
Digital Design & Computer Arch.
Lecture 23: Memory Hierarchy

and Caches

Prof. Onur Mutlu

ETH Zürich
Spring 2021
27 May 2021

Readings for This Lecture and Next
n Memory Hierarchy and Caches

n Required
q H&H Chapters 8.1-8.3
q Refresh: P&P Chapter 3.5
q Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014.

n https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

n Recommended
q An early cache paper by Maurice Wilkes

n Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

2

Recall: Memory Bank Organization and Operation
n Read access sequence:

1. Decode row address
& drive word-lines

2. Selected bits drive
bit-lines

• Entire row read

3. Amplify row data

4. Decode column
address & select subset
of row

• Send to output

5. Precharge bit-lines
• For next access

3

Recall: SRAM

4

bit-cell array

2n row x 2m-col

(n»m to minimize
overall latency)

sense amp and mux
2m diff pairs

2nn

m

1

row enable

bi
tli

ne

_b
itl

in
e

n+m

Read Sequence
1. address decode
2. drive row select
3. selected bit-cells drive bitlines

(entire row is read together)
4. differential sensing and column select

(data is ready)
5. precharge all bitlines

(for next read or write)

Access latency dominated by steps 2 and 3
Cycling time dominated by steps 2, 3 and 5

- step 2 proportional to 2m

- step 3 and 5 proportional to 2n

Recall: DRAM

5

row enable
_b

itl
in

e

bit-cell array

2n row x 2m-col

(n»m to minimize
overall latency)

sense amp and mux
2m

2nn

m

1

RAS

CAS
A DRAM die comprises
of multiple such arrays

Bit stored as charge on node
capacitor (non-restorative)

- bit cell loses charge when read
- bit cell loses charge over time

Read Sequence
1~3 same as SRAM
4. a “flip-flopping” sense amp

amplifies and regenerates the
bitline, data bit is mux’ed out

5. precharge all bitlines

Destructive reads
Charge loss over time
Refresh: A DRAM controller must
periodically read each row within
the allowed refresh time (10s of
ms) such that charge is restored

Recall: DRAM vs. SRAM
n DRAM

q Slower access (capacitor)
q Higher density (1T 1C cell)
q Lower cost
q Requires refresh (power, performance, circuitry)
q Manufacturing requires putting capacitor and logic together

n SRAM
q Faster access (no capacitor)
q Lower density (6T cell)
q Higher cost
q No need for refresh
q Manufacturing compatible with logic process (no capacitor)

6

Recall: Phase Change Memory
n Phase change material (chalcogenide glass) exists in two states:

q Amorphous: Low optical reflexivity and high electrical resistivity
q Crystalline: High optical reflexivity and low electrical resistivity

7

PCM is resistive memory: High resistance (0), Low resistance (1)

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM
Alternative,” ISCA 2009.

Recall: DRAM vs. PCM
n DRAM

q Faster access (capacitor)
q Lower density (capacitor less scalable) à higher cost
q Requires refresh (power, performance, circuitry)
q Manufacturing requires putting capacitor and logic together
q Volatile (loses data at loss of power)
q No endurance problems
q Lower access energy

n PCM
q Slower access (no capacitor)
q Higher density (phase change material more scalable) à lower cost
q No need for refresh
q Manufacturing requires less conventional processes – less mature
q Non-volatile (does not lose data at loss of power)
q Endurance problems (a cell cannot be used after N writes)
q Higher access energy

8

The Memory Hierarchy

Memory Hierarchy in a Modern System (I)

10

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

AMD Barcelona, circa 2006

A Large Fraction of Modern Chips is Memory

11Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Memory Hierarchy in a Modern System (II)

12https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER 10,
2020

Ideal Memory
n Zero access time (latency)
n Infinite capacity
n Zero cost
n Infinite bandwidth (to support multiple accesses in parallel)

13

The Problem
n Ideal memory’s requirements oppose each other

n Bigger is slower
q Bigger à Takes longer to determine the location

n Faster is more expensive
q Memory technology: SRAM vs. DRAM vs. SSD vs. Disk vs. Tape

n Higher bandwidth is more expensive
q Need more banks, more ports, more channels, higher frequency

or faster technology

14

The Problem
n Bigger is slower

q SRAM, 512 Bytes, sub-nanosec
q SRAM, KByte~MByte, ~nanosec
q DRAM, Gigabyte, ~50 nanosec
q PCM-DIMM (Intel Optane DC DIMM), Gigabyte, ~200 nanosec
q PCM-SSD (Intel Optane SSD), Gigabyte, ~10 µs
q Flash memory, Gigabyte~Terabyte, ~100 µs
q Hard Disk, Terabyte, ~10 millisec

n Faster is more expensive (dollars and chip area)
q SRAM, < 0.3$ per Megabyte
q DRAM, < 0.03$ per Megabyte
q PCM-DIMM (Intel Optane DC DIMM), < 0.004$ per Megabyte
q PCM-SSD, < 0.001$ per Megabyte
q Flash memory, < 0.00008$ per Megabyte
q Hard Disk, < 0.00003$ per Megabyte
q These sample values (circa ~2021) scale with time

n Other technologies have their place as well
q MRAM, RRAM, STT-MRAM, … (not mature yet)

