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Approaches to (Instruction-Level) Concurrency

= Pipelining

= Fine-Grained Multithreading

= Out-of-order Execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Systolic Arrays

= Decoupled Access Execute

= SIMD Processing (Vector and array processors, GPUS)




VLIW Architectures
(Very Long Instruction Word)




VLIW Concept

Superscalar

o Hardware fetches multiple instructions and checks
dependencies between them

VLIW (Very Long Instruction Word)

a Software (compiler) packs independent instructions in a larger
“instruction bundle” to be fetched and executed concurrently

o Hardware fetches and executes the instructions in the bundle
concurrently

No need for hardware dependency checking between
concurrently-fetched instructions in the VLIW model



VLIW Concept

Memory

add r1,r2,r3 load r4 r5+4 mov r6,r2 mul r7,r8.r9

Erograml
ounter

Instruction
Sreedien . . . .
PE PE PE PE

= Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

o ELI: Enormously longword instructions (512 bits)




VLIW (Very Long Instruction Word)

A very long instruction word consists of multiple
independent instructions packed together by the compiler

o Packed instructions can be logically unrelated (contrast with
SIMD/vector processors, which we will see soon)

Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
Instruction

Traditional VLIW Characteristics
o Multiple instruction fetch/execute, multiple functional units
a All instructions in a bundle are executed in lock step

o Instructions in a bundle statically aligned to be directly fed
into the functional units



VLIW Performance Example (2-wide bundles)

lw $t0, 40(%$s9) add $t1, $s1, $s2
sub $t2, $s1, $s3 and $t3, $s3, $s4 Ideal IPC = 2
or $t4, $s1, $s5 sw $s5, 80(%$s9)

1 2 3 4 5 6 7 8
>
Time (cycles)
N $sOM] M M
1w $t0, 40($s0) — 40 :B— — =
IM RF [ss1 DM RF
add $t1, $s1, S$s2 add = :B— || et
M $s1M M M
sub $t2, $sl1, $s3 Ele { $s3 :B— I
IM RF [s53 DM - RF
and $t3, $s3, $s4 nd -[ $s4 :B— -
M $s1R) Y Msts
or $t4, $sl, $sb5 $s5 E|} —
M RF [5s0 DM RF
5
sw  $s5, 80($s0) = o] P

Actual IPC = 2 (6 instructions issued in 3 cycles)



VLIW Lock-Step Execution

Lock-step (all or none) execution

o If any operation in a VLIW instruction stalls, all concurrent
operations stall

In a truly VLIW machine:

o the compiler handles all dependency-related stalls

o hardware does not perform dependency checking

o What about variable latency operations? Memory stalls?



VLIW Philosophy & Principles

Proceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction

¥

SIGPLAN Notices Vol. 19, No. 8, June 1984

Parallel Processing: |
A Smart Compiler and a Dumb Machine

Joseph A. Fisher, John R. Ellis,
John C. Ruttenberg, and Alexandru Nicolau

Department of Computer Science, Yale University
New Haven, CT 06520

Abstract

Multiprocessors and vector machines, the only success-
ful parallel architectures, have coarse-grained parallelism
that is hard for compilers to take advantage of. We've
developed a new fine-grained parallel architecture and a
compiler that together offer order-of-magnitude speedups
for ordinary scientific code.

future, and we're building a VLIW machine, the ELI
(Enormously Long Instructions) to prove it.

In this paper we'll describe some of the compilation
techniques used by the Bulldog compiler. The ELI
project and the details of Bulldog are descnbed
elsewhere [4, 6, 7, 15, 17).

Fisher et al., “Parallel Processing: A Smart Compiler and a Dumb Machine,” CC 1984. 9



VLIW Philosophy & Principles

Philosophy similar to RISC (simple instructions and hardware)
o Except multiple instructions in parallel

RISC (John Cocke+, 1970s, IBM 801 minicomputer)

o Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

And, to reorder simple instructions for high performance
o Hardware does little translation/decoding - very simple

VLIW (Josh Fisher, ISCA 1983)
o Compiler does the hard work to find instruction level parallelism

o Hardware stays as simple and streamlined as possible
Executes each instruction in a bundle in lock step

Simple = higher frequency, easier to design
10



VLIW Philosophy and Properties

More formally, VLIW architectures have the following
properties:

There is one central control umit issuing a single long

instruction per cycle.

