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Readings for This Lecture and Next

◼ Memory Hierarchy and Caches

◼ Required

❑ H&H Chapters 8.1-8.3

❑ Refresh: P&P Chapter 3.5

❑ Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014.
◼ https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

◼ Recommended

❑ An early cache paper by Maurice Wilkes

◼ Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965. 
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Recall: Memory Hierarchy Example
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Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014
https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf



Recall: A Modern Memory Hierarchy
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Register File
32 words, sub-nsec

L1 cache
~10s of KB, ~nsec

L2 cache
100s of KB ~  few MB, many nsec

L3 cache, 
many MBs, even more nsec

Main memory (DRAM), 
Many GBs, ~100 nsec

Swap Disk
~100 GB or few TB, ~10s of usec-msec

manual/compiler
register spilling

automatic
demand 
paging

automatic
HW cache
management

Memory
Abstraction



Recall: Let’s See A Toy Example

◼ We will examine a direct-mapped cache first

◼ Direct-mapped: A given main memory block can be placed in 
only one possible location in the cache

◼ Toy example: 256-byte memory, 64-byte cache, 8-byte blocks

5Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014



◼ Addresses N and N+8 always conflict in direct mapped cache

◼ Instead of having one column of 8, have 2 columns of 4 blocks

Recall: Set Associativity
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Tag store Data store

V tag

=?

V tag

=?

Address

tag index byte in block

3 bits2 bits3 bits

Logic

MUX

MUX
byte in block

Key idea: Associative memory within the set

+ Accommodates conflicts better (fewer conflict misses)

-- More complex, slower access, larger tag store

SET

Hit?



Higher Associativity

◼ 4-way

+ Likelihood of conflict misses even lower

-- More tag comparators and wider data mux; larger tags
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Full Associativity

◼ Fully associative cache

❑ A block can be placed in any cache location
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Recall: Set Associativity (and Tradeoffs)

◼ Degree of associativity: How many blocks can map to the 
same index (or set)?

◼ Higher associativity

++ Higher hit rate

-- Slower cache access (hit latency and data access latency)

-- More expensive hardware (more comparators)

◼ Diminishing returns from higher

associativity

9

associativity

hit rate



Recall: Issues in Set-Associative Caches

◼ Think of each block in a set having a “priority”

❑ Indicating how important it is to keep the block in the cache

◼ Key issue: How do you determine/adjust block priorities?

◼ There are three key decisions in a set:

❑ Insertion, promotion, eviction (replacement)

◼ Insertion: What happens to priorities on a cache fill?

❑ Where to insert the incoming block, whether or not to insert the block

◼ Promotion: What happens to priorities on a cache hit?

❑ Whether and how to change block priority

◼ Eviction/replacement: What happens to priorities on a cache 
miss?

❑ Which block to evict and how to adjust priorities
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Recall: Eviction/Replacement Policy

◼ Which block in the set to replace on a cache miss?

❑ Any invalid block first

❑ If all are valid, consult the replacement policy

◼ Random

◼ FIFO

◼ Least recently used (how to implement?)

◼ Not most recently used

◼ Least frequently used?

◼ Least costly to re-fetch?

❑ Why would memory accesses have different cost?

◼ Hybrid replacement policies

◼ Optimal replacement policy? 
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Implementing LRU

◼ Idea: Evict the least recently accessed block

◼ Problem: Need to keep track of access ordering of blocks

◼ Question: 2-way set associative cache:

❑ What do you need to implement LRU perfectly?

◼ Question: 4-way set associative cache: 

❑ What do you need to implement LRU perfectly?

❑ How many different orderings possible for the 4 blocks in the 
set? 

❑ How many bits needed to encode the LRU order of a block?

❑ What is the logic needed to determine the LRU victim?
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Approximations of LRU

◼ Most modern processors do not implement “true LRU” (also 
called “perfect LRU”) in highly-associative caches

◼ Why?

❑ True LRU is complex

❑ LRU is an approximation to predict locality anyway (i.e., not 
the best possible cache management policy)

◼ Examples:

❑ Not MRU (not most recently used)

❑ Hierarchical LRU: divide the N-way set into M “groups”, track 
the MRU group and the MRU way in each group

❑ Victim-NextVictim Replacement: Only keep track of the victim 
and the next victim
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Cache Replacement Policy: LRU or Random

◼ LRU vs. Random: Which one is better?

❑ Example: 4-way cache, cyclic references to A, B, C, D, E 

◼ 0% hit rate with LRU policy

◼ Set thrashing: When the “program working set” in a set is 
larger than set associativity

❑ Random replacement policy is better when thrashing occurs

◼ In practice:

❑ Performance of replacement policy depends on workload

❑ Average hit rate of LRU and Random are similar

◼ Best of both Worlds: Hybrid of LRU and Random

❑ How to choose between the two? Set sampling

◼ See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.
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What Is the Optimal Replacement Policy?

◼ Belady’s OPT

❑ Replace the block that is going to be referenced furthest in the 
future by the program

❑ Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

❑ How do we implement this? Simulate?

◼ Is this optimal for minimizing miss rate?

