Digital Design & Computer Arch.
Lecture 19b: Systolic Arrays

Prof. Onur Mutlu

ETH Zlrich
Spring 2021
/ May 2021

Bachelor’s Seminar in Comp Arch

Fall 2021
2 credit units

Rigorous seminar on fundamental and cutting-edge
topics in computer architecture

Critical presentation, review, and discussion of seminal
works in computer architecture

o We will cover many ideas & issues, analyze their tradeoffs,
perform critical thinking and brainstorming

Participation, presentation, synthesis report

You can register for the course online
https://safari.ethz.ch/architecture seminar/spring2021

https://safari.ethz.ch/architecture_seminar/spring2021

Announcement

If you are interested in learning more and doing research in
Computer Architecture, three suggestions:

a Email me with your interest (CC: Juan)
o Take the seminar course and the “"Computer Architecture” course
o Do readings and assignments on your own

There are many exciting projects and research positions, e.q.:
Memory systems

Hardware security

GPUs, FPGAs, heterogeneous systems, ...

New execution paradigms (e.g., in-memory computing)
Security-architecture-reliability-energy-performance interactions
Architectures for medical/health/genomics

A limited list is here: https://safari.ethz.ch/theses/

o o 0o 0 o o o

https://safari.ethz.ch/theses/

Broader Agenda

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

s QOut-of-Order Execution

= Other Execution Paradigms

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Fine-Grained Multithreading

= Out-of-order Execution

= Dataflow (at the ISA level)

= Superscalar Execution

s VLIW

= Systolic Arrays

= Decoupled Access Execute

= SIMD Processing (Vector and array processors, GPUS)

Readings for Today

Required

H. T. Kung, "Why Systolic Architectures?,” IEEE Computer
1982.

Recommended

o Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit”, ISCA 2017.

Readings for Next Week

Required

a Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,”" IEEE Micro 2008.

Recommended

o Peleg and Weiser, “MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.

Systolic Arrays

Systolic Arrays: Motivation

Goal: design an accelerator that has

o Simple, reqular design (keep # unique parts small and regular)
a High concurrency - high performance

a Balanced computation and I/O (memory) bandwidth

Idea: Replace a single processing element (PE) with a regular
array of PEs and carefully orchestrate flow of data between
the PEs

o such that they collectively transform a piece of input data before
outputting it to memory

Benefit: Maximizes computation done on a single piece of
data element brought from memory

Systolic Arrays

INSTEAD OF:
I MEMORY I‘-

100 ns
3
WE HAVE: [

100 ns
—D[PE PE | PE PEIPEIPEI—

THE SYSTOLIC ARRAY

5 MILLION
OPERATIONS
PER SECOND
AT MOST

30 MOPS
POSSIBLE

Figure 1. Basic principle of a systolic system.

Memory: heart
Data: blood
PEs: cells

Memory pulses
data through
PEs

H. T. Kung, "Why Systolic Architectures?,” IEEE Computer 1982.

10

Why Systolic Architectures?

Idea: Data flows from the computer memory in a rhythmic
fashion, passing through many processing elements before it
returns to memory

Similar to blood flow: heart = many cells > heart
a Different cells “process” the blood

o Many veins operate simultaneously

o Can be many-dimensional

Why? Special purpose accelerators/architectures need

a Simple, regular design (keep # unique parts small and regular)
a High concurrency = high performance

o Balanced computation and I/O (memory) bandwidth

11

Systolic Architectures

Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs

o Balance computation and memory bandwidth

INSTEAD OF:
MEMORY 5 MILLION
OPERATIONS
100 ns PER SECOND
AT MOST
PE

MEMORY

WE HAVE:

30 MOPS
POSSIBLE

100 ns

PE|PE | PE | PE | PE | PE

Differences from pipelining:
o These are individual PEs Figure 1. Basic principle of a systolc system.

o Array structure can be non-linear and multi-dimensional

o PE connections can be multidirectional (and different speed)
Q

PEs can have local memory and execute kernels (rather than a
piece of the instruction)

12

Systolic Computation Example

= Convolution

o Used in filtering, pattern matching, correlation, polynomial
evaluation, etc ...

o Many image processing tasks

o Machine learning: up to hundreds of convolutional layers in
Convolutional Neural Networks (CNN)