Each long instruction consists of many tightly coupled
independent operations.

Each operation requires a small, statically predictable
number of cycles to execute.

QOperations can be pipelined. These properties distinguish
VLIWs from multiprocessors (with large asynchronous tasks)
and dataflow machines (without a single flow of control, and
without the tight coupling). VLIWSs have none of the required
regularity of a vector processor, or true array processor.

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.
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Commercial VLIW Machines

Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
Cydrome Cydra 5, Bob Rau
Transmeta Crusoe: x86 binary-translated into internal VLIW

TI C6000, Trimedia, STMicro (DSP & embedded processors)
and some ATI/AMD GPUs

o Most successful commercially

Intel IA-64

o Not fully VLIW, but based on VLIW principles

o EPIC (Explicitly Parallel Instruction Computing)

o Instruction bundles can have dependent instructions

o A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

12



VLIW Tradeoffs

Advantages
+ No need for dynamic scheduling hardware - simple hardware

+ No need for dependency checking within a VLIW instruction -
simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units = simple hardware

Disadvantages

-- Compiler needs to find N independent operations per cycle
-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
13



VLIW Summary

= VLIW simplifies hardware, but requires complex compiler
techniques

= Solely-compiler approach of VLIW has several downsides
that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture
-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

o Enable code optimizations

++ VLIW very successful when parallelism is easier to find by
the compiler (traditionally embedded markets, DSPs, GPUs)

14



Example Work: Trace Scheduling

@ :®

/

\

TRACE SCHEDULING LooP-FREE CODE

(a) A flow graph, with each block representing a basic block
of code. (b) A trace picked from the flow graph. (c) The trace
has been scheduled but it hasn’t been relinked to the rest of the
code. (d) The sections of unscheduled code that allow re-
linking.

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 15



Recommended Paper

Fisher,

VERY LONG INSTRUCTION WORD
ARCHITECTURES
AND THE ELI-512

JOSEPH A. FISHER
YALE UNIVERSITY
NEW HAVEN, CONNECTICUT 06520

ABSTRACT

By compiling ordinary scientific applications programs with a
radical technique called trace scheduling, we are generating
code for a parallel machine that will run these programs faster
than an equivalent sequential machine — we expect 10 to 30

times faster.

Trace scheduling generates code for machines called Very
Long Instruction Word architectures. In Very Long Instruction
Word machines, many statically scheduled, tightly coupled,
fine-grained operations execute in parallel within a single
instruction stream. VLIWs are more parallel extensions of

several current architectures.

These current architectures have never cracked a
fundamental barrier. The speedup they get from parallelism is
never more than a factor of 2 to 3. Not that we couldn’t build
more parallel machines of this type; but until trace scheduling
we didn't know how to generate code for them. Trace
scheduling finds sufficient parallelism in ordinary code to
justify thinking about a highly parallel] VLIW.

At Yale we are actually building ome. Our machine, the
ELI-512, has a horizontal instruction word of over 500 bits and

DT T 2 L IaT o [ NG R SN P | » SO T ]

“Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

are presented in this paper. How do we put enough tests in
each cycle without making the machine too big! How do we
put enough memory references in each cycle without making
the machine too slow?

WHAT IS A VLIW?

Everyone wants to use cheap hardware in parallel to speed
up computation. One obvious approach would be to take your
favorite Reduced Instruction Set Computer, let it be capable of
executing 10 to 30 RISC-level operations per cycle controlled by
a very long instruction word. (In fact, call it a VLIW.} A
VLIW looks like very parallel horizontal microcode.

More formally, VLIW architectures have the following
properties:

There is one central control unit issuing a single long

instruction per cycle.

Each long instruction consists of many tightly coupled
independent operations.

