
Digital Design & Computer Arch.

Lecture 7: Hardware Description

Languages and Verilog

Prof. Onur Mutlu

ETH Zürich

Spring 2021

18 March 2021

Required Readings (This Week)

◼ Hardware Description Languages and Verilog

❑ H&H Chapter 4 in full

◼ Timing and Verification

❑ H&H Chapters 2.9 and 3.5 + (start Chapter 5)

◼ By tomorrow, make sure you are done with

❑ P&P Chapters 1-3 + H&H Chapters 1-4

2

Required Readings (Next Week)

◼ Von Neumann Model, LC-3, and MIPS

❑ P&P, Chapter 4, 5

❑ H&H, Chapter 6

❑ P&P, Appendices A and C (ISA and microarchitecture of LC-3)

❑ H&H, Appendix B (MIPS instructions)

◼ Programming

❑ P&P, Chapter 6

◼ Recommended: Digital Building Blocks

❑ H&H, Chapter 5

3

Agenda

◼ Hardware Description Languages

◼ Implementing Combinational Logic (in Verilog)

◼ Implementing Sequential Logic (in Verilog)

◼ The Verilog slides constitute a tutorial. We will not cover all.

◼ All slides will be beneficial for your labs.

4

Aside: Implementing Logic Functions

Using Memory

5

Recall: A Bigger Memory Array (4 locations X 3 bits)

6

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

Address Decoder

Multiplexer

Memory-Based Lookup Table Example

◼ Memory arrays can also perform Boolean Logic functions
❑ 2N-location M-bit memory can perform any N-input, M-output function

❑ Lookup Table (LUT): Memory array used to perform logic functions

❑ Each address: row in truth table; each data bit: corresponding output value

7

Lookup Tables (LUTs)

◼ LUTs are commonly used in FPGAs

❑ To enable programmable/reconfigurable logic functions

❑ To enable easy integration of combinational and sequential
logic

8Read H&H Chapter 5.6.2

Hardware Description Languages

& Verilog

9

2017: Intel Kaby Lake

10

• 64-bit processor

• 4 cores, 8 threads

• 14-19 stage pipeline

• 3.9 GHz clock freq.

• 1.75B transistors

• In ~47 years, about
1,000,000-fold
growth in transistor
count and
performance!

https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake

https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake

2021: Apple M1

11Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

• 4 High-Perf GP Cores

• 4 Efficient GP Cores

• 8-Core GPU

• 16-Core Neural
Engine

• Lots of Cache

• Many Caches

• 8x Memory Channels

• 16B transistors

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

2019: Cerebras Wafer Scale Engine

12

Cerebras WSE

1.2 Trillion transistors

46,225 mm2

Largest GPU

21.1 Billion transistors

815 mm2

◼ The largest ML

accelerator chip

◼ 400,000 cores

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

How to Deal with This Complexity?

◼ Hardware Description Languages!

◼ Needs and wants:

❑ Ability to specify complex designs

❑ … and to simulate their behavior (functional & timing)

❑ … and to synthesize (automatically design) portions of it

◼ have an error-free path to implementation

◼ Hardware Description Languages enable all of the above

❑ Languages designed to describe and specify hardware

❑ There are similarly-featured HDLs (e.g., Verilog, VHDL, ...)

◼ if you learn one, it is not hard to learn another

◼ mapping between languages is typically mechanical, especially for
the commonly used subset

13

Hardware Description Languages

◼ Two well-known hardware description languages

◼ Verilog

❑ Developed in 1984 by Gateway Design Automation

❑ Became an IEEE standard (1364) in 1995

❑ More popular in US

◼ VHDL (VHSIC Hardware Description Language)

❑ Developed in 1981 by the US Department of Defense

❑ Became an IEEE standard (1076) in 1987

❑ More popular in Europe

◼ We will use Verilog in this course

14

Hardware Design Using HDL

15

Principle: Hierarchical Design

◼ Design a hierarchy of modules

❑ Predefined “primitive” gates (AND, OR, …)

❑ Simple modules are built by instantiating
these gates (components like MUXes)

❑ Complex modules are built by instantiating
simple modules, …

◼ Hierarchy controls complexity

❑ Analogous to the use of function/method
abstraction in programming

◼ Complexity is a BIG deal

❑ In real world, how big is the size of a

module (that is described in HDL and then
synthesized to gates)?

16

How many?

https://techreport.com/review/21987/intel

-core-i7-3960x-processor

https://techreport.com/review/21987/intel-core-i7-3960x-processor

Top-Down Design Methodology

◼ We define the top-level module and identify the
sub-modules necessary to build the top-level module

◼ Subdivide the sub-modules until we come to leaf cells

❑ Leaf cell: circuit components that cannot further be divided
(e.g., logic gates, cell libraries)

17

Top-level
Module

Sub-module Sub-module Sub-module

… … ……

Leaf-cell Leaf-cell Leaf-cell Leaf-cell

Bottom-Up Design Methodology

18

◼ We first identify the building blocks that are available to us

◼ Build bigger modules, using these building blocks

◼ These modules are then used for higher-level modules until
we build the top-level module in the design

Top-level
Module

Sub-module Sub-module Sub-module

… … ……

Leaf-cell Leaf-cell Leaf-cell Leaf-cell

Defining a Module in Verilog

◼ A module is the main building block in Verilog

◼ We first need to define:

❑ Name of the module

❑ Directions of its ports (e.g., input, output)

❑ Names of its ports

◼ Then:

❑ Describe the functionality of the module

a
b y
c

Verilog

Module

19

inputs output

example

Implementing a Module in Verilog

a
b y
c

Verilog

Module

module example (a, b, c, y);
input a;
input b;
input c;
output y;

// here comes the circuit description

endmodule

20

Port list
(inputs and outputs)

ports have a
declared type

a module
definition

name of
module

example

◼ The following two codes are functionally identical

A Question of Style

module test (a, b, y);
input a;
input b;
output y;

endmodule

module test (input a,
input b,
output y);

endmodule

21

port name and direction declaration

can be combined

What If We Have Multi-bit Input/Output?