◼ Is this optimal for minimizing execution time?

❑ No. Cache miss latency/cost varies from block to block!

❑ Two reasons: Remote vs. local caches and miss overlapping

❑ Qureshi et al. “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.
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Recommended Reading

◼ Key observation: Some misses more costly than others as their latency is 
exposed as stall time. Reducing miss rate is not always good for 
performance. Cache replacement should take into account cost of misses.

◼ Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,
"A Case for MLP-Aware Cache Replacement"
Proceedings of the 33rd International Symposium on Computer 
Architecture (ISCA), pages 167-177, Boston, MA, June 2006. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/qureshi_isca06.pdf
http://www.ece.neu.edu/conf/isca2006/
https://people.inf.ethz.ch/omutlu/pub/qureshi_isca06_talk.ppt


What’s In A Tag Store Entry?

◼ Valid bit

◼ Tag

◼ Replacement policy bits

◼ Dirty bit?

❑ Write back vs. write through caches

17



Handling Writes (I)
◼ When do we write the modified data in a cache to the next level?

◼ Write through: At the time the write happens

◼ Write back: When the block is evicted

❑ Write-back

+ Can combine multiple writes to the same block before eviction

❑ Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “dirty/modified”

❑ Write-through

+ Simpler design

+ All levels are up to date & consistent → Simpler cache coherence: no 

need to check close-to-processor caches’ tag stores for presence

-- More bandwidth intensive; no combining of writes

18



Handling Writes (II)

◼ Do we allocate a cache block on a write miss?

❑ Allocate on write miss: Yes

❑ No-allocate on write miss: No

◼ Allocate on write miss

+ Can combine writes instead of writing each of them 
individually to next level

+ Simpler because write misses can be treated the same way as 
read misses

-- Requires transfer of the whole cache block

◼ No-allocate

+ Conserves cache space if locality of writes is low (potentially 
better cache hit rate)
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Handling Writes (III)

◼ What if the processor writes to an entire block over a small 
amount of time?

◼ Is there any need to bring the block into the cache from 
memory in the first place?

◼ Why do we not simply write to only a portion of the block, 
i.e., subblock

❑ E.g., 4 bytes out of 64 bytes

❑ Problem: Valid and dirty bits are associated with the entire 64 
bytes, not with each individual 4 bytes

20



Subblocked (Sectored) Caches

◼ Idea: Divide a block into subblocks (or sectors)

❑ Have separate valid and dirty bits for each subblock (sector)

❑ Allocate only a subblock (or a subset of subblocks) on a request

++ No need to transfer the entire cache block into the cache

(A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a    
cache block does not need to be in the cache fully)

(How many subblocks do you transfer on a read?)

-- More complex design

-- May not exploit spatial locality fully

21
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Instruction vs. Data Caches

◼ Separate or Unified?

◼ Pros and Cons of Unified:

+ Dynamic sharing of cache space: no overprovisioning that 
might happen with static partitioning (i.e., separate I and D 
caches)

-- Instructions and data can evict/thrash each other (i.e., no 
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where 
do we place the unified cache for fast access?

◼ First level caches are almost always split 

❑ Mainly for the last reason above – pipeline constraints

◼ Higher level caches are almost always unified
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Multi-level Caching in a Pipelined Design

◼ First-level caches (instruction and data)

❑ Decisions very much affected by cycle time

❑ Small, lower associativity; latency is critical

❑ Tag store and data store usually accessed in parallel

◼ Second-level caches

❑ Decisions need to balance hit rate and access latency

❑ Usually large and highly associative; latency not as important

❑ Tag store and data store can be accessed serially

◼ Serial vs. Parallel access of levels

❑ Serial: Second level cache accessed only if first-level misses

❑ Second level does not see the same accesses as the first

◼ First level acts as a filter (filters some temporal and spatial locality)

◼ Management policies are therefore different
23



Deeper and Larger Cache Hierarchies

24Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,

2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested


Deeper and Larger Cache Hierarchies

25https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches: 
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared



Deeper and Larger Cache Hierarchies

26https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,

2020

Cores:
15-16 cores,

8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared



Deeper and Larger Cache Hierarchies

27https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon

Nvidia Ampere, 2020

Cores:
128 Streaming Multiprocessors

L1 Cache or 

Scratchpad: 
192KB per SM 

Can be used as L1 Cache 

and/or Scratchpad

L2 Cache:
40 MB shared



◼ Example of data movement between GPU global memory 
(DRAM) and GPU cores.

NVIDIA V100 & A100 Memory Hierarchy

A100 feature: 
Direct copy from L2 
to scratchpad, 
bypassing L1 and 
register file.

28
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

NVIDIA A100 Tensor Core GPU Architecture In-Depth 

40 
NVIDIA A100 Tensor Core GPU Architecture 

 

 
A100 improves SM bandwidth efficiency with a new load-global-store-shared asynchronous copy 
instruction that bypasses L1 cache and register file (RF).  Additionally, A100’s more efficient Tensor 
Cores reduce shared memory (SMEM) loads. 