Each operation requires a small, statically predictable
number of cycles to execute.

Operations can be pipelined. These properties distinguish

16



The Bulldog VLIW Compiler

Chapter 1: My Thests 17

lsource language

Parser

intermediate code
\

Flow Analysis
& Optimization

optimized intermediate code
\

Memory-bank
Disambiguation

intermediate code intermediate code

. 1 o
Trace trace Code viil, v[j] =

Scheduler Generator

Disambiguator

machine code yes, no, maybe

object co del

Figure 1.5. The Bulldog compiler.

John Ellis, “Bulldog: A Compiler for VLIW Architectures,” PhD Thesis 1984.
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Another Example Work: Superblock

The Superblock: An Effective Technique

for VLIW and Superscalar Compilation

Wen-me1 W. Hwu Scott A. Mahlke William Y. Chen Pohua P. Chang
Nancy J. Warter Roger A. Bringmann Roland G. Quellette Richard E. Hank

Tokuzo Kiyohara Grant E. Haab John G. Holm Daniel M. Lavery *

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.

The Journal of Supercomputing, 1993.

= Lecture Video on Static Instruction Scheduling
o https://www.youtube.com/watch?v=isBEVkIjgGA

18


https://www.youtube.com/watch?v=isBEVkIjgGA

Another Example Work: IMPACT

IMPACT: An Architectural Framework for

Pohua P. Chang

Multiple-Instruction-Issue Processors

Scott A. Mahlke William Y. Chen Nancy J. Warter

Center for Reliable and High-Performance Computing
University of Illinois
Urbana, IL 61801

The performance of multiple-instruction-issue processors
can be severely limited by the compiler’s ability to gen-
erate efficient code for concurrent hardware. In the IM-
PACT project, we have developed IMPACT-I, a highly
optimizing C compiler to exploit instruction level concur-
rency. The optimization capabilities of the IMPACT-I
(C compiler are summarized in this paper. Using the
IMPACT-1 C compiler, we ran experiments to analyze
the performance of multiple-instruction-issue processors ex-
ecuting some important non-numerical programs. The
multiple-instruction-issue processors achieve solid speedup
over high-performance single-instruction-issue processors.

Wen-me:r W. Hwu

Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991. 19



Another Example Work: Hyperblock

Effective Compiler Support for Predicated Execution
Using the Hyperblock

Scott A. Mahlke David C. Lin* William Y. Chen  Richard E. Hank Roger A. Bringmann

Center for Reliable and High-Performance Computing
University of Ilhinois
Urbana-Champaign, IL 61801

Lecture Video on Static Instruction Scheduling
o https://www.youtube.com/watch?v=isBEVkIjgGA

Mahlke+, “Effective Compiler Support for Predicated Execution Using the Hyperblock,” MICRO 1992. 20
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Lecture on Static Instruction Scheduling

> Pl o) 5818/1:41:17

Lecture 16. Static Instruction Scheduling - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu

7,136 views * Feb 26,2015 ifp 26 &lo P SHARE =i SAVE

Carnegie Mellon Computer Architecture oy
g 23K subscribers SUBSCRIBED A

Lecture 16: Static Instruction Scheduling
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: Feb 23rd, 2015

Lecture 16 slides (pdf): http://www.ece.cmu.edu/~ece447/s15/li...

https:/ /www.youtube.com/onurmutlulectures



https://www.youtube.com/onurmutlulectures

Lectures on Static Instruction Scheduling

= Computer Architecture, Spring 2015, Lecture 16

o Static Instruction Scheduling (CMU, Spring 2015)

o https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHmM2jkkXmi5CxxI17b3]C
L1TWybTDtKg&index=18

= Computer Architecture, Spring 2013, Lecture 21

o Static Instruction Scheduling (CMU, Spring 2013)

o https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHmM2jkkXmidJOd59RE
0g9iDNPDTG61J&index=21

SAFARI https://www.youtube.com/onurmutlulectures 22



https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures

A More Compact Version...

