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Readings for This Week and Last Week

Memory Hierarchy and Caches

Required

o H&H Chapters 8.1-8.3

o Refresh: P&P Chapter 3.5

o Kim & Mutlu, "Memory Systems,” Computing Handbook, 2014.

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

Recommended

o An early cache paper by Maurice Wilkes

Wilkes, “"Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

o An example prefetching paper

Mutlu et al., "Runahead Execution: An Effective Alternative to Large
Instruction Windows,” IEEE Micro, 2003.
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Recall: Memory Hierarchy Example

larger capacity

<

capacity latency
10's of KB = 1ns
100's of KB < 5ns
several MB = 10ns
several GB =~ 100ns

A “top-level”
o L1 Cache
<
S
§ L2 Cache
©
S.
N L3 Cache
Q
=
D .
= Main Memory
“bottom-level”

Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf



Recall: A Modern Memory Hierarchy

Register File
32 words, sub-nsec

manual/compiler

register spilling

L1 cache
~10s of KB, ~“nsec

L2 cache .
100s of KB ~ few MB, many nsec automatic
HW cache
L3 cache, management

many MBs, even more nsec

Main memory (DRAM),
Many GBs, ~100 nsec

automatic
. demand
Swap Disk ]
~100 GB or few TB, ~10s of usec-msec paging




Recall: Deeper and Larger Cache Hierarchies
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Recall: Deeper and Larg

er Cache Hierarchies
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Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared
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Recall: Deeper and Larger Cache Hierarchies
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Cores:

15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared
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Recall: Deeper and Larger Cache Hierarchies

Cores:
128 Streaming Multiprocessors

L1 Cache or

Scratchpad:

192KB per SM
Can be used as L1 Cache
and/or Scratchpad

L2 Cache:
40 MB shared

" EEI HERA

Nvidia Ampere 2020

https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon 8



Recall: How to Improve Cache Performance

Three fundamental goals

Reducing miss rate

o Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

Reducing miss latency or miss cost

Reducing hit latency or hit cost

The above three together affect performance



Recall: Improving Basic Cache Performance

= Reducing miss rate
o More associativity
o Alternatives/enhancements to associativity
= Victim caches, hashing, pseudo-associativity, skewed associativity
o Better replacement/insertion policies
o Software approaches

a ...

= Reducing miss latency/cost

Multi-level caches

Critical word first

Subblocking/sectoring

Better replacement/insertion policies

Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle

Software approaches

o 0 0 0O o0 0 0 0
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Lectures on Cache Optimizations (I)

Victim Cache: Reducing Conflict Misses

Next Level
Cache

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

Idea: Use a small fully-associative buffer (victim cache) to
store recently evicted blocks

+ Can avoid ping ponging of cache blocks mapped to the same set (if two
cache blocks continuously accessed in nearby time conflict with each
other)

-- Increases miss latency if accessed serially with L2; adds complexity

Computer Architecture - Lecture 3: Cache Management and Memory Parallelism (ETH Ziirich, Fall 2017)

6,392 views * Sep 29, 2017 |b 49 1 SHARE SAVE

@ ?::;ml;tslrrit:fstures ANALYTICS EDIT VIDEO
«T > ’

https://www.youtube.com/watch?v=0yomXCHNJDA&Iist=PL5Q2s0XY2Zi90hoVQBXYFIZywZXCPIl4M &index=3 11



https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3

Lectures on Cache Optimizations (I11)

Peripheral Logic for True Multiporting

| A
DATA DATA

€ P Pl R) 1:18:05/1:28:10

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 4a: Cache Design (ETH Zurich, Fall 2018)

1,437 views * Sep 29, 2018 15 &lo ) SHARE =i SAVE

@ ?:;1; mti';it:;thes ANALYTICS EDIT VIDEO
> :

https://www.youtube.com/watch?v=550YBm9cifl&list=PL5Q2s0XY2Zi9JXe3ywQMhylk d5dI-TM7&index=6 12



https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6

Lectures on Cache Optimizations (I1I)

> Pl R) 4503/1:39:38

Lecture 19. High Performance Caches - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu

9,737 views * Mar 5, 2015 i3 &1 P SHARE =i SAVE

@ Carnegie M_ellon Computer Architecture ANALYTICS EDIT VIDEO
23.2K subscribers

https://www.youtube.com/watch?v=jDHx2K9HxIM&list=PL5PHmM2jkkXmi5CxxI7b3JCL1TWybTDtKg&index=21



https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21

Lectures on Cache Optimizations

= Computer Architecture, Fall 2017, Lecture 3

o Cache Management & Memory Parallelism (ETH, Fall 2017)

o https://www.youtube.com/watch?v=0yomXCHNJIDA&list=PL502s0XY2Zi90hoVQBX
YFIZywZXCPI4M &index=3

= Computer Architecture, Fall 2018, Lecture 4a

o Cache Design (ETH, Fall 2018)

o https://www.youtube.com/watch?v=550YBm9cifI&list=PL50Q2s0XY2Zi9]Xe3ywQMh
vlk d5dI-TM7&index=6

= Computer Architecture, Spring 2015, Lecture 19

o High Performance Caches (CMU, Spring 2015)

o https://www.youtube.com/watch?v=jDHx2K9HxIM&list=PL5PHM2jkkXmi5CxxI17b3]
CL1TWybTDtKg&index=21

https:/ /www.youtube.com/onurmutlulectures 14



https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3
https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6
https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21
https://www.youtube.com/onurmutlulectures

Recall:
Multi-Core Issues in Caching




Recall: Private vs. Shared Caches

Private cache: Cache belongs to one core (a shared block
can be in multiple caches)

Shared cache: Cache is shared by multiple cores

4 \ — —
CORE O CORE 1 CORE 2 CORE 3 / CORE 0 CORE 1 CORE 2 CORE 3 \
A A A A i 'y 7Y Y
v A v v v v v v
L2 L2 L2 L2 L2

ACHE ACHE ACHE ACHE
CAC CAC CAC CAC CACHE

\ DRAM MEMORY CONTROLLER / \ DRAM MEMORY CONTROLLER /
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Lectures on Multi-Core Cache Management

Computer Architecture
Lecture 15:
Multi-Core Cache Management

Prof. Onur Mutlu
ETH Zlrich
Fall 2017
15 November 2017

Computer Architecture - Lecture 15: Multi-Core Cache Management (ETH Ziirich, Fall 2017)

934 views * Nov 17,2017 |. 13 0 SHARE SAVE

E\ ?(smsj; ML;tIu tectures ANALYTICS | EDIT viDEO
< /S subscribers

https://www.youtube.com/watch?v=7 Tqglw8agxOU&list=PL5Q2s0XY2Zi90hoVQBXYFIZywZXCPIl4M &index=17 17



https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=17

Lectures on Multi-Core Cache Management

Page Coloring

» Physical memory divided into colors
= Colors map to different cache sets
= Cache partitioning

a Ensure two threads are allocate.
pages of different colors

[« P DI RY 54:39/1:07:14 @ &[0

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 18b: Multi-Core Cache Management (ETH Ziirich, Fall 2018)
i 12 §lo P SHARE =i SAVE

@ Onur MUtlU_LECtheS ANALYTICS EDIT VIDEO
16.5K subscribers

https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2s0XY2Zi9JXe3ywQMhylk d5dI-TM7&index=29 18

744 views * Nov 23,2018



https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=29

Lectures on Multi-Core Cache Management

Approaches to Reuse Prediction

| Use program counter or memory region information.