15

The Problem (Table View)

16

Memory Device Capacity Latency Cost per Megabyte
SRAM 512 Bytes sub-nanosec
SRAM KByte~MByte ~nanosec < 0.3$
DRAM Gigabyte ~50 nanosec < 0.03$
PCM-DIMM
(Intel Optane DC DIMM) Gigabyte ~200 nanosec < 0.004$

PCM-SSD
(Intel Optane SSD)

Gigabyte
~Terabyte

~10 µs < 0.001$

Flash memory Gigabyte
~Terabyte

~100 µs < 0.00008$

Hard Disk Terabyte ~10 millisec < 0.00003$

These sample values (circa ~2021) scale with time

Bigger is slower

Faster is more expensive
(dollars and chip area)

Aside: The Problem (2011 Version)
n Bigger is slower

q SRAM, 512 Bytes, sub-nanosec
q SRAM, KByte~MByte, ~nanosec
q DRAM, Gigabyte, ~50 nanosec
q Hard Disk, Terabyte, ~10 millisec

n Faster is more expensive (dollars and chip area)
q SRAM, < 10$ per Megabyte
q DRAM, < 1$ per Megabyte
q Hard Disk < 1$ per Gigabyte
q These sample values (circa ~2011) scale with time

n Other technologies have their place as well
q Flash memory (mature), PC-RAM, MRAM, RRAM (not mature yet)

17

Why Memory Hierarchy?
n We want both fast and large

n But, we cannot achieve both with a single level of memory

n Idea: Have multiple levels of storage (progressively bigger
and slower as the levels are farther from the processor)
and ensure most of the data the processor needs is kept in
the fast(er) level(s)

18

The Memory Hierarchy

19

fast
small

large but slow

move what you use here

backup
everything
here

With good locality of
reference, memory
appears as fast as
and as large as

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

Memory Hierarchy
n Fundamental tradeoff

q Fast memory: small
q Large memory: slow

n Idea: Memory hierarchy

n Latency, cost, size,
bandwidth

20

CPU
Main

Memory
(DRAM)RF

Cache

Hard Disk

Memory Hierarchy Example

21

Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014
https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

Locality
n One’s recent past is a very good predictor of his/her near

future.

n Temporal Locality: If you just did something, it is very
likely that you will do the same thing again soon
q since you are here today, there is a good chance you will be

here again and again regularly

n Spatial Locality: If you did something, it is very likely you
will do something similar/related (in space)
q every time I find you in this room, you are probably sitting

close to the same people

22

Memory Locality
n A “typical” program has a lot of locality in memory

references
q typical programs are composed of “loops”

n Temporal: A program tends to reference the same memory
location many times and all within a small window of time

n Spatial: A program tends to reference nearby memory
locations within a window of time
q most notable examples:

1. instruction memory references à most sequential/streaming
2. references to arrays/vectors à often streaming/strided

23

Caching Basics: Exploit Temporal Locality
n Idea: Store recently accessed data in automatically-managed

fast memory (called cache)
n Anticipation: same mem. location will be accessed again soon

n Temporal locality principle
q Recently accessed data will be again accessed in the near future
q This is what Maurice Wilkes had in mind:

n Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

n “The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

24

Caching Basics: Exploit Spatial Locality
n Idea: Store data in addresses adjacent to the recently

accessed one in automatically-managed fast memory
q Logically divide memory into equal-size blocks
q Fetch to cache the accessed block in its entirety

n Anticipation: nearby memory locations will be accessed soon

n Spatial locality principle
q Nearby data in memory will be accessed in the near future

n E.g., sequential instruction access, array traversal
q This is what IBM 360/85 implemented

n 16 Kbyte cache with 64 byte blocks
n Liptay, “Structural aspects of the System/360 Model 85 II: the

cache,” IBM Systems Journal, 1968.

25

The Bookshelf Analogy
n Book in your hand
n Desk
n Bookshelf
n Boxes at home
n Boxes in storage

n Recently-used books tend to stay on desk
q Comp Arch books, books for classes you are currently taking
q Until the desk gets full

n Adjacent books in the shelf needed around the same time
q If I have organized/categorized my books well in the shelf

26

Caching in a Pipelined Design
n The cache needs to be tightly integrated into the pipeline

q Ideally, access in 1-cycle so that load-dependent operations
do not stall

n High frequency pipeline à Cannot make the cache large
q But, we want a large cache AND a pipelined design

n Idea: Cache hierarchy

27

CPU

Main
Memory
(DRAM)

RF
Level1
Cache

Level 2
Cache

A Note on Manual vs. Automatic Management

n Manual: Programmer manages data movement across levels
-- too painful for programmers on substantial programs
q “core” vs “drum” memory in the 1950s
q still done in some embedded processors (on-chip scratch pad
SRAM in lieu of a cache) and GPUs (called “shared memory”)

n Automatic: Hardware manages data movement across levels,
transparently to the programmer
++ programmer’s life is easier
q the average programmer doesn’t need to know about caches

n You don’t need to know how big the cache is and how it works to
write a “correct” program! (What if you want a “fast” program?)