◼ You can also define multi-bit Input/Output (Bus)

❑ [range_end : range_start]

❑ Number of bits: range_end – range_start + 1

◼ Example:

◼ a represents a 32-bit value, so we prefer to define it as:
[31:0] a

◼ It is preferred over [0:31] a which resembles array definition

◼ It is good practice to be consistent with the representation
of multi-bit signals, i.e., always [31:0] or always [0:31]

input [31:0] a; // a[31], a[30] .. a[0]
output [15:8] b1; // b1[15], b1[14] .. b1[8]
output [7:0] b2; // b2[7], b2[6] .. b2[0]
input c; // single signal

22

Manipulating Bits

// You can assign partial buses
wire [15:0] longbus;
wire [7:0] shortbus;
assign shortbus = longbus[12:5];

// Concatenating is by {}
assign y = {a[2],a[1],a[0],a[0]};

// Possible to define multiple copies
assign x = {a[0], a[0], a[0], a[0]}
assign y = { 4{a[0]} }

23

◼ Bit Slicing

◼ Concatenation

◼ Duplication

Basic Syntax

◼ Verilog is case sensitive

❑ SomeName and somename are not the same!

◼ Names cannot start with numbers:

❑ 2good is not a valid name

◼ Whitespaces are ignored

// Single line comments start with a //

/* Multiline comments
are defined like this */

24

Two Main Styles of HDL Implementation

◼ Structural (Gate-Level)

❑ The module body contains gate-level description of the circuit

❑ Describe how modules are interconnected

❑ Each module contains other modules (instances)

❑ … and interconnections between those modules

❑ Describes a hierarchy of modules defined as gates

◼ Behavioral

❑ The module body contains functional description of the circuit

❑ Contains logical and mathematical operators

❑ Level of abstraction is higher than gate-level

◼ Many possible gate-level realizations of a behavioral description

◼ Many practical designs use a combination of both

25

Structural (Gate-Level) HDL

26

Structural HDL: Instantiating a Module

27

Schematic of module “top” that is built from
two instances of module “small”

i_first
i_second

Structural HDL Example

◼ Module Definitions in Verilog

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire n1;

endmodule

module small (A, B, Y);
input A;
input B;
output Y;

// description of small

endmodule

28

i_first
i_second

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire n1;

endmodule

module small (A, B, Y);
input A;
input B;
output Y;

// description of small

endmodule

Structural HDL Example

◼ Defining wires (module interconnections)

29

i_first
i_second

◼ The first instantiation of the “small” module

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire n1;

// instantiate small once
small i_first (.A(A),

.B(SEL),

.Y(n1));

endmodule

module small (A, B, Y);
input A;
input B;
output Y;

// description of small

endmodule

Structural HDL Example

30

i_first
i_second

◼ The second instantiation of the “small” module

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire n1;

// instantiate small once
small i_first (.A(A),

.B(SEL),

.Y(n1));

// instantiate small second time
small i_second (.A(n1),

.B(C),

.Y(Y));

endmodule

module small (A, B, Y);
input A;
input B;
output Y;

// description of small

endmodule

Structural HDL Example

31

i_first
i_second

◼ Short form of module instantiation

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire n1;

// alternative
small i_first (A, SEL, n1);

/* Shorter instantiation,
pin order very important */

// any pin order, safer choice
small i_second (.B(C),

.Y(Y),

.A(n1));

endmodule

module small (A, B, Y);
input A;
input B;
output Y;

// description of small

endmodule

Structural HDL Example

32

i_first
i_second

Short form is not good practice

as it reduces code maintainability

Structural HDL Example (II)

◼ Verilog supports basic logic gates as predefined primitives

❑ These primitives are instantiated like modules except that they
are predefined in Verilog and do not need a module definition

33

module mux2(input d0, d1,
input s,
output y);

wire ns, y1, y2;

not g1 (ns, s);
and g2 (y1, d0, ns);
and g3 (y2, d1, s);
or g4 (y, y1, y2);

endmodule

A B

S

C

ba

d0 d1

s

y

y1 y2

Behavioral HDL

34

Recall: Two Main Styles of HDL Implementation

◼ Structural (Gate-Level)

❑ The module body contains gate-level description of the circuit

❑ Describe how modules are interconnected

❑ Each module contains other modules (instances)

❑ … and interconnections between those modules

❑ Describes a hierarchy of modules defined as gates

◼ Behavioral

❑ The module body contains functional description of the circuit

❑ Contains logical and mathematical operators

❑ Level of abstraction is higher than gate-level

◼ Many possible gate-level realizations of a behavioral description

◼ Many practical designs use a combination of both

35

Behavioral HDL: Defining Functionality

module example (a, b, c, y);
input a;
input b;
input c;
output y;

// here comes the circuit description
assign y = ~a & ~b & ~c |

a & ~b & ~c |
a & ~b & c;

endmodule

36

Behavioral HDL: Schematic View

37

A behavioral implementation still models a
hardware circuit!