2. Learn group

1. Group Blocks -
behavior

3. Predict reuse

PC1 PG PCIRRPE2

@ gl [p@|pd

1. Same group - same reuse behavior
2. No control over number of high-reuse blocks

4 P Pl N) 1:17:13/1:4504

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 19a: Multi-Core Cache Management Il (ETH Zirich, Fall 2018)

293 views * Dec 2, 2018 ifpe &lo ) SHARE =i SAVE

Onur Mutlu Lectures
@ 16.5K subscribers ANALYTICS EDIT VIDEO
> :

https://www.youtube.com/watch?v=Siz86__PD4w&list=PL5Q2s0XY2Zi9JXe3ywQMhylk_d5dI-TM7&index=30 19



Lectures on Multi-Core Cache Management

= Computer Architecture, Fall 2018, Lecture 18b

o Multi-Core Cache Management (ETH, Fall 2018)

o https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL502s0XY27i9]Xe3ywOM
hylk d5dI-TM7&index=29

= Computer Architecture, Fall 2018, Lecture 19a

o Multi-Core Cache Management II (ETH, Fall 2018)

o https://www.youtube.com/watch?v=Siz86 PD4w&list=PL502s0XY2Zi9]Xe3ywQOM
hylk d5dI-TM7&index=30

= Computer Architecture, Fall 2017, Lecture 15

o Multi-Core Cache Management (ETH, Fall 2017)

o https://www.youtube.com/watch?v=7 Tglw8gxOU&list=PL50Q2s0XY2Zi90hoVOBXY
FIZywZXCPl4M &index=17

https:/ /www.youtube.com/onurmutlulectures 20



https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=29
https://www.youtube.com/watch?v=Siz86__PD4w&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=30
https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=17
https://www.youtube.com/onurmutlulectures

Lectures on Memory Resource Management

S
- 2

QoS-Aware Memory Systems: Challenges

How do we reduce inter-thread interference?
o Improve system performance and core utilization
o Reduce request serialization and core starvation

How do we control inter-thread interference?

o Provide mechanisms to enable system software to enforce
QoS policies
o While providing high system performance

= How do we make the memory system configurable/flexible?

o Enable flexible*mechanisms that can achieve many goals
= Provide fairness or throughput when needed
» Satisfy performance guarantees when needed

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 11b: Memory Interference and QoS (ETH Ziirich, Fall 2020)

735 views - Oct 31,2020 14 &lo ) SHARE =i SAVE
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https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=21 21



https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21

Lectures on Memory Resource Management

= Computer Architecture, Fall 2020, Lecture 11a

o Memory Controllers (ETH, Fall 2020)

o https://www.youtube.com/watch?v=TeG7730giMQ&list=PL502s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=20

= Computer Architecture, Fall 2020, Lecture 11b

o Memory Interference and QoS (ETH, Fall 2020)

o https://www.youtube.com/watch?v=0nnI807nCkc&list=PL50Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=21

= Computer Architecture, Fall 2020, Lecture 13

o Memory Interference and QoS II (ETH, Fall 2020)

o https://www.youtube.com/watch?v=Axye9VgOT7/w&list=PL50Q2s0XY2Zi9xidyIgBxU
Z7XRPS-wisBN&index=26

= Computer Architecture, Fall 2020, Lecture 2a

o Memory Performance Attacks (ETH, Fall 2020)

o https://www.youtube.com/watch?v=V1zZbwgBfy8&list=PL50Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=2

https:/ /www.youtube.com/onurmutlulectures 22



https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=20
https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21
https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26
https://www.youtube.com/watch?v=VJzZbwgBfy8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=2
https://www.youtube.com/onurmutlulectures

Recall:

Cache Coherence




Recall: Cache Coherence

Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

[ Interconnection Network ]
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Recall: The Cache Coherence Problem
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Recall: The Cache Coherence Problem
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Recall: The Cache Coherence Problem
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Recall: The Cache Coherence Problem

Id r2, X
addr1, r2, r4
st x, r1

2000

1000

Interconnection Network

|

1000
X —

Main Memory

Id r2, x

Should NOT
load 1000

Id r5, X




Recall: A Very Simple Coherence Scheme (VI)

Idea: All caches “snoop” (observe) each other’s write/read
operations. If a processor writes to a block, all others
invalidate the block.

A simple protocol:

PrRd/-- PrWr / BusWr Wr_ite-through, no-
write-allocate

cache
@ Actions of the local

BusWr processor on the
PrRd / BusRd cache block: PrRd,

PrWr,
Actions that are
broadcast on the
Q PrWr / BusWr bus for the block:
BusRd, BusWr

29



Lecture on Cache Coherence

MESI State Machine
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Computer Architecture - Lecture 21: Cache Coherence (ETH Ziirich, Fall 2020)

1,419 views - Dec 4, 2020 iy 27 &0 ) SHARE =i SAVE

@ ?Grl:; Ml;tlu teculres ANALYTICS EDIT VIDEO
& .3K subscribers

https://www.youtube.com/watch?v=T9WIlyezeall&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=38
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https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=38

Lecture on Memory Ordering & Consistency
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Computer Architecture - Lecture 20: Memory Ordering (Memory Consistency) (ETH Ziirich, Fall 2020)
976 views * Dec 4, 2020 i 22 0 SHARE SAVE
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https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=37

Lecture on Cache Coherence & Consistency

= Computer Architecture, Fall 2020, Lecture 21

o Cache Coherence (ETH, Fall 2020)

o https://www.youtube.com/watch?v=T9WIlyezeall&list=PL502s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=38

= Computer Architecture, Fall 2020, Lecture 20

o Memory Ordering & Consistency (ETH, Fall 2020)

o https://www.youtube.com/watch?v=Suy09mzTbiOQ&list=PL50Q2s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=37

= Computer Architecture, Spring 2015, Lecture 28

o Memory Consistency & Cache Coherence (CMU, Spring 2015)

o https://www.youtube.com/watch?v=JfjT1a0vi4E&list=PL5PHmM2jkkXmi5CxxI17b3JCL
1TWybTDtKg&index=32

= Computer Architecture, Spring 2015, Lecture 29

o Cache Coherence (CMU, Spring 2015)

o https://www.youtube.com/watch?v=X6DZchnMYcw&list=PL5PHmM2jkkXmi5CxxI7b3
JCL1TWybTDtKg&index=33

https:/ /www.youtube.com/onurmutlulectures 32



https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=38
https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=37
https://www.youtube.com/watch?v=JfjT1a0vi4E&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=32
https://www.youtube.com/watch?v=X6DZchnMYcw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=33
https://www.youtube.com/onurmutlulectures

Prefetching




Prefetching

Idea: Fetch the data before it is needed (i.e. pre-fetch) by
the program

Why?
o Memory latency is high. If we can prefetch accurately and
early enough we can reduce/eliminate that latency.

o Can eliminate compulsory cache misses

o Can it eliminate all cache misses? Capacity, conflict?
Coherence?

Involves predicting which address will be needed in the
future

o Works if programs have predictable miss address patterns

34



Pretetching and Correctness

Does a misprediction in prefetching affect correctness?