pr: mul r1<-r2,3 opA mul r1< r2 d

1

)9 ng add r2<-r2, 1 r 1dd r2<-r2,1
| L : Q wl r3<-r2,

opC: mul r3<-r2,3

Original Code Formation

opA mul r1< rzq

99| pr add r2<-r2,1
C’: mul r3<-r2,
ﬁC mov r3<-r1| ( L

Code After Common
Subexpression Elimination

Pl R 1:27:19/1:43:16

18-740 Computer Architecture - Advanced Branch Prediction - Lecture 5

4,696 views * Sep 23,2015 s Hlo

=
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Carnegie Mellon Computer Architecture
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Lecture 5: Advanced Branch Prediction
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)

Date: September 16, 2014.

Lecture 5 slides (pdf): http://www.ece.cmu.edu/~ece740/f15/li...
Lecture 5 slides (ppt): http://www.ece.cmu.edu/~ece740/f15/Ii.

https:/ /www.youtube.com/onurmutlulectures
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A More Compact Version...

= Computer Architecture, Spring 2015, Lecture 5

o Advanced Branch Prediction (CMU, Spring 2015)
o https://www.youtube.com/watch?v=yDjsr-

1TOtk&list=PL5PHmM?2jkkXmgVhh8CHAuU9N76TSh]gfYDt&index=4

SAFARI

https:/ /www.youtube.com/onurmutlulectures
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https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Aside: ISA Translation

s One can translate from one ISA to another /internal-ISA to
get to a better tradeoff space

o Programmer-visible ISA (virtual ISA) - Implementation ISA
o Complex instructions (CISC) = Simple instructions (RISC)
a Scalar ISA = VLIW ISA

= Examples

a Intel’'s and AMD’s x86 implementations translate x86
instructions into programmer-invisible microoperations (simple
instructions) in hardware

o Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

= Think about the tradeoffs

25



Transmeta: x86 to VLIW Translation

BIOS

Code Morphing
Software

VLIW engine
Operating Code Morphing Applications
System Software

Figure 5. The Code Morphing software mediates between x86 software and the Crusoe processor.

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.
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There Is A Lot More to Cover on ISAs

A\ Note on |S.\ l".\l)lllll()ll

ISAs have evolved to reflect/satisfy the concerns of the day

= Examples:
Limited on
Limite piler optimizatic technology

Limited memory bandwidth

Need for specialization in important applications (e.g., MMX)

hip and off-chip memory size

)

« Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA
, Concept of dynamic/static interface: translation/interpretation
, Contrast it with hardware/software interface

P Ml o) 14352/15110 « £ [« O I3

Lecture 3. ISA Tradeoffs - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

#~ SHARE =} SAVE

S:megle Mefl!g: Computer Architecture ANALYTICS EDIT VIDEO

Lecture 3. ISA Tradeoffs
Lecturer: Prof. Onur Mutlu (http
Date: Jan 16th, 2015

https:/ /www.youtube.com/onurmutlulectures
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There Is A Lot More to Cover on ISAs

4« P >l o) 2529/1:30:28 ¢ =0

Ld

Lecture 4. ISA Tradeoffs & MIPS ISA - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

28,806 views * Jan 23, 2015 i 5 SHARE

— - .
S, n: Carr:egle Mellon Computer Architecture
-~

Lecture 4. ISA Tradeoffs (cont.) & MIPS ISA
Lecturer: Kevin Chang (
Date: Jan 21th, 2015

https:/ /www.youtube.com/onurmutlulectures
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Detailed Lectures on ISAs & ISA Tradeoffs

= Computer Architecture, Spring 2015, Lecture 3

o ISA Tradeoffs (CMU, Spring 2015)

o https://www.youtube.com/watch?v=0QKdiZSfwg-
g&list=PL5PHM2jkkXmi5CxxI7b3JCL1TWybTDtKg&index=3

= Computer Architecture, Spring 2015, Lecture 4

o ISA Tradeoffs & MIPS ISA (CMU, Spring 2015)

o  https://www.youtube.com/watch?v=RBgeCCW5Hijs&list=PL5PHmM2ikkXmi5CxxI7b3J]
CL1TWybTDtKg&index=4

= Computer Architecture, Spring 2015, Lecture 2

o Fundamental Concepts and ISA (CMU, Spring 2015)

o https://www.youtube.com/watch?v=NpC39uS4K4o&list=PL5PHmM2jkkXmi5CxxI7b3J]
CL1TWybTDtKg&index=2

https:/ /www.youtube.com/onurmutlulectures 29



https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
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https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures
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These Issues Covered in This Lecture...