ANDa

y
b

c

AND

AND

OR

Bitwise Operators in Behavioral Verilog

module gates(input [3:0] a, b,
output [3:0] y1, y2, y3, y4, y5);

/* Five different two-input logic
gates acting on 4 bit buses */

assign y1 = a & b; // AND
assign y2 = a | b; // OR
assign y3 = a ^ b; // XOR
assign y4 = ~(a & b); // NAND
assign y5 = ~(a | b); // NOR

endmodule

38

Bitwise Operators: Schematic View

39

Reduction Operators in Behavioral Verilog

module and8(input [7:0] a,
output y);

assign y = &a;

// &a is much easier to write than
// assign y = a[7] & a[6] & a[5] & a[4] &
// a[3] & a[2] & a[1] & a[0];

endmodule

40

Reduction Operators: Schematic View

41

ANDa[7:0]
[7:0]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

y

8-input AND gate

Conditional Assignment in Behavioral Verilog

◼ ? : is also called a ternary operator as it operates on three
inputs:

❑ s

❑ d1

❑ d0

module mux2(input [3:0] d0, d1,
input s,
output [3:0] y);

assign y = s ? d1 : d0;
// if (s) then y=d1 else y=d0;

endmodule

42

Conditional Assignment: Schematic View

43

More Complex Conditional Assignments

module mux4(input [3:0] d0, d1, d2, d3
input [1:0] s,
output [3:0] y);

assign y = s[1] ? (s[0] ? d3 : d2)
: (s[0] ? d1 : d0);

// if (s1) then
// if (s0) then y=d3 else y=d2
// else
// if (s0) then y=d1 else y=d0

endmodule

44

Even More Complex Conditional Assignments

module mux4(input [3:0] d0, d1, d2, d3
input [1:0] s,
output [3:0] y);

assign y = (s == 2’b11) ? d3 :
(s == 2’b10) ? d2 :
(s == 2’b01) ? d1 :
d0;

// if (s = “11”) then y= d3
// else if (s = “10”) then y= d2
// else if (s = “01”) then y= d1
// else y= d0

endmodule

45

Precedence of Operations in Verilog

Highest

Lowest

46

How to Express Numbers ?

N’Bxx
8’b0000_0001

◼ (N) Number of bits

❑ Expresses how many bits will be used to store the value

◼ (B) Base

❑ Can be b (binary), h (hexadecimal), d (decimal), o (octal)

◼ (xx) Number

❑ The value expressed in base

❑ Can also have X (invalid) and Z (floating), as values

❑ Underscore _ can be used to improve readability

47

Number Representation in Verilog

Verilog Stored Number Verilog Stored Number

4’b1001 1001 4’d5 0101

8’b1001 0000 1001 12’hFA3 1111 1010 0011

8’b0000_1001 0000 1001 8’o12 00 001 010

8’bxX0X1zZ1 XX0X 1ZZ1 4’h7 0111

‘b01 0000 .. 0001 12’h0 0000 0000 0000

48

32 bits

(default)

Reminder: Floating Signals (Z)

module tristate_buffer(input [3:0] a,
input en,
output [3:0] y);

assign y = en ? a : 4'bz;

endmodule

y_1[3:0]

y[3:0]
[3:0]

en

a[3:0]
[3:0] [3:0][3:0]

49

◼ Floating signal: Signal that is not driven by any circuit

❑ Open circuit, floating wire

◼ Also known as: high impedance, hi-Z, tri-stated signals

Tri-State Buffer

◼ A tri-state buffer enables gating of different signals onto a
wire

◼ Floating signal (Z): Signal that is not driven by any circuit

❑ Open circuit, floating wire

50

Example: Use of Tri-State Buffers

◼ Imagine a wire connecting the CPU and memory

❑ At any time only the CPU or the memory can place a value on
the wire, both not both

❑ You can have two tri-state buffers: one driven by CPU, the
other memory; and ensure at most one is enabled at any time

51

Example Design with Tri-State Buffers

52

CPU

Memory

GateMem

GateCPU

Shared Bus

Another Example

53

Truth Table for AND with Z and X

AND
A

0 1 Z X

B

0 0 0 0 0

1 0 1 X X

Z 0 X X X

X 0 X X X

54

What Happens with HDL Code?

◼ Synthesis

❑ Modern tools are able to map synthesizable HDL code into
low-level cell libraries → netlist describing gates and wires

❑ They can perform many optimizations

❑ … however they can not guarantee that a solution is optimal

◼ Mainly due to computationally expensive placement and routing
algorithms

❑ Most common way of Digital Design these days

◼ Simulation

❑ Allows the behavior of the circuit to be verified without

actually manufacturing the circuit

❑ Simulators can work on structural or behavioral HDL

55

Recall This “example”

module example (a, b, c, y);
input a;
input b;
input c;
output y;

// here comes the circuit description
assign y = ~a & ~b & ~c |

a & ~b & ~c |
a & ~b & c;

endmodule

56

Synthesizing the “example”

57

ANDa

y
b

c

AND

AND

OR

Simulating the “example”

58

time

s
ig

n
a
ls

Waveform Diagram

1

1

1

0

ANDa

y
b

c

AND

AND

OR

What We Have Seen So Far

◼ Describing structural hierarchy with Verilog

❑ Instantiate modules in an other module

◼ Describing functionality using behavioral modeling

◼ Writing simple logic equations

❑ We can write AND, OR, XOR, …

◼ Multiplexer functionality

❑ If … then … else

◼ We can describe constants

◼ But there is more...