28

Automatic Management in Memory Hierarchy

n Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

n “By a slave memory I mean one which automatically
accumulates to itself words that come from a slower main
memory, and keeps them available for subsequent use
without it being necessary for the penalty of main memory
access to be incurred again.”

29

Historical Aside: Other Cache Papers
n Fotheringham, “Dynamic Storage Allocation in the Atlas

Computer, Including an Automatic Use of a Backing Store,”
CACM 1961.
q http://dl.acm.org/citation.cfm?id=366800

n Bloom, Cohen, Porter, “Considerations in the Design of a
Computer with High Logic-to-Memory Speed Ratio,” AIEE
Gigacycle Computing Systems Winter Meeting, Jan. 1962.

30

http://dl.acm.org/citation.cfm?id=366800

Cache in 1962 (Bloom, Cohen, Porter)

31

A Modern Memory Hierarchy

32

Register File
32 words, sub-nsec

L1 cache
~10s of KB, ~nsec

L2 cache
100s of KB ~ few MB, many nsec

L3 cache,
many MBs, even more nsec

Main memory (DRAM),
Many GBs, ~100 nsec

Swap Disk
~100 GB or few TB, ~10s of usec-msec

manual/compiler
register spilling

automatic
demand
paging

automatic
HW cache
management

Memory
Abstraction

Hierarchical Latency Analysis
n For a given memory hierarchy level i it has a technology-intrinsic

access time of ti, The perceived access time Ti is longer than ti
n Except for the outer-most hierarchy, when looking for a given

address there is
q a chance (hit-rate hi) you “hit” and access time is ti
q a chance (miss-rate mi) you “miss” and access time ti +Ti+1
q hi + mi = 1

n Thus
Ti = hi·ti + mi·(ti + Ti+1)
Ti = ti + mi ·Ti+1

hi and mi are defined to be the hit-rate and miss-rate
of just the references that missed at Li-1

33

Hierarchy Design Considerations
n Recursive latency equation

Ti = ti + mi ·Ti+1

n The goal: achieve desired T1 within allowed cost
n Ti » ti is desirable

n Keep mi low
q increasing capacity Ci lowers mi, but beware of increasing ti

q lower mi by smarter cache management (replacement::anticipate
what you don’t need, prefetching::anticipate what you will need)

n Keep Ti+1 low
q faster lower hierarchies, but beware of increasing cost
q introduce intermediate hierarchies as a compromise

34

Intel Pentium 4 Example

Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2004.

Intel Pentium 4 Example

36https://download.intel.com/newsroom/kits/40thanniversary/gallery/images/Pentium_4_6xx-die.jpg

L2 Cache

https://download.intel.com/newsroom/kits/40thanniversary/gallery/images/Pentium_4_6xx-die.jpg

n 90nm P4, 3.6 GHz
n L1 D-cache

q C1 = 16 kB
q t1 = 4 cyc int / 9 cycle fp

n L2 D-cache
q C2 = 1024 kB
q t2 = 18 cyc int / 18 cyc fp

n Main memory
q t3 = ~ 50ns or 180 cyc

n Notice
q best case latency is not 1
q worst case access latencies are into 500+ cycles

if m1=0.1, m2=0.1
T1=7.6, T2=36

if m1=0.01, m2=0.01
T1=4.2, T2=19.8

if m1=0.05, m2=0.01
T1=5.00, T2=19.8

if m1=0.01, m2=0.50
T1=5.08, T2=108

Intel Pentium 4 Example

Cache Basics and Operation

Cache
n Any structure that “memoizes” frequently used results/data

q to avoid repeating the long-latency operations required to
reproduce/fech the results/data from scratch

q e.g., a web cache

n Most commonly in the processor design context:
an automatically-managed memory structure
q e.g., memoize in fast SRAM the most frequently or recently

accessed DRAM memory locations to avoid repeatedly paying
for the DRAM access latency

39

Conceptual Picture of a Cache

40

Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014
https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

Logical Organization of a Cache (I)
n A key question: How to map chunks of the main memory

address space to blocks in the cache?
q Which location in cache can a given “main memory chunk” be

placed in?

41

Logical Organization of a Cache (II)
n A key question: How to map chunks of the main memory

address space to blocks in the cache?
q Which location in cache can a given “main memory chunk” be

placed in?

42Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

Caching Basics
n Block (line): Unit of storage in the cache

q Memory is logically divided into blocks that map to potential
locations in the cache

n On a reference:
q HIT: If in cache, use cached data instead of accessing memory
q MISS: If not in cache, bring block into cache

n May have to evict some other block

n Some important cache design decisions
q Placement: where and how to place/find a block in cache?
q Replacement: what data to remove to make room in cache?
q Granularity of management: large or small blocks? Subblocks?
q Write policy: what do we do about writes?
q Instructions/data: do we treat them separately?

43

Cache Abstraction and Metrics

n Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)
n Average memory access time (AMAT)

= (hit-rate * hit-latency) + (miss-rate * miss-latency)
n Important Aside: Is reducing AMAT always beneficial for performance?

44

Address
Tag Store

(is the address
in the cache?

