
Digital Design & Computer Arch.
Lecture 25b: Virtual Memory

Prof. Onur Mutlu

ETH Zürich
Spring 2021
3 June 2021

Readings
n Virtual Memory

n Required
q H&H Chapter 8.4
q Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014.

n https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-
handbook14.pdf

n Recommended
q Jacob & Mudge, “Virtual Memory: Issues of Implementation,”

IEEE Computer, 1998.
q Hajinazar et al., “The Virtual Block Interface: A Flexible

Alternative to the Conventional Virtual Memory Framework,”
ISCA 2020.

2

Memory (Programmer’s View)

3

Ideal Memory
n Zero access time (latency)
n Infinite capacity
n Zero cost
n Infinite bandwidth (to support multiple accesses in parallel)

4

Abstraction: Virtual vs. Physical Memory
n Programmer sees virtual memory

q Can assume the memory is “infinite”
n Reality: Physical memory size is much smaller than what

the programmer assumes
n The system (system software + hardware, cooperatively)

maps virtual memory addresses to physical memory
q The system automatically manages the physical memory

space transparently to the programmer

+ Programmer does not need to know the physical size of memory
nor manage it à A small physical memory can appear as a huge
one to the programmer à Life is easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff
5

Benefits of Automatic Management of Memory

n Programmer does not deal with physical addresses
n Each process has its own independent mapping of

virtualàphysical addresses

n Enables
q Code and data to be located anywhere in physical memory

(relocation and flexible location of data)
q Isolation/separation of code and data of different processes in

physical memory
(protection and isolation)

q Code and data sharing between multiple processes
(sharing)

6

7

A System with Physical Memory Only

n Examples:
q most Cray supercomputers
q early personal computers (PCs)
q many older embedded systems

CPU’s load or store instructions generate
physical memory addresses

CPU

0:
1:

N-1:

Memory

Physical
Addresses

The Problem
n Physical memory is of limited size (cost)

q What if you need more?
q Should the programmer be concerned about the size of code/data

blocks fitting physical memory?
q Should the programmer manage data movement from disk to

physical memory?

q Multiple programs may need the physical memory
q Should the programmer make sure all processes (different

programs) can fit in physical memory?
q Should the programmer ensure two processes do not unintentionally

or incorrectly use the same physical memory portion?

n ISA can have an address space greater than the physical
memory size
q E.g., a 64-bit address space with byte addressability
q What if you do not have enough physical memory?

8

Difficulties of Direct Physical Addressing
n Programmer needs to manage physical memory space

q Inconvenient & difficult
q More difficult when you have multiple processes

n Difficult to support code and data relocation
q Addresses are directly specified in the program

n Difficult to support multiple processes
q Protection and isolation between multiple processes
q Sharing of physical memory space without problems

n Difficult to support data/code sharing across processes
q Different processes need to reference the same physical address

9

Virtual Memory
n Idea: Give each program the illusion of a large address

space while having a small physical memory
q So that the programmer does not worry about managing

physical memory (within a process or across processes)

n Programmer can assume they have “infinite” amount of
physical memory

n Hardware and software cooperatively and automatically
manage the physical memory space to provide the illusion
q Illusion is maintained for each independent process

10

Basic Mechanism
n Indirection (in addressing)

n Address generated by each instruction in a program is a
“virtual address”
q i.e., it is not the physical address used to address main

memory
q called “linear address” in x86

n An “address translation” mechanism maps this address to a
“physical address”
q called “real address” in x86
q Address translation mechanism can be implemented in

hardware and software together

11

Virtual Memory: Conceptual View
n Illusion of large, separate address space per process

12
Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

Process 1 Process 2

Requires indirection and mapping between virtual and physical spaces

13

A System with Virtual Memory (Page-based)

n Address Translation: The hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses

vi
rt
ua

l
vi
rt
ua

l

ph
ys
ic
al

Process 1

Process 2

4G
B

4G
B

16
M

B

Virtual Page

Virtual Page

Physical Page

Mappi
ng

Page-based Virtual-to-Physical Mapping

Four Issues in Indirection and Mapping
n When to map a virtual address to a physical address?

q When the virtual address is first referenced by the program

n What is the mapping granularity?
q Byte? Kilo-byte? Mega-byte? …
q Multiple granularities?

n Where and how to store the virtualàphysical mappings?
q Operating system data structures? Hardware? Cooperative?

n What to do when physical address space is full?
q Evict an unlikely-to-be-needed virtual address from physical

memory
15

Virtual Pages, Physical Frames
n Virtual address space divided into pages
n Physical address space divided into frames

n A virtual page is mapped to
q A physical frame, if the page is in physical memory
q A location in disk, otherwise

n If an accessed virtual page is not in memory, but on disk
q Virtual memory system brings the page into a physical frame

and adjusts the mapping à this is called demand paging

n Page table is the table that stores the mapping of virtual
pages to physical frames

16

Physical Memory as a Cache
n In other words…

n Physical memory is a cache for pages stored on disk
q In fact, it is a fully-associative cache in modern systems (a

virtual page can potentially be mapped to any physical frame)

n Similar caching issues exist as we have covered earlier:
q Placement: where and how to place/find a page in cache?
q Replacement: what page to remove to make room in cache?
q Granularity of management: large, small, uniform pages?
q Write policy: what do we do about writes? Write back?