Figure 15. A100 SM Data Movement Efficiency 

New asynchronous barriers work together with the asynchronous copy instruction to enable 

efficient data fetch pipelines, and A100 increases maximum SMEM allocation per SM 1.7x to 

164 KB (vs 96 KB on V100). With these improvements A100 SMs continuously data stream 

data to keep the L2 cache constantly utilized. 

 

L2 Cache and DRAM Bandwidth improvements - The NVIDIA A100 GPU’s increased 

number of SMs and more powerful Tensor Cores in turn increase the required data fetch rates 

from DRAM and L2 cache. To feed the Tensor Cores, A100 implements a 5-site HBM2 memory 

subsystem with bandwidth of 1555 GB/sec, over 1.7x faster than V100. A100 further provides 

2.3x the L2 cache read bandwidth of V100.  

 

Alongside the raw data bandwidth improvements, A100 improves data fetch efficiency and 

reduces DRAM bandwidth demand with a 40 MB L2 cache that is almost 7x larger than that of 

Tesla V100. To fully exploit the L2 capacity A100 includes improved cache management 

controls. Optimized for neural network training and inferencing as well as general compute 

workloads, the new controls ensure that data in the cache is used more efficiently by minimizing 

writebacks to memory and keeping reused data in L2 to reduce redundant DRAM traffic. 

  



Cache Performance



Cache Parameters vs. Miss/Hit Rate

◼ Cache size

◼ Block size

◼ Associativity

◼ Replacement policy

◼ Insertion/Placement policy

◼ Promotion Policy
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Cache Size

◼ Cache size: total data (not including tag) capacity

❑ bigger can exploit temporal locality better

❑ not ALWAYS better

◼ Too large a cache adversely affects hit and miss latency

❑ smaller is faster => bigger is slower

❑ access time may degrade critical path

◼ Too small a cache

❑ doesn’t exploit temporal locality well

❑ useful data replaced often

◼ Working set: the whole set of data                                                    
the executing application references 

❑ Within a time interval 

31

hit rate

cache size

“working set”
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Block Size

◼ Block size is the data that is associated with an address tag 

❑ not necessarily the unit of transfer between hierarchies

◼ Sub-blocking: A block divided into multiple pieces (each w/ V/D bits)

◼ Too small blocks

❑ don’t exploit spatial locality well

❑ have larger tag overhead

◼ Too large blocks

❑ too few total # of blocks → less

temporal locality exploitation

❑ waste of cache space and bandwidth/energy 

if spatial locality is not high

32

hit rate

block

size



Large Blocks: Critical-Word and Subblocking

◼ Large cache blocks can take a long time to fill into the cache

❑ Idea: Fill cache block critical-word first 

❑ Supply the critical data to the processor immediately

◼ Large cache blocks can waste bus bandwidth 

❑ Idea: Divide a block into subblocks

❑ Associate separate valid and dirty bits for each subblock

❑ Recall: When is this useful?

33
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Associativity

◼ How many blocks can be present in the same index (i.e., set)?

◼ Larger associativity

❑ lower miss rate (reduced conflicts)

❑ higher hit latency and area cost (plus diminishing returns)

◼ Smaller associativity

❑ lower cost

❑ lower hit latency

◼ Especially important for L1 caches

◼ Is power of 2 associativity required?

34
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Recall: Higher Associativity (4-way)

◼ 4-way

35

Tag store

Data store

=?=? =?=?

MUX

MUX
byte in block
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Address

tag index byte in block

3 bits1 b4 bits



Higher Associativity (3-way)

◼ 3-way
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Recall: 8-way Fully Associative Cache
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Tag store
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7-way Fully Associative Cache
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Classification of Cache Misses

◼ Compulsory miss 

❑ first reference to an address (block) always results in a miss

❑ subsequent references should hit unless the cache block is 
displaced for the reasons below

◼ Capacity miss 

❑ cache is too small to hold everything needed

❑ defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same 
capacity 

◼ Conflict miss 

❑ defined as any miss that is neither a compulsory nor a 
capacity miss

39



How to Reduce Each Miss Type

◼ Compulsory

❑ Caching cannot help

❑ Prefetching can: Anticipate which blocks will be needed soon

◼ Conflict

❑ More associativity

❑ Other ways to get more associativity without making the 
cache associative

◼ Victim cache

◼ Better, randomized indexing

◼ Software hints?

