Digital Desigh & Computer Arch.

Lecture 21: Graphics Processing Units

Dr. Juan Gomez Luna
Prof. Onur Mutlu

ETH Zurich
Spring 2021
20 May 2021

Extra Assignment 3: Amdahl’s Law (I)

Paper review

o G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Optional Assignment — for 1% extra credit

o Write a 1-page review
o Upload PDF file to Moodle — Deadline: June 15

I strongly recommend that you follow my guidelines for
(paper) review (see next slide)

Extra Assignment 3: Amdah!l’s Law (1)

= Guidelines on how to review papers critically

a Guideline slides: pdf ppt
a Video: https://www.youtube.com/watch?v=tOL6FANAJSC

o Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)

= Review 1
= Review 2

o Example review on "“Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
= Review 1

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

We Are Almost Done With This...

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

s Out-of-Order Execution

= Other Execution Paradigms

Approaches to (Instruction-Level) Concurrency

= Pipelining

» Fine-Grained Multithreading

= Out-of-order Execution

= Dataflow (at the ISA level)

m Superscalar Execution

s VLIW

= Systolic Arrays

s Decoupled Access Execute

= SIMD Processing (Vector and Array processors, GPUS)

Readings for this Week

Required

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,”" IEEE Micro 2008.

Recommended

o Peleg and Weiser, "MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.

Exploiting Data Parallelism:
SIMD Processors and GPUs

SIMD Processing:
Exploiting Regular (Data) Parallelism

Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

Recall: SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements (PEs), i.e., execution units

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces (PESs)

a Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space (PE)

10

Recall: Array vs. Vector Processors

ARRAY PROCESSOR VECTOR PROCESSOR
Instruction Stream Same op @ same time
Different ti
LD VR € A[3:0] Lpo| D1 [LD2 D3 Lpp Drerenters@tme
ADD VR ¢ VR, 1
’ ADO| AD1 |AD2
MUL VR € VR 2 0 AD3 LD1 | ADO
ST A[3:0] € VR MUO| MU1 IMU2 MU3 LD2 | AD1 [MUO
STO | ST1 |ST2 ST3 [LD3 AD2 |MU1 STO]
—
Different ops @ same space AD3 |MU2 ST1
v MU3 ST2
Time Same op @ space ST3

€<—Space—™> <«<——Space———>

11

Recall: Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N concurrent accesses if all N go to different banks

Bank Bank Bank
0 1 2
MDR| | MAR || MDR| | MAR | | MDR| | MAR

Data bus

...... Bank

15

MDR| | MAR

Picture credit: Derek Chiou

A

Address bus

CPU
12

Recall: Vector Instruction Execution

A[6] B[6]
A[5] B[5]
A[4] B[4]
A[3] BI[3]

vy
\ /

e

\ <

Lo

Time |

C[O0]

Slide credit: Krste Asanovic

Execution using
one pipelined
functional unit

VADD A,B > C

Execution using
four pipelined
functional units

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]

S N S ST T S S
SV N v V2t S WV [W VA

| cI8) f | clo] f | Cr10] f | cri] f
| am asi o e o]
e .
C[0] Cl1] Cl2] C[3]
< Space >

13

Recall: Vector Unit Structure

Functional Unit
/

>\

(] = /= =
[[[[
| [1 Y [1
e R e
Registers Elements O Elements 1 Elements 2 Elements 3
~ 48, .. 509 . 6,10, .. 711, ..
I 1 A i Vo A i Vo A i Vo A
= | |
Ll Ll Ll Ll
T | T | T | T |
Lane ‘/

Memory Subsystem

Slide credit: Krste Asanovic

14

Recall: Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o Example machine has 32 elements per vector register and 8 lanes
o Completes 24 operations/cycle while issuing 1 vector instruction/cycle

Load Unit Multiply Unit Add Unit
oooooﬁ-ﬁﬂ
o000 AlA AAA[p A
time ©ee0ee o0 d|aaiairjikd aanEEEEE
el OO I NP NNPNPSVNPNEY LD I UL I I
OCOCO0OF="NAAAAAAAANEEEEEEN
@@@Q@(L—n-;‘fj/'AAAAA4..A. EEEEEEEN
olololojoo]o[0]alalalaal{3dd fme/m E E[E EE
0000000 0C|A/AAA|AAAAEE EEENNN
AAAAAAAANEEEEEEE
. EEEEEEEN
Instruction

issue

Slide credit: Krste Asanovic

15

Automatic Code Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + B[1i];
Scalar Sequential Code Vectorized Code

1 2 Vector Instruction

: Vectorization is a compile-time reordering of
: operation sequencing
: = requires extensive loop dependence analysis

Slide credit: Krste Asanovic 16

Vector/SIMD Processing Summary

Vector/SIMD machines are good at exploiting regular data-
level parallelism

o Same operation performed on many data elements

o Improve performance, simplify design (no intra-vector
dependencies)

Performance improvement limited by vectorizability of code
o Scalar operations limit vector machine performance

o Remember Amdahl’s Law

o CRAY-1 was the fastest SCALAR machine at its time!