Given the sequence of weights [wy, wy, . . ., Wy
and the input sequence Xj, X3, . . . , X,

compute the result sequence Vi, ¥, - - « s Vnal -k)
defined by

]r’i:W|IJ.'+H’:IE',,1 + ... T WX+ k=1

13

LeNet-5, a Convolutional Neural Network
for Hand-Written Digit Recognition

This is a 1024*8 bit input, which will
have a truth table of 2 819 entries

) C3:f. maps 16@10x10
INPUT C1: feature maps S4:f. maps 16@5x5
6@28x28 S2: §

32x32
6@14x1

C5: layer :
330 F& layer C;léJTPUT

I
Full conflection I Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Slide credit: Hwu & Kirk

14

An Example of 2D Convolution

Output feature map

Structure information
Input: 5*5 (blue)
Kernel (filter): 3*3 (grey)
Output: 5*5 (green)

Computation information
Stride: 1
Padding: 1 (white)

Output Dim = (Input + 2*Padding
Input feature map - Kernel) / Stride + 1

SAFARI

An Example of 2D Convolution

Input CNN
kernel

SAFARI

Convolutional Neural Networks: Demo

Back to Yann's

Home
Publications

LeNet-5 Demos

Unusual
Patterns
unusual styles
weirdos

Invariance
translation (anim)
scale (anim)
rotation (anim)
squeezing_(anim)
stroke width
(anim)

Noise
Resistance
noisy 3 and 6
noisy 2 (anim)
noisy 4 (anim)

Multiple
Character
various stills
dancing 00 (anim)
dancing 384
(anim)

Complex cases
(anim)

35->53
12->4-> 21
23->32

30 + noise
31-51-57-61

LeNet-5, convolutional
neural networks

Convolutional Neural Networks are are a special kind of
multi-layer neural networks. Like almost every other
neural networks they are trained with a version of the
back-propagation algorithm. Where they differ is in the

Convolutional Neural Networks are designed to
recognize visual patterns directly from pixel images with
minimal preprocessing.

They can recognize patterns with extreme variability
(such as handwritten characters), and with robustness to
distortions and simple geometric transformations.

LeNet-5 is our latest convolutional network designed for
handwritten and machine-printed character recognition.
Here is an example of LeNet-5 in action.

9“"' LeNet 5 | geseancyl
answer: 7

pici)

7

/r &LayerAS I\
Layer-3 Input
Layer-1

Many more examples are available in the column on the
left:

Several papers on LeNet and convolutional networks are
available on my publication page:

[LeCun et al., 1998]
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE, november 1998.
Psgz

[Bottou et al., 1997]
L. Bottou, Y. LeCun, and Y. Bengio. Global training of

3.

ll:.l'-l:fl'"

Ll

-H-.

-
%]

-

723
TArvEe R

s ¥
<k

‘nh-t

http://yann.lecun.com/exdb/lenet/index.html

17

Implementing a Convolutional Layer
with Matrix Multiplication

12 || 18 10 | 20 Output
Features
13 | 22 15 | 22 Y
101 1)1 0|1 1|0 2|1 Conyolutlon
Filters
22 1)1 1]0 01 21 210 W

(1] 2) "0 |2Y1 1] 2) Input
1|1 0|12 0|13 Features
0|2 110 3|32 X
1{1|2|2|1|1|1|1fof1]1]0 * tff2][2]]1] 12118l 13] 2
1(0|0]|1 121 2120 20lo||1]|3 -
171005 10 | 20 | 15 | 22
1[3]|2]|2
Convolution [0§12/10]] 1 Output
Filters (21 2]|1]]2] Features
w off1||1]|2 Y
1f[2]|1]]o0
1f(2]|o|]1
20l 1)|1]|3
ofl1]|3]|3
1[3]|3||2
: : _ Input
Slide credit: Reproduced from Hwu & Kirk Features

X (unrolled)

Power ot Convolutions and Applied Courses

In 2010, Prof. Andreas Moshovos adopted Professor Hwu's
ECE498AL Programming Massively Parallel Processors Class

Several of Prof. Geoffrey Hinton’s graduate students took
the course

These students developed the GPU implementation of the
Deep CNN that was trained with 1.2M images to win the
ImageNet competition

Slide credit: Hwu & Kirk

19

Example: AlexNet (2012)

AlexNet wins the ImageNet classification competition with
~10% points higher accuracy than state-of-the-art

o Krizhevsky et al., "ImageNet Classification with Deep Convolutional
Neural Networks”, NIPS 2012.

