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Extra Assignment 3: Amdahl’s Law (I)
n Paper review

q G. M. Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967.

n Optional Assignment – for 1% extra credit
q Write a 1-page review 
q Upload PDF file to Moodle – Deadline: June 15

n I strongly recommend that you follow my guidelines for 
(paper) review (see next slide)
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Extra Assignment 3: Amdahl’s Law (II)
n Guidelines on how to review papers critically

q Guideline slides: pdf ppt
q Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

q Example reviews on “Main Memory Scaling: Challenges and 
Solution Directions” (link to the paper)
n Review 1
n Review 2

q Example review on “Staged memory scheduling: Achieving 
high performance and scalability in heterogeneous 
systems” (link to the paper)
n Review 1
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https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf


We Are Almost Done With This…
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms
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Approaches to (Instruction-Level) Concurrency

n Pipelining
n Fine-Grained Multithreading
n Out-of-order Execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Systolic Arrays
n Decoupled Access Execute
n SIMD Processing (Vector and Array processors, GPUs)
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Readings for this Week
n Required

n Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008.

n Recommended
q Peleg and Weiser, “MMX Technology Extension to the Intel 

Architecture,” IEEE Micro 1996.
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Exploiting Data Parallelism:
SIMD Processors and GPUs



SIMD Processing:
Exploiting Regular (Data) Parallelism



Recall: Flynn’s Taxonomy of Computers

n Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

n SISD: Single instruction operates on single data element
n SIMD: Single instruction operates on multiple data elements

q Array processor
q Vector processor

n MISD: Multiple instructions operate on single data element
q Closest form: systolic array processor, streaming processor

n MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)
q Multiprocessor
q Multithreaded processor
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Recall: SIMD Processing
n Single instruction operates on multiple data elements

q In time or in space
n Multiple processing elements (PEs), i.e., execution units

n Time-space duality

q Array processor: Instruction operates on multiple data 
elements at the same time using different spaces (PEs)

q Vector processor: Instruction operates on multiple data 
elements in consecutive time steps using the same space (PE)
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Recall: Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR ß A[3:0]
ADD  VR ß VR, 1 
MUL  VR ß VR, 2
ST     A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



Recall: Memory Banking
n Memory is divided into banks that can be accessed independently; 

banks share address and data buses (to minimize pin cost)
n Can start and complete one bank access per cycle
n Can sustain N concurrent accesses if all N go to different banks
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Bank
0

Bank
1

MDR MAR

Bank
2

Bank
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MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU
Picture credit: Derek Chiou



Recall: Vector Instruction Execution
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VADD A,B à C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time



Recall: Vector Unit Structure
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Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements 0, 
4, 8, …

Elements 1, 
5, 9, …

Elements 2, 
6, 10, …

Elements 3, 
7, 11, …

Slide credit: Krste Asanovic



Recall: Vector Instruction Level Parallelism
Can overlap execution of multiple vector instructions

q Example machine has 32 elements per vector register and 8 lanes
q Completes 24 operations/cycle while issuing 1 vector instruction/cycle
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load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction 
issue

Slide credit: Krste Asanovic



Automatic Code Vectorization
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of 
operation sequencing
Þ requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Ti
m
e

Slide credit: Krste Asanovic



Vector/SIMD Processing Summary
n Vector/SIMD machines are good at exploiting regular data-

level parallelism
q Same operation performed on many data elements
q Improve performance, simplify design (no intra-vector 

dependencies)

n Performance improvement limited by vectorizability of code
q Scalar operations limit vector machine performance
q Remember Amdahl’s Law
q CRAY-1 was the fastest SCALAR machine at its time!

n Many existing ISAs include (vector-like) SIMD operations
q Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD
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Recall: Amdahl’s Law
n Amdahl’s Law

q f: Parallelizable fraction of a program
q N: Number of processors

q Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967. 

n Maximum speedup limited by serial portion: Serial bottleneck

n All parallel machines “suffer from” the serial bottleneck

18

Speedup =
1

+1 - f f
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Extra Assignment 3: Amdahl’s Law (I)
n Paper review

q G. M. Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967.

n Optional Assignment – for 1% extra credit
q Write a 1-page review 
q Upload PDF file to Moodle – Deadline: June 15

n I strongly recommend that you follow my guidelines for 
(paper) review (see next slide)
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Extra Assignment 3: Amdahl’s Law (II)
n Guidelines on how to review papers critically

q Guideline slides: pdf ppt
q Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

q Example reviews on “Main Memory Scaling: Challenges and 
Solution Directions” (link to the paper)
n Review 1
n Review 2

q Example review on “Staged memory scheduling: Achieving 
high performance and scalability in heterogeneous 
systems” (link to the paper)
n Review 1
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https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf


Extra Assignment 3: Amdahl’s Law (III)
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Lecture on Serial & Parallel Bottlenecks

22https://www.youtube.com/watch?v=vA6AQE6uorA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=30



Lecture on Serial & Parallel Bottlenecks

23https://www.youtube.com/watch?v=TIcmpXjt2vE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=36



Lecture on Bottleneck Acceleration

24https://www.youtube.com/watch?v=xFZsQBUtneE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=32