Many existing ISAs include (vector-like) SIMD operations
o Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

17

Recall: Amdahl’s Law

Amdahl’s Law

o f: Parallelizable fraction of a program
o N: Number of processors

Speedup =

f
N

1-f +

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

All parallel machines “suffer from” the serial bottleneck

18

Extra Assignment 3: Amdahl’s Law (I)

Paper review

o G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Optional Assignment — for 1% extra credit

o Write a 1-page review
o Upload PDF file to Moodle — Deadline: June 15

I strongly recommend that you follow my guidelines for
(paper) review (see next slide)

19

Extra Assignment 3: Amdah!l’s Law (1)

= Guidelines on how to review papers critically

a Guideline slides: pdf ppt
a Video: https://www.youtube.com/watch?v=tOL6FANAJSC

o Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)

= Review 1
= Review 2

o Example review on "“Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
= Review 1

20

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

Extra Assignhment 3: Amdah!l’s Law (11I)

Validity of the single processor
approach to achieving large scale

computing capabilities

by DR. GENE M. AMDAHL

International Business Machines Corporation
Sunnyvale, California

INTRODUCTION

For over a decade prophets have voiced the con-
tention that the organization of a single computer
has reached its limits and that truly significant
advances can be made only by interconnection of a
multiplicity of computers in such a manner as to
permit cooperative solution. Variously the proper
direction has been pointed out as general purpose
computers with a generalized interconnection of
memories, or as specialized computers with geo-
metrically related memory interconnections and con-
trolled by one or more instruction streams.

Demonstration is made of the continued validity
of the single processor approach and of the weak-
nesses of the multiple processor approach in terms
of application to real problems and their attendant
irregularities.

‘The arguments presented are based on statistical
characteristics of computation on computers over
the last decade and upon the operational requirements
within problems of physical interest. An additional

cessing rate, even if the housekeeping were done in
a separate processor. The non-housekeeping part
of the problem could exploit at most a processor of
performance three to four times the performance of
the housekeeping processor. A fairly obvious con-
clusion which can be drawn at this point is that the
effort expended on achieving high parallel processing
rates is wasted unless it is accompanied by achieve-
ments in sequential processing rates of very nearly
the same magnitude.

Data management housekeeping is not the only
problem to plague oversimplified approaches to high
speed computation. The physical problems which are
of practical interest tend to have rather significant
complications. Examples of these complications
are as follows: boundaries are likely to be irregular;
interiors are likely to be inhomogeneous; computa-
tions required may be dependent on the states of
the variables at each point; propagation rates of
different physical effects may be quite different; the

PO

21

Lecture on Serial & Parallel Bottlenecks

Caveats of Parallelism

Amdahl’ s Law
o f: Parallelizable fraction of a program
2 N: Number of processors

Speedup = -

N

1-f +

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck
= Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)
=) Resource sha,[lnq overhead (contention among N processors)

Computer Architecture - Lecture 16b: Parallelism and Heterogeneity (ETH Ziirich, Fall 2020)

562 views * Nov 20, 2020 i14 Mo) SHARE = SAVE

@ ?:lzj;: Ml:)ﬂu _teCtheS ANALYTICS EDIT VIDEO
& .2K subscribers

https://www.youtube.com/watch?v=vAG6AQE6uorA&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=30 22

Lecture on Serial & Parallel Bottlenecks

Why the chucntin] Bottleneck?

Parallel machines have the
sequential bottleneck

Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)
for(i=0;i<N;i++)
Ali] = (A[i] + A[i-1]) / 2

=
Pl R) 105:32/1:12:33

Computer Architecture - Lecture 19b: Multiprocessors (ETH Zirich, Fall 2020)

627 views * Nov 29, 2020 |. 15 0 SHARE SAVE

- Onur Mutlu Lectures
Q AT T ANALYTICS EDIT VIDEO

https://www.youtube.com/watch?v=TlcmpXjt2vE&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=36 23

Lecture on Bottleneck Acceleration

4« P P>l N) 5240/2:29:47

Computer Architecture - Lecture 17: Bottleneck Acceleration (ETH Ziirich, Fall 2020) [Alternative]

600 views * Nov 20, 2020 ifp15 &lo) SHARE =i SAVE

@ ?:;2 |SVL|‘l;tS|:rit:rCStUTES ANALYTICS EDIT VIDEO
«T> ’

https://www.youtube.com/watch?v=xFZsQBUtneE&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=32 24

Lectures on Serial & Parallel Bottlenecks

= Computer Architecture, Fall 2020, Lecture 16b

o Parallelism and Heterogeneity (ETH, Fall 2020)

o https://www.youtube.com/watch?v=vA6AQE6uorA&list=PL502s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=30

= Computer Architecture, Fall 2020, Lecture 17

o Bottleneck Acceleration (ETH, Fall 2020)

o https://www.youtube.com/watch?v=KQfKPcztsDOQ&list=PL50Q2s0XY2Zi9xidyIlgBxUz7
XRPS-wisBN&index=31