◼ Capacity

❑ Utilize cache space better: keep blocks that will be referenced

❑ Software management: divide working set and computation 
such that each “computation phase” fits in cache

40



How to Improve Cache Performance

◼ Three fundamental goals

◼ Reducing miss rate

❑ Caveat: reducing miss rate can reduce performance if more 
costly-to-refetch blocks are evicted

◼ Reducing miss latency or miss cost

◼ Reducing hit latency or hit cost

◼ The above three together affect performance 

41



Improving Basic Cache Performance
◼ Reducing miss rate

❑ More associativity

❑ Alternatives/enhancements to associativity 

◼ Victim caches, hashing, pseudo-associativity, skewed associativity

❑ Better replacement/insertion policies

❑ Software approaches

◼ Reducing miss latency/cost

❑ Multi-level caches

❑ Critical word first

❑ Subblocking/sectoring

❑ Better replacement/insertion policies

❑ Non-blocking caches (multiple cache misses in parallel)

❑ Multiple accesses per cycle

❑ Software approaches

42



Software Approaches for Higher Hit Rate

◼ Restructuring data access patterns

◼ Restructuring data layout

◼ Loop interchange

◼ Data structure separation/merging

◼ Blocking

◼ …

43



Restructuring Data Access Patterns (I)

◼ Idea: Restructure data layout or data access patterns

◼ Example: If column-major

❑ x[i+1,j] follows x[i,j] in memory

❑ x[i,j+1] is far away from x[i,j]

◼ This is called loop interchange

◼ Other optimizations can also increase hit rate

❑ Loop fusion, array merging, …

44

Poor code

for i = 1, rows

for j = 1, columns

sum = sum + x[i,j]

Better code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]



Restructuring Data Access Patterns (II)

◼ Blocking

❑ Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the cache

❑ Avoids cache conflicts between different chunks of 
computation

❑ Essentially: Divide the working set so that each piece fits in 
the cache

◼ Also called Tiling
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Data Reuse: An Example from GPU Computing

◼ Same memory locations accessed by neighboring threads

for (int i = 0; i < 3; i++){

for (int j = 0; j < 3; j++){

sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];

}

}

46

Gaussian filter applied on 
every pixel of an image

Lecture 22: GPU Programming (Spring 2018) https://www.youtube.com/watch?v=y40-tY5WJ8A



Data Reuse: Tiling in GPU Computing
◼ To take advantage of data reuse, we divide the input into tiles 

that can be loaded into shared memory (scratchpad memory)

__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];

…

Load tile into shared memory

__syncthreads();

for (int i = 0; i < 3; i++){

for (int j = 0; j < 3; j++){

sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];

}

}

47Lecture 22: GPU Programming (Spring 2018) https://www.youtube.com/watch?v=y40-tY5WJ8A



Naïve Matrix Multiplication (I)

◼ Matrix multiplication: C = A x B

◼ Consider two input matrices A and B in row-major layout

❑ A size is M x P

❑ B size is P x N

❑ C size is M x N

48
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Naïve Matrix Multiplication (II)

◼ Naïve implementation of matrix multiplication has poor 
cache locality
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#define A(i,j) matrix_A[i * P + j] 

#define B(i,j) matrix_B[i * N + j] 

#define C(i,j) matrix_C[i * N + j]

for (i = 0; i < M; i++){ // i = row index

for (j = 0; j < N; j++){ // j = column index

C(i, j) = 0; // Set to zero

for (k = 0; k < P; k++) // Row x Col

C(i, j) += A(i, k) * B(k, j); 

} 

} 

A

B

C

P

M

P N

i

jk

k

Consecutive accesses to B are far from 

each other, in different cache lines. 

Every access to B is likely to cause a 

cache miss



Tiled Matrix Multiplication (I)

◼ We can achieve better cache 
locality by computing on 
smaller tiles or blocks that fit in 
the cache

❑ Or in the scratchpad memory 
and register file if we compute 
on a GPU

50
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Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981

Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2

Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4


Tiled Matrix Multiplication (II)

◼ Tiled implementation operates on submatrices (tiles or 
blocks) that fit fast memories (cache, scratchpad, RF)

51

#define A(i,j) matrix_A[i * P + j] 

#define B(i,j) matrix_B[i * N + j] 

#define C(i,j) matrix_C[i * N + j]

for (I = 0; I < M; I += tile_dim){

for (J = 0; J < N; J += tile_dim){ 

Set_to_zero(&C(I, J)); // Set to zero 

for (K = 0; K < P; K += tile_dim) 

Multiply_tiles(&C(I, J), &A(I, K), &B(K, J)); 

} 

} 

Multiply small submatrices (tiles or blocks) 
of size tile_dim x tile_dim

A

B

C

P

M

P N

k

k
tile_dim

t
i
l
e
_
d
i
m

i

j

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981

Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2

Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4


Tiled Matrix Multiplication on GPUs

52Computer Architecture - Lecture 9: GPUs and GPGPU Programming (Fall 2017) https://youtu.be/mgtlbEqn2dA?t=8157



Restructuring Data Layout (I)

◼ Pointer based traversal 
(e.g., of a linked list)

◼ Assume a huge linked 
list (1B nodes) and 
unique keys

◼ Why does the code on 
the left have poor cache 
hit rate?

❑ “Other fields” occupy 
most of the cache line 
even though rarely 
accessed!

53

struct Node {

struct Node* next;

int key;

char [256] name;

char [256] school;

}

while (node) {

if (node→key == input-key) {

// access other fields of node

}

node = node→next;

}



Restructuring Data Layout (II)

◼ Idea: separate frequently-
used fields of a data 
structure and pack them 
into a separate data 
structure

◼ Who should do this?

❑ Programmer

❑ Compiler 

◼ Profiling vs. dynamic

❑ Hardware?