17

Cache/Virtual Memory Analogues

Cache Virtual Memory
Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Index/Tag Virtual Page Number

18

Virtual Memory Definitions
n Page size: the mapping granularity of virtualàphysical

address spaces
q dictates the amount of data transferred from hard disk to DRAM

at once

n Page table: table that stores virtualàphysical page mappings
q lookup table used to translate virtual page addresses to physical

frame addresses (and find where the associated data is)

n Address translation: the process of determining the physical
address from the virtual address

19

Recall: The Memory Hierarchy

20

fast
small

large but slow

move what you use here

backup
everything
here

With good locality of
reference, memory
appears as fast as
and as large as

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

Virtual to Physical Mapping

n Most accesses hit in physical memory
n Programs see the large capacity of virtual memory

21H&H, Chapter 8.4

Address Translation

22H&H, Chapter 8.4

Virtual Memory Example

n System:
q Virtual memory size: 2 GB = 231 bytes
q Physical memory size: 128 MB = 227 bytes
q Page size: 4 KB = 212 bytes

23

Virtual Memory Example (Continued)

n System:
q Virtual memory size: 2 GB = 231 bytes
q Physical memory size: 128 MB = 227 bytes
q Page size: 4 KB = 212 bytes

n Organization:
q Virtual address: 31 bits
q Physical address: 27 bits
q Page offset: 12 bits
q # Virtual pages = 231/212 = 219 (VPN = 19 bits)
q # Physical pages = 227/212 = 215 (PPN = 15 bits)

24

Virtual Memory Example (Continued)

25H&H, Chapter 8.4

How Do We Translate Addresses?
n Page table

q Has entry for each virtual page

n Each page table entry has:

q Valid bit: whether the virtual page is located in physical
memory (if not, it must be fetched from the hard disk)

q Physical page number: where the virtual page is located in
physical memory

q (Replacement policy, dirty/modified, permission/access bits)

26

Page Table for Our Example (Continued)

27H&H, Chapter 8.4

Page Table Address Translation Example

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00002 47C

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

Physical
Address 0x7FFF 47C

28

Page Table is Indexed
with the VPN

Page Table Provides
The PPN

Page Table is located
at physical memory
address specified by
the PTBR (Page Table
Base Register)

Page offset bits
do not change
during translation

Page Table Address Translation Example 1

n What is the physical
address of virtual address
0x5F20?

n We first need to find the
page table entry
containing the translation
for the corresponding
VPN

n Look up the PTE at the
address
q PTBR + VPN*PTE-size

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical
Page Number

15

Pa
ge

 T
ab

le

29

Page Table Address Translation Example 1

n What is the physical
address of virtual address
0x5F20?
q VPN = 5
q Entry 5 in page table

indicates VPN 5 is in
physical page 1

q Physical address is
0x1F20

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00005 F20

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

Physical
Address 0x0001 F20

30

Page Table Address Translation Example 2

n What is the physical
address of virtual address
0x73E0?

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical
Page Number

15

Pa
ge

 T
ab

le

31

Page Table Address Translation Example 2

n What is the physical
address of virtual address
0x73E0?
q VPN = 7
q Entry 7 in page table is

invalid, so the page is
not in physical memory

q The virtual page must be
swapped into physical
memory from disk

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00007 3E0

Hit

Physical
Page Number

19

15

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

32

Issue: Page Table Size

n Suppose 64-bit VA and 40-bit PA, how large is the page
table?

n 252 entries x ~4 bytes » 254 bytes
and that is for just one process!
and the process may not be using the entire VM space!

33

VPN Page Offset

page
table

concat PA

64-bit

12-bit52-bit

28-bit 40-bit

Page Table Challenges (I)

n Challenge 1: Page table is large
q at least part of it needs to be located in physical memory
q solution: multi-level (hierarchical) page tables

34

Digital Design & Computer Arch.
Lecture 25b: Virtual Memory

Prof. Onur Mutlu

ETH Zürich
Spring 2021
3 June 2021

We Will Cover the Following
Slides in the Next Lecture

Multi-Level Page Tables

n Idea: Organize page table in a hierarchical manner such that
only a small first-level page table has to be in physical memory

n Multi-level (hierarchical) page tables

37

Multi-Level Page Table Example
n First-level page table has to be in physical memory
n Only the needed second-level page tables can be kept in physical memory

38

Multi-Level Page Table: Address Translation
n For N-level page table, we need N page table accesses to find the PTE

39

Multi-Level Page Tables from x86 Manual

40

Example from the x86 architecture

CR3: Control Register 3 (or Page Directory Base Register)

x86 Page Tables (I): Small Pages

41

x86 Page Tables (II): Large Pages

42

Four-level Paging in x86-64

43

Page Table Challenges (II)

n Challenge 1: Page table is large
q at least part of it needs to be located in physical memory
q solution: multi-level (hierarchical) page tables

n Challenge 2: Each instruction fetch or load/store requires at
least two memory accesses:
1. one for address translation (page table read)
2. one to access data with the physical address (after translation)

n Two memory accesses to service an instruction fetch or
load/store greatly degrades execution time
q Num. of memory accesses increases with multi-level page tables
q Unless we are clever… à speed up the translation…