= Computer Architecture, Fall 2020, Lecture 19b

o Multiprocessors (ETH, Fall 2020)

o https://www.youtube.com/watch?v=TIcmpXjt2vE&list=PL502s0XY2Zi9xidylgBxUz7
XRPS-wisBN&index=36

https:/ /www.youtube.com/onurmutlulectures 25

https://www.youtube.com/watch?v=vA6AQE6uorA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=30
https://www.youtube.com/watch?v=KQfKPcztsDQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=31
https://www.youtube.com/watch?v=TIcmpXjt2vE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=36
https://www.youtube.com/onurmutlulectures

SIMD Operations in Modern ISAs

SIMD ISA Extensions

Single Instruction Multiple Data (SIMD) extension

Instructions

o Single instruction acts on multiple pieces of data at once
o Common application: graphics

a Perform short arithmetic operations (also called packed

arithmetic)

For example: add four 8-bit numbers
Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $sl

32

24 23

16 15

87

0 Bit position

$s0

$s1

$s2

27

Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

o A /a array processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

63 8 7

0

(@)

63 16 15

(b)

63 32 31

(¢)
63

(d)

Figure 1. MMX technology data types: packed byte (a),

packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.

28

MMX Example: Image Overlaying (1)

= Goal: Overlay the human in image X on top of the background in image y

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

for (i=0; i<image_size; i++) {

if (x{i] == Blue) new_imageli] =ylil;

else new_imageli] = x[i;

MM1

Image x[| MM3

Bit mask Mm1

Blue Blue Blue Blue Blue | Biue Blue Blue
X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue|X2!=blue | X1=blue | XO=blue
0x0000 | Ox0000 | OxFFFF | OxFFFF | Ox0000 | Ox0000 | OxFFFF | OxFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 29

MMX Example: Image Overlaying (1I)

PAND MM4, MM1 _ Y = Blossom image PANDN MM1, MM3 X =Woman'’s image
M4 (B Y, #[@Y, df@ Y. Vel YEP Y EP Y @F V.4 Mm1[0x0000]0x0000]0xFFFF [0xFFFF [0x0000]0~0000]0xFFFF J0xFFFF|
MM 1 loxoooo}0><0000|0><FFFF|0xFFﬂ0x0000|oxooooloxFFFF10xFFFﬂ MM X, | X | Xs | X | X [X | X X |
MM4 [0x0000]0x0000]® Y5 ¥ Y, #0x0000[0x0000[% Y, & Yo& Mm1[X, | X; Jox0000]0x0000] X5 [X [0x0000|0x0006|

g

POR MM4, MM1

MM X, | X [PYs TR Y] Xs | X [P Y 9P Yo

for (i=0; i<image_size; i++) {
if (x[i] == Blue) new_imagelil =ylil;
else new_imageli] = x[il;

}

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.

Movag- g mm3, memt. -/ Load _éight pixels from
a S woman’s image
Movg ~~ mmd4,mem2 - /*Load eight pixels from the

o : blossom image
Pcmpegb. mm1, mm3

Pand mmd4, mm1.
Pandn mmi, mm3

Por mmd, mmt.

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 30

SIMD Operations in
Modern (Machine Learning) Accelerators

Cerebras’s Water Scale Engine (2019)

= The largest ML
accelerator chip (2019

= 400,000 cores

J TS
T TAIWAN 1723A1

PFBY82.M00 ‘&i
8%5-A1

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?2
NVIDIA TITAN V

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/ 32

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Water Scale Engine-2 (2021)

= The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm?2 826 mm?2
NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/ 33

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

(L]

Size, Place, and Route in Cerebras’s WS]

Neural network mapping onto the whole wafer is a

hallen
Chalienge An example mapping

Kernel graph with layers

Multiple possible mappings 3 -
LT LT

~ - ~ o
x = [x < o B 2 Bl =
© | x| ~ - BEE- ~ i ©
. o] IR < =)] C p=EN © §S
[7] [[7) g I i
o« | " < <
é Z
. | |
) J J g
%_ \ \ |
\ \ \
\ \ |

| Input = 28x28x1

;

Different dies of the wafer work
on different layers of the neural
network: MIMD machine

Layers mapped on Wafer Scale Engine

James et al., “ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning Accelerator.” 34

Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor
35

A MIMD Machine with SIMD Processors (I)

MIMD machine
o Distributed memory (no shared memory)
o 2D-mesh interconnection fabric

Single tile Single die

Wafer Scale Engine

A
In - —] : \
L |
|
|
|
1| Control | ; Df“.QI’R !
" || file :
R | il .
outer | L —a| | § N
! X _{Memory|
I 2
| =
| FMAC | @)
: Scheduler] f}',\ | \ © \\
| y |
L |
e L L1 —
| | Core //
51 tiles g ~
NSEW
4539 tiles

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

12 dies

84 dies

7 dies

36

A MIMD Machine with SIMD Processors (II)

SIMD processors
o 4-way SIMD for 16-bit floating point operands
o 48 KB of local SRAM