+ bookkeeping)

Data Store

(stores
memory
blocks)

Hit/miss? Data

A Basic Hardware Cache Design
n We will start with a basic hardware cache design

n Then, we will examine a multitude of ideas to make it
better

45

Blocks and Addressing the Cache
n Main memory logically divided into fixed-size chunks (blocks)
n Cache can house only a limited number of blocks

46

Blocks and Addressing the Cache
n Main memory logically divided into fixed-size chunks (blocks)
n Cache can house only a limited number of blocks

n Each block address maps to a potential location in the
cache, determined by the index bits in the address
q used to index into the tag and data stores

n Cache access:
1) index into the tag and data stores with index bits in address
2) check valid bit in tag store
3) compare tag bits in address with the stored tag in tag store

n If a block is in the cache (cache hit), the stored tag should be
valid and match the tag of the block

47

8-bit address

tag index byte in block

3 bits3 bits2b

Let’s See A Toy Example
n We will examine a direct-mapped cache first
n Direct-mapped: A given main memory block can be placed in

only one possible location in the cache

n Toy example: 256-byte memory, 64-byte cache, 8-byte blocks

48Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

Direct-Mapped Cache: Placement and Access

n Assume byte-addressable main memory:
256 bytes, 8-byte blocks à 32 blocks

n Assume cache: 64 bytes, 8 blocks
q Direct-mapped: A block can go to only one location

q Blocks with same index contend for the same cache location
n Cause conflict misses when accessed consecutively

49

Tag store Data store

Address

tag index byte in block

3 bits3 bits2b

V tag

=? MUX
byte in block

Hit? Data

Block: 00000
Block: 00001
Block: 00010
Block: 00011
Block: 00100
Block: 00101
Block: 00110
Block: 00111
Block: 01000
Block: 01001
Block: 01010
Block: 01011
Block: 01100
Block: 01101
Block: 01110
Block: 01111
Block: 10000
Block: 10001
Block: 10010
Block: 10011
Block: 10100
Block: 10101
Block: 10110
Block: 10111
Block: 11000
Block: 11001
Block: 11010
Block: 11011
Block: 11100
Block: 11101
Block: 11110
Block: 11111

Main memory

Direct-Mapped Caches
n Direct-mapped cache: Two blocks in memory that map to

the same index in the cache cannot be present in the cache
at the same time
q One index à one entry

n Can lead to 0% hit rate if more than one block accessed in
an interleaved manner map to the same index
q Assume addresses A and B have the same index bits but

different tag bits
q A, B, A, B, A, B, A, B, … à conflict in the cache index
q All accesses are conflict misses

50

n Addresses N and N+8 always conflict in direct mapped cache
n Instead of having one column of 8, have 2 columns of 4 blocks

Set Associativity

51

Tag store Data store

V tag

=?

V tag

=?

Address
tag index byte in block

3 bits2 bits3 bits

Logic

MUX

MUX
byte in block

Key idea: Associative memory within the set
+ Accommodates conflicts better (fewer conflict misses)
-- More complex, slower access, larger tag store

SET

Hit?

Higher Associativity
n 4-way

+ Likelihood of conflict misses even lower
-- More tag comparators and wider data mux; larger tags

52

Tag store

Data store

=?=? =?=?

MUX

MUX
byte in block

Logic Hit?

Address
tag index byte in block

3 bits1 b4 bits

Full Associativity
n Fully associative cache

q A block can be placed in any cache location

53

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Address
tag byte in block

3 bits5 bits

Associativity (and Tradeoffs)
n Degree of associativity: How many blocks can map to the

same index (or set)?

n Higher associativity
++ Higher hit rate
-- Slower cache access time (hit latency and data access latency)
-- More expensive hardware (more comparators)

n Diminishing returns from higher
associativity

54
associativity

hit rate

Issues in Set-Associative Caches
n Think of each block in a set having a “priority”

q Indicating how important it is to keep the block in the cache
n Key issue: How do you determine/adjust block priorities?
n There are three key decisions in a set:

q Insertion, promotion, eviction (replacement)

n Insertion: What happens to priorities on a cache fill?
q Where to insert the incoming block, whether or not to insert the block

n Promotion: What happens to priorities on a cache hit?
q Whether and how to change block priority

n Eviction/replacement: What happens to priorities on a cache
miss?
q Which block to evict and how to adjust priorities

55

Eviction/Replacement Policy
n Which block in the set to replace on a cache miss?

q Any invalid block first
q If all are valid, consult the replacement policy

n Random
n FIFO
n Least recently used (how to implement?)
n Not most recently used
n Least frequently used?
n Least costly to re-fetch?

q Why would memory accesses have different cost?
n Hybrid replacement policies
n Optimal replacement policy?

56

Implementing LRU
n Idea: Evict the least recently accessed block
n Problem: Need to keep track of access ordering of blocks

n Question: 2-way set associative cache:
q What do you need to implement LRU perfectly?

n Question: 4-way set associative cache:
q What do you need to implement LRU perfectly?
q How many different orderings possible for the 4 blocks in the

set?
q How many bits needed to encode the LRU order of a block?
q What is the logic needed to determine the LRU victim?