44

Translation Lookaside Buffer (TLB)

n Idea: Cache the page table entries (PTEs) in a hardware
structure in the processor to speed up address translation

n Translation lookaside buffer (TLB)

q Small cache of most recently used translations (PTEs)

q Reduces number of memory accesses required for most
instruction fetches and loads/stores to only one

45

Translation Lookaside Buffer (TLB)
n Page table accesses have a lot of temporal locality

q Memory accesses have temporal and spatial locality
q Large page sizes aid spatial locality (4KB, 8KB, MBs, GBs)
q Consecutive instructions and loads/stores are likely to access

same page

n TLB: cache of page table entries (i.e., translations)
q Small: accessed in ~1 cycle
q Typically 16 - 512 entries at level 1
q Usually high associativity
q > 90-99 % hit rates typical (depends on workload)
q Reduces number of memory accesses for most instruction

fetches and loads/stores to only one

46

Example Two-Entry TLB

Hit1

V

=

01

15 15

15

=

Hit1Hit0

Hit

19 19

19

Virtual
Page Number

Physical
Page Number

Entry 1

1 0x7FFFD 0x0000 1 0x00002 0x7FFF

Virtual
Address 0x00002 47C

1219

Virtual
Page Number

Page
Offset

V
Virtual

Page Number
Physical

Page Number

Entry 0

12Physical
Address 0x7FFF 47C

TLB

47

TLB is a Translation (PTE) Cache
n All issues we discussed in caching and prefetching lectures

apply to TLBs

n Example issues:
q Instruction vs. Data TLBs
q Multi-level TLBs
q Associativity and size choices and tradeoffs
q Insertion, promotion, replacement policies
q What to keep in which TLB and how to decide that
q Prefetching into the TLBs
q TLB coherence
q Shared vs. private TLBs across cores/threads
q …

48

Virtual Memory Support
and Examples

Supporting Virtual Memory
n Virtual memory requires both HW+SW support

q Page Table is in memory
q Can be cached in special hardware structures called Translation

Lookaside Buffers (TLBs)

n The hardware component is called the MMU (memory
management unit)
q Includes Page Table Base Register(s), TLBs, page walkers

n It is the job of the software to leverage the MMU to
q Populate page tables, decide what to replace in physical memory
q Change the Page Table Base Register on context switch (to use

the running thread’s page table)
q Handle page faults and ensure correct mapping

50

Address Translation
n How to obtain the physical address from a virtual address?

n Page size specified by the ISA
q VAX: 512 bytes
q Today: 4KB, 8KB, 2GB, … (small and large pages mixed

together)
q Trade-offs? (remember cache lectures)

n Page Table contains an entry for each virtual page
q Called Page Table Entry (PTE)
q What is in a PTE?

51

What Is in a Page Table Entry (PTE)?

52

n Page table is the “tag store” for the physical memory data store
q A mapping table between virtual memory and physical memory

n PTE is the “tag store entry” for a virtual page in memory
q Need a valid bit à to indicate validity/presence in physical memory
q Need tag bits (PFN) à to support translation
q Need bits to support replacement
q Need a dirty bit to support “write back caching”
q Need protection bits to enable access control and protection

53

Address Translation (I)
n Parameters

q P = 2p = page size (bytes).
q N = 2n = Virtual-address limit
q M = 2m = Physical-address limit

virtual page number page offset virtual address

physical frame number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Page offset bits don’t change as a result of translation

54

Address Translation (II)

virtual page number (VPN) page offset

virtual address

physical frame number (PFN) page offset
physical address

0p–1pm–1

n–1
0

p–1p
page table

base register
(per process)

if valid=0
then page
not in memory
(page fault)

valid physical frame number (PFN)

VPN acts as
table index

n Separate (set of) page table(s) per process
n VPN forms index into page table (points to a page table entry)
n Page Table Entry (PTE) provides information about page

access

55

Address Translation: Page Hit

56

Address Translation: Page Fault

Page Fault (“A Miss in Physical Memory”)

n If a page is not in physical memory but disk
q Page table entry indicates virtual page not in memory
q Access to such a page triggers a page fault exception
q OS trap handler invoked to move data from disk into memory

n Other processes can continue executing
n OS has full control over placement

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

57

Disk

58

Servicing a Page Fault

n (1) Processor signals controller
q Read block of length P starting

at disk address X and store
starting at memory address Y

n (2) Disk-to-mem read occurs
q Direct Memory Access (DMA)
q Under control of I/O controller

n (3) Controller signals completion
q Interrupts processor
q OS resumes suspended process Disk

Memory-I/O bus

Processor

Cache

Memory
I/O
controller

Reg

(2) DMA
Transfer

(1) Initiate Block Read

(3) Read
Done

Page Replacement Algorithms
n If physical memory is full (i.e., list of free physical pages is

empty), which physical frame to replace on a page fault?

