Processors,” University of Michigan, 1999.

65

Multiple Branch Predictor

◼ S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD
Thesis, University of Michigan, 1999.

66

What Does A Trace Cache Line Store?

◼ Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,
1997.

67

Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)

+ No need for decoding (instructions can be stored in decoded form)

+ Can enable dynamic optimizations within a trace

-- Requires hardware to form traces (more complexity) → called fill unit

-- Results in duplication of the same basic blocks in the cache

-- Can require the prediction of multiple branches per cycle

-- If multiple cached traces have the same start address

-- What if XYZ and XYT are both likely traces?

68

Intel Pentium 4 Trace Cache

◼ A 12K-uop trace cache replaces the L1 I-cache

◼ Trace cache stores decoded and cracked instructions

❑ Micro-operations (uops): returns 6 uops every other cycle

◼ x86 decoder can be simpler and slower

◼ A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized
Around Trace Segments Independent of Virtual Address Line", United States
Patent No. 5,381,533, Jan 10, 1995

69

Front End BTB

4K Entries

ITLB &

Prefetcher
L2 Interface

x86 Decoder

Trace Cache

12K uop’s
Trace Cache BTB

512 Entries