NSEW

Single tile
| I\ Address registers
\AJ e e e e e R e R e e e e - — e
Wi
|
: Control | ; Dfﬁ: :
| B [l '
Router I |25 | m
| e JuemanfiA—"1 Local memory
w |
I |
! t FMAC | | . &
I Scheduler] — |
| — :
I y
I "
! L 4-way SIMD fused-multiply
] Core accumulate (FMAC) units.
AXPY:y=a*x+y
NSEW

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020. 37

Recall:
Fine-Grained Multithreading

Recall: Fine-Grained Multithreading

= Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for handling control and | nstruction Fetch

Stream 2 Instruction

data dependences within a thread swgggﬁi;iﬁ’:;m
-- Single thread performance suffers e

Execution Phase

-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough —
Stream 4 Instruction
threads to cover the whole pipeline Result Store

39

Recall: Fine-Grained Multithreading (1)

Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependence latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

40

Recall: Lecture on Fine-Grained Multithreading

Fine-Grained Multithreading

Idea: Hardware has multiple thread contexts (PC+register
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for handling control and Instruction Fetch

Stream 2 Instruction

data dependences within a thread Operand Fatoh

tream 1 Instruction

Execution Phase

-- Single thread performance suffers troam B Tnstrastion
. . E tion Ph
-- Extra logic for keeping thread contexts et
-- Does not overlap latency if not enough :
. 2 Stream 4 Instruction
threads to cover the whole pipeline Result Store

Onur Mutlu - Digital Design & Comp Arch - Lecture 14: Pipelined Processor Design (Spring 2021)

1,193 views * Streamed live on Apr 22, 2021 |. 42 @lo % SHARE =} SAVE

@ ?;1;: l:tljl;tslélritssures ANALYTICS EDIT VIDEO
> ’

https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2s0XY2Zi_uej3aY39YB5pfW4SJ7LIN&index=16 41

Lectures on Fine-Grained Multithreading

= Digital Design & Computer Architecture, Spring 2021, Lecture 14

o Pipelined Processor Design (ETH, Spring 2021)

o https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL50Q2s0XY2Zi uej3aY39Y
B5pfW4SJ7LIN&index=16

= Digital Design & Computer Architecture, Spring 2020, Lecture 18c

o Fine-Grained Multithreading (ETH, Spring 2020)

o https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL502s0XY2Zi FRrloMa2fU
YWPGiZUBQo2&index=26

https:/ /www.youtube.com/onurmutlulectures 42

https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16
https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=26
https://www.youtube.com/onurmutlulectures

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath

= The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

= However, the programming is done using threads, NOT
SIMD instructions

= To understand this, let’'s go back to our parallelizable code
example

= But, before that, let’s distinguish between
a Programming Model (Software)
VS.
a Execution Model (Hardware)

44

Programming Model vs. Hardware Execution Model

Programming Model refers to how the programmer expresses
the code

o E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), ...

Execution Model refers to how the hardware executes the
code underneath

o E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, ...

Execution Model can be very different from the Programming
Model

o E.g., von Neumann model implemented by an OoO processor
o E.g., SPMD model implemented by a SIMD processor (a GPU)

45

How Can You Exploit Parallelism Here?

for (1i=0; i < N; i++)
Scalar Sequential Code C[1l = Ali]l + B[1];

Let’s examine three programming
options to exploit instruction-level
parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

46

Prog. Model 1: Sequential (SISD) ™ ¢i) = atsy + s1i1;

Scalar Sequential Code ™ Can be executed on a:

= Pipelined processor

= Out-of-order execution processor

o Independent instructions executed
when ready

a Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

o In other words, the loop is dynamically
unrolled by the hardware

= Superscalar or VLIW processor

o Can fetch and execute multiple
instructions per cycle

47

Prog. Model 2: Data Parallel (SIMDJ™ i) = ati) + ati1;

Scalar Sequential Code Vectorized Code

VLD A->V1

Iter. VLD B->V2

VADD V1+V2->V3

VST V3-=>C

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)
48

for (i=0; i < N; i++)

Prog. Model 3: Multithreaded C[i] = A[i] + B[il;

Scalar Sequential Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

49

for (i=0; i < N; i++)

Prog. Model 3: Multithreaded C[i] = A[i] + B[il;

1 > Realization: Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine

Single Instruction Multiple Thread

A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

o A warp is essentially a SIMD operation formed by hardware!

51

i < N; i++)

SPMD Oon SIMT Machine - éi?= A[i] + B[il];

(i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Graphics Processing Units

SIMD not |

“xposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently (on any type of scalar pipeline) > MIMD processing

o Can group threads into warps flexibly - 1.e., can group threads
that are supposed to fruly execute the same instruction >

dynamically obtain and maximize benefits of SIMD processing
54

Fine-Grained Multithreading of = for 1=0; 1 < 57 144
C[i] = A[i] + B[1i];

Warps
= Assume a warp consists of 32 threads

= If you have 32K iterations, and 1 iteration/thread = 1K warps

= Warps can be interleaved on the same pipeline = Fine grained
multithreading of warps

Warp 20 at PC X+2

Iter:. Iter.
23*32 + 1 20*%32 + 2

55

Warps and Warp-Level FGMT

Warp: A set of threads that execute the same instruction
(on different data elements) > SIMT (Nvidia-speak)

All threads run the same code
Warp: The threads that run lengthwise in a woven fabric ...

