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Bachelor’s Seminar in Comp Arch

◼ Fall 2021

◼ 2 credit units

◼ Rigorous seminar on fundamental and cutting-edge 
topics in computer architecture

◼ Critical presentation, review, and discussion of seminal 
works in computer architecture

❑ We will cover many ideas & issues, analyze their tradeoffs, 
perform critical thinking and brainstorming

◼ Participation, presentation, synthesis report

◼ You can register for the course online

◼ https://safari.ethz.ch/architecture_seminar/spring2021
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Announcement
◼ If you are interested in learning more and doing research in 

Computer Architecture, three suggestions:

❑ Email me with your interest (CC: Juan)

❑ Take the seminar course and the “Computer Architecture” course

❑ Do readings and assignments on your own

◼ There are many exciting projects and research positions, e.g.:

❑ Memory systems

❑ Hardware security

❑ GPUs, FPGAs, heterogeneous systems, …

❑ New execution paradigms (e.g., in-memory computing)

❑ Security-architecture-reliability-energy-performance interactions

❑ Architectures for medical/health/genomics

❑ A limited list is here: https://safari.ethz.ch/theses/
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Broader Agenda

◼ Single-cycle Microarchitectures

◼ Multi-cycle and Microprogrammed Microarchitectures

◼ Pipelining

◼ Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

◼ Out-of-Order Execution

◼ Other Execution Paradigms
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Approaches to (Instruction-Level) Concurrency

◼ Pipelining

◼ Fine-Grained Multithreading

◼ Out-of-order Execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ Systolic Arrays

◼ Decoupled Access Execute

◼ SIMD Processing (Vector and array processors, GPUs)
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Readings for Today

◼ Required

◼ H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 
1982.

◼ Recommended

❑ Jouppi et al., “In-Datacenter Performance Analysis of a Tensor 
Processing Unit”, ISCA 2017.
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Readings for Next Week

◼ Required

❑ Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008.

◼ Recommended

❑ Peleg and Weiser, “MMX Technology Extension to the Intel 
Architecture,” IEEE Micro 1996.
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Systolic Arrays
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Systolic Arrays: Motivation

◼ Goal: design an accelerator that has

❑ Simple, regular design (keep # unique parts small and regular)

❑ High concurrency → high performance

❑ Balanced computation and I/O (memory) bandwidth

◼ Idea: Replace a single processing element (PE) with a regular 
array of PEs and carefully orchestrate flow of data between 
the PEs 

❑ such that they collectively transform a piece of input data before 
outputting it to memory

◼ Benefit: Maximizes computation done on a single piece of 
data element brought from memory
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Systolic Arrays

◼ H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.
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Memory: heart

Data: blood

PEs: cells

Memory pulses 

data through 

PEs



Why Systolic Architectures?

◼ Idea: Data flows from the computer memory in a rhythmic 
fashion, passing through many processing elements before it 
returns to memory

◼ Similar to blood flow: heart → many cells → heart

❑ Different cells “process” the blood

❑ Many veins operate simultaneously

❑ Can be many-dimensional

◼ Why? Special purpose accelerators/architectures need

❑ Simple, regular design (keep # unique parts small and regular)

❑ High concurrency → high performance

❑ Balanced computation and I/O (memory) bandwidth
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Systolic Architectures

◼ Basic principle: Replace a single PE with a regular array of 
PEs and carefully orchestrate flow of data between the PEs 

❑ Balance computation and memory bandwidth

◼ Differences from pipelining:

❑ These are individual PEs

❑ Array structure can be non-linear and multi-dimensional 

❑ PE connections can be multidirectional (and different speed)

❑ PEs can have local memory and execute kernels (rather than a 
piece of the instruction)
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Systolic Computation Example

◼ Convolution

❑ Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc …

❑ Many image processing tasks

❑ Machine learning: up to hundreds of convolutional layers in 
Convolutional Neural Networks (CNN)
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LeNet-5, a Convolutional Neural Network 

for Hand-Written Digit Recognition
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This is a 1024*8 bit input, which will 

have a truth table of 2 8196 entries

Slide credit: Hwu & Kirk



An Example of 2D Convolution

Structure information
Input: 5*5 (blue)
Kernel (filter): 3*3 (grey)
Output: 5*5 (green)

Computation information
Stride: 1
Padding: 1 (white)

Output Dim = (Input + 2*Padding
- Kernel) / Stride + 1Input feature map

Output feature map



An Example of 2D Convolution

Input 

Layer

CNN 

kernel

Output 

Layer



Convolutional Neural Networks: Demo
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Implementing a Convolutional Layer 

with Matrix Multiplication
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Power of Convolutions and Applied Courses

◼ In 2010, Prof. Andreas Moshovos adopted Professor Hwu’s
ECE498AL Programming Massively Parallel Processors Class

◼ Several of Prof. Geoffrey Hinton’s graduate students took 
the course

◼ These students developed the GPU implementation of the 
Deep CNN that was trained with 1.2M images to win the 
ImageNet competition

Slide credit: Hwu & Kirk

19



Example: AlexNet (2012)
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◼ AlexNet wins the ImageNet classification competition with 
~10% points higher accuracy than state-of-the-art

❑ Krizhevsky et al., “ImageNet Classification with Deep Convolutional 
Neural Networks”, NIPS 2012.