59

More Verilog Examples

◼ We can write Verilog code in many different ways

◼ Let’s see how we can express the same functionality by
developing Verilog code

❑ At a low-level of abstraction

◼ Poor readability

◼ More optimization opportunities (especially for low-level tools)

❑ At a high-level of abstraction

◼ Better readability

◼ Limited optimization opportunities

60

Comparing Two Numbers

◼ Defining your own gates as new modules

◼ We will use our gates to show the different ways of
implementing a 4-bit comparator (equality checker)

module MyXnor (input A, B,
output Z);

assign Z = ~(A ^ B); //not XOR

endmodule

module MyAnd (input A, B,
output Z);

assign Z = A & B; // AND

endmodule

An XNOR gate An AND gate

61

Gate-Level Implementation

module compare (input a0, a1, a2, a3, b0, b1, b2, b3,
output eq);

wire c0, c1, c2, c3, c01, c23;

MyXnor i0 (.A(a0), .B(b0), .Z(c0)); // XNOR
MyXnor i1 (.A(a1), .B(b1), .Z(c1)); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2)); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3)); // XNOR
MyAnd haha (.A(c0), .B(c1), .Z(c01)); // AND
MyAnd hoho (.A(c2), .B(c3), .Z(c23)); // AND
MyAnd bubu (.A(c01), .B(c23), .Z(eq)); // AND

endmodule

62

Using Logical Operators

module compare (input a0, a1, a2, a3, b0, b1, b2, b3,
output eq);

wire c0, c1, c2, c3, c01, c23;

MyXnor i0 (.A(a0), .B(b0), .Z(c0)); // XNOR
MyXnor i1 (.A(a1), .B(b1), .Z(c1)); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2)); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3)); // XNOR
assign c01 = c0 & c1;
assign c23 = c2 & c3;
assign eq = c01 & c23;

endmodule

63

Eliminating Intermediate Signals

module compare (input a0, a1, a2, a3, b0, b1, b2, b3,
output eq);

wire c0, c1, c2, c3;

MyXnor i0 (.A(a0), .B(b0), .Z(c0)); // XNOR
MyXnor i1 (.A(a1), .B(b1), .Z(c1)); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2)); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3)); // XNOR
// assign c01 = c0 & c1;
// assign c23 = c2 & c3;
// assign eq = c01 & c23;
assign eq = c0 & c1 & c2 & c3;

endmodule

64

Multi-Bit Signals (Bus)

module compare (input [3:0] a, input [3:0] b,
output eq);

wire [3:0] c; // bus definition

MyXnor i0 (.A(a[0]), .B(b[0]), .Z(c[0])); // XNOR
MyXnor i1 (.A(a[1]), .B(b[1]), .Z(c[1])); // XNOR
MyXnor i2 (.A(a[2]), .B(b[2]), .Z(c[2])); // XNOR
MyXnor i3 (.A(a[3]), .B(b[3]), .Z(c[3])); // XNOR

assign eq = &c; // short format

endmodule

65

Bitwise Operations

module compare (input [3:0] a, input [3:0] b,
output eq);

wire [3:0] c; // bus definition

// MyXnor i0 (.A(a[0]), .B(b[0]), .Z(c[0]));
// MyXnor i1 (.A(a[1]), .B(b[1]), .Z(c[1]));
// MyXnor i2 (.A(a[2]), .B(b[2]), .Z(c[2]));
// MyXnor i3 (.A(a[3]), .B(b[3]), .Z(c[3]));

assign c = ~(a ^ b); // XNOR

assign eq = &c; // short format

endmodule

66

Highest Abstraction Level: Comparing Two Numbers

module compare (input [3:0] a, input [3:0] b,
output eq);

// assign c = ~(a ^ b); // XNOR

// assign eq = &c; // short format

assign eq = (a == b) ? 1 : 0; // really short

endmodule

67

Writing More Reusable Verilog Code

◼ We have a module that can compare two 4-bit numbers

◼ What if in the overall design we need to compare:

❑ 5-bit numbers?

❑ 6-bit numbers?

❑ …

❑ N-bit numbers?

❑ Writing code for each case looks tedious

◼ What could be a better way?

68

Parameterized Modules

We can set the parameters to different values

when instantiating the module

module mux2
#(parameter width = 8) // name and default value
(input [width-1:0] d0, d1,
input s,
output [width-1:0] y);

assign y = s ? d1 : d0;
endmodule

69

In Verilog, we can define module parameters

Instantiating Parameterized Modules

// If the parameter is not given, the default (8) is assumed
mux2 i_mux (d0, d1, s, out);

// The same module with 12-bit bus width:
mux2 #(12) i_mux_b (d0, d1, s, out);

// A more verbose version:
mux2 #(.width(12)) i_mux_b (.d0(d0), .d1(d1),

.s(s), .out(out));

module mux2
#(parameter width = 8) // name and default value
(input [width-1:0] d0, d1,
input s,
output [width-1:0] y);

assign y = s ? d1 : d0;
endmodule

70

What About Timing?

◼ It is possible to define timing relations in Verilog. BUT:

❑ These are ONLY for simulation

❑ They CAN NOT be synthesized

❑ They are used for modeling delays in a circuit

‘timescale 1ns/1ps
module simple (input a, output z1, z2);

assign #5 z1 = ~a; // inverted output after 5ns
assign #9 z2 = a; // output after 9ns

endmodule

72

More to come later today!