No, prefetched data at a “mispredicted” address is simply
not used

There is no need for state recovery
o In contrast to branch misprediction or value misprediction

35



Basics

In modern systems, prefetching is usually done in cache
block granularity

Prefetching is a technique that can reduce both
o Miss rate
o Miss latency

Prefetching can be done by
o Hardware

o Compiler

o Programmer

o System



How a HW Pretetcher Fits in the Memory System
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1 L} .
L2-Cache hits : ) ocipistliived
1
Hardware !
L2 Cache Stream |e------eme-a-d L2 Cache
: % A : )
| L2—-Cache fills . Prefetcher f_,; i([i’eg?r;t’i’ g;;f:sm L2-Cache fills
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Memory Controller Memory Controller
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DRAM Memory Banks

— 8 — =T

DRAM Memory Banks

Mutlu+, “Using the First-Level Caches as Filters to Reduce the Pollution Caused by Speculative Memory References”, IJPP 2005. 37



Prefetching: The Four Questions

What
o What addresses to prefetch (i.e., address prediction algorithm)

When
o When to initiate a prefetch request (early, late, on time)

Where

o Where to place the prefetched data (caches, separate buffer)
o Where to place the prefetcher (which level in memory hierarchy)

How

o How does the prefetcher operate and who operates it (software,
hardware, execution/thread-based, cooperative, hybrid)
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Challenge in Pretetching: What

What addresses to prefetch

o Prefetching useless data wastes resources
Memory bandwidth
Cache or prefetch buffer space
Energy consumption

These could all be utilized by demand requests or more accurate
prefetch requests

o Accurate prediction of addresses to prefetch is important
Prefetch accuracy = used prefetches / sent prefetches

How do we know what to prefetch?
o Predict based on past access patterns
o Use the compiler’ s knowledge of data structures

Prefetching algorithm determines what to prefetch
39



Challenges 1n Prefetching: How

Software prefetching

o ISA provides prefetch instructions

o Programmer or compiler inserts prefetch instructions (effort)
o Usually works well only for “regular access patterns”

Hardware prefetching

o Hardware monitors memory accesses

o Memorizes or finds patterns/strides

o Generates prefetch addresses automatically

Execution-based prefetchers

o A “thread” is executed to prefetch data for the main program
o Can be generated by either software/programmer or hardware
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Streaming Prefetcher in IBM POWER4

Core

DL1

EU

POWER4 hardware data prefetch.

Memory

ll3 ll4 llS 116 ll7 118 119 120

117 118 119120\—/

Hardware data prefetch

POWERA4 systems employ hardware to prefetch data
transparently to software into the L1 data cache. When
load instructions miss sequential cache lines, either
ascending or descending, the prefetch engine initiates
accesses to the following cache lines before being
referenced by load instructions. In order to ensure that
the data will be in the L1 data cache, data is prefetched
into the L2 from the L3 and into the L3 from memory.
Figure 8 shows the sequence of prefetch operations. Eight
such streams per processor are supported.

Tendler et al., “POWER4 system microarchitecture,” IBM JR&D, 2002. 41



Improving Direct-Mapped Cache Performance by the Addition
of a Small Fully-Associative Cache and Prefetch Buffers

Norman P. Jouppi

Digital Equipment Corporation Western Research Lab
100 Hamilton Ave., Palo Alto, CA 94301

Abstract

Projections of computer technology forecast proces-
sors with peak performance of 1,000 MIPS in the rela-
tively near future. These processors could easily lose
half or more of their performance in the memory hierar-
chy if the hierarchy design is based on conventional
caching techniques. This paper presents hardware tech-
niques to improve the performance of caches.

Miss caching places a small fully-associative cache
between a cache and its refill path. Misses in the cache
that hit in the miss cache have only a one cycle miss
penalty, as ogposed to a many cycle miss penalty without
the miss cache. Small miss caches of 2 to 5 entries are
shown to be very effective in removing mapping conflict
misses in first-level direct-mapped caches.

Victim caching is an improvement to miss caching
that loads the small fully-associative cache with the vic-
tim of a miss and not the requested line. Small victim
caches of 1 to 5 entries are even more effective at remov-
ing conflict misses than miss caching.

Stream buffers prefetch cache lines starting at a
cache miss address. "Fhe prefetched data is placed in the
buffer and not in the cache. Stream buffers are useful in
removing capacity and compulsory cache misses, as well
as some instruction cache conflict misses. Stream buf-
fers are more effective than previously investigated
prefetch techniques at using the next slower level in the
memory hierarchy when it is pipelined. An extension to
the basic stream buffer, called multi-way stream buffers,
is introduced. Multi-way stream buffers are useful for
prefetching along multiple intertwined data reference
streams.

Together, victim caches and stream buffers reduce

the miss rate of the first level in the cache hierarchy by a
factor of two to three on a set of six large benchmarks.

dous increases in miss cost. For example, a cache miss
on 2 VAX 11/780 only costs 60% of the average instruc-
tion execution. Thus even if every instruction had a
cache miss, the machine performance would slow down
by only 60%! However, if a RISC machine like the
WRL Titan [10] has a miss, the cost is almost ten in-
struction times. Moreover, these trends seem to be con-
tinuing, especially the increasing ratio of memory access
time to machine cycle time. In the future a cache miss
all the way to main memory on a superscalar machine
executing two instructions per cycle could cost well over
100 instruction times! Even with careful application of
well-known cache design techniques, machines with
main memory latencies of over 100 instruction times can
easily lose over half of their potential performance to the
memory hierarchy. This makes both hardware and
software research on advanced memory hierarchies in-
creasingly important.

Machine cycles cycle mem miss miss
per time time cost cost
instx (ns) (ns) (cycles) (instr)

VAX11/780 10.0 200 1200 6 .6

WRL Titan 1.4 45 540 12 8.6

2 0.5 4 280 70 140.0

Table 1-1: The increasing cost of cache misses

This paper investigates new hardware techniques for
increasing the performance of the memory hierarchy.
Section 2 describes a baseline design using conventional
caching techniques. The large performance loss due to
the memory hierarchy is a detailed motivation for the
techniques discussed in the remainder of the paper.
Techniques for reducing misses due to mapping conflicts
(i.e., lack of associativity) are presented in Section 3. An

Jouppi, “Improving direct-mapped cache performance by the addition of a small fully-associative cache and prefetch buffers,” ISCA 1990.

A Recommended Paper: Stream Prefetching
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Important: Pretetcher Performance

Accuracy (used prefetches / sent prefetches)
Coverage (prefetched misses / all misses)
Timeliness (on-time prefetches / used prefetches)

Bandwidth consumption

o Memory bandwidth consumed with prefetcher / without
prefetcher

o Good news: Can utilize idle bus bandwidth (if available)

Cache pollution
o Extra demand misses due to prefetch placement in cache
o More difficult to quantify but affects performance
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Outline ot Prefetching Issues

Why prefetch? Why could/does it work?

The four questions

o What (to prefetch), when, where, how

Software prefetching algorithms

Hardware prefetching algorithms

Execution-based prefetching techniques and algorithms
Prefetching performance

o Coverage, accuracy, timeliness

o Bandwidth consumption, cache pollution

Prefetcher throttling

Issues in multi-core
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Recommended Paper

= Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February
2007. Slides (ppt)

One of the five papers nominated for the Best Paper Award by
the Program Committee.

Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers

Santhosh Srinath{f Onur Mutlu§ Hyesoon Kimi{ Yale N. Patt}

IDepartment of Electrical and Computer Engineering
The University of Texas at Austin
{santhosh, hyesoon, patt} @ece.utexas.edu

TMicrosoft §Microsoft Research
ssri @microsoft.com onur @microsoft.com
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https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt

Ettect of Runahead Prefetching in Sun ROCK

= Shailender Chaudhry talk, Aug 2008.
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Effective prefetching can both improve performance and reduce hardware cost
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An Example Prefetcher:

Runahead Execution




Small Windows: Full-Window Stalls

8-entry instruction window:

Oldest HOV\ RSN [REIIM L2 Miss! Takes 100s of cycles.
BEQ R1, RO, target
ADD R2 < R2, 8
LOAD R3 € mem[R2]

Independent of the L2 miss,
MUL R4 € R4, R3 executed out of program order,

ADD R4 €< R4, R5 but cannot be retired.
STOR mem[R2] €< R4
ADD R2 € R2, 64

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

= Long-latency cache misses are responsible for most
full-window stalls.
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Impact of Long-Latency Cache Misses
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128-entry window

Normalized Execution Time

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors,” HPCA 2003.



Impact ot Long-Latency Cache Misses
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Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors,” HPCA 2003.



The Problem

Out-of-order execution requires large instruction windows
to tolerate today’s main memory latencies.

As main memory latency increases, instruction window size
should also increase to fully tolerate the memory latency.

Building a large instruction window is a challenging task
if we would like to achieve

a Low power/energy consumption (tag matching logic,
load/store buffers)

a Short cycle time (wakeup/select, redfile, bypass latencies)
a Low design and verification complexity
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Runahead Execution

A technigue to obtain the memory-level parallelism benefits

of a large instruction window

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Speculatively pre-execute instructions

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
When the original miss returns:

o Restore checkpoint, flush pipeline, resume normal execution

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Porfect Caches: Runahead Example
Load 1 Hit  Load 2 Hit

e

Small Window:
Load 1 Miss Load 2 Miss

Runahead: s
Load 1 Miss  Load 2 Miss Load 1 Hit Load 2 Hit i

Saved Cycles

Miss 1




Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

Pre-executed loads and stores independent of L2-miss
instructions generate very accurate data prefetches:

o For both regular and irregular access patterns

Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

Hardware prefetcher and branch predictor tables are trained
using future access information.



Runahead Execution Pros and Cons

Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path
+ Simple to implement: most of the hardware is already built in
+ No waste of context: uses the main thread context for prefetching
+ No need to construct a pre-execution thread

Disadvantages/Limitations

-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses

-- Effectiveness limited by available “memory-level parallelism” (MLP)

-- Prefetch distance (how far ahead to prefetch) limited by memory latency

Implemented in Sun ROCK, IBM POWER6, NVIDIA Denver
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Performance of Runahead Execution

Micro-operations Per Cycle
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Runahead Execution vs. Large Windows

Micro-operations Per Cycle

=
n

=
=

=
W

=
()
"

[y
o
[

=
=)

S
=

e
%

S
Q9

5
=N

S
n

N
=

e
W

S
$)

S
p—

S
=

S95

Hl 128-entry window (baseline)

Ml 128-entry window with Runahead
[1256-entry window

[ 384-entry window

M 512-entry window

FP00

INTO00

WEB

MM

PROD SERV

57



Runahead on In-order vs. Out-of-order

Micro-operations Per Cycle
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More on Runahead Execution

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction Windows
for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance Computer
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)

One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.

HPCA Test of Time Award (awarded in 2021).
[Lecture Slides (pptx) (pdf)]

[Lecture Video (1 hr 54 mins)]
[Retrospective HPCA Test of Time Award Talk Slides (pptx) (pdf)]
[Retrospective HPCA Test of Time Award Talk Video (14 minutes)]

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark  Chris Wilkerson 1 Yale N. Patt §

S§ECE Department TMicroprocessor Research IDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation
{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pdf
https://youtu.be/Kj3relihGF4?t=1162
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pdf
https://www.youtube.com/watch?v=KFCOecRQTIc

Effect of Runahead in Sun ROCK

= Shailender Chaudhry talk, Aug 2008.
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More on Runahead in Sun ROCK

HIGH-PERFORMANCE
THROUGHPUT COMPUTING

THROUGHPUT COMPUTING, ACHIEVED THROUGH MULTITHREADING AND
MULTICORE TECHNOLOGY, CAN LEAD TO PERFORMANCE IMPROVEMENTS
THAT ARE 10 TO 30x THOSE OF CONVENTIONAL PROCESSORS AND SYSTEMS.
HOWEVER, SUCH SYSTEMS SHOULD ALSO OFFER GOOD SINGLE-THREAD
PERFORMANCE. HERE, THE AUTHORS SHOW THAT HARDWARE SCOUTING
INCREASES THE PERFORMANCE OF AN ALREADY ROBUST CORE BY UP TO 40

PERCENT FOR COMMERCIAL BENCHMARKS.

Chaudhry+, “High-Performance Throughput Computing,” IEEE Micro 2005. ¢!



More on Runahead in Sun ROCK

Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun’s ROCK Processor

Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson,

Anders Landin, Sherman Yip, Hakan Zeffer, and Marc Tremblay
Sun Microsystems, Inc.
4180 Network Circle, Mailstop SCA18-211
_ Santa Clara, CA 95054, USA :
{shailender.chaudhry, robert.cypher, magnus.ekman, martin.karlsson,

anders.landin, sherman.yip, haakan.zeffer, marc.tremblay}@sun.com

Chaudhry+, “Simultaneous Speculative Threading,” ISCA 2009. 62



Runahead Execution in IBM POWERG

Runahead Execution vs. Conventional Data Prefetching
in the IBM POWERG6 Microprocessor

Harold W. Cain Priya Nagpurkar

IBM T.J. Watson Research Center
Yorktown Heights, NY
{tcain, pnagpurkar}@us.ibm.com

Cain+, “"Runahead Execution vs. Conventional Data Prefetching
in the IBM POWER6 Microprocessor,” ISPASS 2010.
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Runahead Execution in IBM POWERG

Abstract

After many years of prefetching research, most commercially
available systems support only two types of prefetching:
software-directed prefetching and hardware-based prefetchers
using simple sequential or stride-based prefetching
algorithms. More sophisticated prefetching proposals, despite
promises of improved performance, have not been adopted
by industry. In this paper, we explore the efficacy of both
hardware and software prefetching in the context of an IBM
POWERG6 commercial server. Using a variety of applications
that have been compiled with an aggressively optimizing
compiler to use software prefetching when appropriate, we
perform the first study of a new runahead prefetching feature
adopted by the POWERG design, evaluating it in isolation
and in conjunction with a conventional hardware-based
sequential stream prefetcher and compiler-inserted software
prefetching.

We find that the POWERG implementation of runahead
prefetching is quite effective on many of the memory intensive
applications studied; in isolation it improves performance
as much as 36% and on average 10%. However, it outper-
forms the hardware- based stream prefetcher on only two of

When used in conjunction with the conventional prefetchmg

mechanisms, the runahead feature adds an additional 6% on
average, and 39% in the best case (GemsFDTD).
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Runahead Execution in NVIDIA Denver

DENVER: NVIDIA'S FIRST 64-BIT ARM
PROCESSOR

NVIDIA'S FIRST 64-BIT ARM PROCESSOR, CODE-NAMED DENVER, LEVERAGES A HOST OF
NEW TECHNOLOGIES, SUCH AS DYNAMIC CODE OPTIMIZATION, TO ENABLE HIGH-
PERFORMANCE MOBILE COMPUTING. IMPLEMENTED IN A 28-NM PROCESS, THE DENVER
CPU CAN ATTAIN CLOCK SPEEDS OF UP TO 2.5 GHZ. THIS ARTICLE OUTLINES THE DENVER
ARCHITECTURE, DESCRIBES ITS TECHNOLOGICAL INNOVATIONS, AND PROVIDES RELEVANT

COMPARISONS AGAINST COMPETING MOBILE PROCESSORS.

