
Digital Design & Computer Arch.

Lecture 19c: Decoupled Access-Execute

Prof. Onur Mutlu

ETH Zürich

Spring 2021

7 May 2021

Approaches to (Instruction-Level) Concurrency

◼ Pipelining

◼ Fine-Grained Multithreading

◼ Out-of-order Execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ Systolic Arrays

◼ Decoupled Access Execute

◼ SIMD Processing (Vector and array processors, GPUs)

2

Decoupled Access/Execute (DAE)

Decoupled Access/Execute (DAE)

◼ Motivation: Tomasulo’s algorithm too complex to
implement

❑ 1980s before Pentium Pro

◼ Idea: Decouple operand

access and execution via

two separate instruction

streams that communicate

via ISA-visible queues.

◼ Smith, “Decoupled Access/Execute

Computer Architectures,” ISCA 1982,

ACM TOCS 1984.

4

Decoupled Access/Execute (II)

◼ Compiler generates two instruction streams (A and E)
❑ Synchronizes the two upon control flow instructions (using branch queues)

5

Decoupled Access/Execute (III)

◼ Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

+ If A is waiting for memory, E can perform useful work

+ If A hits in cache, it supplies data to lagging E

+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

◼ Disadvantages:

-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one,
though)

6

Astronautics ZS-1

◼ Single stream
steered into A and
X pipelines

◼ Each pipeline in-
order

◼ Smith et al., “The
ZS-1 central
processor,”
ASPLOS 1987.

◼ Smith, “Dynamic
Instruction
Scheduling and
the Astronautics
ZS-1,” IEEE
Computer 1989.

7

Loop Unrolling to Eliminate Branches

◼ Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

❑ Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

❑ Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size

8

for (int i = 0; i < N; i++){

A[i] = A[i] + B[i];

}

for (int i = 0; i < N;){

}

for (int i = 0; i < N;){

A[i] = A[i] + B[i];

A[i+1] = A[i+1] + B[i+1];

A[i+2] = A[i+2] + B[i+2];

A[i+3] = A[i+3] + B[i+3];

}

for (int i = 0; i < N; i+=4){

A[i] = A[i] + B[i];

A[i+1] = A[i+1] + B[i+1];

A[i+2] = A[i+2] + B[i+2];

A[i+3] = A[i+3] + B[i+3];

}

for (int i = 0; i < N; i+=4){

A[i] = A[i] + B[i];

A[i+1] = A[i+1] + B[i+1];

A[i+2] = A[i+2] + B[i+2];

A[i+3] = A[i+3] + B[i+3];

}

A Modern DAE Example: Pentium 4

9
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.

Intel Pentium 4 Simplified

10

Mutlu+, “Runahead Execution,”

HPCA 2003.

Approaches to (Instruction-Level) Concurrency

◼ Pipelining

◼ Fine-Grained Multithreading

◼ Out-of-order Execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ Systolic Arrays

◼ Decoupled Access Execute

◼ SIMD Processing (Vector and array processors, GPUs)

11

Digital Design & Computer Arch.

Lecture 19c: Decoupled Access-Execute

Prof. Onur Mutlu

ETH Zürich

Spring 2021

7 May 2021