Good Practices

◼ Develop/use a consistent naming style

◼ Use MSB to LSB ordering for buses

❑ Use “a[31:0]”, not “a[0:31]”

◼ Define one module per file

❑ Makes managing your design hierarchy easier

◼ Use a file name that equals module name

❑ e.g., module TryThis is defined in a file called TryThis.v

◼ Always keep in mind that Verilog describes hardware

73

Summary (HDL for Combinational Logic)

◼ We have seen an overview of Verilog

◼ Discussed structural and behavioral modeling

◼ Studied combinational logic constructs

74

Implementing Sequential Logic

Using Verilog

75

Combinational + Memory = Sequential

76

Sequential Circuit

Combinational

Circuitin
p

u
ts

o
u

tp
u

ts

Storage
Element

Sequential Logic in Verilog

◼ Define blocks that have memory

❑ Flip-Flops, Latches, Finite State Machines

◼ Sequential Logic state transition is triggered by a “CLOCK”

signal

❑ Latches are sensitive to level of the signal

❑ Flip-flops are sensitive to the transitioning of signal

◼ Combinational HDL constructs are not sufficient to express

sequential logic

❑ We need new constructs:

◼ always

◼ posedge/negedge

77

78

The “always” Block

always @ (sensitivity list)

statement;

Whenever the event in the sensitivity list occurs,
the statement is executed

79

Example: D Flip-Flop

module flop(input clk,

input [3:0] d,

output reg [3:0] q);

always @ (posedge clk)

q <= d; // pronounced “q gets d”

endmodule

◼ posedge defines a rising edge (transition from 0 to 1).

◼ Statement executed when the clk signal rises (posedge of clk)

◼ Once the clk signal rises: the value of d is copied to q

80

Example: D Flip-Flop

module flop(input clk,

input [3:0] d,

output reg [3:0] q);

always @ (posedge clk)

q <= d; // pronounced “q gets d”

endmodule

◼ assign statement is not used within an always block

◼ <= describes a non-blocking assignment

❑ We will see the difference between blocking assignment and
non-blocking assignment soon

81

Example: D Flip-Flop

module flop(input clk,

input [3:0] d,

output reg [3:0] q);

always @ (posedge clk)

q <= d; // pronounced “q gets d”

endmodule

◼ Assigned variables need to be declared as reg

◼ The name reg does not necessarily mean that the value is a
register (It could be, but it does not have to be)

◼ We will see examples later

Asynchronous and Synchronous Reset
◼ Reset signals are used to initialize the hardware to a known

state

❑ Usually activated at system start (on power up)

◼ Asynchronous Reset

❑ The reset signal is sampled independent of the clock

❑ Reset gets the highest priority

❑ Sensitive to glitches, may have metastability issues

◼ Will be discussed in Lecture 8

◼ Synchronous Reset

❑ The reset signal is sampled with respect to the clock

❑ The reset should be active long enough to get sampled at the
clock edge

❑ Results in completely synchronous circuit

82

83

D Flip-Flop with Asynchronous Reset

module flop_ar (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == 0) q <= 0; // when reset
else q <= d; // when clk

end
endmodule

◼ In this example: two events can trigger the process:

❑ A rising edge on clk

❑ A falling edge on reset

84

D Flip-Flop with Asynchronous Reset

module flop_ar (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == 0) q <= 0; // when reset
else q <= d; // when clk

end
endmodule

◼ For longer statements, a begin-end pair can be used

❑ To improve readability

❑ In this example, it was not necessary, but it is a good idea

85

D Flip-Flop with Asynchronous Reset

module flop_ar (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == 0) q <= 0; // when reset
else q <= d; // when clk

end
endmodule

◼ First reset is checked: if reset is 0, q is set to 0.

❑ This is an asynchronous reset as the reset can happen
independently of the clock (on the negative edge of reset signal)

◼ If there is no reset, then regular assignment takes effect

86

D Flip-Flop with Synchronous Reset

module flop_sr (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
begin

if (reset == ‘0’) q <= 0; // when reset
else q <= d; // when clk

end
endmodule

◼ The process is sensitive to only clock

❑ Reset happens only when the clock rises. This is a
synchronous reset

87

D Flip-Flop with Enable and Reset

module flop_en_ar (input clk,
input reset,
input en,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == ‘0’) q <= 0; // when reset
else if (en) q <= d; // when en AND clk

end
endmodule

◼ A flip-flop with enable and reset

❑ Note that the en signal is not in the sensitivity list

◼ q gets d only when clk is rising and en is 1

88

Example: D Latch

module latch (input clk,

input [3:0] d,

output reg [3:0] q);

always @ (clk, d)

if (clk) q <= d; // latch is transparent when

// clock is 1

endmodule

Summary: Sequential Statements So Far

◼ Sequential statements are within an always block

◼ The sequential block is triggered with a change in the
sensitivity list

◼ Signals assigned within an always must be declared as reg

◼ We use <= for (non-blocking) assignments and do not use

assign within the always block.

89

90

Basics of always Blocks

module example (input clk,
input [3:0] d,
output reg [3:0] q);

wire [3:0] normal; // standard wire
reg [3:0] special; // assigned in always

always @ (posedge clk)
special <= d; // first FF array

assign normal = ~ special; // simple assignment

always @ (posedge clk)
q <= normal; // second FF array

endmodule

You can have as many always blocks as needed

Assignment to the same signal in different always blocks is not allowed!

91

Why Does an always Block Remember?

module flop (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
begin

q <= d; // when clk rises copy d to q
end

endmodule

◼ This statement describes what happens to signal q

◼ … but what happens when the clock is not rising?