Boggs+, “"Denver: NVIDIA's First 64-Bit ARM Processor,” IEEE Micro 2015.
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Runahead Execution in NVIDIA Denver

Reducing the effects of long cache-miss
penalties has been a major focus of the micro-
architecture, using techniques like prefetch-
ing and run-ahead. An aggressive hardware
prefetcher implementation detects L2 cache
requests and tracks up to 32 streams, each
with complex stride patterns.

Run-ahead uses the idle time that a CPU
spends waiting on a long latency operation to
discover cache and DTLB misses further
down the instruction stream and generates
prefetch requests for these misses." These pre-
fetch requests warm up the data cache and
DTLB well before the actual execution of
the instructions that require the data. Run-
ahead complements the hardware prefetcher
because it’s better at prefetching nonstrided
streams, and it trains the hardware prefetcher

faster than normal execution to yield a com-
bined benefit of 13 percent on SPECint2000
and up to 60 percent on SPECfp2000.

Boggs+, “"Denver: NVIDIA's First 64-Bit ARM Processor,”
IEEE Micro 2015.

Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.

The core includes a hardware prefetch unit that Boggs
describes as aggresswe in preloadlng the data cache but

1mplements a “run-ahead” feature that continues to execute
microcode speculatively after a data-cache miss; this exe-
cution can trigger additional cache misses that resolve in
the shadow of the first miss. Once the data from the original
miss returns, the results of this speculative execution are

discarded and execution restarts with the bundle containing
the original miss, but run-ahead can preload subsequent
data into the cache, thus avoiding a string of time-wasting
cache misses. These and other features help Denver out-
score Cortex-A15 by more than 2.6x on a memory-read test
even when both use the same SoC framework (Tegra K1).

B;an:h ——{ I-TLB | 128KB Instruction Cache (4 way) }-7
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7 pops | ] 2instr ]
uCode | [ ARM ARM ';:g
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| Scheduler | L2
1 7 pops TLB
v } ! } } } !
Load/ | | Load/ | |Integer| |Integer FPINeon FP/Neon
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Cache
(16
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Store | | Store | | ALU +Mult Add
ffes |1fes [ffes ffles fflea 111128 {11128
| Integer Registers | | FP + Neon Regs |
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Figure 3. Denver CPU microarchitecture. This design combines a fairlv



Runahead Enhancements




Runahead Enhancements

Mutlu et al., “Techniques for Efficient Processing in Runahead
Execution Engines,” ISCA 2005, IEEE Micro Top Picks 2006.

Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

Armstrong et al., "Wrong Path Events,” MICRO 2004.

Mutlu et al., "An Analysis of the Performance Impact of
Wrong-Path Memory References on Out-of-Order and
Runahead Execution Processors,” IEEE TC 2005.
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Limitations of the Baseline Runahead Mechanism

Energy Inefficiency
o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA'05, IEEE Micro Top Picks'06]

Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO'05]

Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO'04]

o Wrong Path Memory Reference Analysis [IEEE TC'05]



More on Efficient Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution
Engines”
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as
Top Picks by IEEE Micro.

Techniques for Efficient Processing in Runahead Execution Engines

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin

{onur,hyesoon,patt} @ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf

More on Efficient Runahead Execution

Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance”

IEEE Micro, Special Issue: Micro'’s Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,
January/February 2006.

EFFICIENT RUNAHEAD EXECUTION:
POWER-EFFICIENT
MEMORY LATENCY TOLERANCE
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10

More Effective Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of
Runahead Execution by Exploiting Regular Memory Allocation Patterns"
Proceedings of the 38th International Symposium on Microarchitecture (MICRO),
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)

One of the five papers nominated for the Best Paper Award by the
Program Committee.

Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead
Execution by Exploiting Regular Memory Allocation Patterns

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin
{onur,hyesoon,patt} @ece.utexas.edu

72


https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on Efficient Runahead Execution

Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"

[EEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

Address-Value Delta (AVD) Prediction:
A Hardware Technique for Efficiently
Parallelizing Dependent Cache Misses

Onur Mutlu, Member, IEEE, Hyesoon Kim, Student Member, IEEE, and
Yale N. Patt, Fellow, IEEE
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http://www.computer.org/tc/

Looking to the Past




At the Time... Early 2000s...

Large focus on increasing the size of the window...
o And, designing bigger, more complicated machines

Runahead was a different way of thinking
a Keep the 000 core simple and small
o At the expense of some benefits (e.g., non-memory-related)

o Use aggressive “automatic speculative execution” solely for
prefetching

o Synergistic with prefetching and branch prediction methods

A lot of interesting and innovative ideas ensued...

SAFARI 7>
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Important Precedent [Dundas & Mudge, ICS 1997]

Improving Data Cache Performance by Pre-executing Instructions Under a Cache Miss

James Dundas and Trevor Mudge
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

{dundas, tnm} @eecs.umich.edu

Abstract

In this paper we propose and evaluate a technique that
improves first level data cache performance by pre-executing future
instructions under a data cache miss. We show that these pre-
executed instructions can generate highly accurate data prefetches,
particularly when the first level cache is small. The technique is
referred to as runahead processing. The hardware required to
implement runahead is modest, because, when a miss occurs, it
makes use of an otherwise idle resource, the execution logic. The
principal hardware cost is an extra register file. To measure the
impact of runahead, we simulated a processor executing five integer
Spec9S benchmarks. Our results show that runahead was able to
significantly reduce data cache CPI for four of the five benchmarks.
We also compared runahead to a simple form of prefetching,
sequential prefetching, which would seem to be suitable for
scientific benchmarks. We confirm this by enlarging the scope of
our experiments to include a scientific benchmark. However, we
show that runahead was also able to outperform sequential
prefetching on the scientific benchmark. We also conduct studics
that demonstrate that runahead can generate many useful prefetches
for lines that show little spatial locality with the misses that initiate
runahead episodes. Finally, we discuss some further enhancements
of our baseline runahead prefetching scheme.

are allocated by the software. This hybrid hardware-software tech-
nique was presented in [8]. Their instruction stride table (IST) selec-
tively generates cache miss initiated prefetches for accesses chosen
beforehand by the compiler. This resulted in multiprocessor perfor-
mance for scientific benchmarks comparable in some cases to soft-
ware prefetching, with an instruction stride table as small as 4
entries. The IST concept was subsequently combined with the
prefetch predicates of [2] in [9]. Another hardware prefetching
scheme that avoids the need for significant amounts of hardware is
the “wrong path” prefetching described in [10]. This actually
prefetches instructions from the not-taken path, in the expectation
that they will be executed during a later iteration.

Most prefetching techniques, software- or hardware-based,
tend to perform poorly on an important class of applications having
recursive data structures such as linked-lists. A software technique
that overcomes this limitation was presented recently in [11], in
which software prefetches were inserted at subroutine call sites that
passed pointers as arguments. Another pointer-based approach was
described in [12}. This approach uses pointers stored within the data
structures to generate software prefetches.

The runahead prefetching approach presented in this paper is a
hardware approach, that requires only a modest amount of hard-
ware, because, when a miss occurs, it makes use of an otherwise
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An Inspiration [Glew, ASPLOS-WACI 1998]

MLP yes! ILP no!

Memory Level Parallelism, or why I no longer care about Instruction Level Parallelism

Andrew Glew
Intel Microcomputer Research Labs and University of Wisconsin, Madison

Problem Description: It should be well known that processors are outstripping memory performance: specifically that memory
latencies are not improving as fast as processor cycle time or IPC or memory bandwidth.