- - . . " A
Superblock Code Optimization Fxample

pr: mul r1<-r2,3
P11

)9 ng: add r2<—r727.1i )r 1dd r2<-r2,1
e : * 0 wl r3<-r2,
opC: mul r3<-r2,3 QpC: mul r3<-r2j

Original Code Code After Superblock Formation

:  bpA: mul r1ﬁ'23 ]

09| :bpB: add r2<-r2, 1

é:C : mul r3<-r2,3

EC: mc;v r3<-rd I

Code After Common
Subexpression Elimination

) 1:27:19/1:4316

18-740 Computer Architecture - Advanced Branch Prediction - Lecture 5
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Date: September 16, 2014.

Lecture 5 slides (pdf): http://www.ece.cmu.edu/~ece740/f15/li...
Lecture 5 slides (ppt): http://www.ece.cmu.edu/~ece740/f15/Ii.
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These Issues Covered in This Lecture...

= Computer Architecture, Spring 2015, Lecture 5

o Advanced Branch Prediction (CMU, Spring 2015)

o https://www.youtube.com/watch?v=yDjsr-
1TOtk&list=PL5PHmM?2jkkXmgVhh8CHAuU9N76TSh]gfYDt&index=4

SAFARI https://www.youtube.com/onurmutlulectures
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Interference in Branch Predictors
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An Issue: Interference in the PHT's

Sharing the PHTs between histories/branches leads to interference
o Different branches map to the same PHT entry and modify it
o Interference can be positive, negative, or neutral

Iatruction Stream.

Pattern History Table (PHI)
Branch A's Index o ..-"U:I
- e
0000 0011 3l €oxmber G
o Lot | =]
Brmch A - 1 bt el
* Prediction of Branch B
. ] may be alwred due io
° the outarme of Dranch A
Exanch Bz Index ®
* I co00 001
o [oooon ]
Brnch B o

Interference can be eliminated by dedicating a PHT per branch
-- Too much hardware cost

How else can you eliminate or reduce interference?
36



Reducing Interference in PHTs (I)

Increase size of PHT

Branch filtering

o Predict highly-biased branches separately so that they do not
consume PHT entries

o E.g., static prediction or BTB based prediction

Hashing/index-randomization
o Gshare
o Gskew

Agree prediction

37



Biased Branches and Branch Filtering

Observation: Many branches are biased in one direction
(e.g., 99% taken)

Problem: These branches pol/lute the branch prediction
structures = make the prediction of other branches difficult
by causing “interference” in branch prediction tables and
history registers

Solution: Detect such biased branches, and predict them
with a simpler predictor (e.g., last time, static, ...)

Chang et al., "Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

38



Reducing Interference: Gshare

Idea 1: Randomize the indexing function into the PHT such that
probability of two branches mapping to the same entry reduces

o Gshare predictor: GHR hashed with the Branch PC
+ Better utilization of PHT + More context information
- Increases access latency

Pattern History Table

— /

Branch Address

vy

Branch History Register

o McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

39



Reducing Interference: Agree Predictor

= Idea 2: Agree prediction

o Each branch has a “bias” bit associated with it in BTB
= Ideally, most likely outcome for the branch

o High bit of the PHT counter indicates whether or not the prediction
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)
-- Requires determining bias bits (compiler vs. hardware)

Facern Hitory Tabie (GHT)

T
—— s // ‘“ :
I Sprangle et al., "The Agree Predictor:
. . A Mechanism for Reducing Negative
ALALE || . Branch History Interference,” ISCA

(2 )- *)D'l 1997,
Blasing Bk Swrge (pan of BIB)
mm&) : =] K
Ty Tt
Tag M
M Predict taken

o not ke




Why Does Agree Prediction Make Sense?