n Is True LRU feasible?
q 4GB memory, 4KB pages, how many possibilities of ordering?

n Modern systems use approximations of LRU
q E.g., the CLOCK algorithm

n And, more sophisticated algorithms to take into account
“frequency” of use
q E.g., the ARC algorithm
q Megiddo and Modha, “ARC: A Self-Tuning, Low Overhead

Replacement Cache,” FAST 2003.
59

CLOCK Page Replacement Algorithm
n Keep a circular list of physical frames in memory (OS does)
n Keep a pointer (hand) to the last-examined frame in the list
n When a page is accessed, set the R bit in the PTE
n When a frame needs to be replaced, replace the first frame

that has the reference (R) bit not set, traversing the
circular list starting from the pointer (hand) clockwise
q During traversal, clear the R bits of examined frames
q Set the hand pointer to the next frame in the list

60

Cache versus Page Replacement
n Physical memory (DRAM) is a cache for disk

q Managed by system software via the virtual memory subsystem

n Page replacement is similar to cache replacement
n Page table is the “tag store” for physical memory data store

n What is the difference?
q Required speed of access to cache vs. physical memory
q Number of blocks in a cache vs. physical memory
q “Tolerable” amount of time to find a replacement candidate (disk

versus memory access latency)
q Role of hardware versus software

61

Memory Protection

Memory Protection
n Multiple programs (processes) run at once

q Each process has its own page table
q Each process can use entire virtual address space without

worrying about where other programs are

n A process can only access physical pages mapped in its
page table – cannot overwrite memory of another process
q Provides protection and isolation between processes
q Enables access control mechanisms per page

63

Page Table is Per Process
n Each process has its own virtual address space

q Full address space for each program
q Simplifies memory allocation, sharing, linking and loading

64

Virtual
Address
Space for
Process 1:

Physical Address
Space (DRAM)VP 1

VP 2
PP 2Address

Translation
0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

...

...

Virtual
Address
Space for
Process 2:

Access Protection/Control
via Virtual Memory

Page-Level Access Control (Protection)
n Not every process is allowed to access every page

q E.g., may need supervisor level privilege to access system
pages

n Idea: Store access control information on a page basis in
the process’s page table

n Enforce access control at the same time as translation

à Virtual memory system serves two functions today
Address translation (for illusion of large physical memory)
Access control (protection)

66

Two Functions of Virtual Memory

67

VM as a Tool for Memory Access Protection

68

Page Tables

Process i:

Physical AddrRead? Write?
PP 6Yes No

PP 4Yes Yes

XXXXXXXNo No

VP 0:

VP 1:

VP 2:
•••

•••
•••

Process j:

PP 0

Memory

Physical AddrRead? Write?
PP 6Yes Yes

PP 9Yes No

XXXXXXXNo No
•••

•••
•••

VP 0:

VP 1:

VP 2:

PP 2

PP 4

PP 6

PP 8

PP 10

PP 12

•••

n Extend Page Table Entries (PTEs) with permission bits
n Check bits on each access and during a page fault

q If violated, generate exception (Access Protection exception)

Privilege Levels in x86

69

Privilege Levels in x86
n Four privilege levels in x86 (referred to as rings)

q Ring 0: Highest privilege (operating system)
q Ring 1: Not widely used
q Ring 2: Not widely used
q Ring 3: Lowest privilege (user applications)

“Supervisor”

“User”

x86: A Closer Look at the PDE/PTE
n PDE: Page Directory Entry (32 bits)
n PTE: Page Table Entry (32 bits)

PPNPTE Flags

&PTPDE Flags

Protection: PDE’s Flags
n Protects all 1024 pages in a page table

Protection: PTE’s Flags
n Protects one page at a time

Page Level Protection in x86

74

Protection: PDE + PTE = ???

Food for Thought: What If?

n Your hardware is unreliable and someone can flip the
access protection bits
q such that a user-level program can gain supervisor-level

access (i.e., access to all data on the system)
q by flipping the access control bit from user to supervisor!

n Can this happen?

76

Remember RowHammer?

One can
predictably induce errors

in most DRAM memory chips

77

Remember RowHammer?
n One can predictably induce bit flips in commodity DRAM chips

q >80% of the tested DRAM chips are vulnerable

n First example of how a simple hardware failure mechanism
can create a widespread system security vulnerability

78

Row of Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row
Hammered Row

Repeatedly reading a row enough times (before memory gets
refreshed) induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

OpenedClosed

79

Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X1. Avoid cache hits
– Flush X from cache

2. Avoid row hits to X
– Read Y in another row

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Y

X

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

https://github.com/CMU-SAFARI/rowhammer

A real reliability & security issue

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

85Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems

One Can Take Over an Otherwise-Secure System

86

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

RowHammer Security Attack Example
n “Rowhammer” is a problem with some recent DRAM devices in which

repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).
q Flipping Bits in Memory Without Accessing Them: An Experimental Study of

DRAM Disturbance Errors (Kim et al., ISCA 2014)

n We tested a selection of laptops and found that a subset of them
exhibited the problem.