Thought experiment: imagine that a cache miss takes 10000 cycles to execute. For such a processor instruction level
parallelism is useless, because most of the time is spent waiting for memory. Branch prediction is also less effective, since most
branches can be determined with data already in registers or in the cache; branch prediction only helps for branches which depend on
outstanding cache misses.

At the same time, pressures for reduced power consumption mount.

Given such trends, some computer architects in industry (although not Intel EPIC) are talking seriously about retreating from
out-of-order superscalar processor architecture, and instead building simpler, faster, dumber, 1-wide in-order processors with high
degrees of speculation. Sometimes this is proposed in combination with multiprocessing and multithreading: tolerate long memory
latencies by switching to other processes or threads.

I propose something different: build narrow fast machines but use intelligent logic inside the CPU to increase the number of
outstanding cache misses that can be generated from a single program.

Solution: First, change the mindset: MLP, Memory Level Parallelism, is what matters, not ILP, Instruction Level
Parallelism.

By MLP I mean simply the number of outstanding cache misses that can be generated (by a single thread, task, or program)
and executed in an overlapped manner. It does not matter what sort of execution engine generates the multiple outstanding cache
misses. An out-of-order superscalar [ILP CPU may generate multiple outstanding cache misses, but 1-wide processors can be just as
effective.

Change the metrics: total execution time remains the overall goal, but instead of reporting IPC as an approximation to this, we
must report MLP. Limit studies should be in terms of total number of non-overlapped cache misses on critical path.

Now do the research: Many present-day hot topics in computer architecture help ILP, but do not help MLP. As mentioned
above, predicting branch directions for branches that can be determined from data already in the cache or in registers does not help
MLP for extremely long latencies. Similarly, prefetching of data cache misses for array processing codes does not help MLP — it just
moves it around.

Instead, investigate microarchitectures that help MLP:

0) Trivial case — explicit multithreading, like SMT.

1) Slightly less trivial case — implicitly multithread single programs, either by compiler software on an MT machine, or by a
hybrid, such as Wisconsin Multiscalar, or entirely in hardware, as in Intel’s Dynamic Multi-Threading.

?2) Build 1-wide processors that are as fast as possible: use circuit tricks, as well as logic tricks such as redundant encoding
for numeric computation and memory addressing.

A3) Allow the hardware dynamic scheduling mechanisms to use sequential algorithms implemented by this narrow, fast,
processor, rather than limiting it to parallel algorithms implementable in associative logic.

“) Build very large instruction windows allowing speculation tens of thousands of instructions ahead. Avoid circuit speed
issues by caching the instruction window. Remove small arbitrary limits on the number of cache misses outstanding allowed.

%) Further reduce the cost of very large instruction windows by throwing away anything that can be recomputed based on
data in registers or cache.

(6) Don’t stall speculation because the oldest instruction in the machine is a cache miss. Let the front of the machine continue
executing branches, forgetting data dependent on cache misses.

) Parallelize linked data structure traversals by building skip lists in hardware — converting sequential data structures into

parallel ones. Store these extra skip pointers in main memory.

Call such a processor microarchitecture a “super-non-blocking” microarchitecture.

Justification: The processor/memory trend is well known. Theoretically optimal cache studies show only limited headroom.
Barring a revolution in memory technology, the Memory Wall is real, and getting closer. Multithreading and multiprocessing have
some hope of tolerating memory latency, but only if there are parallel workloads. If single thread performance is still an issue, the only
potentially MLP enhancing technologies are what I describe here, or data value prediction — and data value prediction seems to only do
well for stuff that fits in the cache.

“Super-non-blocking” processors extends dynamic, out-of-order, execution to maximize MLP, but simplifies it by discarding
superscalar ILP as unnecessary.

SAFARI

Glew, “MLP yes! ILP no!,” ASPLOS WACI 1998.
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Looking to the Future




A Look into the Future...

= Microarchitecture is still critically important
a And, fun...

o And, impactful...

= Runahead is a great example of harmonious industry-
academia collaboration

= Fundamental problems will remain fundamental
a And will require fundamental (and creative) solutions

SAFARI 7



Citation for the Test of Time Award

Runahead Execution is a pioneering paper that opened up

new avenues in dynamic prefetching.

The basic idea of runahead execution effectively increases

the instruction window very significantly, without having to
increase physical resource size (e.g. the issue queue).

This seminal paper spawned off a new area of ILP-
enhancing microarchitecture research.

This work has had strong industry impact as evidenced by
IBM's POWER®G - Load Lookahead, NVIDIA Denver, and Sun
ROCK's hardware scouting.
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Suggestion to Researchers: Principle: Passion

Follow Your Passion
(Do not get derailed
by naysayers)




Suggestion to Researchers: Principle: Resilience

Be Resilient




Principle: Learning and Scholarship

Focus on
learning and scholarship

SAFARI



Principle: Learning and Scholarship

The quality of your work
defines your impact

SAFARI



More on Runahead Execution

= Lecture video from Fall 2020, Computer Architecture:
o https://www.youtube.com/watch?v=zPewo6lal 8

= Lecture video from Fall 2017, Computer Architecture:
o https://www.youtube.com/watch?v=Kj3relihGF4

= Onur Mutluy,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by
the University of Texas at Austin.

https:/ /www.youtube.com/onurmutlulectures 85
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More on Runahead Execution (I)

Review: Runahead Execution (Mutlu et al., HPCA 2003)

Small Window:

Load 1 Miss Load 2 Miss

| |
(Compute | NS compute | [IINSEHINNNN

Miss 1 ] Viss s

Runahead:
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

l l l l

'Compute| Runahead | B Compute | | }< >

Saved Cycles

Miss 1 FE

4 P Pl R) 40:36/1:32:51

Computer Architecture - Lecture 19a: Execution-Based Prefetching (ETH Ziirich, Fall 2020)

395 views * Nov 29, 2020 |. 14 0 SHARE SAVE
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https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

More on Runahead Execution (II)

Reducing the effects of |un); cache-r

ies has been a major focus of the micro

“k[l.i
architecture, using techniques like prefetch

ng .l!lt’ run ,l!lk'.ll{ \l'. .ll'\L:H'\\]\L' h.l.’({\\.l"('

prefetcher implementation detects L2 cache
requests and tracks up to 32 streams, each
with complex stride patterns

;{HH .lll(\l\é USCS [}H 1\“( ume (:’\.I[ al i.l
spends waiting en a long latency operation to
discover cache and DTLB misses further
down the instruction stream and generates
;\lg'ftl\.'l requests for :I\(‘\(' IMISses. | ]u\( pre
fetch requests warm up the data cache and

DTLB well before the actual execurion of

Runahead Execution in NVIDIA Denver

T'he core includes a hardware prefetch unit that Boggs
describes as “aggressive” in preloading the data cache but

less ageressive in preloading the instruction cache It also

implements a “run-ahead” feature that continues to execute
microcode speculatively after a data-cache miss; this exe

cution can trigger additional cache misses that resolve in
the shadow of the first miss. Once the data from the original
miss returns, the results of this speculative execution are
discarded and execution restarts with the bundle containing
the original miss, but run-ahead can preload subsequent
data into the cache, thus avoiding a string of time-wasting
cache misses. These and other features help Denver out

score Cortex-A15 by more than 2.6x on a memory-read test
even when both use the same SoC framework (Tegra K1)

the instructions that require the data. Run
ahead complements the hardware prefetcher
because it’s better at prefetching nonstrided
streams, and it trains the hardware prefetcher
faster than normal execution to yield a com

bined benefit of 13 percent on SPECint2000

and up to 60 percent on SPECfp2000.