57

Approximations of LRU
n Most modern processors do not implement “true LRU” (also

called “perfect LRU”) in highly-associative caches

n Why?
q True LRU is complex
q LRU is an approximation to predict locality anyway (i.e., not

the best possible cache management policy)

n Examples:
q Not MRU (not most recently used)
q Hierarchical LRU: divide the N-way set into M “groups”, track

the MRU group and the MRU way in each group
q Victim-NextVictim Replacement: Only keep track of the victim

and the next victim
58

Cache Replacement Policy: LRU or Random
n LRU vs. Random: Which one is better?

q Example: 4-way cache, cyclic references to A, B, C, D, E
n 0% hit rate with LRU policy

n Set thrashing: When the “program working set” in a set is
larger than set associativity
q Random replacement policy is better when thrashing occurs

n In practice:
q Depends on workload
q Average hit rate of LRU and Random are similar

n Best of both Worlds: Hybrid of LRU and Random
q How to choose between the two? Set sampling

n See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

59

What Is the Optimal Replacement Policy?
n Belady’s OPT

q Replace the block that is going to be referenced furthest in the
future by the program

q Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

q How do we implement this? Simulate?

n Is this optimal for minimizing miss rate?
n Is this optimal for minimizing execution time?

q No. Cache miss latency/cost varies from block to block!
q Two reasons: Remote vs. local caches and miss overlapping
q Qureshi et al. “A Case for MLP-Aware Cache Replacement,“

ISCA 2006.

60

Recommended Reading
n Key observation: Some misses more costly than others as their latency is

exposed as stall time. Reducing miss rate is not always good for
performance. Cache replacement should take into account cost of misses.

n Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,
"A Case for MLP-Aware Cache Replacement"
Proceedings of the 33rd International Symposium on Computer
Architecture (ISCA), pages 167-177, Boston, MA, June 2006. Slides (ppt)

61

https://people.inf.ethz.ch/omutlu/pub/qureshi_isca06.pdf
http://www.ece.neu.edu/conf/isca2006/
https://people.inf.ethz.ch/omutlu/pub/qureshi_isca06_talk.ppt

What’s In A Tag Store Entry?
n Valid bit
n Tag
n Replacement policy bits

n Dirty bit?
q Write back vs. write through caches

62

Handling Writes (I)
n When do we write the modified data in a cache to the next level?

n Write through: At the time the write happens
n Write back: When the block is evicted

q Write-back
+ Can combine multiple writes to the same block before eviction

q Potentially saves bandwidth between cache levels + saves energy
-- Need a bit in the tag store indicating the block is “dirty/modified”

q Write-through
+ Simpler
+ All levels are up to date

Consistency: Simpler cache coherence because no need to check
close-to-processor caches’ tag stores for presence

-- More bandwidth intensive; no combining of writes
63

Handling Writes (II)
n Do we allocate a cache block on a write miss?

q Allocate on write miss: Yes
q No-allocate on write miss: No

n Allocate on write miss
+ Can combine writes instead of writing each of them

individually to next level
+ Simpler because write misses can be treated the same way as

read misses
-- Requires transfer of the whole cache block

n No-allocate
+ Conserves cache space if locality of writes is low (potentially

better cache hit rate)
64

Handling Writes (III)
n What if the processor writes to an entire block over a small

amount of time?

n Is there any need to bring the block into the cache from
memory in the first place?

n Why do we not simply write to only a portion of the block,
i.e., subblock
q E.g., 4 bytes out of 64 bytes
q Problem: Valid and dirty bits are associated with the entire 64

bytes, not with each individual 4 bytes

65

Subblocked (Sectored) Caches
n Idea: Divide a block into subblocks (or sectors)

q Have separate valid and dirty bits for each subblock (sector)
q Allocate only a subblock (or a subset of subblocks) on a request

++ No need to transfer the entire cache block into the cache
(A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a
cache block does not need to be in the cache fully)

(How many subblocks do you transfer on a read?)

-- More complex design
-- May not exploit spatial locality fully

66

tagsubblockvsubblockv subblockvd d d

Instruction vs. Data Caches
n Separate or Unified?

n Pros and Cons of Unified:
+ Dynamic sharing of cache space: no overprovisioning that

might happen with static partitioning (i.e., separate I and D
caches)

-- Instructions and data can thrash each other (i.e., no
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

n First level caches are almost always split
q Mainly for the last reason above

n Higher level caches are almost always unified
67

Multi-level Caching in a Pipelined Design
n First-level caches (instruction and data)

q Decisions very much affected by cycle time
q Small, lower associativity; latency is critical
q Tag store and data store usually accessed in parallel

n Second-level caches
q Decisions need to balance hit rate and access latency
q Usually large and highly associative; latency not as important
q Tag store and data store can be accessed serially

n Serial vs. Parallel access of levels
q Serial: Second level cache accessed only if first-level misses
q Second level does not see the same accesses as the first

n First level acts as a filter (filters some temporal and spatial locality)
n Management policies are therefore different