◼ The value of q is preserved (remembered)

92

An always Block Does NOT Always Remember

module comb (input inv,
input [3:0] data,
output reg [3:0] result);

always @ (inv, data) // trigger with inv, data
if (inv) result <= ~data;// result is inverted data
else result <= data; // result is data

endmodule

◼ This statement describes what happens to signal result
❑ When inv is 1, result is ~data

❑ When inv is not 1, result is data

◼ The circuit is combinational (no memory)

❑ result is assigned a value in all cases of the if .. else block, always

always Blocks for Combinational Circuits

◼ An always block defines combinational logic if:

❑ All outputs are always (continuously) updated

1. All right-hand side signals are in the sensitivity list

◼ You can use always @* for short

2. All left-hand side signals get assigned in every possible condition

of if .. else and case blocks

◼ It is easy to make mistakes and unintentionally describe
memorizing elements (latches)

❑ Vivado will most likely warn you. Make sure you check the
warning messages

◼ Always blocks allow powerful combinational logic statements
❑ if .. else

❑ case

93

94

Sequential or Combinational?

wire enable, data;
reg out_a, out_b;

always @ (*) begin
out_a = 1’b0;
if(enable) begin

out_a = data;
out_b = data;

end
end

Sequential

wire enable, data;
reg out_a, out_b;

always @ (data) begin
out_a = 1’b0;
out_b = 1’b0;
if(enable) begin

out_a = data;
out_b = data;

end
end

Sequential

No assignment for ~enable Not in the sensitivity list

95

The always Block is NOT Always Practical/Nice

reg [31:0] result;
wire [31:0] a, b, comb;
wire sel,

always @ (a, b, sel) // trigger with a, b, sel
if (sel) result <= a; // result is a
else result <= b; // result is b

assign comb = sel ? a : b;

◼ Both statements describe the same multiplexer

◼ In this case, the always block is more work

96

always Block for Case Statements (Handy!)

module sevensegment (input [3:0] data,

output reg [6:0] segments);

always @ (*) // * is short for all signals

case (data) // case statement

4'd0: segments = 7'b111_1110; // when data is 0

4'd1: segments = 7'b011_0000; // when data is 1

4'd2: segments = 7'b110_1101;

4'd3: segments = 7'b111_1001;

4'd4: segments = 7'b011_0011;

4'd5: segments = 7'b101_1011;

// etc etc

default: segments = 7'b000_0000; // required

endcase

endmodule

Summary: always Block

◼ if .. else can only be used in always blocks

◼ The always block is combinational only if all regs within the
block are always assigned to a signal

❑ Use the default case to make sure you do not forget an

unimplemented case, which may otherwise result in a latch

◼ Use casex statement to be able to check for don’t cares

97

98

Non-Blocking and Blocking Assignments

always @ (a)

begin

a <= 2’b01;

b <= a;

// all assignments are made here

// b is not (yet) 2’b01

end

always @ (a)

begin

a = 2’b01;

// a is 2’b01

b = a;

// b is now 2’b01 as well

end

Non-blocking (<=) Blocking (=)

◼ All assignments are made
at the end of the block

◼ All assignments are made

in parallel, process flow is
not-blocked

◼ Each assignment is made
immediately

◼ Process waits until the first

assignment is complete, it
blocks progress

100

Example: Blocking Assignment

always @ (*)
begin
p = a ^ b ; // p = 0
g = a & b ; // g = 0
s = p ^ cin ; // s = 0
cout = g | (p & cin) ; // cout = 0

end

◼ Assume all inputs are initially ‘0’

◼ If a changes to ‘1’

❑ All values are updated in order

1

0
1

0

101

The Same Example: Non-Blocking Assignment

always @ (*)
begin
p <= a ^ b ; // p = 0
g <= a & b ; // g = 0
s <= p ^ cin ; // s = 0
cout <= g | (p & cin) ; // cout = 0

end

◼ Assume all inputs are initially ‘0’

◼ If a changes to ‘1’

❑ All assignments are concurrent

❑ When s is being assigned, p is still 0

1

0
0

0

102

The Same Example: Non-Blocking Assignment

always @ (*)
begin
p <= a ^ b ; // p = 1
g <= a & b ; // g = 0
s <= p ^ cin ; // s = 0
cout <= g | (p & cin) ; // cout = 0

end

◼ After the first iteration, p has changed to ‘1’ as well

◼ Since there is a change in p, the process triggers again

◼ This time s is calculated with p=1

1

0
1

0

103

Rules for Signal Assignment

◼ Use always @(posedge clk) and non-blocking
assignments (<=) to model synchronous sequential logic

◼ Use continuous assignments (assign) to model simple

combinational logic

always @ (posedge clk)

q <= d; // non-blocking

assign y = a & b;

Rules for Signal Assignment (Cont.)

◼ Use always @ (*) and blocking assignments (=) to model

more complicated combinational logic.

◼ You cannot make assignments to the same signal in more
than one always block or in a continuous assignment

104

always @ (*)

a = b;

always @ (*)

a = c;

always @ (*)

a = b;

assign a = c;

Recall: Finite State Machines (FSMs)

◼ Each FSM consists of three separate parts:

❑ next state logic

❑ state register

❑ output logic

105

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

state

state register

Recall: Finite State Machines (FSMs) Comprise

◼ Sequential circuits

❑ State register(s)

◼ Store the current state and

◼ Load the next state at the clock edge

◼ Combinational Circuits

❑ Next state logic

◼ Determines what the next state will be

❑ Output logic

◼ Generates the outputs

106

Next

State

Current

State

S’ S

CLK

CL

Next State

Logic

Next

State

CL

Output

Logic

Outputs

FSM Example 1: Divide the Clock Frequency by 3

107

The output Y is HIGH for one clock cycle out of every 3. In other
words, the output divides the frequency of the clock by 3.