IEEE Micro 2015.

Boggs+, "Denver: NVIDIA's First 64-Bit ARM Processor,” =

Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.

Banch .. | 1B | 128KB Instruction Cache (4 way)
Pred
Umt |

Fetch Queve

Onur Mutlu - Runahead Execution: A Short Retrospective (HPCA Test of Time Award Talk @ HPCA 2021)

1,162 views * Premiered Mar 6, 2021

€J Onur Mutlu Lectures
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More Recommended Material
on Prefetching




Lectures on Pretetching (I

PREFETCHA

X86 PREFETCH Instruction

Jpcode Sruchos 64-B1t
Mode

microarchitecture
dependent
specification

ache and higt

different instructions
for different cache
levels

Pentium |l processor—2nd-level cache
Pentium 4 and Intel Xeon processors—2nd-level cache

NTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution

— Pentium lll processor— 1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache

4 P Pl o 1:06:55/24537

Computer Architecture - Lecture 18: Prefetching (ETH Ziirich, Fall 2020)

1,203 views * Nov 29, 2020 |b 26 0 SHARE SAVE

@ 106:1:; Ml;ﬂu .teCtureS ANALYTICS EDIT VIDEO
& .5K subscribers
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https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33

Lectures on Pretetching (1)

Thread-Based Pre-Execution

Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

Chappell et al.,
“Simultanaous Subordinate
Microthreading (SSMT),”
ISCA 1999.

Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

4 P Pl R) 12:23/1:3250

Computer Architecture - Lecture 19a: Execution-Based Prefetching (ETH Zdirich, Fall 2020)

424 views * Nov 29, 2020 |. 16 0 SHARE SAVE
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Lectures on Prefetching (111)

Runahead Execution in NVIDIA Denver

Reducing the effects of |un); cache-r

ies has been a major focus of the micro

“k[l.i
architecture, using techniques like prefetch

} i

ng .l!lt’ run-ancad \l'. .ll'\L:H'\\]\L' h.l.’({\\.l"('

prefetcher implementation detects L2 cache
requests and tracks up to 32 streams, each
with complex stride patterns

;{HH .lll(\l\é USCS [}H 1\“( ume (:’\.I[ al i.l
spends waiting en a long latency operation to
discover cache and DTLB misses further
down the instruction stream and generates
;\lg'ftl\.'l requests for these misses
fetch requests warm up the data cache and

DTLB well before the

actual execurion of

T'he core includes a hardware prefetch unit that Boggs
describes as “aggressive” in preloading the data cache but

less ageressive in preloading the instruction cache It also

implements a “run-ahead” feature that continues to execute
microcode speculatively after a data-cache miss; this exe

cution can trigger additional cache misses that resolve in
the shadow of the first miss. Once the data from the original
miss returns, the results of this speculative execution are
discarded and execution restarts with the bundle containing
the original miss, but run-ahead can preload subsequent
data into the cache, thus avoiding a string of time-wasting
['hese and other features help Denver out

score Cortex-A15 by more than 2.6x on a memory-read test
even when both use the same SoC framework (Tegra K1)

cache misses

the instructions that require the data. Run
ahead complements the hardware prefetcher
because it’s better at prefetching nonstrided
streams, and it trains the hardware prefetcher
faster than normal execution to yield a com
bined benefit of 13 percent on SPECint2000
and up to 60 percent on SPECfp2000.

Boggs+, "Denver: NVIDIA's First 64-Bit ARM Processor,” =

IEEE Micro 2015.

Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.
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Onur Mutlu - Runahead Execution: A Short Retrospective (HPCA Test of Time Award Talk @ HPCA 2021)
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Lectures on Prefetching (IV)

4 P Pl R) 1:10:07/1:43:14

Lecture 25: Prefetching - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

5,216 views * Apr 3, 2015 39 &lo ) SHARE =y SAVE

Carnegie Mellon Computer Architecture 7
@ 23.3K subscribers SUBSCRIBED ‘
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Lectures on Pretetching (V)

4« P Pl R) 11:36/1:56:08

Lecture 26. More Prefetching and Emerging Memory Technologies - CMU - Comp. Arch. 2015 - Onur Mutlu

3,642 views * Apr 6, 2015 ifp26 &0 ) SHARE =y SAVE

Carnegie Mellon Computer Architecture /da\
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https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30

Lectures on Pretetching

= Computer Architecture, Fall 2020, Lecture 18

o Prefetching (ETH, Fall 2020)

o https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL502s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=33

= Computer Architecture, Fall 2020, Lecture 19a

o Execution-Based Prefetching (ETH, Fall 2020)

o https://www.youtube.com/watch?v=zPewo6lal 8&list=PL502s0XY2Zi9xidylgBxUz7
XRPS-wisBN&index=34

= Computer Architecture, Spring 2015, Lecture 25

o Prefetching (CMU, Spring 2015)
o https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHmM?2jkkXmi5Cxx17b3]C

L1TWybTDtKg&index=29
= Computer Architecture, Spring 2015, Lecture 26

o More Prefetching (CMU, Spring 2015)

o https://www.youtube.com/watch?v=TUFins4z604&list=PL5PHmM2jkkXmi5CxxI17b3]C
L1TWybTDtKg&index=30

https://www.youtube.com/onurmutlulectures 94
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Recommended Readings on Prefetching

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction Windows
for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance Computer
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)

One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.

HPCA Test of Time Award (awarded in 2021).
[Lecture Slides (pptx) (pdf)]

[Lecture Video (1 hr 54 mins)]
[Retrospective HPCA Test of Time Award Talk Slides (pptx) (pdf)]
[Retrospective HPCA Test of Time Award Talk Video (14 minutes)]

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark  Chris Wilkerson 1 Yale N. Patt §

S§ECE Department TMicroprocessor Research IDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation
{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pdf
https://youtu.be/Kj3relihGF4?t=1162
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pdf
https://www.youtube.com/watch?v=KFCOecRQTIc

Recommended Readings on Prefetching

Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Effective Alternative to Large
Instruction Windows"

IEEE Micro, Special Issue: Micro'’s Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25,
November/December 2003.

RUNAHEAD EXECUTION:
AN EFFECTIVE ALTERNATIVE TO
LARGE INSTRUCTION WINDOWS
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383

Recommended Readings on Prefetching

= Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February
2007. Slides (ppt)

One of the five papers nominated for the Best Paper Award by
the Program Committee.

Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers

Santhosh Srinath{f Onur Mutlu§ Hyesoon Kimi{ Yale N. Patt}

IDepartment of Electrical and Computer Engineering
The University of Texas at Austin
{santhosh, hyesoon, patt} @ece.utexas.edu

TMicrosoft §Microsoft Research
ssri @microsoft.com onur @microsoft.com
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https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt

Recommended Readings on Prefetching

Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance"

IEEE Micro, Special Issue.: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,
January/February 2006.

EFFICIENT RUNAHEAD EXECUTION:
POWER-EFFICIENT
MEMORY LATENCY TOLERANCE
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Digital Desigh & Computer Arch.