Lectures on Serial & Parallel Bottlenecks
n Computer Architecture, Fall 2020, Lecture 16b

q Parallelism and Heterogeneity (ETH, Fall 2020)
q https://www.youtube.com/watch?v=vA6AQE6uorA&list=PL5Q2soXY2Zi9xidyIgBxUz

7xRPS-wisBN&index=30

n Computer Architecture, Fall 2020, Lecture 17
q Bottleneck Acceleration (ETH, Fall 2020)
q https://www.youtube.com/watch?v=KQfKPcztsDQ&list=PL5Q2soXY2Zi9xidyIgBxUz7

xRPS-wisBN&index=31

n Computer Architecture, Fall 2020, Lecture 19b
q Multiprocessors (ETH, Fall 2020)
q https://www.youtube.com/watch?v=TIcmpXjt2vE&list=PL5Q2soXY2Zi9xidyIgBxUz7

xRPS-wisBN&index=36

25https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=vA6AQE6uorA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=30
https://www.youtube.com/watch?v=KQfKPcztsDQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=31
https://www.youtube.com/watch?v=TIcmpXjt2vE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=36
https://www.youtube.com/onurmutlulectures


SIMD Operations in Modern ISAs



SIMD ISA Extensions
n Single Instruction Multiple Data (SIMD) extension 

instructions
q Single instruction acts on multiple pieces of data at once
q Common application: graphics
q Perform short arithmetic operations (also called packed 

arithmetic)
n For example: add four 8-bit numbers
n Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a0

0781516232432 Bit position

$s0a1a2a3

b0 $s1b1b2b3

a0 + b0 $s2a1 + b1a2 + b2a3 + b3

+
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Intel Pentium MMX Operations
n Idea: One instruction operates on multiple data elements 

simultaneously
q À la array processing (yet much more limited)
q Designed with multimedia (graphics) operations in mind

28

Peleg and Weiser, “MMX Technology
Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register
Opcode determines data type:
8 8-bit bytes
4 16-bit words
2 32-bit doublewords
1 64-bit quadword

Stride is always equal to 1.



MMX Example: Image Overlaying (I)
n Goal: Overlay the human in image x on top of the background in image y

29Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

PMADDWD~ vo I VI I vo I V I  I I v 2  I v3 I v 2  1 v 3  1 
X X X X X X X X 

1 MOO 1 MO1 I M10 I M I 1  I I MO2 I MO3 1 M12 I M13 1 
1 VOxMOO+Vl xMOl I VOxMl O+V1 xM11 I 1 V2xM02+V3xM03 I V2xM12+V3xMl3 I 

1 First result I Second result 1 
P A D D D ~  + / 

Figure 7. Flow diagram of matrix-vector mult iply. 

much like the one in Figure 6. This operation and similar ones 
appear in many multimedia algorithms and applications. 

A multiply-accumulate operation (MAC)-the product of 
two operands added to a third operand (the accumulator)- 
requires two loads (operands of the multiplication opera- 
tion), a multiply, and an add (to the accumulator). MMX does 
not support three-operand instructions, therefore it does not 
have a full MAC capability. On the other hand, MMX does 
define the PMADDWD instruction that performs four multi- 
plies and two 32-bit adds. A following PADDD instruction 
performs the additional two adds. 

We start by looking at a vector dot product, the building 
block of the matrix-vector multiplication. For this perfor- 
mance example, we assume both input vectors are 16 ele- 
ments long, with each element in the vectors being signed 
16 bits. Accumulation takes place in 32-bit precision. A 
Pentium processor microarchitecture, for example, would 
have to process the operations one at a time in sequential 
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi- 
tions, for a total of 63 instructions. Assume we perform four 
MACs (out of the 16) per loop iteration of our code. Then, 
we need to add 12 instructions for loop control (3 instructions 
per iteration, increment, compare, branch) and 1 instruction 
to store the result. Now the total is 76 instructions. 

Assuming all data and instructions are in the on-chip 
caches, and that exiting the loop will incur one branch mis- 
prediction, the integer assembly optimized version of this 
code (using both pipelines) takes just over 200 cycles on a 
Pentium processor microarchitecture. The cycle count is 
dominated by the nonpipelined, 11-cycle integer multiply 
operation. Under the same conditions, but assuming the data 
is in floating-point format, the floating-point optimized 
assembly version executes in 74 cycles. This version is faster 
as the floating-point multiply takes only three cycles to exe- 
cute and executes in a pipelined unit. 

Now, we can look at MMX technology MMX computes 
four elements at a time. This reduces the instruction count to 
eight loads, four PMADDWD instructions, three PADDD 
instructions, one store instruction, and three additional 
instructions (overhead due to packed data types), totaling 19 
instructions. Performing loop unrolling of four PMADDWD 
instructions eliminates the need to insert loop control instruc- 
tions. The four PMADDWDs already perform the 16 required 
MACs. Thus, the MMX instruction count is four times less than 
that for integer or floating-point operations. With the same 
assumptions applied to a Pentium processor microarchitec- 
ture, an MMX-optimized assembly version of the code using 
both pipelines will execute in only 12 cycles. This is a 

speedup of six times over floating- 
point and much more over integer. 