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout™
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry. 20

Example: Googl.eNet (2014)

= Google improves accuracy by adding more network layers
o From 8 in AlexNet to 22 in GooglLeNet

o Szegedy et al., "Going Deeper with Convolutions”, CVPR 2015.

Going Deeper with Convolutions

Christian Szegedy', Wei Liu?, Yangqing Jia®, Pierre Sermanet!, Scott Reed?,
Dragomir Anguelov!, Dumitru Erhan', Vincent Vanhoucke®, Andrew Rabinovich?
1Google Inc. ?University of North Carolina, Chapel Hill
3University of Michigan, Ann Arbor “Magic Leap Inc.

'{szegedy, jiayq, sermanet, dragomir, dumitru, vanhoucke}@google.com

zwliu@cs.unc.edu, dreedscott@umich.edu, 4arabinovich@magicleap.com

21

Example: ResNet (2015)

= He et al., "Deep Residual Learning for Image Recognition”, CVPR 2016.

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research
{kahe, v-xiangz, v-shren, jiansun } @ microsoft.com

ImageNet experiments 282

- 25.8
152 layers

Y First CNN

\
\
\
22 layers ‘ 19 Iayers
\ 6.7

Human: 5.1% /'i I_I | i'aiefs_—_?'aiﬁ—--.shallow-

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

THICCV

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015

Neural Network LLayer Examples

LeNet AlexNet
| Image: 28 (height) x 28 (width) x 1 (channel) | Image: 224 (height) x 224 (width) x 3 (channels)|
v v
| Convolution with 5x5 kernel+2padding:28x28x6 | | Convolution with11x11kernel+4stride:54x54x96 |
., sigmoid Vv RelLu
| Pool with 2x2 average kernel+2 stride:14x14x6 | | Pool with 3x3 max. kernel+2 stride: 26x26x96 |
v v
| Convolution with 5x5 kernel (no pad):10x10x16 | | Convolution with 5x5 kernel+2 pad:26x26x256 |
. sigmoid v RelLu
| Pool with 2x2 average kernel+2 stride: 5x5x16 | | Pool with 3x3 max.kernel+2stride:12x12x256 |
v flatten v
| Dense: 120 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x384 |
|, sigmoid v Relu
| Dense: 84 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x384 |
|, sigmoid v Relu
| Dense: 10 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x256 |
v v Relu
Output: 1 of 10 classes | Pool with 3x3 max.kernel+2stride:5x5x256 |
J flatten

| Dense: 4096 fully connected neurons |
v ReL.u, dropout p=0.5

| Dense: 4096 fully connected neurons |
v ReL.u, dropout p=0.5

| Dense: 1000 fully connected neurons |

v

Output: 1 of 1000 classes

By Cmglee - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=104937230

23

Systolic Computation Example: Convolution (I)

= Convolution

o Used in filtering, pattern matching, correlation, polynomial
evaluation, etc ...

o Many image processing tasks

o Machine learning: up to hundreds of convolutional layers in
Convolutional Neural Networks (CNN)

Given the sequence of weights [wy, wy, . . ., Wy
and the input sequence Xj, X3, . . . , X,

compute the result sequence Vi, ¥, - - « s Vnal -k)
defined by

]r’i:W|IJ.'+H’:IE',,1 + ... T WX+ k=1

24

Systolic Computation |

vl = wilxl +
W2Xx2 + wW3x3

y2 = Wilx2 +
w2x3 + w3x4

y3 = Wix3 +
w2x4 + w3x5

“xample: Convolution (II)

X rw:l rw:;l .f‘— rW A -
2 —=p —plL JplL ULy
(a)
Yout - Yin
W Yout = Yin + W X
Xin L J Xout Xout = Xin
(b)

Figure 8. Design W1: systolic convolution array (a) and
cell (b) where w;’s stay and x;’s and y;’s move systolically
in opposite directions.