Lecture 25a: Prefetching

Prof. Onur Mutlu

ETH Zurich
Spring 2021
3 June 2021




Backup Slides:

More on Runahead Execution




Runahead Execution Mechanism

Entry into runahead mode
o Checkpoint architectural register state

Instruction processing in runahead mode

Exit from runahead mode
o Restore architectural register state from checkpoint



Instruction Processing in Runahead Mode

Load 1 Miss

h

Miss 1

Runahead mode processing is the same as
normal instruction processing, EXCEPT:

= It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

= L2-miss dependent instructions are identified and treated
specially.
o They are quickly removed from the instruction window.
o Their results are not trusted.




[.2-Miss Dependent Instructions

Load 1 Miss

Miss 1

= Two types of results produced: INV and VALID
= INV = Dependent on an L2 miss

= INV results are marked using INV bits in the register file and
store buffer.

= INV values are not used for prefetching/branch resolution.




Removwval of Instructions from Window

Load 1 Miss

h

Miss 1

= Oldest instruction is examined for pseudo-retirement
2 An INV instruction is removed from window immediately.
o A VALID instruction is removed when it completes execution.

s Pseudo-retired instructions free their allocated resources.
o This allows the processing of later instructions.

= Pseudo-retired stores communicate their data to
dependent loads.




Store/LLoad Handling in Runahead Mode

Load 1 Miss

h

Miss 1

= A pseudo-retired store writes its data and INV status to a
dedicated memory, called runahead cache.

= Purpose: Data communication through memory in runahead mode.
= A dependent load reads its data from the runahead cache.

= Does not need to be always correct - Size of runahead cache is
very small.




Branch Handling in Runahead Mode

Load 1 Miss

h

Miss 1

= INV branches cannot be resolved.

o A mispredicted INV branch causes the processor to stay on the wrong
program path until the end of runahead execution.

= VALID branches are resolved and initiate recovery if mispredicted.




A Runahead Processor Diagram

Mutlu+, “Runahead Execution,”
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Limitations of the Baseline Runahead Mechanism

Energy Inefficiency
o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA'05, IEEE Micro Top Picks'06]

Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO'05]

Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO'04]

o Wrong Path Memory Reference Analysis [IEEE TC'05]
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Causes of Inetficiency

Short runahead periods
Overlapping runahead periods
Useless runahead periods

Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top
Picks 2006.



Short Runahead Periods

= Processor can initiate runahead mode due to an already in-flight L2
miss generated by

o the prefetcher, wrong-path, or a previous runahead period

Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Miss

comulrwaesl W W

Miss 1

= Short periods
o are less likely to generate useful L2 misses
o have high overhead due to the flush penalty at runahead exit




Overlapping Runahead Periods

Two runahead periods that execute the same instructions

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Compute OVERLAP I OVERLAP | ]

Miss 1 Miss 2

Second period is inefficient



Useless Runahead Periods

Periods that do not result in prefetches for normal mode

Load 1 Miss Load 1 Hit

Compute Runahead J

Miss 1

They exist due to the lack of memory-level parallelism
Mechanism to eliminate useless periods:

a Predict if a period will generate useful L2 misses

o Estimate a period to be useful if it generated an L2 miss that
cannot be captured by the instruction window

Useless period predictors are trained based on this estimation



Overall Impact on Executed Instructions
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Overall Impact on IPC

Increase in IPC
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More on Efficient Runahead Execution

=  Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution
Engines”
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as
Top Picks by IEEE Micro.

Techniques for Efficient Processing in Runahead Execution Engines

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin

{onur,hyesoon,patt} @ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf

More on Efficient Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance"
IEEE Micro, Special Issue.: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,

January/February 2006.

EFFICIENT RUNAHEAD EXECUTION:
POWER-EFFICIENT
MEMORY LATENCY TOLERANCE
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10

Limitations of the Baseline Runahead Mechanism

Energy Inefficiency
o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA'05, IEEE Micro Top Picks'06]

Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO'05]

Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO'04]

o Wrong Path Memory Reference Analysis [IEEE TC'05]



The Problem: Dependent Cache Misses

Runahead: Load 2 is dependent on Load 1

@not Compute Its Add@

e

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

= Runahead execution cannot parallelize dependent misses
o wasted opportunity to improve performance
o wasted energy (useless pre-execution)

= Runahead performance would improve by 25% if this
limitation were ideally overcome




Parallelizing Dependent Cache Misses

= Idea: Enable the parallelization of dependent L2 cache
misses in runahead mode with a low-cost mechanism

= How: Predict the values of L2-miss address (pointer)
loads

= Address load: loads an address into its destination register,
which is later used to calculate the address of another load

= as opposed to data load

= Read:

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.




Parallelizing Dependent Cache Misses

@not Compute Its Add@

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Miss 1

Value Predicted> <Can Compute lts Address>

Load 1 Miss Load 2Miss Load 1 Hit Load 2 Hit Saved Speculative

5 Instructions

Saved Cycles
Miss 1




More on AVD Prediction

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of
Runahead Execution by Exploiting Regular Memory Allocation Patterns"
Proceedings of the 38th International Symposium on Microarchitecture (MICRO),
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)

One of the five papers nominated for the Best Paper Award by the
Program Committee.

Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead
Execution by Exploiting Regular Memory Allocation Patterns

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin
{onur,hyesoon,patt} @ece.utexas.edu
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http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on AVD Prediction (II)

Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"

[EEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

Address-Value Delta (AVD) Prediction:
A Hardware Technique for Efficiently
Parallelizing Dependent Cache Misses

Onur Mutlu, Member, IEEE, Hyesoon Kim, Student Member, IEEE, and
Yale N. Patt, Fellow, IEEE
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http://www.computer.org/tc/

Limitations of the Baseline Runahead Mechanism

Energy Inefficiency
o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA'05, IEEE Micro Top Picks'06]

Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO'05]

Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO'04]

o Wrong Path Memory Reference Analysis [IEEE TC'05]



Wrong Path Events

= David N. Armstrong, Hyesoon Kim, Onur Mutlu, and Yale N. Patt,
"Wrong Path Events: Exploiting Unusual and Illegal Program
Behavior for Early Misprediction Detection and Recovery"”
Proceeedings of the 3/th International Symposium on
Microarchitecture (MICRO), pages 119-128, Portland, OR, December
2004. Slides (pdf)Slides (ppt)

Wrong Path Events: Exploiting Unusual and Illegal Program Behavior for Early
Misprediction Detection and Recovery

David N. Armstrong Hyesoon Kim Onur Mutlu Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
{dna,hyesoon,onur,patt} @ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.ppt

Ettects of Wrong Path Execution (I)

Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"Understanding the Effects of Wrong-Path Memory References on
Processor Performance”

Proceedings of the 3rd Workshop on Memory Performance

Issues (WMPI), pages 56-64, Munchen, Germany, June 2004. Slides

(pdf)

Understanding The Effects of Wrong-Path Memory
References on Processor Performance

Onur Mutlu Hyesoon Kim David N. Armstrong Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
{onur,hyesoon,dna,patt} @ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04.pdf
http://doi.acm.org/10.1145/1054943.1054951
https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04_talk.pdf

Efttects of Wrong Path Execution (1I)

Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"An Analysis of the Performance Impact of Wrong-Path Memory
References on Out-of-Order and Runahead Execution Processors"

[EEE Transactions on Computers (TC), Vol. 54, No. 12, pages 1556-1571,
December 2005.

An Analysis of the Performance Impact of
Wrong-Path Memory References on Out-of-
Order and Runahead Execution Processors

Onur Mutlu, Student Member, IEEE, Hyesoon Kim, Student Member, IEEE,
David N. Armstrong, and Yale N. Patt, Fellow, IEEE
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