68

Deeper and Larger Cache Hierarchies

69https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

Cache Performance

Cache Parameters vs. Miss/Hit Rate
n Cache size

n Block size

n Associativity

n Replacement policy
n Insertion/Placement policy

71

Cache Size
n Cache size: total data (not including tag) capacity

q bigger can exploit temporal locality better
q not ALWAYS better

n Too large a cache adversely affects hit and miss latency
q smaller is faster => bigger is slower
q access time may degrade critical path

n Too small a cache
q doesn’t exploit temporal locality well
q useful data replaced often

n Working set: the whole set of data
the executing application references
q Within a time interval

72

hit rate

cache size

“working set”
size

Block Size
n Block size is the data that is associated with an address tag

q not necessarily the unit of transfer between hierarchies
n Sub-blocking: A block divided into multiple pieces (each w/ V/D bits)

n Too small blocks
q don’t exploit spatial locality well
q have larger tag overhead

n Too large blocks
q too few total # of blocks à less

temporal locality exploitation
q waste of cache space and bandwidth/energy

if spatial locality is not high
73

hit rate

block
size

Large Blocks: Critical-Word and Subblocking
n Large cache blocks can take a long time to fill into the cache

q fill cache line critical word first
q restart cache access before complete fill

n Large cache blocks can waste bus bandwidth
q divide a block into subblocks
q associate separate valid and dirty bits for each subblock
q Recall: When is this useful?

74

tagsubblockvsubblockv subblockvd d d

Associativity
n How many blocks can be present in the same index (i.e., set)?

n Larger associativity
q lower miss rate (reduced conflicts)
q higher hit latency and area cost (plus diminishing returns)

n Smaller associativity
q lower cost
q lower hit latency

n Especially important for L1 caches

n Is power of 2 associativity required?
75

associativity

hit rate

Classification of Cache Misses
n Compulsory miss

q first reference to an address (block) always results in a miss
q subsequent references should hit unless the cache block is

displaced for the reasons below

n Capacity miss
q cache is too small to hold everything needed
q defined as the misses that would occur even in a fully-

associative cache (with optimal replacement) of the same
capacity

n Conflict miss
q defined as any miss that is neither a compulsory nor a

capacity miss
76

How to Reduce Each Miss Type
n Compulsory

q Caching cannot help
q Prefetching can: Anticipate which blocks will be needed soon

n Conflict
q More associativity
q Other ways to get more associativity without making the

cache associative
n Victim cache
n Better, randomized indexing
n Software hints?

n Capacity
q Utilize cache space better: keep blocks that will be referenced
q Software management: divide working set and computation

such that each “computation phase” fits in cache
77

How to Improve Cache Performance
n Three fundamental goals

n Reducing miss rate
q Caveat: reducing miss rate can reduce performance if more

costly-to-refetch blocks are evicted

n Reducing miss latency or miss cost

n Reducing hit latency or hit cost

n The above three together affect performance

78

Improving Basic Cache Performance
n Reducing miss rate

q More associativity
q Alternatives/enhancements to associativity

n Victim caches, hashing, pseudo-associativity, skewed associativity
q Better replacement/insertion policies
q Software approaches

n Reducing miss latency/cost
q Multi-level caches
q Critical word first
q Subblocking/sectoring
q Better replacement/insertion policies
q Non-blocking caches (multiple cache misses in parallel)
q Multiple accesses per cycle
q Software approaches

79

Software Approaches for Higher Hit Rate
n Restructuring data access patterns
n Restructuring data layout

n Loop interchange
n Data structure separation/merging
n Blocking
n …

80

Restructuring Data Access Patterns (I)
n Idea: Restructure data layout or data access patterns
n Example: If column-major

q x[i+1,j] follows x[i,j] in memory
q x[i,j+1] is far away from x[i,j]

n This is called loop interchange
n Other optimizations can also increase hit rate

q Loop fusion, array merging, …
81

Poor code
for i = 1, rows

for j = 1, columns
sum = sum + x[i,j]

Better code
for j = 1, columns

for i = 1, rows
sum = sum + x[i,j]

Restructuring Data Access Patterns (II)

n Blocking
q Divide loops operating on arrays into computation chunks so

that each chunk can hold its data in the cache
q Avoids cache conflicts between different chunks of

computation
q Essentially: Divide the working set so that each piece fits in

the cache

n Also called Tiling

82

Restructuring Data Layout (I)
n Pointer based traversal

(e.g., of a linked list)
n Assume a huge linked

list (1B nodes) and
unique keys

n Why does the code on
the left have poor cache
hit rate?
q “Other fields” occupy

most of the cache line
even though rarely
accessed!

83

struct Node {
struct Node* next;
int key;
char [256] name;
char [256] school;

}

while (node) {
if (nodeàkey == input-key) {

// access other fields of node
}
node = nodeànext;

}

Restructuring Data Layout (II)
n Idea: separate frequently-

used fields of a data
structure and pack them
into a separate data
structure

n Who should do this?
q Programmer
q Compiler

n Profiling vs. dynamic
q Hardware?
q Who can determine what

is frequently used?