25

Systolic Computation Example: Convolution (I11I)

RESULTS 4—?—- ‘-?Q—- 0—?4- +—
w3 ‘Oé w2 i W:"é
il —»l > " -—l—y (1GNORED)

@ « MULTIPLIER @ « ADDER - LATCH

Figure 10. Overlapping the executions of multiply and add in design W1,

= Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

26

Systolic Computation Example: Convolution (IV)

= One needs to carefully orchestrate when data elements are
input to the array

= And when output is buffered

= This gets more involved when
o Array dimensionality increases
o PEs are less predictable in terms of latency

27

Example 2D Systolic Array Computation

= Multiply two 3x3 matrices (inputs) o~

o Keep the final result in PE accumulators 410 ° bz
3 0 bay b1,
Coo Co1 Cp2 app adp1r Qo2 boo bo1 o2
clo €11 Ci2| = |aw air aiz| X |bo by bz mmel 2 bao b1 boz
Cop C21 C22 asp 21 422 bao 521 ")22
1 b bo1 0
N
l 0 b 0 0
TIME
4 3 2 1 0
l 0 0 a a Qg ——> —>‘ —>
Figure 1: A systolic array processing element l l l
0 an an a1 0 — _>‘ |
ke | | |
Q=N ‘
a a a 0 0 E— —— —
R=R+ M*N

28

Two-Dimensional Systolic Arrays

(a) T

(b)

T (c)

Figure 11. Two-dimensional systolic arrays: (a) type R, (b) type H, and

(c) type T.

To a given problem there could be both one- and two-
dimensional systolic array solutions. For example, two-
dimensional convolution can be performed by a one-
dimensional systolic array**?* or a two-dimensional
systolic array.® When the memory speed is more than cell
speed, two-dimensional systolic arrays such as those
depicted in Figure 11 should be used. At each cell cycle, all
the [/0 ports on the array boundaries can input or output
data items to or from the memory; as a result, the
available memory bandwidth can be fully utilized. Thus,
the choice of a one- or two-dimensional scheme is very
depenjént on how cells and memories will be imple-
mented.

29

Combinations

Systolic arrays can be
chained together to
form powerful systems

This systolic array is
capable of producing
on-the-fly least-squares
fit to all the data that
has arrived up to any
given moment

X34 Y2

X33 X4

GIVEN AN n x p MATRIX X WITH

n = p, AND AN n-VECTOR y,
DETERMINE A p-VECTOR b SUCH THAT
Iy — xb I IS MINIMIZED.

X3p Xp3 Xq4

STEP 1: ORTHOGONAL
TRIANGULARIZATION

STEP 2: SOLUTION OF TRIANGULAR
LINEAR SYSTEM

X31 X2 X43

X21 X142

X114 . .
-—F--F-- 1
:_- r | r=9 re=" r=An ,l\
| —— = ! \)
{ * i /' 7
I =
|
|
|
|
|
| rd
N g 7 SYSTOLIC ARRAY FOR
SYSTOLIC ARRAY FOR SOLVING TRIANGULAR
ORTHOGONAL /5 LINEAR SYSTEMS
TRIANGULARIZATION N

Figure 12. On-the-fly least-squares solutions using one- and two-
dimensional systolic arrays, withp = 4.

Systolic Arrays: Pros and Cons

Advantages:

o Principled: Efficiently makes use of limited memory bandwidth,
balances computation to I/O bandwidth availability

o Specialized (computation needs to fit PE organization/functions)

- improved efficiency, simple design, high concurrency/
performance

- good to do more with less memory bandwidth requirement

Downside:
a Specialized

- not generally applicable because computation needs to fit
the PE functions/organization

31

More Programmability in Systolic Arrays

Each PE in a systolic array

o Can store multiple “weights”

o Weights can be selected on the fly

o Eases implementation of, e.g., adaptive filtering

Taken further
o Each PE can have its own data and instruction memory
o Data memory - to store partial/temporary results, constants

o Leads to stream processing, pipeline parallelism
More generally, staged execution

32

Pipeline-Parallel (Pipelined) Programs

fori=1to N
. ¥ code In stage A]

(-
[« i code in stage E]
(-

. ¥ code In stage G]

EHA‘I B1 c152 c2[A3) B3 [c3 |

time

(a) (e
% P !!DJA1 AZ AE{!’@@a

Py IBD[B1|BEIB&|E#|EE|
Bi

P2 |ED|EI|E2ICEICIICE|

} } } } } } } } } } time
s Lottt ot ot b ot ot ot ot ot

(b (d)

Figure 1. (a) The code of a loop, (b) Each iteration is split into 3 pipeline stages: A, B, and C. lteration | comprises Ai, Bi, Ci.
(c) Sequential execution of 4 iterations. (d) Parallel execution of 6 iterations using pipeline parallelism on a three-core machine.