❑ Who can determine what 
is frequently used?

54

struct Node {

struct Node* next;

int key;

struct Node-data* node-data;

}

struct Node-data {

char [256] name;

char [256] school;

}

while (node) {

if (node→key == input-key) {

// access node→node-data

}

node = node→next;

}



Improving Basic Cache Performance
◼ Reducing miss rate

❑ More associativity

❑ Alternatives/enhancements to associativity 

◼ Victim caches, hashing, pseudo-associativity, skewed associativity

❑ Better replacement/insertion policies

❑ Software approaches

◼ Reducing miss latency/cost

❑ Multi-level caches

❑ Critical word first

❑ Subblocking/sectoring

❑ Better replacement/insertion policies

❑ Non-blocking caches (multiple cache misses in parallel)

❑ Multiple accesses per cycle

❑ Software approaches

55



Miss Latency/Cost

◼ What is miss latency or miss cost affected by?

❑ Where does the miss get serviced from?

◼ Local vs. remote memory

◼ What level of cache in the hierarchy?

◼ Row hit versus row conflict

◼ Queueing delays in the memory controller and the interconnect

◼ …

❑ How much does the miss stall the processor?

◼ Is it overlapped with other latencies?

◼ Is the data immediately needed?

◼ Is the incoming block going to evict a longer-to-refetch block? 

◼ …

56



Memory Level Parallelism (MLP) 

❑ Memory Level Parallelism (MLP) means generating and 
servicing multiple memory accesses in parallel [Glew’98]

❑ Several techniques to improve MLP (e.g., out-of-order execution)

❑ MLP varies. Some misses are isolated and some parallel 

How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss



Traditional Cache Replacement Policies

❑ Traditional cache replacement policies try to reduce miss 
count

❑ Implicit assumption: Reducing miss count reduces memory-
related stall time 

❑ Misses with varying cost/MLP breaks this assumption!

❑ Eliminating an isolated miss helps performance more than 
eliminating a parallel miss

❑ Eliminating a higher-latency miss could help performance 
more than eliminating a lower-latency miss
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Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example



Fewest Misses = Best Performance

P3 P2 P1 P4 

H  H  H  H M          H  H  H MHit/Miss

Misses=4 
Stalls=4

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M          M          

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2P4 P3 P2 S3P4 S1 S2 S3P1 P3 P2 S3P4 S1 S2 S3P4 

H           H           H

S1 S2 S3P4 

H  M  M  M H  M  M  M

Time stall Misses=6
Stalls=2

Saved 
cycles

Cache



Recommended: MLP-Aware Cache Replacement

◼ How do we incorporate MLP into replacement decisions?

◼ How do we design a hybrid cache replacement policy?

◼ Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

61



Improving Basic Cache Performance
◼ Reducing miss rate

❑ More associativity

❑ Alternatives/enhancements to associativity 

◼ Victim caches, hashing, pseudo-associativity, skewed associativity

❑ Better replacement/insertion policies

❑ Software approaches

❑ …

◼ Reducing miss latency/cost

❑ Multi-level caches

❑ Critical word first

❑ Subblocking/sectoring

❑ Better replacement/insertion policies

❑ Non-blocking caches (multiple cache misses in parallel)

❑ Multiple accesses per cycle

❑ Software approaches

❑ …
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Lectures on Cache Optimizations (I)

63https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3

https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3


Lectures on Cache Optimizations (II)

64https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6

https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6


Lectures on Cache Optimizations (III)

65https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21

https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21


Lecture on Cache Optimizations

◼ Computer Architecture, Fall 2017, Lecture 3

❑ Cache Management & Memory Parallelism (ETH, Fall 2017)

❑ https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBX
YFIZywZXCPl4M_&index=3

◼ Computer Architecture, Fall 2018, Lecture 4a

❑ Cache Design (ETH, Fall 2018)

❑ https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMh
ylk_d5dI-TM7&index=6

◼ Computer Architecture, Spring 2015, Lecture 19

❑ High Performance Caches (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3J
CL1TWybTDtKq&index=21

66https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3
https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6
https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21
https://www.youtube.com/onurmutlulectures


Multi-Core Issues in Caching



Caches in a Multi-Core System
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Caches in a Multi-Core System

69Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,

2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested


Caches in a Multi-Core System

70https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches: 
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared



Caches in a Multi-Core System

71https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,

2020

Cores:
15-16 cores,

8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared



Caches in a Multi-Core System

72https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon

Nvidia Ampere, 2020

Cores:
128 Streaming Multiprocessors

L1 Cache or 

Scratchpad: 
192KB per SM 

Can be used as L1 Cache 

and/or Scratchpad

L2 Cache:
40 MB shared



Caches in Multi-Core Systems

◼ Cache efficiency becomes even more important in a multi-
core/multi-threaded system

❑ Memory bandwidth is at premium

❑ Cache space is a limited resource across cores/threads

◼ How do we design the caches in a multi-core system?

◼ Many decisions
❑ Shared vs. private caches

❑ How to maximize performance of the entire system?