108

Implementing FSM Example 1: Definitions

module divideby3FSM (input clk,

input reset,

output q);

reg [1:0] state, nextstate;

parameter S0 = 2'b00;

parameter S1 = 2'b01;

parameter S2 = 2'b10;

◼ We define state and nextstate as 2-bit reg

◼ The parameter descriptions are optional, it makes reading
easier

109

Implementing FSM Example 1: State Register

// state register

always @ (posedge clk, posedge reset)

if (reset) state <= S0;

else state <= nextstate;

◼ This part defines the state register (memorizing process)

◼ Sensitive to only clk, reset

◼ In this example, reset is active when it is ‘1’ (active-high)

Next

State

Current

State

S’ S

CLK

110

Implementing FSM Example 1: Next State Logic

// next state logic

always @ (*)

case (state)

S0: nextstate = S1;

S1: nextstate = S2;

S2: nextstate = S0;

default: nextstate = S0;

endcase

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

state

111

Implementing FSM Example 1: Output Logic

// output logic

assign q = (state == S0);

◼ In this example, output depends only on state

❑ Moore type FSM

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

state

112

Implementation of FSM Example 1

module divideby3FSM (input clk, input reset, output q);

reg [1:0] state, nextstate;

parameter S0 = 2'b00; parameter S1 = 2'b01; parameter S2 = 2'b10;

always @ (posedge clk, posedge reset) // state register

if (reset) state <= S0;

else state <= nextstate;

always @ (*) // next state logic

case (state)

S0: nextstate = S1;

S1: nextstate = S2;

S2: nextstate = S0;

default: nextstate = S0;

endcase

assign q = (state == S0); // output logic

endmodule

FSM Example 2: Smiling Snail

◼ Alyssa P. Hacker has a snail that crawls down a paper tape
with 1’s and 0’s on it

◼ The snail smiles whenever the last four digits it has crawled

over are 1101

◼ Design Moore and Mealy FSMs of the snail’s brain

113

Moore

Mealy

114

Implementing FSM Example 2: Definitions

module SmilingSnail (input clk,

input reset,

input number,

output smile);

reg [1:0] state, nextstate;

parameter S0 = 2'b00;

parameter S1 = 2'b01;

parameter S2 = 2'b10;

parameter S3 = 2’b11;

number/smile

115

Implementing FSM Example 2: State Register

// state register

always @ (posedge clk, posedge reset)

if (reset) state <= S0;

else state <= nextstate;

◼ This part defines the state register (memorizing process)

◼ Sensitive to only clk, reset

◼ In this example reset is active when ‘1’ (active-high)

116

Implementing FSM Example 2: Next State Logic

// next state logic

always @ (*)

case (state)

S0: if (number) nextstate = S1;

else nextstate = S0;

S1: if (number) nextstate = S2;

else nextstate = S0;

S2: if (number) nextstate = S2;

else nextstate = S3;

S3: if (number) nextstate = S1;

else nextstate = S0;

default: nextstate = S0;

endcase

117

Implementing FSM Example 2: Output Logic

// output logic

assign smile = (number & state == S3);

◼ In this example, output depends on state and input

❑ Mealy type FSM

◼ We used a simple combinational assignment

118

Implementation of FSM Example 2

module SmilingSnail (input clk,

input reset,

input number,

output smile);

reg [1:0] state, nextstate;

parameter S0 = 2'b00;

parameter S1 = 2'b01;

parameter S2 = 2'b10;

parameter S3 = 2’b11;

// state register

always @ (posedge clk, posedge
reset)

if (reset) state <= S0;

else state <= nextstate;

always @ (*) // next state logic

case (state)

S0: if (number)

nextstate = S1;

else nextstate = S0;

S1: if (number)

nextstate = S2;

else nextstate = S0;

S2: if (number)

nextstate = S2;

else nextstate = S3;

S3: if (number)

nextstate = S1;

else nextstate = S0;

default: nextstate = S0;

endcase

// output logic

assign smile = (number & state==S3);

endmodule

What Did We Learn?

◼ Basics of describing sequential circuits in Verilog

◼ The always statement

❑ Needed for defining memorizing elements (flip-flops, latches)

❑ Can also be used to define combinational circuits

◼ Blocking vs Non-blocking statements

❑ = assigns the value immediately

❑ <= assigns the value at the end of the block

◼ Describing FSMs in Verilog

❑ Next state logic

❑ State assignment

❑ Output logic

119

Next Lecture:

Timing and Verification

120

Digital Design & Computer Arch.

Lecture 7: Hardware Description

Languages and Verilog

Prof. Onur Mutlu

ETH Zürich

Spring 2021

18 March 2021

Logic Simplification:

Karnaugh Maps (K-Maps)

122

Karnaugh Maps are Fun…

◼ A pictorial way of minimizing circuits by visualizing
opportunities for simplification

◼ They are for you to study on your own…

◼ See Backup Slides

◼ Read H&H Section 2.7

◼ Watch videos of Lectures 5 and 6 from 2019 DDCA course:

❑ https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNF

QFHRO3GrXxA9&t=4570

❑ https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBN
FQFHRO3GrXxA9&t=220

123

https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=4570
https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=220

Karnaugh Map Methods

124

Adjacent

000

001

010

011

110

111

100

101

000

001

010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”

Wrap around from first to last column

Wrap around from top row to bottom row

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪

Backup Slides on

Karnaugh Maps (K-Maps)

125

Complex Cases

◼ One example

◼ Problem
❑ Easy to see how to apply Uniting Theorem…

❑ Hard to know if you applied it in all the right places…

❑ …especially in a function of many more variables

◼ Question
❑ Is there an easier way to find potential simplifications?