n We built two working privilege escalation exploits that use this effect.
q Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

n One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

n When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTEs).

n It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

87Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Security Implications

88

Security Implications

89

More Security Implications (I)

90
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

https://lab.dsst.io/32c3-slides/7197.html

More Security Implications (II)

91
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16

“Can gain control of a smart phone deterministically”

More Security Implications (III)
n Using an integrated GPU in a mobile system to remotely

escalate privilege via the WebGL interface

92

More Security Implications (IV)
n Rowhammer over RDMA (I)

93

More Security Implications (V)
n Rowhammer over RDMA (II)

94

More Security Implications (VI)
n IEEE S&P 2020

More Security Implications (VII)
n USENIX Security 2019

More Security Implications (VIII)
n USENIX Security 2020

More Security Implications?

98

Curious? First RowHammer Paper

99

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer

Curious? RowHammer: Now and Beyond…
n Onur Mutlu and Jeremie Kim,

"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD) Special Issue on Top Picks in Hardware and
Embedded Security, 2019.
[Preliminary arXiv version]
[Slides from COSADE 2019 (pptx)]
[Slides from VLSI-SOC 2020 (pptx) (pdf)]
[Talk Video (30 minutes)]

100

http://people.inf.ethz.ch/omutlu/pub/RowHammer-Retrospective_ieee_tcad19.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf
http://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-COSADE-Keynote-April-4-2019.pptx
http://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pptx
http://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pdf
https://www.youtube.com/watch?v=B58YT9hZM4g

RowHammer in 2020 (I)
n Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan,

Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
"Revisiting RowHammer: An Experimental Analysis of Modern
Devices and Mitigation Techniques"
Proceedings of the 47th International Symposium on Computer
Architecture (ISCA), Valencia, Spain, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]

101

https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q

RowHammer in 2020 (II)
n Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu,

Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), San Francisco,
CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Lecture Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Lecture Video (59 minutes)]
[Source Code]
[Web Article]
Best paper award.
Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020

102

http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://www.youtube.com/watch?v=pwRw7QqK_qA
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/
https://pwnies.com/winners/

RowHammer in 2020 (III)
n Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu,

Alec Wolman, and Onur Mutlu,
"Are We Susceptible to Rowhammer? An End-to-End
Methodology for Cloud Providers"
Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]

103

https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=XP1SvxmJoHE

BlockHammer Solution in 2021
n A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun,

Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha
Shahroodi, Saugata Ghose, and Onur Mutlu,
"BlockHammer: Preventing RowHammer at Low Cost by Blacklisting
Rapidly-Accessed DRAM Rows"
Proceedings of the 27th International Symposium on High-Performance
Computer Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (22 minutes)]
[Short Talk Video (7 minutes)]

104

https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=cWbW4qoDFds
https://www.youtube.com/watch?v=40SXSKXW5kY

Google’s Recent RowHammer Attack (May 2021)

105https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html

The Story of RowHammer Lecture …
n Onur Mutlu,

"The Story of RowHammer"
Keynote Talk at Secure Hardware, Architectures, and Operating Systems
Workshop (SeHAS), held with HiPEAC 2021 Conference, Virtual, 19 January 2021.
[Slides (pptx) (pdf)]
[Talk Video (1 hr 15 minutes, with Q&A)]

106

https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://www.youtube.com/watch?v=JV1uc1kOt04
https://www.hipeac.net/2021/budapest/
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pdf
https://www.youtube.com/watch?v=sgd7PHQQ1AI

Detailed Lectures on RowHammer
n Computer Architecture, Fall 2020, Lecture 4b

q RowHammer (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=8

n Computer Architecture, Fall 2020, Lecture 5a
q RowHammer in 2020: TRRespass (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxU
z7xRPS-wisBN&index=9

n Computer Architecture, Fall 2020, Lecture 5b
q RowHammer in 2020: Revisiting RowHammer (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=gR7XR-
Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10

n Computer Architecture, Fall 2020, Lecture 5c
q Secure and Reliable Memory (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=HvswnsfG3oQ&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=11

107https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=HvswnsfG3oQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=11
https://www.youtube.com/onurmutlulectures

Takeaway and Food for Thought
n If hardware is unreliable, higher-level security and protection

mechanisms (as in virtual memory) may be compromised

n The root of security and trust is at the very low levels…
q in the hardware itself
q RowHammer, Spectre, Meltdown are recent key examples…

n What should we assume the hardware provides?
n How do we keep hardware reliable?
n How do we design secure hardware?
n How do we design secure hardware with high performance,

high energy efficiency, low cost, convenient programming?

108
Plenty of exciting and highly-relevant research questions

Some Issues in Virtual Memory

Three Major Issues in Virtual Memory
1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

n There are many other issues we will not cover in detail
q What happens on a context switch?
q How can you handle multiple page sizes?
q …

110

Virtual Memory Issue I
n How large is the page table?

n Where do we store it?
q In hardware?
q In physical memory? (Where is the PTBR?)
q In virtual memory? (Where is the PTBR?)

n How can we store it efficiently without requiring physical
memory that can store all page tables?
q Idea: multi-level page tables
q Only the first-level page table has to be in physical memory
q Remaining levels are in virtual memory (but get cached in

physical memory when accessed)

111

Recall: Issue: Page Table Size

n Suppose 64-bit VA and 40-bit PA, how large is the page
table?

n 252 entries x ~4 bytes » 254 bytes
and that is for just one process!
and the process may not be using the entire VM space!