❑ How to provide QoS to different threads in a shared cache?

❑ Should cache management algorithms be aware of threads?

❑ How should space be allocated to threads in a shared cache?

❑ Should we store data in compressed format in some caches?

❑ How do we do better reuse prediction & management in caches?
73



Private vs. Shared Caches

◼ Private cache: Cache belongs to one core (a shared block 
can be in multiple caches)

◼ Shared cache: Cache is shared by multiple cores
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Resource Sharing Concept and Advantages

◼ Idea: Instead of dedicating a hardware resource to a 
hardware context, allow multiple contexts to use it

❑ Example resources: functional units, pipeline, caches, buses, 
memory

◼ Why?

+ Resource sharing improves utilization/efficiency → throughput

❑ When a resource is left idle by one thread, another thread can 
use it; no need to replicate shared data

+ Reduces communication latency

❑ For example, data shared between multiple threads can be kept 
in the same cache in multithreaded processors

+ Compatible with the shared memory programming model
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Resource Sharing Disadvantages

◼ Resource sharing results in contention for resources

❑ When the resource is not idle, another thread cannot use it

❑ If space is occupied by one thread, another thread needs to re-
occupy it 

- Sometimes reduces each or some thread’s performance

- Thread performance can be worse than when it is run alone  

- Eliminates performance isolation → inconsistent performance 

across runs

- Thread performance depends on co-executing threads

- Uncontrolled (free-for-all) sharing degrades QoS

- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
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Private vs. Shared Caches

◼ Private cache: Cache belongs to one core (a shared block 
can be in multiple caches)

◼ Shared cache: Cache is shared by multiple cores
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Shared Caches Between Cores

◼ Advantages:
❑ High effective capacity

❑ Dynamic partitioning of available cache space

◼ No fragmentation due to static partitioning

◼ If one core does not utilize some space, another core can

❑ Easier to maintain coherence (a cache block is in a single location)

◼ Disadvantages
❑ Slower access (cache not tightly coupled with the core)

❑ Cores incur conflict misses due to other cores’ accesses

◼ Misses due to inter-core interference

◼ Some cores can destroy the hit rate of other cores

❑ Guaranteeing a minimum level of service (or fairness) to each core is harder 
(how much space, how much bandwidth?)
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Lectures on Multi-Core Cache Management

79https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=17

https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=17


Lectures on Multi-Core Cache Management

80https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=29

https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=29


Lectures on Multi-Core Cache Management

81https://www.youtube.com/watch?v=Siz86__PD4w&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=30



Lectures on Multi-Core Cache Management

◼ Computer Architecture, Fall 2018, Lecture 18b

❑ Multi-Core Cache Management (ETH, Fall 2018)

❑ https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQM
hylk_d5dI-TM7&index=29

◼ Computer Architecture, Fall 2018, Lecture 19a

❑ Multi-Core Cache Management II (ETH, Fall 2018)

❑ https://www.youtube.com/watch?v=Siz86__PD4w&list=PL5Q2soXY2Zi9JXe3ywQM
hylk_d5dI-TM7&index=30

◼ Computer Architecture, Fall 2017, Lecture 15

❑ Multi-Core Cache Management (ETH, Fall 2017)

❑ https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXY
FIZywZXCPl4M_&index=17

82https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=29
https://www.youtube.com/watch?v=Siz86__PD4w&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=30
https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=17
https://www.youtube.com/onurmutlulectures


Lectures on Memory Resource Management

83https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21

https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21


Lectures on Memory Resource Management
◼ Computer Architecture, Fall 2020, Lecture 11a

❑ Memory Controllers (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=20

◼ Computer Architecture, Fall 2020, Lecture 11b

❑ Memory Interference and QoS (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=21

◼ Computer Architecture, Fall 2020, Lecture 13

❑ Memory Interference and QoS II (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxU
z7xRPS-wisBN&index=26

◼ Computer Architecture, Fall 2020, Lecture 2a

❑ Memory Performance Attacks (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=VJzZbwgBfy8&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=2

84https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=20
https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21
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https://www.youtube.com/watch?v=VJzZbwgBfy8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=2
https://www.youtube.com/onurmutlulectures


Cache Coherence



Cache Coherence 

◼ Basic question: If multiple processors cache the same 
block, how do they ensure they all see a consistent state?

P1 P2

x

Interconnection Network

Main Memory

1000



The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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ld r2, x

add r1, r2, r4

st x, r1
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The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT 

load 1000



A Very Simple Coherence Scheme (VI)

◼ Idea: All caches “snoop” (observe) each other’s write/read 
operations. If a processor writes to a block, all others 
invalidate the block.