84

struct Node {
struct Node* next;
int key;
struct Node-data* node-data;

}

struct Node-data {
char [256] name;
char [256] school;

}

while (node) {
if (nodeàkey == input-key) {

// access nodeànode-data
}
node = nodeànext;

}

Improving Basic Cache Performance
n Reducing miss rate

q More associativity
q Alternatives/enhancements to associativity

n Victim caches, hashing, pseudo-associativity, skewed associativity
q Better replacement/insertion policies
q Software approaches

n Reducing miss latency/cost
q Multi-level caches
q Critical word first
q Subblocking/sectoring
q Better replacement/insertion policies
q Non-blocking caches (multiple cache misses in parallel)
q Multiple accesses per cycle
q Software approaches

85

Miss Latency/Cost
n What is miss latency or miss cost affected by?

q Where does the miss get serviced from?
n Local vs. remote memory
n What level of cache in the hierarchy?
n Row hit versus row miss
n Queueing delays in the memory controller and the interconnect
n …

q How much does the miss stall the processor?
n Is it overlapped with other latencies?
n Is the data immediately needed?
n …

86

Memory Level Parallelism (MLP)

q Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

q Several techniques to improve MLP (e.g., out-of-order execution)

q MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

q Traditional cache replacement policies try to reduce miss
count

q Implicit assumption: Reducing miss count reduces memory-
related stall time

q Misses with varying cost/MLP breaks this assumption!

q Eliminating an isolated miss helps performance more than
eliminating a parallel miss

q Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

88

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

P3 P2 P1 P4

H H H H M H H H MHit/Miss
Misses=4
Stalls=4

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall
Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2P4 P3 P2 S3P4 S1 S2 S3P1 P3 P2 S3P4 S1 S2 S3P4

H H H

S1 S2 S3P4

H M M M H M M M

Time stall Misses=6
Stalls=2

Saved
cycles

Cache

Recommended: MLP-Aware Cache Replacement

n How do we incorporate MLP into replacement decisions?

n Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

91

Lectures on Cache Optimizations

92https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3

Lectures on Cache Optimizations

93https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6

Lectures on Cache Optimizations

94https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21

Lecture on Cache Optimizations
n Computer Architecture, Fall 2017, Lecture 3

q Cache Management & Memory Parallelism (ETH, Fall 2017)
q https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBX
YFIZywZXCPl4M_&index=3

n Computer Architecture, Fall 2018, Lecture 4a
q Cache Design (ETH, Fall 2018)
q https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMh
ylk_d5dI-TM7&index=6

n Computer Architecture, Spring 2015, Lecture 19
q High Performance Caches (CMU, Spring 2015)
q https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3J
CL1TWybTDtKq&index=21

95https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3
https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6
https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21
https://www.youtube.com/onurmutlulectures

Multi-Core Issues in Caching

Caches in a Multi-Core System

97

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

Caches in Multi-Core Systems
n Cache efficiency becomes even more important in a multi-

core/multi-threaded system
q Memory bandwidth is at premium
q Cache space is a limited resource across cores/threads

n How do we design the caches in a multi-core system?

n Many decisions
q Shared vs. private caches
q How to maximize performance of the entire system?
q How to provide QoS to different threads in a shared cache?
q Should cache management algorithms be aware of threads?
q How should space be allocated to threads in a shared cache?

98

Private vs. Shared Caches
n Private cache: Cache belongs to one core (a shared block

can be in multiple caches)
n Shared cache: Cache is shared by multiple cores

99

CORE 0 CORE 1 CORE 2 CORE 3

L2
CACHE

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2
CACHE

Resource Sharing Concept and Advantages
n Idea: Instead of dedicating a hardware resource to a

hardware context, allow multiple contexts to use it
q Example resources: functional units, pipeline, caches, buses,

memory
n Why?

+ Resource sharing improves utilization/efficiency à throughput
q When a resource is left idle by one thread, another thread can

use it; no need to replicate shared data
+ Reduces communication latency

q For example, data shared between multiple threads can be kept
in the same cache in multithreaded processors

+ Compatible with the shared memory programming model

100

Resource Sharing Disadvantages
n Resource sharing results in contention for resources

q When the resource is not idle, another thread cannot use it
q If space is occupied by one thread, another thread needs to re-

occupy it

- Sometimes reduces each or some thread’s performance
- Thread performance can be worse than when it is run alone

- Eliminates performance isolation à inconsistent performance
across runs

- Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
101

Private vs. Shared Caches
n Private cache: Cache belongs to one core (a shared block

can be in multiple caches)
n Shared cache: Cache is shared by multiple cores

102

CORE 0 CORE 1 CORE 2 CORE 3

L2
CACHE

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2
CACHE

Shared Caches Between Cores
n Advantages:

q High effective capacity
q Dynamic partitioning of available cache space

n No fragmentation due to static partitioning
n If one core does not utilize some space, another core can

q Easier to maintain coherence (a cache block is in a single location)

n Disadvantages
q Slower access (cache not tightly coupled with the core)
q Cores incur conflict misses due to other cores’ accesses

n Misses due to inter-core interference
n Some cores can destroy the hit rate of other cores

q Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)

103

Cache Coherence

Cache Coherence
n Basic question: If multiple processors cache the same

block, how do they ensure they all see a consistent state?