Each stage executes on one core.

Suleman+, “Data Marshaling for Multi-core Architectures,” ISCA 2010.

33

Stages of Pipelined Programs

Loop iterations are divided into code segments called stages
Threads execute stages on different cores

>:.‘ore d

Core 3

loop {

Computel| A

Compute?2| B

Compute3| C

}

Pipelined File Compression Example

STAGE St STAGE 52 STAGE S3 STAGE S4 STAGE S5
"ALLOCATE | » [READINPUT| o [COMPRESS | | (WRITEOUTPUT| || [DEALLOCATE |
Inp Ut o Allocate buffers - * Q = QUEUE1.Pop() - * Q= QUEUEZ.Pap) | 0 =QUEUE3.Pop() = O=0UEUE4.Pop() | w
File QUEUET Push(Bu) . Read file to Buf ®| | CompressQ i Write oidest Q to File | Desllocate Buffers
. . \ QUEUE2.Push({Buf) ™ QUEUES.Pushit) . kOUEUE-i.Push{CI} . \)
. o o o
QUEUE1 QUEUE2 QUEUE3 QUEUE4

Figure 3. File compression algorithm executed using pipeline parallelism

35

Systolic Array: Advantages & Disadvantages

Advantages

o Makes multiple uses of each data item - reduced need for
fetching/refetching > better use of memory bandwidth

o High concurrency
a Regular design (both data and control flow)

Disadvantages
a Not good at exploiting irregular parallelism

o Relatively special purpose > need software, programmer
support to be a general purpose model

36

Example Systolic Array: The WARP Computer

HT Kung, CMU, 1984-1988

Linear array of 10 cells, each cell a 10 Mflop programmable
processor

Attached to a general purpose host machine
HLL and optimizing compiler to program the systolic array
Used extensively to accelerate vision and robotics tasks

Annaratone et al., "Warp Architecture and
Implementation,” ISCA 1986.

Annaratone et al., "The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

37

The WARP Computer

HOST

INTERFACE
UNIT

Adr

X X
cerlif Jeeriy efcennl s
1 i 2 i n

WARP PROCESSOR ARRBRAY

Figure 1: Warp system overview

38

The WARP Cell

X0 > .
}) :— -
517 ® 32
YO
—— | - j
512 x 32
Add
Data
Cross
m -
Me] Bar < Mem
32K x 32 € +— * K x 3z
T4 A
M ~
" MRe 5
> 9 2] Mpy
—>1 31 x 32 P '_]r
<Literal> -
L'
F
Address }-€ AGU
<] Cross
Adrﬂ.'.' Bar .
512 x 32

Figure 2: Warp cell data path

L d

An Example Modern Systolic Array: TPU (I)

=
i Partial Sums
> P —> Done
]]] [
Figure 3. TPU Printed Circuit Board. It can be inserted in the slot ~ Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
for an SATA disk in a server, but the card uses PCle Gen3 x16. has the 1llusion that each 256B input 1s read at once, and they instantly

update one location of each of 256 accumulator RAMs.