-~ | Thread Warp 3
-~ | Thread Warp 8
Thread Warp Common PC 7 :
Scalar Scalar| Scalar Scalar ,-' Thread Warp 7
ThreadThreadThread+ « « |Thread | , v
W X Y Z ' T
R SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2808.

High-Level View of a GPU

/ (PC, Mask) “

/
I *
/

[-Cache
Shader | |Shader| Shader| ,,, | Shader v
Core Core Core Core
Decode

bt ¢ Il
. \ '
Interconnection Network \ :8_3 & S. & :
t t t \ | 2 2 2 2 '
\ |
Memory @ | Memory Memory | | :%’- %J' -%J' %-J' l
Controller| |Controller Controller] \ | '[&(|&| & (&,
: $ 4 SEENEIEE
I SIMD Execution !
GDDR3 GDDR3 oo R e e e

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction]

Y .

(on different data elements) Toreg o & o et
Fine-grained multithreading l Threadiwarp” SIMD Pipeline
2 One instruction per thread in L Lfetch

pipeline at a time (No L Decode |

interlocking) [=R
o Interleave warp execution to v Y Y | Warps accessing

hide latencies ? ? ' ? Ty erareny
Register values of all threads stay [D-Cache (T Frread Wars i
in register file Al Hit?l { Data | i Thread Warp 2
fﬁg’gnecgames long latency —Writback | | [Thread Warp 6]

o Millions of pixels

Slide credit: Tor Aamodt 58

Warp Execution (Recall the Slide)

32-thread warp executing ADD A[tid],B[tid] = C[tid]

A[6] B[6]
A[5] B[5]
A[4] B[4]
A[3] BI[3]

vy
\ /

e

\ <

Lo

Time |

C[O0]

Slide credit: Krste Asanovic

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]

S N S ST T S S
SV N v V2t S WV [W VA

| cI8) f | clo] f | Cr10] f | cri] f
| am asi o e o]
e .
C[0] Cl1] Cl2] C[3]
< Space >

59

SIMD Execution Unit Structure

Functional Unit
/

[
Registers \/T 7\ /f $ /T T\ /T I
for each ' ' ' '
Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,48, .. 1,5,9, .. 2, 6,10, ... 3,7,11, ...

4 4

4 4 4 4 4 4
\

Lane

Memory Subsystem

60

Slide credit: Krste Asanovic

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
ooooofmjﬂ
OOOOOLv-{AAAAA
time @0 e oo oo blaairaalV famEanEnm
s e eeeeee AAAAAAAAEEEEEEE
OlO00[O[FrrNAAAAAAAANEE EEEEE
OOOOO(L—-V-KAAAAAQ--A- EEEEEEER
ololojolololo[D]alalalalal{W> Im/m/m/m E/E/m =
olololololojololalalalaAlalaAlEEEE EEEE
AAAAAAA AN EEE EEEE
EEEEEEEER

| Warp issue >

Slide credit: Krste Asanovic 61

SIMT Memory Access

= Same instruction in different threads uses thread id to
index and access different data elements

Let's assume N=16, 4 threads per warp = 4 warps

10 11 12 13 14 15 Threads

10 11 12 13 14 15 Data elements

Slide credit: Hyesoon Kim 62

Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. DI DO DI DO
Parallel Kernel (device) S || SSBDS || S S
KernelA<<<nBlk , nThr>>> (args) ;)()“)()()()())()()())“))()()()()())()()() S)(
Serial Code (host)
. DO DO SSUSSIISH SIS
Parallel Kernel (device) < > S

A
AN AN/A

A /)
n
Va
7\

KernelB<<<nBlk, nThr>>>(args) ;|| 5SS

Slide credit: Hwu & Kirk

03

Sample GPU SIMT Code (Simplified)

CPU code

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + BJii];

b
CUDA code I

[// there are 100000 threads \
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockIdx.x + threadldx.x;
int varA = aal[tid];
int varB = bb[tid];
C[tid] = varA + varB;

W J

Slide credit: Hyesoon Kim

Sample GPU Program (Less Simplified)

CPU Program GPU Program

__global _ add_matrix

(float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int j = blockldx.y * blockDim.y + threadldx.y;
Intindex =1 + J*N;
if i<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock(blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);