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT
load 1000

Lecture on Cache Coherence

110https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=38

Lecture on Cache Coherence
n Computer Architecture, Fall 2020, Lecture 21

q Cache Coherence (ETH, Fall 2020)
q https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=38

111https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=38
https://www.youtube.com/onurmutlulectures

Digital Design & Computer Arch.
Lecture 23: Memory Hierarchy

and Caches

Prof. Onur Mutlu

ETH Zürich
Spring 2021
27 May 2021

Cache Examples:
For You to Study

Cache Terminology
n Capacity (C):

q the number of data bytes a cache stores
n Block size (b):

q bytes of data brought into cache at once
n Number of blocks (B = C/b):

q number of blocks in cache: B = C/b
n Degree of associativity (N):

q number of blocks in a set
n Number of sets (S = B/N):

q each memory address maps to exactly one cache set

114

How is data found?
n Cache organized into S sets

n Each memory address maps to exactly one set

n Caches categorized by number of blocks in a set:
q Direct mapped: 1 block per set
q N-way set associative: N blocks per set
q Fully associative: all cache blocks are in a single set

n Examine each organization for a cache with:
q Capacity (C = 8 words)
q Block size (b = 1 word)
q So, number of blocks (B = 8)

115

Direct Mapped Cache

7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]
mem[0x00...04]
mem[0x00...08]
mem[0x00...0C]
mem[0x00...10]
mem[0x00...14]
mem[0x00...18]
mem[0x00..1C]
mem[0x00..20]
mem[0x00...24]

mem[0xFF...E0]
mem[0xFF...E4]
mem[0xFF...E8]
mem[0xFF...EC]
mem[0xFF...F0]
mem[0xFF...F4]
mem[0xFF...F8]
mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000
00...00000100
00...00001000
00...00001100

00...00010100
00...00011000
00...00011100
00...00100000
00...00100100

11...11110000

11...11100000
11...11100100
11...11101000
11...11101100

11...11110100
11...11111000
11...11111100

6 (110)
5 (101)
4 (100)
3 (011)
2 (010)
1 (001)
0 (000)

116

Direct Mapped Cache Hardware

DataTag

00
Tag Set

Byte
OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x
(1+27+32)-bit

SRAM

117

Direct Mapped Cache Performance

MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1
mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate =

118

Direct Mapped Cache Performance

MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1
mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = 3/15
=

20%
Temporal Locality
Compulsory Misses

119

Direct Mapped Cache: Conflict

MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate =

120

Direct Mapped Cache: Conflict

MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = 10/10
= 100%

Conflict Misses

121

N-Way Set Associative Cache

DataTag

Tag Set
Byte

OffsetMemory
Address

Data

Hit1

V

=

01

00

32 32

32

DataTagV

=

Hit1Hit0

Hit

28 2

28 28

Way 1 Way 0

122

N-way Set Associative Performance

MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate =

123

N-way Set Associative Performance

MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

Miss Rate = 2/10
= 20%

Associativity reduces
conflict misses

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

124

Fully Associative Cache

n No conflict misses

n Expensive to build

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV

125

Spatial Locality?
n Increase block size:

q Block size, b = 4 words
q C = 8 words
q Direct mapped (1 block per set)
q Number of blocks, B = C/b = 8/4 = 2

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

126

Direct Mapped Cache Performance
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]

Miss Rate =

127

Direct Mapped Cache Performance
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

Miss Rate = 1/15
= 6.67%

Larger blocks reduce
compulsory misses through
spatial locality

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]

128

Cache Organization Recap
n Main Parameters

q Capacity: C
q Block size: b
q Number of blocks in cache: B = C/b
q Number of blocks in a set: N
q Number of Sets: S = B/N

Organization
Number of Ways

(N)
Number of Sets

(S = B/N)
Direct Mapped 1 B

N-Way Set Associative 1 < N < B B / N

Fully Associative B 1

129

Capacity Misses
n Cache is too small to hold all data of interest at one time

q If the cache is full and program tries to access data X that is
not in cache, cache must evict data Y to make room for X

q Capacity miss occurs if program then tries to access Y again
q X will be placed in a particular set based on its address

n In a direct mapped cache, there is only one place to put X

n In an associative cache, there are multiple ways where X
could go in the set.

n How to choose Y to minimize chance of needing it again?
q Least recently used (LRU) replacement: the least recently

used block in a set is evicted when the cache is full.

130

Types of Misses
n Compulsory: first time data is accessed

n Capacity: cache too small to hold all data of interest

n Conflict: data of interest maps to same location in cache

n Miss penalty: time it takes to retrieve a block from lower
level of hierarchy

131

LRU Replacement

MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV DataTagVU

DataTagV DataTagVU

(a)

(b)

Set Number
3 (11)
2 (10)
1 (01)
0 (00)

Set Number
3 (11)
2 (10)
1 (01)
0 (00)

132

LRU Replacement

MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...04]1 00...000mem[0x00...24] 100...010

0
0

0
0

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...54]1 00...101mem[0x00...24] 100...010

0
0

0
1

(a)

(b)

Way 1 Way 0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

133