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

40

An Example Modern Systolic Array: TPU (1I)

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy
by reducing reads and writes of the Unified Buffer [Kun80][Ram91][Ovt15b]. Figure 4 shows that data flows in from the left,
and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a
diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new
block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update
one location of each of 256 accumulators. From a correctness perspective, software 1s unaware of the systolic nature of the
matrix unit, but for performance, it does worry about the latency of the unit.

e —

o
Y
: L i Pairtial Sums
EEEN

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
41

Recall: Example 2D Systolic Array Computation

= Multiply two 3x3 matrices (inputs) o~

o Keep the final result in PE accumulators 410 ° bz
3 0 bay b1,
Coo Co1 Cp2 app adp1r Qo2 boo bo1 o2
clo €11 Ci2| = |aw air aiz| X |bo by bz mmel 2 bao b1 boz
Cop C21 C22 asp 21 422 bao 521 ")22
1 b bo1 0
N
l 0 b 0 0
TIME
4 3 2 1 0
l 0 0 a a Qg ——> —>‘ —>
Figure 1: A systolic array processing element l l l
0 an an a1 0 — _>‘ |
ke | | |
Q=N ‘
a a a 0 0 E— —— —
R=R+ M*N

42

An Example Modern Systolic Array: TPU (I1I)
o | DDR DRAM Chips | L

30 GiB/s 30 GIBI
14 HiEs DDR3 a Weight FIFO
Interfaces (Weight Felcher)
- | - & 30 GiBls
i
©o | E [[
::] . Unified 167 : Matrix Multiply
& £ @ 10 GiB/s Buffer Systolic |GiB/sl| | Unit——
14GiBis |G 8| 14GiB/s| S (Local Dats ~ (64K percycle)
o c = gy | I
4 ::) o <:> o Activation Setup .
B = Storage) : HHH
I
o s
* . K j N J Accumulators]
1 Activation]
167 GiB/s
— = Normalize / Pool]
|:| Off-Chip I/O J
D Data Buffer
Il Computation = R ——
. Control
Not to Scale

Figure 1. TPU Block Diagram. The main computation part is the
yellow Matrix Multiply unit in the upper right hand corner. Its inputs
arc the blue Weight FIFO and the blue Unified Buffer (UB) and its
output 1s the blue Accumulators (Acc). The yellow Activation Unit
performs the nonlinear functions on the Acc, which go to the UB.

43

An Example Modern Systolic Array: TPU2

https://mww.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips
vs 1 chip in TPU1

High Bandwidth Memory
vs DDR3

Floating point operations
vs FP16

45 TFLOPS per chip
vs 23 TOPS

Designed for training
and inference
vs only inference

44

An Example Modern Systolic Array: TPU3

Core Core Core Core

scalar/ vector scalar/ vector scalar/ scalar/
units units vector units vector units

vA VA \J

oooooooo oooooooo (R | W BEINENNEE DOEDEEDE
HEM 0ooooooo oooooooo HBM HBM SEEEEENE | EEENEEEE ||| EEEEEE (IEEEEEEE HBM
sce €77 |mnmoommE oDooooonE| > sce 146 (9| unnnnnns | sesnsnnn ||| sssssnns | snnnnnnn | [e
00000000 00000000 EEEEEEEE | |sesnsnsn ||| seEEEnEs | sEEEEEEE
00000000 00000000 ANEEEEEE|(sEEEsnsn ||| I EEEEEE | S EEEEEEE
oooooooo Dooooooo (iNEEOREEE PEEEEEEE ANEEEEEN EEEEEEEE
Dooooooo Dooooooo NEEEDEEE NEEREE®E EIEERENE BEEEENEE
00000000 00000000 EEEEEEES | |susssnsn ||| ssensnes | senEnnnn
MXU MXU MXU MXU MXU MXU
128x128 128x128 128x128 128x128 128x128 128x128

TPU v2 - 4 chips, 2 cores per chip TPU v3 - 4 chips, 2 cores per chip

32GB HBM per chip 4 Matrix Units per chip 90 TFLOPS per chip
vs 16GB HBM in TPU2 vs 2 Matrix Units in TPU2 vs 45 TFLOPS in TPU2

https://cloud.google.com/tpu/docs/system-architecture 45

erebras’s Water Scale Engine (2019)

= The largest ML
accelerator chip

= 400,000 cores

J £}
T TAIWAN 1723A1

PFBY82.M00 &t

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learnindgf

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Water Scale Engine-2 (2021)

= The largest ML
accelerator chip

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54.2 Billion transistors
46,225 mm?2 826 mm?

. . NVIDIA Ampere GA100 .
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/”

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Digital Design & Computer Arch.
Lecture 19b: Systolic Arrays

Prof. Onur Mutlu

ETH Zlrich
Spring 2021
/ May 2021