Now, we extend this example to 
a full matrix-vector multiply. We 
assume a 16x16 matrix multiplies a 
16-element vector, an operation built 
of 16 vector dot products. Repeating 
the same exercise as before, and 
assuming a loop unrolling that per- 
forms four vector dot products each 
iteration, the regular Pentium proces- 

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic- 
tions. Using MMX technology will require 4(4x19 + 3) or 316 
instructions. The MMX instruction count is 3.9 times less than 
when using regular operations. The best regular code imple- 
mentation (floating-point optimized version) takes just under 
1;200 cycles to complete in comparison to 207 cycles for the 
MMX code version. This is a speedup of 5.8 times. 

Chroma k e y ~ ~ g  
Chroma keying is an image overlay technique frequently 

referred to as the weatherman example. In this example, we 
use a dark-blue screen to overlay an image of a woman on 
a picture of a spring blossom (see Figure 8). The required C 
code operation is 

for (i=O: i<image-size; i++) i 
if (x[il == Blue) new-image[i] =y[il; 

else new-image[il = x[il; 
1 

arhere x is the image of the woman on a blue blackground, 
and y is the image of the spring blossom. 

Using MMX technology, we load eight pixels from the pic- 
ture with the woman on a blue background. In Figure 9, the 
compare instruction builds a mask for that data. This mask 
is a sequence of byte elements that are all 1s or all Os, rep- 
resenting the Boolean values of true and false. This reflects 
the h"anted" background and what we want to keep. 
Figure 9 shows this result using a black-and-white picture. 

Figure 10 shows this mask being used on the same eight 
pixels from the picture with the woman and the corre- 
sponding eight pixels from the spring blossom. The PANDN 
and PAND instructions use the mask to identify which pix- 
els to keep from the spring blossom and the woman. They 
also turn the unwanted pixels to Os. The POR instruction 
builds the final picture 

The MMX code sequence in Figure 11 processes eight pix- 
els using only six MMX instructions and doing so without 
branches. Being able to process a conditional move without 
using branch instructions or looking up condition codes is 
becoming an important performance issue with the advanced, 
deep-pipeline microarchitectures that use branch prediction. 
A branch based on the result of a compare operation on the 
incoming data is usually difficult to predict, as incoming data 
in many cases can change randomly and thus degrade the pre- 
diction quality. Eliminating branches used for data selection, 
together nTith the parallelism of the MMX instructions, com- 
bines into an important performance enhancement feature. 
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MMX Example: Image Overlaying (II)

30Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image
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1 First result I Second result 1 
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Figure 7. Flow diagram of matrix-vector mult iply. 

much like the one in Figure 6. This operation and similar ones 
appear in many multimedia algorithms and applications. 

A multiply-accumulate operation (MAC)-the product of 
two operands added to a third operand (the accumulator)- 
requires two loads (operands of the multiplication opera- 
tion), a multiply, and an add (to the accumulator). MMX does 
not support three-operand instructions, therefore it does not 
have a full MAC capability. On the other hand, MMX does 
define the PMADDWD instruction that performs four multi- 
plies and two 32-bit adds. A following PADDD instruction 
performs the additional two adds. 

We start by looking at a vector dot product, the building 
block of the matrix-vector multiplication. For this perfor- 
mance example, we assume both input vectors are 16 ele- 
ments long, with each element in the vectors being signed 
16 bits. Accumulation takes place in 32-bit precision. A 
Pentium processor microarchitecture, for example, would 
have to process the operations one at a time in sequential 
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi- 
tions, for a total of 63 instructions. Assume we perform four 
MACs (out of the 16) per loop iteration of our code. Then, 
we need to add 12 instructions for loop control (3 instructions 
per iteration, increment, compare, branch) and 1 instruction 
to store the result. Now the total is 76 instructions. 

Assuming all data and instructions are in the on-chip 
caches, and that exiting the loop will incur one branch mis- 
prediction, the integer assembly optimized version of this 
code (using both pipelines) takes just over 200 cycles on a 
Pentium processor microarchitecture. The cycle count is 
dominated by the nonpipelined, 11-cycle integer multiply 
operation. Under the same conditions, but assuming the data 
is in floating-point format, the floating-point optimized 
assembly version executes in 74 cycles. This version is faster 
as the floating-point multiply takes only three cycles to exe- 
cute and executes in a pipelined unit. 

Now, we can look at MMX technology MMX computes 
four elements at a time. This reduces the instruction count to 
eight loads, four PMADDWD instructions, three PADDD 
instructions, one store instruction, and three additional 
instructions (overhead due to packed data types), totaling 19 
instructions. Performing loop unrolling of four PMADDWD 
instructions eliminates the need to insert loop control instruc- 
tions. The four PMADDWDs already perform the 16 required 
MACs. Thus, the MMX instruction count is four times less than 
that for integer or floating-point operations. With the same 
assumptions applied to a Pentium processor microarchitec- 
ture, an MMX-optimized assembly version of the code using 
both pipelines will execute in only 12 cycles. This is a 

speedup of six times over floating- 
point and much more over integer. 

Now, we extend this example to 
a full matrix-vector multiply. We 
assume a 16x16 matrix multiplies a 
16-element vector, an operation built 
of 16 vector dot products. Repeating 
the same exercise as before, and 
assuming a loop unrolling that per- 
forms four vector dot products each 
iteration, the regular Pentium proces- 

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic- 
tions. Using MMX technology will require 4(4x19 + 3) or 316 
instructions. The MMX instruction count is 3.9 times less than 
when using regular operations. The best regular code imple- 
mentation (floating-point optimized version) takes just under 
1;200 cycles to complete in comparison to 207 cycles for the 
MMX code version. This is a speedup of 5.8 times. 