}

Slide credit: Hyesoon Kim 65

From Blocks to Warps

N G PU CO res : SI M D pi pel i nes Streaming Multiprocessor
o Streaming Multiprocessors (SM) | rtcton e |

| Warp Scheduler || Warp Scheduler |
. | Dispatch Unit I Dispatch Unit |
o Streaming Processors (SP)
SP | sP SP | sp I—,,%l
Block divided i e
= Blocks are divided Into warps A
. LD/ST
o SIMD unit (32 threads) N =
LD/ST ST
SP | spP SP | spP S
LD/ST
Block 0’s warps Block 1’s warps Block 2’s warps SRR SRR SR SE Lot |
I l I SFU
SP | sP SP sP %
t0t1t2..t31 t0t1t2..t31 t0tlt2..t31 LD/ST
NNNNNNNNNY NNNNNNNNNNY NNNNNNNNN SP SP SP SP
SO S [tosT] SFU
p : p 3 ¢ 3 LD/ST
| & 4 || & 4 u P e 4 SP | sP SP | sP EEEE
Shared Memory / L1 Cache

| Constant Cache |

NVIDIA Fermi architecture

06

Warp-based SIMD vs. Traditional SIMD

Traditional SIMD contains a single thread
o Sequential instruction execution; lock-step operations in a SIMD instruction

o Programming model is SIMD (no extra threads) - SW needs to know
vector length

o ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different warp)
- programming model not SIMD

SW does not need to know vector length
Enables multithreading and flexible dynamic grouping of threads
o ISA is scalar > SIMD operations can be formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD

hardware
67

SPMD

Single procedure/program, multiple data
a This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

068

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction >

dynamically obtain and maximize benefits of SIMD processing

Threads Can Take Different Paths in Warp-based SIMD

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Slide credit: Tor Aamodt

Thread Warp

Common PC

Thread

1

Thread
2

Thread

Thread
4

70

Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1

o Groups scalar threads

into warps Brangh 1 1 1 1 1 1 vy

Patnal| | | | |
Branch divergence
occurs when threads Path\Bj |
inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

Slide credit: Tor Aamodt 71

Remember: Each Thread Is Independent

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction >

dynamically obtain and maximize benefits of SIMD processing

If we have many threads

We can find individual threads that are at the same PC
And, group them together into a single warp dynamically
This reduces “divergence” - improves SIMD utilization

o SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)

72

Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

Form new warps from warps that are waiting

o Enough threads branching to each path enables the creation
of full new warps

WappX ¢ ¥ { - yLdd Ly wapz
Warp Y | 1 ’

73

Dynamic Warp Formation/Merging

= Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

RN RE
F ARERNNE

RN

EERRNRR

TXIE R

e by T '

Path B

= Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

74

Dynamic Warp Formation Example

x/1111
A y111

A A
x/1110 L £
B y/0011 I__:-i Execu’;ion of Warp x |__:-i Execu’gion of Warp y
|_>I at Basic Block A |_>I at Basic Block A
x/1000] [~ x/0110] [x/0001 s i,
C D F
y/0010 y/0001 y/1100 D

\ﬁf A new warp created from scalar
:: threads of both Warp x and y
0011 —» | executing at Basic Block D

x/1111
Gy/1111
A, A B E_
_ el <l el I
Baseline *° °|}::|§:|1:| :|1:
L — L —L L — — L L L —
. '
Dynamic A__A_ B C| G. G A A
W |—>"|—>" > —-> > —-> |—>"|—>"|—>"|—>"
arp e UEd Be - il > >0 > > > >leee
: Bl Ed Bl Bl Bd Bl e EdlEdEdlEe
Formation =l e || e >l > >l >l >l
| > Time
75

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

Functional Unit
/

~

. !

foergészg S } — } — } — } —

Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,48, .. 1,5,9, .. 2, 6,10, ... 3,7,11, ...

A A

N

e

A

4 4

\ |

I <=

A

4 4

\ |

I <=

4 4

\ |
4

e

00k

Lane/K—

Can you move any thread \é
flexibly to any lane?

4

4

4

Memory Subsystem

Slide credit: Krste Asanovic

76

Large Warps and Two-Level Warp Scheduling

Two main reasons for GPU resources be underutilized
a Branch divergence

a Long latency operations

Core A” Warps Compute} ... [A” Warps Compute]
Reg Warp 0 < >
Memory Req Warp 1 +— >
System Y
Req Warp 15« >

»time

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp
Scheduling,” MICRO 2011. 77

Large Warp Microarchitecture Example

Reduce branch divergence by having large warps
Dynamically break down a large warp into sub-warps

Decode Stage

Sub-warp 0 mask | Sub-warp 0 mask | Sub-warp 0 mask
1(1]11]1 1(1]11]1 1(1]1(1

OIB|0|I0P|IO0|0|2
BIOB|I0|0|I0|2 |0
O|I0OIOIP|IO0|2|0 |0
OIB|0|I0|0I2|O0|2

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp
Scheduling,” MICRO 2011.

Two-Level Round Robin

Scheduling in two levels to deal with long latency operations

Core A” Warps Compute} ... [A” Warps Compute}
Req Warp 0 < > :
Memory Req Warp 1 +— >
System °. :
Req Warp 15« > =tfime
Round Robin Scheduling, 16 total warps :
Group 0 Group 1 Group 0 Group 1
Core ComputeICOmpute} .. [ComputeICOmpute]< >
- Saved Cycles
Req Warp 0 < >
Req Warp 1 < . >
Req Warp 7 : >
Memory
System Req Warp 8« >
Req Warp 9 < >
Req Warp 15: >

»time

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp
Scheduling,” MICRO 2011.