◼ A simple protocol:

91

◼ Write-through, no-
write-allocate 
cache

◼ Actions of the local 
processor on the 
cache block: PrRd, 
PrWr, 

◼ Actions that are 
broadcast on the 
bus for the block: 
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--



Lecture on Cache Coherence  

92https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=38

https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=38


Lecture on Memory Ordering & Consistency

93https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=37

https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=37


Lecture on Cache Coherence & Consistency
◼ Computer Architecture, Fall 2020, Lecture 21

❑ Cache Coherence (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=38

◼ Computer Architecture, Fall 2020, Lecture 20

❑ Memory Ordering & Consistency (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=37

◼ Computer Architecture, Spring 2015, Lecture 28

❑ Memory Consistency & Cache Coherence (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=JfjT1a0vi4E&list=PL5PHm2jkkXmi5CxxI7b3JCL
1TWybTDtKq&index=32

◼ Computer Architecture, Spring 2015, Lecture 29

❑ Cache Coherence (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=X6DZchnMYcw&list=PL5PHm2jkkXmi5CxxI7b3
JCL1TWybTDtKq&index=33

94https://www.youtube.com/onurmutlulectures
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https://www.youtube.com/onurmutlulectures


Prefetching 



Prefetching

◼ Idea: Fetch the data before it is needed (i.e. pre-fetch) by 
the program

◼ Why? 

❑ Memory latency is high. If we can prefetch accurately and 
early enough we can reduce/eliminate that latency.

❑ Can eliminate compulsory cache misses

❑ Can it eliminate all cache misses? Capacity, conflict?

◼ Involves predicting which address will be needed in the 
future

❑ Works if programs have predictable miss address patterns
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Prefetching and Correctness

◼ Does a misprediction in prefetching affect correctness?

◼ No, prefetched data at a “mispredicted” address is simply 
not used

◼ There is no need for state recovery

❑ In contrast to branch misprediction or value misprediction

97



Basics

◼ In modern systems, prefetching is usually done in cache 
block granularity

◼ Prefetching is a technique that can reduce both

❑ Miss rate

❑ Miss latency

◼ Prefetching can be done by 

❑ Hardware

❑ Compiler

❑ Programmer

❑ System

98



How a HW Prefetcher Fits in the Memory System
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Prefetching: The Four Questions

◼ What

❑ What addresses to prefetch (i.e., address prediction algorithm)

◼ When

❑ When to initiate a prefetch request (early, late, on time)

◼ Where

❑ Where to place the prefetched data (caches, separate buffer)

❑ Where to place the prefetcher (which level in memory hierarchy)

◼ How

❑ How does the prefetcher operate and who operates it (software, 
hardware, execution/thread-based, cooperative, hybrid)

100



Challenges in Prefetching: How

◼ Software prefetching

❑ ISA provides prefetch instructions

❑ Programmer or compiler inserts prefetch instructions (effort)

❑ Usually works well only for “regular access patterns”

◼ Hardware prefetching

❑ Hardware monitors processor accesses

❑ Memorizes or finds patterns/strides

❑ Generates prefetch addresses automatically

◼ Execution-based prefetchers

❑ A “thread” is executed to prefetch data for the main program

❑ Can be generated by either software/programmer or hardware

101



Effect of Runahead Prefetching in Sun ROCK

◼ Shailender Chaudhry talk, Aug 2008.

102

Effective prefetching can improve performance and reduce hardware cost



Lectures on Prefetching (I)

103https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33


Lectures on Prefetching (II)

104https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34


Lectures on Prefetching (III)

105https://www.youtube.com/watch?v=KFCOecRQTIc

https://www.youtube.com/watch?v=KFCOecRQTIc


Lectures on Prefetching
◼ Computer Architecture, Fall 2020, Lecture 18

❑ Prefetching (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=33

◼ Computer Architecture, Fall 2020, Lecture 19a

❑ Execution-Based Prefetching (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=34

◼ Computer Architecture, Spring 2015, Lecture 25

❑ Prefetching (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JC
L1TWybTDtKq&index=29

◼ Computer Architecture, Spring 2015, Lecture 26

❑ More Prefetching (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JC
L1TWybTDtKq&index=30

106https://www.youtube.com/onurmutlulectures
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Some Readings on Prefetching
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction Windows 
for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance Computer 
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)

One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.
HPCA Test of Time Award (awarded in 2021).
[Lecture Slides (pptx) (pdf)]
[Lecture Video (1 hr 54 mins)]
[Retrospective HPCA Test of Time Award Talk Slides (pptx) (pdf)]
[Retrospective HPCA Test of Time Award Talk Video (14 minutes)]
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Some Readings on Prefetching
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Effective Alternative to Large 
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25, 
November/December 2003.
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Basic Cache Examples:

For You to Study



Cache Terminology

◼ Capacity (C): 

❑ the number of data bytes a cache stores

◼ Block size (b): 

❑ bytes of data brought into cache at once

◼ Number of blocks (B = C/b): 

❑ number of blocks in cache: B = C/b

◼ Degree of associativity (N): 

❑ number of blocks in a set

◼ Number of sets (S = B/N): 

❑ each memory address maps to exactly one cache set 
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How is data found?