Chroma k e y ~ ~ g  
Chroma keying is an image overlay technique frequently 

referred to as the weatherman example. In this example, we 
use a dark-blue screen to overlay an image of a woman on 
a picture of a spring blossom (see Figure 8). The required C 
code operation is 

for (i=O: i<image-size; i++) i 
if (x[il == Blue) new-image[i] =y[il; 

else new-image[il = x[il; 
1 

arhere x is the image of the woman on a blue blackground, 
and y is the image of the spring blossom. 

Using MMX technology, we load eight pixels from the pic- 
ture with the woman on a blue background. In Figure 9, the 
compare instruction builds a mask for that data. This mask 
is a sequence of byte elements that are all 1s or all Os, rep- 
resenting the Boolean values of true and false. This reflects 
the h"anted" background and what we want to keep. 
Figure 9 shows this result using a black-and-white picture. 

Figure 10 shows this mask being used on the same eight 
pixels from the picture with the woman and the corre- 
sponding eight pixels from the spring blossom. The PANDN 
and PAND instructions use the mask to identify which pix- 
els to keep from the spring blossom and the woman. They 
also turn the unwanted pixels to Os. The POR instruction 
builds the final picture 

The MMX code sequence in Figure 11 processes eight pix- 
els using only six MMX instructions and doing so without 
branches. Being able to process a conditional move without 
using branch instructions or looking up condition codes is 
becoming an important performance issue with the advanced, 
deep-pipeline microarchitectures that use branch prediction. 
A branch based on the result of a compare operation on the 
incoming data is usually difficult to predict, as incoming data 
in many cases can change randomly and thus degrade the pre- 
diction quality. Eliminating branches used for data selection, 
together nTith the parallelism of the MMX instructions, com- 
bines into an important performance enhancement feature. 
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SIMD Operations in 
Modern (Machine Learning) Accelerators



Cerebras’s Wafer Scale Engine (2019)

32

Cerebras WSE               
1.2 Trillion transistors

46,225 mm2

Largest GPU               
21.1 Billion transistors

815 mm2

n The largest ML 
accelerator chip (2019)

n 400,000 cores 

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Cerebras’s Wafer Scale Engine-2 (2021)

33

Cerebras WSE-2               
2.6 Trillion transistors

46,225 mm2

Largest GPU               
54.2 Billion transistors

826 mm2

n The largest ML 
accelerator chip (2021)

n 850,000 cores 

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Size, Place, and Route in Cerebras’s WSE
n Neural network mapping onto the whole wafer is a 

challenge

34James et al., “ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning Accelerator.”

Multiple possible mappings

An example mapping

Different dies of the wafer work 
on different layers of the neural 
network: MIMD machine



Recall: Flynn’s Taxonomy of Computers

n Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

n SISD: Single instruction operates on single data element
n SIMD: Single instruction operates on multiple data elements

q Array processor
q Vector processor

n MISD: Multiple instructions operate on single data element
q Closest form: systolic array processor, streaming processor

n MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)
q Multiprocessor
q Multithreaded processor

35



A MIMD Machine with SIMD Processors (I)
n MIMD machine

q Distributed memory (no shared memory)
q 2D-mesh interconnection fabric
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tensors, making use of tensor address generation hard-
ware to efficiently access tensor data in memory. These
play the role of nested loops and eliminate any loop
overhead. There are enough memory banks to provide
the bandwidth needed to fetch eight 16-bit words from
memory and store four such words per cycle, enough
to support SIMD-4, AXPY operations y = y + a ⇥ x,
where the operand a is a scalar held in a register and x
and y are tensors that stream to and from memory. Such
an operation can be launched with a single instruction.
The tensor operands can have more than four elements,
so the instruction executes for multiple cycles.

In mixed precision with multiplications in fp16 and
additions performed in fp32, the throughput is two
FMACs per core per cycle. Purely 32-bit floating point
computations run one FMAC per core per cycle. The
theoretical peak performance of the system varies de-
pending on the number of cores configured on the wafer,
clock rate and power settings.

The core connects to a local router that has five bidi-
rectional links, one to each of its four nearest neighbors
and one to its own core. The router can move data into
and out of these five links, in parallel, on every cycle.
Even with scalar granularity, communication is efficient.
The router has hardware queues for its connection to
the core and for each of a set of virtual channels,
avoiding deadlock. Communication between potentially
distant processors occurs along predetermined routes.
Routing is configured offline, as part of compilation;
data travel along virtual channels that can be program-
matically reconfigured at run time. The fanout of data
to multiple destinations is done through the routing; the
router can forward an input word to any subset of its

five output ports. There is no runtime software involved
with communication. Arriving data are deposited by the
hardware directly into memory or registers or routed to
functional units as specified by the program.

An instruction with tensor operands can run syn-
chronously or, at the discretion of the programmer, as
a background thread that shares the datapath with other
threads including the main one. A background thread
runs a single tensor operation, as a single asynchronously
running instruction. There is no context switch overhead.
The registers and memory used by an asynchronous
thread are those assigned by the programmer or compiler
in the instruction, and these may not be overwritten until
the thread terminates. Subsequent computation can be
delayed until the thread terminates. The core supports
nine concurrent threads of execution.