An Example GPU

NVIDIA GeForce GTX 285

NVIDIA-speak:
a 240 stream processors
o “SIMT execution”

Generic speak:
o 30 cores
a 8 SIMD functional units per core

NVIDIA, "NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper,” 2008.

Slide credit: Kayvon Fatahalian 31

NVIDIA GeForce GTX 285 “core’”

64 KB of storage
for thread contexts

.

shared across 8 units

= multiply-add
B = multiply

ol = SIMD functional unit, control

(registers)

= instruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian

82

NVIDIA GeForce GTX 285 “core’”

-

64 KB of storage
for thread contexts
(registers)

= Groups of 32 threads share instruction stream (each group is

a Warp)

= Up to 32 warps are simultaneously interleaved

= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

83

NVIDIA GeForce GTX 285

[=]=] | [=]=]{[=]=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=[=]{[=]=] [=[=]| [=]=]|

 [=[=]{[=]=]| [=[=]| [=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=[=]{[=]=] [=[=]| [=]=]|

| [T=] [T [wT=] | [<T]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

[=]=]1{ [=I=]{ [=I=]{ [=]=]|

| [=]=]{[=I=]{[=I=]| [=]=]|

CLiitr---T111]

L1100

CLiit--T111]

 [=[=]{[=I=]{ [=I=]| [=]=]|

[T | [T | [T=] | [wT]|

[=[=] | (I=] | [S[=] | =[=],

[=[=]| (=[5} [[=]| =[=],

[m]=] | [=[=] | [=[=] | [=]=]|

[=]=]|[=]=]|[=]=]{[=]=]|

INNEEnEEER

| [=]=]{[=]=]{[=I=]| [=]=]|

1] | T=] | T=] | [ST=])

| [T=] [T [wT=] | [<T]|

| [=]=]{[=]=]{[=I=]| [=]=]|

[=1=] | [T=] | [ST=]} ES[=],

| [=T=]) [ST] [wT=] | [ST]]

CLiit--T111]

L1100

CLirt---T111]

[=[=]| [STE]| [ST=] | ST=])

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

[=1=]] [ST=]) ST=]) [S[=])

[=[=]| (STE] | ST=]| [ST=]]

INNEEnEEER

CLEff---TT11]

L ---T11T]

| [T=] [T [wT=] | [<T]|

[=]=]{[=I=]| [=I=]| [=]=]|

[==]{[=I=]{[=I=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

CLiitr---T111]

L1100

CLiit--T111]

 [=]=]{[=]=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

CLifr---T111]

INNEEnEEER

| [=]=]{[=]=]{[=I=]| [=]=]|

1] | T=] | T=] | [ST=])

| [T=] [T [wT=] | [<T]|

[=]=]{[=I=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

INNNEnEEER

CLift---T1111

INNNEn R

 [=]=]{[=]=]{[=[=]| [=]=]|

[T [T [T=] | [wT]|

[=[=] | (I=] | [S[=] | (<[=])

 [=[=]{[=I=]{ [=I=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

INREEnEEER

L1111

INNEEnEEER

| [T=] [T [wT=] | [<T]|

[=]=]1{ [=I=]{ [=I=]{ [=]=]|

| [=]=]{[=I=]{[=I=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

INNEEN R

CLift---T1111

INNNEn R

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

84

Evolution of NVIDIA GPUs

H#HFunctional Units

8000

7000

6000

5000

4000

3000

2000

1000

=@=Functional units (stream processors)

-@-GFLOPS

GTX 285 GTX 480 GTX 780 GTX 980 P100 (2016) V100 (2017) A100 (2020)
(2009) (2010) (2013) (2014)

25000.0

20000.0

15000.0

10000.0

5000.0

0.0

GFLOPS

85

NVIDIA V100

NVIDIA-speak:
o 5120 stream processors
o “SIMT execution”

Generic speak:
o 80 cores
o 64 SIMD functional units per core

o Tensor cores for Machine Learning

NVIDIA, “"NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.

86

NVIDIA V100 Block Diagram

PCI Express 3.0 Host Interface

Memory Controller
Jo10nu0s Asowaw

Memory Controller
Jopjonuon Alowew

Jofronuon Loway

5
?
&
13
o
(&
2
e
£
3
=

Memory Controlier
Jojjonuon Aowop

NVLink l NVLink NViink

80 cores on the V100

https://devblogs.nvidia.com/inside-volta/

NVIDIA V100 Core

——————J——————— 157 TFLOPS Single Precision

Dispatch Unit (32 thread/ctk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) 7.8 TFLOPS DOUbIe PreC|S|0n
Ll |- Ly | 125 TFLOPS for Deep Learning (Tensor cores)

INT FPa3 ¥Paz INT FPe3 PPz
INT FP31 ¥P32 INT FPal PPRR
INT FPAZ PRS2 TENSOR TENSOR INT 32 FPR2 TENSOR
INT Frsz peay CORE CORE wr Fea peay | CORE
INT FPI2 FP32 INT
FPO2 FPAY
FP34 P32 5 Sum with
B i Y FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result

more products

Dispatch Uit (32 thread/cik) T — - ‘ ‘ -
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) -I