112

VPN Page Offset

page
table

concat PA

64-bit

12-bit52-bit

28-bit 40-bit

Recall: Solution: Multi-Level Page Tables

113

Example from the x86 architecture

Page Table Access
n How do we access the Page Table?

n Page Table Base Register (CR3 in x86)
n Page Table Limit Register

n If VPN is out of the bounds (exceeds PTLR) then the
process did not allocate the virtual page à access control
exception

n Page Table Base Register is part of a process’s context
q Just like PC, status registers, general purpose registers
q Needs to be loaded when the process is context-switched in

114

More on x86 Page Tables (I): Small Pages

115

More on x86 Page Tables (II): Large Pages

116

x86 Page Table Entries

117

x86 PTE (4KB page)

118

x86 Page Directory Entry (PDE)

119

Four-level Paging in x86-64

120

Four-level Paging and Extended Physical Address Space in x86

121

X86-64 Page Table Structure

122
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

X86-64 Page Table: Accessing 4KB pages

123
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

X86-64 Page Table: Accessing 2MB pages

124
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

X86-64 Page Table: Accessing 1GB pages

125
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

Three Major Issues in Virtual Memory
1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

n There are many other issues we will not cover in detail
q What happens on a context switch?
q How can you handle multiple page sizes?
q …

126

Recall: Translation Lookaside Buffer (TLB)

n Idea: Cache the page table entries (PTEs) in a hardware
structure in the processor to speed up address translation

n Translation lookaside buffer (TLB)

q Small cache of most recently used translations (PTEs)

q Reduces number of memory accesses required for most
instruction fetches and loads/stores to only one

127

Virtual Memory Issue II
n How fast is the address translation?

q How can we make it fast?

n Idea: Use a hardware structure that caches PTEs à
Translation Lookaside Buffer (TLB)

n What should be done on a TLB miss?
q What TLB entry to replace?
q Who handles the TLB miss? HW vs. SW?

n What should be done on a page fault?
q What virtual page to replace from physical memory?
q Who handles the page fault? HW vs. SW?

128

129

Speeding up Translation with a TLB
n Essentially a cache of recent address translations

q Avoids going to the page table on every reference

n Index = lower bits of VPN
(virtual page #)

n Tag = unused bits of VPN +
process ID

n Data = a page-table entry
n Status = valid, dirty

The usual cache design choices
(placement, replacement policy,
multi-level, etc.) apply here too.

Handling TLB Misses
n The TLB is small; it cannot hold all PTEs

q Some translations will inevitably miss in the TLB
q Must access memory to find the appropriate PTE

n Called walking the page table
n Large performance penalty

n Who handles TLB misses? Hardware or software?

Handling TLB Misses (II)
n Approach #1. Hardware-Managed (e.g., x86)

q The hardware does the page walk
q The hardware fetches the PTE and inserts it into the TLB

n If the TLB is full, the entry replaces another entry
q Done transparently to system software

n Approach #2. Software-Managed (e.g., MIPS)
q The hardware raises an exception
q The operating system does the page walk
q The operating system fetches the PTE
q The operating system inserts/evicts entries in the TLB

Handling TLB Misses (III)
n Hardware-Managed TLB

q Pro: No exception on TLB miss. Instruction just stalls
q Pro: Independent instructions may continue
q Pro: No extra instructions/data brought into caches.
q Con: Page directory/table organization is etched into the

system: OS has little flexibility in deciding these

n Software-Managed TLB
q Pro: The OS can define page table oganization
q Pro: More sophisticated TLB replacement policies are possible
q Con: Need to generate an exception à performance overhead

due to pipeline flush, exception handler execution, extra
instructions brought to caches

Three Major Issues in Virtual Memory
1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

n There are many other issues we will not cover in detail
q What happens on a context switch?
q How can you handle multiple page sizes?
q …

133

Teaser: Virtual Memory Issue III
n When do we do the address translation?

q Before or after accessing the L1 cache?

134

Address Translation and Caching
n When do we do the address translation?

q Before or after accessing the L1 cache?

n In other words, is the cache virtually addressed or
physically addressed?
q Virtual versus physical cache

n What are the issues with a virtually addressed cache?

n Synonym problem:
q Two different virtual addresses can map to the same physical

address à same physical address can be present in multiple
locations in the cache à can lead to inconsistency in data

135

Cache-VM Interaction

136

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA

PA

VA

PA

A Modern Example
Virtual Memory System

Evolution of Address Translation

138

Conventional Address Translation Modern Address Translation

L1 Data
TLB

L1 Instruction
TLB

 L1 Data Cache

L1 Data
TLB L1 ITLB

PTW
Cache L2 TLB

PTW Walker

 L1 Data CacheSoftware
Page Table Walker

Memory Management Unit
n The Memory Management Unit (MMU) is a per-core

component, responsible for resolving address translation
requests

n MMU typically has three key components:
q Translation Lookaside Buffers that cache recently

accessed virtual-to-physical translations
q Page Table Walk Caches that offer fast access to the