A stream of data to or from the fabric may be used
as an input to a tensor operation, or as the destination
for one. The hardware directly implements scheduling
activities that would normally be performed by an oper-
ating system. This allows compact and efficient software
implementations. For example, one core can be sending
data from its local memory to another core; simultane-
ously it can receive data from another core while adding
it to values stored in its local memory. All of this is
accomplished using only two machine instructions that
run as independent threads.

Code consists of tasks that react to events. Tasks are
triggered by other tasks, or by arriving data words. The
channel of the arriving word determines the code that is
triggered. There is little delay between the completion
of a task and the start of a subsequent task, as this is
handled in hardware. Together with the SIMD operations

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

84 dies4539 tiles



A MIMD Machine with SIMD Processors (II)
n SIMD processors

q 4-way SIMD for 16-bit floating point operands
q 48 KB of local SRAM

37Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.
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tensors, making use of tensor address generation hard-
ware to efficiently access tensor data in memory. These
play the role of nested loops and eliminate any loop
overhead. There are enough memory banks to provide
the bandwidth needed to fetch eight 16-bit words from
memory and store four such words per cycle, enough
to support SIMD-4, AXPY operations y = y + a ⇥ x,
where the operand a is a scalar held in a register and x
and y are tensors that stream to and from memory. Such
an operation can be launched with a single instruction.
The tensor operands can have more than four elements,
so the instruction executes for multiple cycles.

In mixed precision with multiplications in fp16 and
additions performed in fp32, the throughput is two
FMACs per core per cycle. Purely 32-bit floating point
computations run one FMAC per core per cycle. The
theoretical peak performance of the system varies de-
pending on the number of cores configured on the wafer,
clock rate and power settings.

The core connects to a local router that has five bidi-
rectional links, one to each of its four nearest neighbors
and one to its own core. The router can move data into
and out of these five links, in parallel, on every cycle.
Even with scalar granularity, communication is efficient.
The router has hardware queues for its connection to
the core and for each of a set of virtual channels,
avoiding deadlock. Communication between potentially
distant processors occurs along predetermined routes.
Routing is configured offline, as part of compilation;
data travel along virtual channels that can be program-
matically reconfigured at run time. The fanout of data
to multiple destinations is done through the routing; the
router can forward an input word to any subset of its

five output ports. There is no runtime software involved
with communication. Arriving data are deposited by the
hardware directly into memory or registers or routed to
functional units as specified by the program.

An instruction with tensor operands can run syn-
chronously or, at the discretion of the programmer, as
a background thread that shares the datapath with other
threads including the main one. A background thread
runs a single tensor operation, as a single asynchronously
running instruction. There is no context switch overhead.
The registers and memory used by an asynchronous
thread are those assigned by the programmer or compiler
in the instruction, and these may not be overwritten until
the thread terminates. Subsequent computation can be
delayed until the thread terminates. The core supports
nine concurrent threads of execution.

A stream of data to or from the fabric may be used
as an input to a tensor operation, or as the destination
for one. The hardware directly implements scheduling
activities that would normally be performed by an oper-
ating system. This allows compact and efficient software
implementations. For example, one core can be sending
data from its local memory to another core; simultane-
ously it can receive data from another core while adding
it to values stored in its local memory. All of this is
accomplished using only two machine instructions that
run as independent threads.

Code consists of tasks that react to events. Tasks are
triggered by other tasks, or by arriving data words. The
channel of the arriving word determines the code that is
triggered. There is little delay between the completion
of a task and the start of a subsequent task, as this is
handled in hardware. Together with the SIMD operations

4-way SIMD fused-multiply 
accumulate (FMAC) units.
AXPY: y = a * x + y

Address registers

Local memory



Recall: 
Fine-Grained Multithreading
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Recall: Fine-Grained Multithreading
n Idea: Hardware has multiple thread contexts (PC+registers). 

Each cycle, fetch engine fetches from a different thread.
q By the time the fetched branch/instruction resolves, no 

instruction is fetched from the same thread
q Branch/instruction resolution latency overlapped with execution 

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread 

-- Single thread performance suffers 
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough 

threads to cover the whole pipeline
39



Recall: Fine-Grained Multithreading (II)
n Idea: Switch to another thread every cycle such that no two 

instructions from a thread are in the pipeline concurrently

n Tolerates the control and data dependence latencies by 
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple 
threads

n Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

n Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Recall: Lecture on Fine-Grained Multithreading

41https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16



Lectures on Fine-Grained Multithreading
n Digital Design & Computer Architecture, Spring 2021, Lecture 14

q Pipelined Processor Design (ETH, Spring 2021)
q https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39Y

B5pfW4SJ7LlN&index=16

n Digital Design & Computer Architecture, Spring 2020, Lecture 18c
q Fine-Grained Multithreading (ETH, Spring 2020)
q https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fU

YWPGiZUBQo2&index=26

42https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16
https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=26
https://www.youtube.com/onurmutlulectures


GPUs (Graphics Processing Units)



GPUs are SIMD Engines Underneath
n The instruction pipeline operates like a SIMD pipeline (e.g., 

an array processor)

n However, the programming is done using threads, NOT 
SIMD instructions

n To understand this, let’s go back to our parallelizable code 
example

n But, before that, let’s distinguish between 
q Programming Model (Software)

vs.
q Execution Model (Hardware)
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Programming Model vs. Hardware Execution Model

n Programming Model refers to how the programmer expresses 
the code
q E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, 

Multi-threaded (MIMD, SPMD), …

n Execution Model refers to how the hardware executes the 
code underneath
q E.g., Out-of-order execution, Vector processor, Array processor, 

Dataflow processor, Multiprocessor, Multithreaded processor, …

n Execution Model can be very different from the Programming 
Model
q E.g., von Neumann model implemented by an OoO processor
q E.g., SPMD model implemented by a SIMD processor (a GPU)
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How Can You Exploit Parallelism Here?