◼ Cache organized into S sets

◼ Each memory address maps to exactly one set

◼ Caches categorized by number of blocks in a set:

❑ Direct mapped: 1 block per set

❑ N-way set associative: N blocks per set

❑ Fully associative: all cache blocks are in a single set

◼ Examine each organization for a cache with:

❑ Capacity (C = 8 words)

❑ Block size (b = 1 word)

❑ So, number of blocks (B = 8)
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Direct Mapped Cache

7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]

mem[0x00...04]

mem[0x00...08]

mem[0x00...0C]

mem[0x00...10]

mem[0x00...14]

mem[0x00...18]

mem[0x00..1C]

mem[0x00..20]

mem[0x00...24]

mem[0xFF...E0]

mem[0xFF...E4]

mem[0xFF...E8]

mem[0xFF...EC]

mem[0xFF...F0]

mem[0xFF...F4]

mem[0xFF...F8]

mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000

00...00000100

00...00001000

00...00001100

00...00010100

00...00011000

00...00011100

00...00100000

00...00100100

11...11110000

11...11100000

11...11100100

11...11101000

11...11101100

11...11110100

11...11111000

11...11111100

6 (110)

5 (101)

4 (100)

3 (011)

2 (010)

1 (001)

0 (000)
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Direct Mapped Cache Hardware

DataTag

00
Tag Set

Byte

OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x

(1+27+32)-bit

SRAM
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Direct Mapped Cache Performance

# MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...00

1

00...00

00...00

1

mem[0x00...0C]

mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate =
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Direct Mapped Cache Performance

# MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...00

1

00...00

00...00

1

mem[0x00...0C]

mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = 3/15
= 

20%

Temporal Locality
Compulsory Misses
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Direct Mapped Cache: Conflict

# MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001
mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...01

0

0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate =
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Direct Mapped Cache: Conflict

# MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001
mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...01

0

0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = 10/10
= 100%

Conflict Misses
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N-Way Set Associative Cache

DataTag

Tag Set

Byte

OffsetMemory

Address

Data

Hit
1

V

=

01

00

32 32

32

DataTagV

=

Hit
1Hit

0

Hit

28 2

28 28

Way 1 Way 0
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N-way Set Associative Performance

# MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0

0

0

0

0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate =
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N-way Set Associative Performance

# MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

Miss Rate = 2/10 

= 20%

Associativity reduces 
conflict misses

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0

0

0

0

0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0
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Fully Associative Cache

◼ No conflict misses

◼ Expensive to build

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV
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Spatial Locality?

◼ Increase block size:

❑ Block size, b = 4 words

❑ C = 8 words

❑ Direct mapped (1 block per set)

❑ Number of blocks, B = C/b = 8/4 = 2

DataTag

00
Tag

Byte

OffsetMemory

Address

Data

V

0
0

0
1

1
0

1
1

Block

Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0
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Direct Mapped Cache Performance

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

00...00 0 11

DataTag

00
Tag

Byte

OffsetMemory

Address

Data

V

0
0

0
1

1
0

1
1

Block

Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0

mem[0x00...08] mem[0x00...04] mem[0x00...00]

Miss Rate =
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Direct Mapped Cache Performance

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

Miss Rate = 1/15 

= 6.67%

Larger blocks reduce 
compulsory misses through 
spatial locality

00...00 0 11

DataTag

00
Tag

Byte

OffsetMemory

Address

Data

V

0
0

0
1

1
0

1
1

Block

Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0

mem[0x00...08] mem[0x00...04] mem[0x00...00]
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Cache Organization Recap

◼ Main Parameters

❑ Capacity: C

❑ Block size: b

❑ Number of blocks in cache: B = C/b

❑ Number of blocks in a set: N

❑ Number of Sets: S = B/N

Organization
Number of Ways 

(N)
Number of Sets 

(S = B/N)

Direct Mapped 1 B

N-Way Set Associative 1 < N < B B / N

Fully Associative B 1
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Capacity Misses
◼ Cache is too small to hold all data of interest at one time

❑ If the cache is full and program tries to access data X that is 
not in cache, cache must evict data Y to make room for X

❑ Capacity miss occurs if program then tries to access Y again

❑ X will be placed in a particular set based on its address

◼ In a direct mapped cache, there is only one place to put X

◼ In an associative cache, there are multiple ways where X 
could go in the set.

◼ How to choose Y to minimize chance of needing it again? 

❑ Least recently used (LRU) replacement: the least recently 
used block in a set is evicted when the cache is full.
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Types of Misses

◼ Compulsory: first time data is accessed

◼ Capacity: cache too small to hold all data of interest

◼ Conflict: data of interest maps to same location in cache

◼ Miss penalty: time it takes to retrieve a block from lower 
level of hierarchy
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LRU Replacement

# MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV DataTagVU

DataTagV DataTagVU

(a)

(b)

Set Number
3 (11)

2 (10)

1 (01)

0 (00)

Set Number
3 (11)

2 (10)

1 (01)

0 (00)
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LRU Replacement

# MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV

0

DataTagV

0

0

0

0

0

U

mem[0x00...04]1 00...000mem[0x00...24] 100...010

0

0

0

0

DataTagV

0

DataTagV

0

0

0

0

0

U

mem[0x00...54]1 00...101mem[0x00...24] 100...010

0

0

0

1

(a)

(b)

Way 1 Way 0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)
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