L4,L3,L2 levels of the Page table
q Hardware Page Table Walker that sequentially accesses

the different levels of the Page Table to fetch the PTE

139

Intel Skylake: MMU

140

L1 Instruction
TLB

L1 Data
TLB

L2 Unified
TLB

Hardware
Page Table Walker

Page Walk
Caches

Intel Skylake: L1 Data TLB

141

L1 Data
TLB

Intel Skylake: L1 Data TLB
n Separate L1 Data TLB structures for 4KB, 2MB, and 1GB pages

n L1 DTLB
q 4KB: 64-entry, 4-way, 1 cycle access, 9 cycle miss
q 2MB: 32-entry, 4-way, 1 cycle access, 9 cycle miss
q 1GB: 4 entry, fully-associative, 1 cycle access, 9 cycle miss

142

n Virtual-to-physical mappings are inserted in the
corresponding TLB after a TLB miss

n During a translation request, all three L1 TLBs are looked
up in parallel

L1 Data TLB: Example

143

L1 4KB TLB

L1 2MB TLB

L1 1GB TLB
Set 0

Set 1

Set 2
Set 3

Set 0
Set 1 Set 0

Set 1

001010100100101000000000011100000001
Virtual

Address

31th bit to
index 1GB

22th bit to
index 2MB

13-14th bit to
index 4KB

Intel Skylake: L2 Unified TLB

144

L2 Unified
TLB

Intel Skylake: L2 Unified TLB

145

n L2 Unified TLB caches translations for both instruction and
data and is private per individual core

n 2 Separate L2 TLB structures for 4KB/2MB and 1GB pages

n L2 TLB
q 4KB/2MB: 1536-entry, 12-way, 14 cycle access, 9 cycle miss
q 1GB: 16-entry, 4-way, 1 cycle access, 9 cycle miss penalty

n Challenge: How can the L2 TLB support both 4KB and 2MB
pages using a single structure?
(Not enough publicly available information for Intel Skylake)

L2 Unified TLB: Accessing the TLB

146

n The 4KB/2MB structure of the L2 TLB is probed in 2 steps

n Step 1: Assume the page size is 4KB, calculate the index bits
and access the L2 TLB. If the tag matches, it is a hit. If the
tag does not match, go to Step 2.

n Step 2: Assume the page size is 2MB, re-calculate the index
and access the L2 TLB. If the tag matches, it is a hit. If the
tag does not match, it is an L2 TLB miss.

n General algorithm:
Re-calculate index and probe TLB for all remaining page sizes

Step 1: Calculate index for 4KB

147

L2 TLB

Set 0

Set 1

Set 2
Set 3

001010100100101000000000011100000001
Virtual

Address

13-14th bit to
index 4KB

Step 2: Re-calculate index for 2MB

148

L2 TLB

Set 0

Set 1

Set 2
Set 3

001010100100101000000000011100000001
Virtual

Address

22th-23th bit to
index 2MB

L2 TLB: N-Step Index Re-Calculation
n Pros:

+ Simple and practical implementation

149

n Cons:
- Varying L2 TLB hit latency (faster for 4KB, slower for 2MB)
- Slower identification of L2 TLB Miss as all page sizes need to be
tested

n Potential Optimizations:

(1) Parallel Lookups: Lookup for 4KB and 2MB in parallel

(2) Page Size Prediction: Predict the probing order

Hardware Page Table Walker

150

Hardware
Page Table Walker

Hardware Page Table Walker (I)
n The MMU employs a per-core hardware component that

accesses the page table to avoid expensive context switches

n HW PTW consists of 2 components:
q A state machine that is designed to be aware of the

architecture’s page table structure
q Registers that keep track of outstanding TLB misses

151

Hardware Page Table Walker

STATE
MACHINE

TLB Miss Registers

Hardware Page Table Walker (II)
n Pros:

+ Avoid the need for context switches on TLB misses
+ Overlap TLB misses with useful computation
+ Supports concurrent TLB misses

152

n Cons:
- Increase in area and power overheads
- Limited flexibility compared to software page table walk

Hardware Page Table Walker (III)

153

n PTW accesses the CR3 register that maintains information
about the physical address of the root of the page table
(PML4)

n PTW concatenates the content of CR3 with the first 9 bits
of the virtual address

Hardware Page Table Walker (IV)
n Hardware PTWs allow overlapping TLB misses with useful

computation

154

Software PTW

Hardware PTW
Saved Cycles

LOAD A TLB Miss Context Switch – TLB Miss Handler LOAD B TLB Hit

LOAD A TLB Miss

LOAD B TLB Hit

Page Table Walk

VPN = 1 VPN = 5

VPN = 1

VPN = 5

Page Walk Caches

155

Page Walk
Caches

Page Walk Caches

156

n Page Walk Caches store translations from non-leaf entries
of the page table to accelerate page table walks

n Page Walk Caches are low-latency caches which offer faster
access to the page table compared to accessing the cache
hierarchy for every page table access