46

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming 
options to exploit instruction-level 

parallelism present in this sequential 
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)



Prog. Model 1: Sequential (SISD)
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code n Can be executed on a:

n Pipelined processor
n Out-of-order execution processor

q Independent instructions executed 
when ready

q Different iterations are present in the 
instruction window and can execute in 
parallel in multiple functional units

q In other words, the loop is dynamically 
unrolled by the hardware

n Superscalar or VLIW processor
q Can fetch and execute multiple 

instructions per cycle

for (i=0; i < N; i++)
C[i] = A[i] + B[i];



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD 
instruction to execute the same instruction from 
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD     A à V1

VLD     B à V2

VADD     V1 + V2 à V3

VST     V3 à C



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine



Prog. Model 3: Multithreaded

50

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine
Single Instruction Multiple Thread



A GPU is a SIMD (SIMT) Machine
n Except it is not programmed using SIMD instructions

n It is programmed using threads (SPMD programming model)
q Each thread executes the same code but operates a different 

piece of data
q Each thread has its own context (i.e., can be 

treated/restarted/executed independently)

n A set of threads executing the same instruction are 
dynamically grouped into a warp (wavefront) by the 
hardware
q A warp is essentially a SIMD operation formed by hardware!
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Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

52

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:
Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute
the same instruction (i.e., at the same PC)



Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)



SIMD vs. SIMT Execution Model
n SIMD: A single sequential instruction stream of SIMD 

instructions à each instruction specifies multiple data inputs
q [VLD, VLD, VADD, VST], VLEN

n SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q [LD, LD, ADD, ST], NumThreads

n Two Major SIMT Advantages: 
q Can treat each thread separately à i.e., can execute each thread 

independently (on any type of scalar pipeline) à MIMD processing
q Can group threads into warps flexibly à i.e., can group threads 

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing
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Fine-Grained Multithreading of 
Warps 

55

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Warp 0 at PC X

n Assume a warp consists of 32 threads
n If you have 32K iterations, and 1 iteration/thread à 1K warps
n Warps can be interleaved on the same pipeline à Fine grained 

multithreading of warps

Warp 1 at PC X

Iter. 
33

Iter. 
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2



Warps and Warp-Level FGMT
n Warp: A set of threads that execute the same instruction 

(on different data elements) à SIMT (Nvidia-speak)
n All threads run the same code
n Warp: The threads that run lengthwise in a woven fabric …
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Thread Warp 3
Thread Warp 8

Thread Warp 7
Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



High-Level View of a GPU

57Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



Latency Hiding via Warp-Level FGMT
n Warp: A set of threads that 

execute the same instruction 
(on different data elements)

n Fine-grained multithreading
q One instruction per thread in 

pipeline at a time (No 
interlocking)

q Interleave warp execution to 
hide latencies

n Register values of all threads stay 
in register file

n FGMT enables long latency 
tolerance
q Millions of pixels 
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Decode

RF RFRF

ALU

ALU

ALU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt



Warp Execution (Recall the Slide)
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32-thread warp executing ADD A[tid],B[tid] à C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure



Warp Instruction Level Parallelism
Can overlap execution of multiple instructions

q Example machine has 32 threads per warp and 8 lanes
q Completes 24 operations/cycle while issuing 1 warp/cycle
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W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic



n Same instruction in different threads uses thread id to 
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp à 4 warps 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3
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n CPU threads and GPU kernels
q Sequential or modestly parallel sections on CPU
q Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers
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Slide credit: Hwu & Kirk



Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 64



Sample GPU Program (Less Simplified)

65Slide credit: Hyesoon Kim



From Blocks to Warps
n GPU cores: SIMD pipelines

q Streaming Multiprocessors (SM)
q Streaming Processors (SP)

n Blocks are divided into warps
q SIMD unit (32 threads)

Streaming Multiprocessor

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

LD/ST

SFU

SFU

SFU

SFU

Register File

Shared Memory / L1 Cache

Constant Cache

Dispatch Unit Dispatch Unit

Warp Scheduler Warp Scheduler

Instruction Cache

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…
Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…
Block 2’s warps
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NVIDIA Fermi architecture



Warp-based SIMD vs. Traditional SIMD
n Traditional SIMD contains a single thread 

q Sequential instruction execution; lock-step operations in a SIMD instruction
q Programming model is SIMD (no extra threads) à SW needs to know 

vector length
q ISA contains vector/SIMD instructions

n Warp-based SIMD consists of multiple scalar threads executing in a 
SIMD manner (i.e., same instruction executed by all threads)
q Does not have to be lock step
q Each thread can be treated individually (i.e., placed in a different warp) 