Assume two branches have taken rates of 85% and 15%.
Assume they conflict in the PHT

Let’s compute the probability they have opposite outcomes
o Baseline predictor:

P(blT,b2NT)+P (bl NT,b2T)

= (85%*85%) + (15%*15%) = 74.5%
o Agree predictor:

Assume bias bits are setto T (b1) and NT (b2)

P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree)

= (85%%*15%) + (15%*85%) = 25.5%

Works because most branches are biased (not 50% taken)

41



Reducing Interference: Gskew

Idea 3: Gskew predictor

o Multiple PHTs

o Each indexed with a different type of hash function
o Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTSs, hash functions)

AT, PAT - PHT Seznec, “An optimized

Global BHR _—t— 2bcgskew branch

T predictor,” IRISA Tech
Report 1993.

— Michaud, “Trading conflict
ap and capacity aliasing in
(o) conditional branch
predictors,” ISCA 1997

L Final Prediction

42



More Techniques to Reduce PHT Interference

The bi-mode predictor

o Separate PHTs for mostly-taken and mostly-not-taken branches
o Reduces negative aliasing between them
o Lee et al., "The bi-mode branch predictor,” MICRO 1997.

The YAGS predictor

o Use a small tagged “cache” to predict branches that have experienced
interference

o Aims to not to mispredict them again
o Eden and Mudge, “"The YAGS branch prediction scheme,” MICRO 1998.

Alpha EV8 (21464) branch predictor

a Seznec et al., “"Design tradeoffs for the Alpha EV8 conditional
branch predictor,” ISCA 2002.
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Another Direction: Helper Threading

Idea: Pre-compute the outcome of the branch with a
separate, customized thread (i.e., a helper thread)

—————

From Retired Promotion
Instr. Stream Logic

Microthread

* I Eﬁ";’"ﬂ Construction
youngest [~ gR. - Buffer
E

Optimized routine
sent to MicroRAM

Post—
Retrement SCanmer
Buffer -

NS

oldest - e

Figure 3. The Microthread Builder

Chappell et al., “Difficult-Path Branch Prediction Using Subordinate
Microthreads,” ISCA 2002.

Chappell et al., “"Simultaneous Subordinate Microthreading,” ISCA 1999.



Issues 1n Wide & Fast Fetch




[-Cache Line and Way Prediction

Problem: Complex branch prediction can take too long (many
cycles)

Goal

o Quickly generate (a reasonably accurate) next fetch address

o Enable the fetch engine to run at high frequencies

o Override the quick prediction with more sophisticated prediction

Idea: Get the predicted next cache line and way at the time
you fetch the current cache line

Example Mechanism (e.g., Alpha 21264)

o Each cache line tells which line/way to fetch next (prediction)
o On afill, line/way predictor points to next sequential line

o On branch resolution, line/way predictor is updated
a

If line/way prediction is incorrect, one cycle is wasted
46



Alpha 21264 Line & Way Prediction

Program
counter (PC) Learn dynamic |umps
eneration
% Fns.tl'um'nn No branch p@nally
pmdiﬂmn PC
Wﬂﬂlhr check

Y Y ¢ K’

] |
Hit/miss/way miss

L] Tag Tag

S 0 1 Cached Line Way |
| instructions prediction | prediction |

ik [ 1

] Compare | Compare

\

Figure 3. Alpha 21264 instruction fetch The |
around path on the right side) p :"'f"':"_:ﬂ';ﬁin&mstmutmn fetch path that
avoids common fetch stalls whan ﬁﬁe ans are correct.