INT INT FP32 FP32 5 INT INT FPSS PPR2

INT FPa2 PRS2 T EPa2 PR3l
a2 Feaa WT PP Feu

FRIZFES TENSOR TENSOR INT| PR PP TENSOR TENSOR

FPO2 FPY2 CORE CORE e CORE CORE

P32 FP32 5 P31 Fat D —

FP3} FR3Z FP32 FPIX

P32 PPN P32 P2
FP16 or FP32 FP16 FP16 FP16 or FP32

Lo/ Lv Lo/ i Lo/ LD LD
a7 ST 57 5 T ST ST ST

https://devblogs.nvidia.com/inside-volta/

38

Tensor Core Microarchitecture (Volta)

= Each warp utilizes two tensor cores
= Each tensor core contains two “octets”
o 16 SIMD units per tensor core (8 per octet)
0 4x4 matrix-multiply and accumulate each cycle per tensor core

FP16 Multiplier

Pipeline
\Y/ FP32 Adder

Registers
Accumulator Buffer

SIMD unit

DP

V (Dot Prc.)duct)
o] Register File e
<I\:§ — | IOoerand Bus1 —]
% — | IOnerand Bus 2 = o —]
5 = —— MnerandBuqS & g_g_z (\ P
e 2 3 g L P I - I N
L |7 N o N v N CORE T = = S = : . .
X S TENSOR 57 X_,“/ 5 M/ N7 \\& Unlike conventional SIMD,
< 7 CORE p > atrix atrix VI A H
HEFEH register contents are not
Octet 3 Octet 2 Octet 1 DEDDiEEE private to each thread, but
. — | —hreadeique— —Thregderpup shared inside the warp
w; e N g LIe] @n S ctetd 124
§ FabJEg 5 e z =a
SL< A A
Writeback

Proposed* tensor core microarchitecture

* M. A. Raihan, N. Goli and T. M. Aamodt, "Modeling Deep Learning Accelerator Enabled GPUs," ISPASS 2019. 89

NVIDIA A100

= NVIDIA-speak:
0 6912 stream processors
o “SIMT execution”

NVIDIA.

= Generic speak:
o 108 cores
o 64 SIMD functional units per core

o Tensor cores for Machine Learning
= Support for sparsity
= New floating point data type (TF32)

= https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ 90

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

NVIDIA A100 Block Diagram

PCI Express 4.0 Host Interface

1

Memory Ct

Memory C

Memory Controller

13jj03u0Q AlowRp

Memory C

J13)j0u09 Alowsapy

Memory C

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

108 cores on the A100

(Up to 128 cores in the full-blown chip)
40MB L2 cache

NVIDIA A100 Core

L1 Instruction Cache

19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

TENSOR CORE TENSOR CORE
INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64 INT32INT32 FP32FP32 FP64 Sparse Tensor I
Input activations
Core P
INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32FP32 FP64
Select

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

T

INT32 INT32

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64

INT32 INT32

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32FP32 FPe4

= zero entry

Fine-grained
structured pruning

—

Compress

R /
=

INT32INT32 FP32FP32 FP64 INT32INT32 FP32FP32 FP64 2:4 sparsity: 2 non-
zero out of 4 entries
INT32INT32 FP32FP32 FP64 INT32INT32 FP32FP32 FP64 S
Dense trained *ﬁ Non-zero Output activations
INT32INT32 FP32FP32 FP64 INT32INT32 FP32FP32 FP64 weights data values

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

TENSOR CORE

FP32 FP32 FP64

FP32FP32 FPes4

FP32 FP32 FP64

FP32 FP32 FPo4

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

SFU

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

TENSOR CORE

FP32[FP32 FPos4

FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

LD/ LD/ LD/ LD/
ST ST ST ST

192KB L1 Data Cache / Shared Memory

Tex

Tex

Fine-tune weights

Fine-tuned sparse and
compressed weights

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

92

Food for Thought

Compare and contrast GPUs vs Systolic Arrays

o Which one is better for machine learning?
a Which one is better for image/vision processing?
o What types of parallelism each one exploits?

2 What are the tradeoffs?

If you are interested in such questions and more...

o Bachelor’s Seminar in Computer Architecture (HS2021,
FS2022)

o Computer Architecture Master’s Course (HS2021)

93

Digital Desigh & Computer Arch.

Lecture 21: Graphics Processing Units

Dr. Juan Gomez Luna
Prof. Onur Mutlu

ETH Zurich
Spring 2021
20 May 2021

Clarification of Some GPU Terms

Vector length

Pipelined
functional unit /
Scalar pipeline

SIMD functional
unit /
SIMD pipeline

GPU core

Warp size

Streaming
processor /
CUDA core

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Streaming
multiprocessor

Wavefront size

Vector ALU

Compute unit

Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Functional unit that executes instructions for one
GPU thread

SIMD functional unit that executes instructions for
an entire warp

It contains one or more warp schedulers and one
or several SIMD pipelines

95