Intel Skylake: MMU

157

L1 Instruction
TLB

L1 Data
TLB

L2 Unified
TLB

Hardware
Page Table Walker

Page Walk
Caches

Virtual Memory
Summary

Virtual Memory Summary
n Virtual memory gives the illusion of “infinite” capacity

n A subset of virtual pages are located in physical memory

n A page table maps virtual pages to physical pages – this is
called address translation

n A TLB speeds up address translation

n Multi-level page tables keep the page table size in check

n Using different page tables for different programs provides
memory protection

159

Virtual Memory: Parting Thoughts

n VM is one of the most successful examples of
q architectural support for programmers
q how to partition work between hardware and software
q hardware/software cooperation
q programmer/architect tradeoff

n Going forward: How does virtual memory scale into the
future? Four key trends:
q Increasing, huge physical memory sizes
q Hybrid physical memory systems (DRAM + NVM + SSD)
q Many accelerators in the system addressing physical memory
q Virtualized systems (hypervisors, software virtualization, local

and remote memories)
160

Rethinking Virtual Memory
n Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata

Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu,
"The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory
Framework"
Proceedings of the 47th International Symposium on Computer Architecture (ISCA), Virtual, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[ARM Research Summit Poster (pptx) (pdf)]
[Talk Video (26 minutes)]
[Lightning Talk Video (3 minutes)]
[Lecture Video (43 minutes)]

161

https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-ARM-Research-Summit-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-ARM-Research-Summit-poster.pdf
https://www.youtube.com/watch?v=7c6LgVrCwPo
https://youtu.be/04l-Zlaue0k
https://www.youtube.com/watch?v=PPR7YrBi7IQ

Lectures on Virtual Memory

162
https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22

https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22

Lectures on Virtual Memory

163https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24

https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24

Lectures on Virtual Memory
n Computer Architecture, Spring 2015, Lecture 20

q Virtual Memory (CMU, Spring 2015)
q https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3
JCL1TWybTDtKq&index=22

n Computer Architecture, Fall 2020, Lecture 12c
q The Virtual Block Interface (ETH, Fall 2020)
q https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=24

164https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22
https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24
https://www.youtube.com/onurmutlulectures

Backup Slides

More on
Issues in Virtual Memory

Virtual Memory and Cache Interaction

Address Translation and Caching
n When do we do the address translation?

q Before or after accessing the L1 cache?

n In other words, is the cache virtually addressed or
physically addressed?
q Virtual versus physical cache

n What are the issues with a virtually addressed cache?

n Synonym problem:
q Two different virtual addresses can map to the same physical

address à same physical address can be present in multiple
locations in the cache à can lead to inconsistency in data

168

Homonyms and Synonyms
n Homonym: Same VA can map to two different PAs

q Why?
n VA is in different processes

n Synonym: Different VAs can map to the same PA
q Why?

n Different pages can share the same physical frame within or
across processes

n Reasons: shared libraries, shared data, copy-on-write pages
within the same process, …

n Do homonyms and synonyms create problems when we
have a cache?
q Is the cache virtually or physically addressed?

169

Cache-VM Interaction

170

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA

PA

VA

PA

Physical Cache

171

Virtual Cache

172

Virtual-Physical Cache

173

Virtually-Indexed Physically-Tagged
n If C≤(page_size ´ associativity), the cache index bits come only

from page offset (same in VA and PA)
n If both cache and TLB are on chip

q index both arrays concurrently using VA bits
q check cache tag (physical) against TLB output at the end

174

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data=

cache hit?TLB hit?

Virtually-Indexed Physically-Tagged
n If C>(page_size ´ associativity), the cache index bits include VPN
Þ Synonyms can cause problems
q The same physical address can exist in two locations

n Solutions?

175

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data=

cache hit?TLB hit?

a

Some Solutions to the Synonym Problem
n Limit cache size to (page size times associativity)

q get index from page offset

n On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate
q Used in Alpha 21264, MIPS R10K

n Restrict page placement in OS
q make sure index(VA) = index(PA)
q Called page coloring
q Used in many SPARC processors

176

An Exercise (I)

177

178

An Exercise (II)

179

An Exercise (Concluded)

180

A Potpourri of Issues

Trade-Offs in Page Size
n Large page size (e.g., 1GB)

q Pro: Fewer PTEs required è Saves memory space
q Pro: Fewer TLB misses è Improves performance
q Con: Cannot have fine-grained permissions
q Con: Large transfers to/from disk

n Even when only 1KB is needed, 1GB must be transferred
n Waste of bandwidth/energy
n Reduces performance

q Con: Internal fragmentation
n Even when only 1KB is needed, 1GB must be allocated
n Waste of space
n Q: What is external fragmentation?

Some System Software Tasks for VM
n Keeping track of which physical frames are free

n Allocating free physical frames to virtual pages

n Page replacement policy
q When no physical frame is free, what should be removed?

n Sharing pages between processes

n Copy-on-write optimization

n Page-flip optimization
183