à programming model not SIMD
n SW does not need to know vector length
n Enables multithreading and flexible dynamic grouping of threads

q ISA is scalar à SIMD operations can be formed dynamically
q Essentially, it is SPMD programming model implemented on SIMD 

hardware
67



SPMD
n Single procedure/program, multiple data 

q This is a programming model rather than computer organization

n Each processing element executes the same procedure, except on 
different data elements
q Procedures can synchronize at certain points in program, e.g. barriers

n Essentially, multiple instruction streams execute the same 
program
q Each program/procedure 1) works on different data, 2) can execute a 

different control-flow path, at run-time
q Many scientific applications are programmed this way and run on MIMD 

hardware (multiprocessors)
q Modern GPUs programmed in a similar way on a SIMD hardware
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SIMD vs. SIMT Execution Model
n SIMD: A single sequential instruction stream of SIMD 

instructions à each instruction specifies multiple data inputs
q [VLD, VLD, VADD, VST], VLEN

n SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q [LD, LD, ADD, ST], NumThreads

n Two Major SIMT Advantages: 
q Can treat each thread separately à i.e., can execute each thread 

independently on any type of scalar pipeline à MIMD processing
q Can group threads into warps flexibly à i.e., can group threads 

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing
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Threads Can Take Different Paths in Warp-based SIMD

n Each thread can have conditional control flow instructions
n Threads can execute different control flow paths
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Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B

C D

E

F

A

G

Slide credit: Tor Aamodt



Control Flow Problem in GPUs/SIMT
n A GPU uses a SIMD 

pipeline to save area 
on control logic
q Groups scalar threads 

into warps

n Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths
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Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution. 
Recall the Vector Mask and Masked Vector Operations?



Remember: Each Thread Is Independent
n Two Major SIMT Advantages: 

q Can treat each thread separately à i.e., can execute each thread 
independently on any type of scalar pipeline à MIMD processing

q Can group threads into warps flexibly à i.e., can group threads 
that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

n If we have many threads
n We can find individual threads that are at the same PC
n And, group them together into a single warp dynamically
n This reduces “divergence” à improves SIMD utilization

q SIMD utilization: fraction of SIMD lanes executing a useful 
operation (i.e., executing an active thread)
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Dynamic Warp Formation/Merging
n Idea: Dynamically merge threads executing the same 

instruction (after branch divergence)
n Form new warps from warps that are waiting

q Enough threads branching to each path enables the creation 
of full new warps

73

Warp X
Warp Y

Warp Z



Dynamic Warp Formation/Merging
n Idea: Dynamically merge threads executing the same 

instruction (after branch divergence)

n Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007.
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Branch

Path A

Path B

Branch

Path A



Dynamic Warp Formation Example
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A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A x/1111
y/1111

B x/1110
y/0011

C x/1000
y/0010 D x/0110

y/0001 F x/0001
y/1100

E x/1110
y/0011

G x/1111
y/1111

A new warp created from scalar 
threads of both Warp x and y 
executing at Basic Block D

D

Execution of Warp x
at Basic Block A

Execution of Warp y
at Basic Block A

Legend
AA

Baseline

Dynamic
Warp
Formation

Slide credit: Tor Aamodt



Hardware Constraints Limit Flexibility of Warp Grouping
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread 
flexibly to any lane?



Large Warps and Two-Level Warp Scheduling

n Two main reasons for GPU resources be underutilized

q Branch divergence

q Long latency operations

77

time

Core

Memory
System

All Warps Compute
Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 
Scheduling,” MICRO 2011.



Large Warp Microarchitecture Example

Decode Stage

1 0 0 1
0 1 0 0
0 0 1 1
1 0 0 0
0 0 1 0
0 1 0 0
1 0 0 1
0 1 0 0

0 0
0

0
1 1 1 1

0
0

0
0

1 1 1 1

0 0
0

1 1 1 11 1 0 1
Sub-warp 0 mask Sub-warp 0 maskSub-warp 1 mask Sub-warp 0 maskSub-warp 1 maskSub-warp 2 mask

1 1 1 1 1 1 1 1

n Reduce branch divergence by having large warps
n Dynamically break down a large warp into sub-warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 
Scheduling,” MICRO 2011.



Two-Level Round Robin
n Scheduling in two levels to deal with long latency operations

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 
Scheduling,” MICRO 2011.

time

Core

Memory
System

All Warps Compute
Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

time

Core

Memory
System

Compute
Req Warp 0

Req Warp 1

Req Warp 7

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Group 0
Compute
Group 1

Req Warp 8
Req Warp 9

Req Warp 15

Compute
Group 0

Compute
Group 1

Saved Cycles



An Example GPU



NVIDIA GeForce GTX 285
n NVIDIA-speak:

q 240 stream processors
q “SIMT execution”

n Generic speak:
q 30 cores
q 8 SIMD functional units per core

n NVIDIA, “NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper,” 2008.