Kessler, “The Alpha 21264 Mlcroprocessor " IEEE Micro, March-April 1999.
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Alpha 21264 Line & Way Prediction

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.
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Issues in Wide Fetch Engines

Wide Fetch: Fetch multiple instructions per cycle

Superscalar
VLIW
SIMT (GPUs’ single-instruction multiple thread model)

Wide fetch engines suffer from the branch problem:

o How do you feed the wide pipeline with useful instructions in a
single cycle?
o What if there is a taken branch in the “fetch packet™?

o What is there are "multiple (taken) branches” in the “fetch
packet™?
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Fetching Multiple Instructions Per Cycle

Two problems

1. Alignment of instructions in I-cache

o What if there are not enough (N) instructions in the cache line
to supply the fetch width?

2. Fetch break: Branches present in the fetch block
0 Fetching sequential instructions in a single cycle is easy
o What if there is a control flow instruction in the N instructions?

o Problem: The direction of the branch is not known but we
need to fetch more instructions

These can cause effective fetch width < peak fetch width
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Wide Fetch Solutions: Alignment

Large cache blocks: Hope N instructions contained in the
block

Split-line fetch: If address falls into second half of the
cache block, fetch the first half of next cache block as well

o Enabled by banking of the cache
o Allows sequential fetch across cache blocks in one cycle
o Intel Pentium and AMD K5
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Split Line Fetch

Cache Banking 0100 1100 T
0100 1100 Cache
0100 1101 Block
0100 1110 A l
0100 1111 B
Memory Map 0101 0000 C T
0101 0001 D
0101 0010 E Cache
0101 0011 F Block
0101 0111 l
Bank O Bank1
Cache Block 0100 AB
Block 0101 |C|D |E|F =

Need alignment logic:




Short Distance Predicted-Taken Branches

i

/ T

/.

.-‘"‘-f-

“H—"'-\-_

Bank O Bank1

Block 0100 A|B|C|D
Block 0101 | E]F

First lteration (Branch B taken to E)
E F ABCD

E F ABCD
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Techniques to Reduce Fetch Breaks

Compiler
o Code reordering (basic block reordering)
o Superblock

Hardware
o Trace cache

Hardware/software cooperative
o Block structured ISA
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Basic Block Reordering

Not-taken control flow instructions not a problem: no fetch
break: make the likely path the not-taken path

Idea: Convert taken branches to not-taken ones
o i.e., reorder basic blocks (after profiling)
o Basic block: code with a single entry and single exit point

Control Flow Graph Code Layout 1 Code Layout 2 Code Layout 3
99% A NT 1% A A A
NG B C B
B C D D C
Y/ °
D C B

Code Layout 1 leads to the fewest fetch breaks
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Basic Block Reordering

Pettis and Hansen, “Profile Guided Code Positioning,” PLDI
1990.

Advantages:

+ Reduced fetch breaks (assuming profile behavior matches
runtime behavior of branches)

+ Increased I-cache hit rate
+ Reduced page faults

Disadvantages:

-- Dependent on compile-time profiling

-- Does not help if branches are not biased
-- Requires recompilation
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Superblock

Idea: Combine frequently executed basic blocks such that they form a
single-entry multiple exit larger block, which is likely executed as
straight-line code

+ Helps wide fetch

+ Enables aggressive
compiler optimizations
and code reordering
within the superblock

-- Increased code size
-- Profile dependent
-- Requires recompilation

Hwu et al. “The Superblock: An effective technique for VLIW
and superscalar compilation,” Journal of Supercomputing, 1993.
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Superblock Formation (I)

Is this a superblock?

100
90 10

B C

90 10
y\9({ 0
D E D
0 - 90 | /10 99 0
O\p O

F
100
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Superblock Formation (1)

Tail duplication:
duplication of basic blocks
after a side entrance to
eliminate side entrances
- transforms

a trace into a superblock.
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Superblock Code Optimization Example

opA: mul r1<-r2,3

OpA: mul r1<-r2,3

UJ

99 OpB: add r2<-r2,] 99 :ppB: add r2<-r2,1
. 1 v iopC’ : mul r3<-r2,
opC: mul r3<-r2,3 : ppC: mul r3<-r2,3
Original Code Code After Superblock Formation

99

A 4

opA: mul r1<-r2,3

TG
fam

opC: mov r3<-rl| :

iopB: adgl r2<-r2,1

pC’ : mul r3<-r2,]

Code After Common
Subexpression Elimination
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Techniques to Reduce Fetch Breaks

Compiler
o Code reordering (basic block reordering)
o Superblock

Hardware
o Trace cache

Hardware/software cooperative
o Block structured ISA
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Trace Cache: Basic Idea

A trace is a sequence of executed instructions.