◼ Google improves accuracy by adding more network layers

❑ From 8 in AlexNet to 22 in GoogLeNet

❑ Szegedy et al., “Going Deeper with Convolutions”, CVPR 2015.

Example: GoogLeNet (2014)
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◼ He et al., “Deep Residual Learning for Image Recognition”, CVPR 2016.

Example: ResNet (2015)
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Human: 5.1%

First CNN



Neural Network Layer Examples

23By Cmglee - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=104937230



◼ Convolution

❑ Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc …

❑ Many image processing tasks

❑ Machine learning: up to hundreds of convolutional layers in 
Convolutional Neural Networks (CNN)
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Systolic Computation Example: Convolution (I)



Systolic Computation Example: Convolution (II)

◼ y1 = w1x1 + 
w2x2 + w3x3

◼ y2 = w1x2 + 
w2x3 + w3x4

◼ y3 = w1x3 + 
w2x4 + w3x5
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Systolic Computation Example: Convolution (III)

◼ Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/mul executions
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Systolic Computation Example: Convolution (IV)

◼ One needs to carefully orchestrate when data elements are 
input to the array

◼ And when output is buffered

◼ This gets more involved when 

❑ Array dimensionality increases

❑ PEs are less predictable in terms of latency
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Example 2D Systolic Array Computation

◼ Multiply two 3x3 matrices (inputs)

❑ Keep the final result in PE accumulators
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P = M

Q = N

R = R + M*N



Two-Dimensional Systolic Arrays

29



Combinations
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◼ Systolic arrays can be 
chained together to 
form powerful systems

◼ This systolic array is 
capable of producing 
on-the-fly least-squares 
fit to all the data that 
has arrived up to any 
given moment



Systolic Arrays: Pros and Cons

◼ Advantages: 

❑ Principled: Efficiently makes use of limited memory bandwidth, 
balances computation to I/O bandwidth availability

❑ Specialized (computation needs to fit PE organization/functions) 

→ improved efficiency, simple design, high concurrency/

performance

→ good to do more with less memory bandwidth requirement

◼ Downside: 

❑ Specialized

→ not generally applicable because computation needs to fit 

the PE functions/organization
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◼ Each PE in a systolic array

❑ Can store multiple “weights”

❑ Weights can be selected on the fly

❑ Eases implementation of, e.g., adaptive filtering

◼ Taken further

❑ Each PE can have its own data and instruction memory

❑ Data memory → to store partial/temporary results, constants

❑ Leads to stream processing, pipeline parallelism

◼ More generally, staged execution
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More Programmability in Systolic Arrays



Pipeline-Parallel (Pipelined) Programs

33Suleman+, “Data Marshaling for Multi-core Architectures,” ISCA 2010.



Stages of Pipelined Programs

◼ Loop iterations are divided into code segments called stages

◼ Threads execute stages on different cores
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loop {

Compute1

Compute2

Compute3

}

A

B

C

A B C



Pipelined File Compression Example
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Systolic Array: Advantages & Disadvantages

◼ Advantages

❑ Makes multiple uses of each data item → reduced need for 
fetching/refetching → better use of memory bandwidth

❑ High concurrency

❑ Regular design (both data and control flow)

◼ Disadvantages

❑ Not good at exploiting irregular parallelism

❑ Relatively special purpose → need software, programmer 

support to be a general purpose model
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Example Systolic Array: The WARP Computer

◼ HT Kung, CMU, 1984-1988

◼ Linear array of 10 cells, each cell a 10 Mflop programmable 
processor

◼ Attached to a general purpose host machine

◼ HLL and optimizing compiler to program the systolic array

◼ Used extensively to accelerate vision and robotics tasks

◼ Annaratone et al., “Warp Architecture and 
Implementation,” ISCA 1986. 

◼ Annaratone et al., “The Warp Computer: Architecture, 
Implementation, and Performance,” IEEE TC 1987. 
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The WARP Computer 
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The WARP Cell
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An Example Modern Systolic Array: TPU (I)
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Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.



An Example Modern Systolic Array: TPU (II)

41

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.



Recall: Example 2D Systolic Array Computation

◼ Multiply two 3x3 matrices (inputs)

❑ Keep the final result in PE accumulators
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P = M

Q = N

R = R + M*N



An Example Modern Systolic Array: TPU (III)
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An Example Modern Systolic Array: TPU2 
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https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips

vs 1 chip in TPU1

High Bandwidth Memory 

vs DDR3

Floating point operations

vs FP16

45 TFLOPS per chip

vs 23 TOPS

Designed for training 

and inference

vs only inference



An Example Modern Systolic Array: TPU3 

45https://cloud.google.com/tpu/docs/system-architecture

32GB HBM per chip

vs 16GB HBM in TPU2

4 Matrix Units per chip

vs 2 Matrix Units in TPU2

90 TFLOPS per chip

vs 45 TFLOPS in TPU2



Cerebras’s Wafer Scale Engine (2019)
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Cerebras WSE               

1.2 Trillion transistors

46,225 mm2

Largest GPU               

21.1 Billion transistors

815 mm2

◼ The largest ML 

accelerator chip

◼ 400,000 cores 

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Cerebras’s Wafer Scale Engine-2 (2021)
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Cerebras WSE-2               

2.6 Trillion transistors

46,225 mm2

Largest GPU               

54.2 Billion transistors

826 mm2

◼ The largest ML 

accelerator chip

◼ 850,000 cores 

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
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