Slide credit: Kayvon Fatahalian 81



NVIDIA GeForce GTX 285 “core”

…

= instruction stream decode= SIMD functional unit, control 
shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 
for thread contexts 
(registers)

Slide credit: Kayvon Fatahalian 82



NVIDIA GeForce GTX 285 “core”

…
64 KB of storage 
for thread contexts 
(registers)

n Groups of 32 threads share instruction stream (each group is 
a Warp)

n Up to 32 warps are simultaneously interleaved
n Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian 83



NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian 84
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NVIDIA V100
n NVIDIA-speak:

q 5120 stream processors
q “SIMT execution”

n Generic speak:
q 80 cores
q 64 SIMD functional units per core

q Tensor cores for Machine Learning

n NVIDIA, “NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.
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NVIDIA V100 Block Diagram

80 cores on the V100
https://devblogs.nvidia.com/inside-volta/

87



NVIDIA V100 Core

15.7 TFLOPS Single Precision
7.8 TFLOPS Double Precision
125 TFLOPS for Deep Learning (Tensor cores)

88
https://devblogs.nvidia.com/inside-volta/



Tensor Core Microarchitecture (Volta)
n Each warp utilizes two tensor cores
n Each tensor core contains two “octets”

q 16 SIMD units per tensor core (8 per octet)
q 4x4 matrix-multiply and accumulate each cycle per tensor core

89* M. A. Raihan, N. Goli and T. M. Aamodt, "Modeling Deep Learning Accelerator Enabled GPUs," ISPASS 2019.
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Figure 13: Proposed Tensor Core Microarchitecture

each FEDP unit, multiplication is performed in parallel in
the first stage and accumulation occurs over three stages for
a total of four pipeline stages. As each tensor core consists
of sixteen FP16 FEDP units, it is capable of completing one
4× 4 matrix multiplication each cycle.

V. MODELING AND EVALUATION

A. Modelling Tensor Cores
Our changes to model the tensor cores in Volta are avail-

able in the “dev” branch of GPGPU-Sim [24] on github3. We
extended the current version of GPGPU-Sim to support 16-
bit floating-point by using a half-precision C++ header-only
library [45]. The library provides an efficient implementation
of 16-bit floating-point conforming to the IEEE 754 half-
precision format. It provides common arithmetic operations
and type conversion. GPGPU-Sim currently only supports
SASS execution for the G90 architecture; therefore, we only
model tensor core operations at the PTX level. To do so,
we added functional and timing models for the wmma.load,
wmma.mma and wmma.store PTX instructions described in
Section II-C.

Our functional model of the wmma.load and wmma.store
PTX instructions support all possible layout combinations
for operand matrix A, B and C. Our functional model follows

3https://github.com/gpgpu-sim/gpgpu-sim_distribution/tree/dev

the operand matrix element to thread mapping shown in
Figure 7. We have verified the timing model generates
the exact same number of coalesced memory transactions
generated by the Titan V GPU for these operations.

Our functional model of the wmma.mma instruction sup-
ports all 32 possible configurations supported on the Titan V
GPU. A timing model for the tensor core functional unit
is added to the GPU pipeline. We interface our tensor
core timing model to the operand collector unit modeled
in GPGPU-Sim. Each wmma.mma instruction is issued to
the tensor core unit after all of its source operands are
ready in the operand collector. We updated the scoreboard to
check for RAW and WAW hazard associated with wmma.mma
instructions.

We validate our tensor core model by comparing against
an NVIDIA Tesla Titan V with CUDA Capability 7.0, hosted
by an Intel Core i7-4771 3.50GHz based workstation with
Ubuntu 16.04.4 LTS, CUDA Toolkit Version 9.0, NVIDIA
410.48 GPU driver, and gcc 4.9.4. Figure 14a compares the
cycles required to execute a WMMA based matrix-multiply
and accumulate kernel on the Titan V GPU and GPGPU-
Sim as matrix size varies. We find GPGPU-Sim tracks real
hardware very accurately with a standard deviation of less
than 5%. This is despite the fact our model is implemented
at the PTX level.
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Proposed* tensor core microarchitecture

SIMD unit

Unlike conventional SIMD, 
register contents are not
private to each thread, but 
shared inside the warp



NVIDIA A100
n NVIDIA-speak:

q 6912 stream processors
q “SIMT execution”

n Generic speak:
q 108 cores
q 64 SIMD functional units per core

q Tensor cores for Machine Learning
n Support for sparsity
n New floating point data type (TF32)

n https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ 90

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/


NVIDIA A100 Block Diagram

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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NVIDIA A100 Core
19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

92
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/



Food for Thought
n Compare and contrast GPUs vs Systolic Arrays

q Which one is better for machine learning?

q Which one is better for image/vision processing?

q What types of parallelism each one exploits?

q What are the tradeoffs?

n If you are interested in such questions and more…
q Bachelor’s Seminar in Computer Architecture (HS2021, 

FS2022)
q Computer Architecture Master’s Course (HS2021)
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Clarification of Some GPU Terms

95

Generic Term NVIDIA Term AMD Term Comments

Vector length Warp size Wavefront size Number of threads that run in parallel (lock-step) 
on a SIMD functional unit

Pipelined 
functional unit /
Scalar pipeline

Streaming 
processor /
CUDA core

- Functional unit that executes instructions for one 
GPU thread

SIMD functional 
unit /
SIMD pipeline

Group of N 
streaming 
processors (e.g., 
N=8 in GTX 285, 
N=16 in Fermi)

Vector ALU SIMD functional unit that executes instructions for 
an entire warp

GPU core Streaming 
multiprocessor

Compute unit It contains one or more warp schedulers and one 
or several SIMD pipelines