It is specified by a start address and the branch outcomes
of control transfer instructions.

Traces repeat: programs have frequently executed paths

Trace cache idea: Store the dynamic instruction sequence
in the same physical location.

D
( 8 Al Bl C D 2
o

—D

Al B C

(a) Instruction cache. (b) Trace cache.
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Reducing Fetch Breaks: Trace Cache

Dynamically determine the basic blocks that are executed consecutively
Trace: Consecutively executed basic blocks

Idea: Store consecutively-executed basic blocks in physically-contiguous
internal storage (called trace cache)

time —*

Dynamic Instruction Stream

Basic trace cache operation:

o Fetch from consecutively-stored basic blocks (predict next trace or branches)
o Verify the executed branch directions with the stored ones

o If mismatch, flush the remaining portion of the trace

Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996.

Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.
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Trace Cache: Example

Fetch Address A

Instruction
Cache "
nd ri
- o
i“BB A
—>
21
Trace Cache
n
_ 7
2“BB 3“BB —7 4
hit?

T

Line-Fill Buffer

T

Take ourput from trace
cache if rrace cache hit;
otherwise, take output from
instction cache.

Instruction Latch

n Butters

To Instruction

>
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An Example Trace Cache Based Processor

-

__ Fetch iﬂ.ddress
Fill Instruction
Unit - Trace Cache Y Cache
Multiple
Branch
) ) Predictor
A ] [A.rfgnfMerge
Selection Logic ~ je— 20" |
Decoder

l Next Fetch Address

—_
i

'

Register Rename

Y

Execution Core

Level 2

Instruction
Cache

%

Level 2
Data
Cache

-

= From Patel’ s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar
Processors,” University of Michigan, 1999.
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Multiple Branch Predictor

= S, Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD
Thesis, University of Michigan, 1999.

Fefch Address Pattern
History

@ Table

Global History

Threa 2-bif countars

prediction for 12t branch l
prediction for Zmnd branch
prediction for Srd branch




What Does A Trace Cache Line Store?

e 16 slots for instructions. Instructions are stored in decoded form and oceupy approxi-
mately five bytes for a typical ISA. Up to three branches can be stored per line. Each

instruction is marked with a two-bit tag indicating to which block it belongs.

e Four target addresses. With three basic blocks per segment and the ability to fetch
partial segments, there are four possible targets to a segment. The four addresses are
explicitly stored allowing immediate generation of the next fetch address, even for cases

where only a partial segment matches.

e Path information. This field encodes the number and directions of branches in the
segment and includes bits to identify whether a segment ends in a branch and whether
that branch is a return from subroutine instruction. In the case of a return instruction.

the return address stack provides the next fetch address.

= Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,
1997.
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Trace Cache: Advantages/Disadvantages

D
Q 8 - Al Bl C D L

—D

Al B—™ C

(a) Instruction cache. (b) Trace cache.

+ Reduces fetch breaks (assuming branches are biased)
+ No need for decoding (instructions can be stored in decoded form)
+ Can enable dynamic optimizations within a trace
-- Requires hardware to form traces (more complexity) = called fill unit
-- Results in duplication of the same basic blocks in the cache
-- Can require the prediction of multiple branches per cycle
-- If multiple cached traces have the same start address
-- What if XYZ and XYT are both likely traces?
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Intel Pentium 4 Trace Cache

A 12K-uop trace cache replaces the L1 I-cache

Trace cache stores decoded and cracked instructions
o Micro-operations (uops): returns 6 uops every other cycle
x86 decoder can be simpler and slower

A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized

Around Trace Segments Independent of Virtual Address Line", United States
Patent No. 5,381,533, Jan 10, 1995
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