❑ i.e., potential applications of Uniting Theorem…?

◼ Answer
❑ Need an intrinsically geometric representation for Boolean f()

❑ Something we can draw, see…

126

𝑪𝒐𝒖𝒕 = ഥ𝑨𝑩𝑪+ 𝑨ഥ𝑩𝑪 + 𝑨𝑩ഥ𝑪 + 𝑨𝑩𝑪

Karnaugh Map

◼ Karnaugh Map (K-map) method

❑ K-map is an alternative method of representing the truth table
that helps visualize adjacencies in up to 6 dimensions

❑ Physical adjacency ↔ Logical adjacency

127

2-variable K-map

0 1

0 00 01

1 10 11

Numbering Scheme: 00, 01, 11, 10 is called a
“Gray Code” — only a single bit (variable) changes

from one code word and the next code word

00 01 11 10

00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨𝑩𝑨
𝑩 𝑪𝑫

𝑨
𝑩𝑪

K-map Cover - 4 Input Variables

128

00 01 11 10

00 1 0 0 1

01 0 1 0 0

11 1 1 1 1

10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅(𝐀, 𝐁, 𝐂, 𝐃) = ෍𝒎(𝟎, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)

𝐅 = 𝐀+ ഥ𝑩ഥ𝑫+ 𝐁ഥ𝑪𝑫𝐀 + ഥ𝑩ഥ𝑫𝐀

Logic Minimization Using K-Maps

◼ Very simple guideline:

❑ Circle all the rectangular blocks of 1’s in the map, using the
fewest possible number of circles

◼ Each circle should be as large as possible

❑ Read off the implicants that were circled

◼ More formally:

❑ A Boolean equation is minimized when it is written as a sum of
the fewest number of prime implicants

❑ Each circle on the K-map represents an implicant

❑ The largest possible circles are prime implicants

130

K-map Rules

◼ What can be legally combined (circled) in the K-map?

❑ Rectangular groups of size 2k for any integer k

❑ Each cell has the same value (1, for now)

❑ All values must be adjacent

◼ Wrap-around edge is okay

◼ How does a group become a term in an expression?

❑ Determine which literals are constant, and which vary across group

❑ Eliminate varying literals, then AND the constant literals

◼ constant 1 ➙ use 𝐗, constant 0 ➙ use ഥ𝑿

◼ What is a good solution?

❑ Biggest groupings ➙ eliminate more variables (literals) in each term

❑ Fewest groupings ➙ fewer terms (gates) all together

❑ OR together all AND terms you create from individual groups

131

K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map
for each of the 3
output functions

132

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

A
F1

AB = CD

B
F2

AB < CD

C
F3

AB > CD

D

K-map Example: Two-bit Comparator (2)

133

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

00 01 11 10

00 1

01 1

11 1

10 1

K-map for F1

𝑨𝑩
𝑪𝑫

F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

𝑨
𝑩

𝑫

𝑪

K-map Example: Two-bit Comparator (3)

134

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

00 01 11 10

00 1 1 1

01 1 1

11

10 1

K-map for F2

𝑨𝑩
𝑪𝑫

F2 = A'C + A'B'D + B'CD

F3 = ? (Exercise for you)

𝑨

𝑩

𝑫

𝑪

K-maps with “Don’t Care”
◼ Don’t Care really means I don’t care what my circuit outputs if this

appears as input

❑ You have an engineering choice to use DON’T CARE patterns
intelligently as 1 or 0 to better simplify the circuit

135

I can pick 00, 01, 10, 11
independently of below

I can pick 00, 01, 10, 11
independently of above

A B C D F G

• • •

0 1 1 0 X X

0 1 1 1

1 0 0 0 X X

1 0 0 1

• • •

A B C D W X Y Z

0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 1

0 0 1 1 0 1 0 0

0 1 0 0 0 1 0 1

0 1 0 1 0 1 1 0

0 1 1 0 0 1 1 1

0 1 1 1 1 0 0 0

1 0 0 0 1 0 0 1

1 0 0 1 0 0 0 0

1 0 1 0 X X X X

1 0 1 1 X X X X

1 1 0 0 X X X X

1 1 0 1 X X X X

1 1 1 0 X X X X

1 1 1 1 X X X X

Example: BCD Increment Function

◼ BCD (Binary Coded Decimal) digits

❑ Encode decimal digits 0 - 9 with bit patterns 00002 — 10012

❑ When incremented, the decimal sequence is 0, 1, …, 8, 9, 0, 1

136

These input patterns should
never be encountered in practice

(hey -- it’s a BCD number!)
So, associated output values are

“Don’t Cares”

00 01 11 10

00 1 1

01 1 1

11 X X X X

10 1 X X

K-map for BCD Increment Function

A B C D

+ 1

W X Y Z

137

00 01 11 10

00

01 1

11 X X X X

10 1 X X

00 01 11 10

00 1

01 1 1 1

11 X X X X

10 X X

00 01 11 10

00 1 1

01 1 1

11 X X X X

10 X X

W
𝑨𝑩

𝑪𝑫
X

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫

ZY

Z (without don’t cares) = A'D' + B'C'D’

Z (with don’t cares) = D'

𝑨
𝑩

𝑫

𝑪

K-map Summary

◼ Karnaugh maps as a formal systematic approach

for logic simplification

◼ 2-, 3-, 4-variable K-maps

◼ K-maps with “Don’t Care” outputs

◼ H&H Section 2.7
138

