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Assignment: Required Lecture Video

◼ Why study computer architecture? Why is it important?

◼ Future Computing Platforms: Challenges & Opportunities

◼ Required Assignment

❑ Watch one of Prof. Mutlu’s lectures and analyze either (or both)

❑ https://www.youtube.com/watch?v=kgiZlSOcGFM (May 2017)

❑ https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page summary of one of the lectures and email us

◼ What are your key takeaways?

◼ What did you learn?

◼ What did you like or dislike?

◼ Submit your summary to Moodle – Deadline: April 5
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https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=421558


Extra Assignment 2: Moore’s Law (I)

◼ Paper review

◼ G.E. Moore. "Cramming more components onto integrated 
circuits," Electronics magazine, 1965

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page review 

❑ Upload PDF file to Moodle – Deadline: April 5

◼ I strongly recommend that you follow my guidelines for 

(paper) review (see next slide)
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https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf


Extra Assignment 2: Moore’s Law (II)

◼ Guidelines on how to review papers critically

❑ Guideline slides: pdf ppt

❑ Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

❑ Example reviews on “Main Memory Scaling: Challenges and 

Solution Directions” (link to the paper)

◼ Review 1

◼ Review 2

❑ Example review on “Staged memory scheduling: Achieving 
high performance and scalability in heterogeneous 
systems” (link to the paper)

◼ Review 1
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https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf


Agenda for Today & Next Few Lectures

◼ The von Neumann model

◼ LC-3: An example of von Neumann machine

◼ LC-3 and MIPS Instruction Set Architectures

◼ LC-3 and MIPS assembly and programming

◼ Introduction to microarchitecture and single-cycle 

microarchitecture

◼ Multi-cycle microarchitecture
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Required Readings

◼ This week
❑ Von Neumann Model, LC-3, and MIPS

◼ P&P, Chapters 4, 5

◼ H&H, Chapter 6
◼ P&P, Appendices A and C (ISA and microarchitecture of LC-3)

◼ H&H, Appendix B (MIPS instructions)

❑ Programming
◼ P&P, Chapter 6

❑ Recommended: H&H Chapter 5, especially 5.1, 5.2, 5.4, 5.5

◼ Next week
❑ Introduction to microarchitecture and single-cycle microarchitecture

◼ H&H, Chapter 7.1-7.3
◼ P&P, Appendices A and C

❑ Multi-cycle microarchitecture
◼ H&H, Chapter 7.4

◼ P&P, Appendices A and C 
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What Will We Learn Today?

◼ The von Neumann model

❑ LC-3: An example von Neumann machine

◼ Instruction Set Architectures: LC-3 and MIPS

❑ Operate instructions

❑ Data movement instructions

❑ Control instructions

◼ Instruction formats

◼ Addressing modes

7

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons



The Von Neumann Model
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Basic Elements of a Computer

◼ In past lectures we learned

❑ Combinational circuits

❑ Sequential circuits

◼ With them, we can build

❑ Decision elements

❑ Storage elements

◼ Basic elements of a computer

◼ To get a task done by a computer we need

❑ Computer

❑ Data

❑ Program: A set of instructions

◼ Instruction: the smallest piece of work in a computer

9



The Von Neumann Model
◼ Let’s start building the computer

◼ In order to build a computer we need a model

◼ John von Neumann proposed a fundamental model in 1946
◼ It consists of 5 parts

❑ Memory
❑ Processing unit
❑ Input
❑ Output
❑ Control unit

◼ Throughout this lecture, we consider two examples of the von 
Neumann model
❑ LC-3
❑ MIPS

10

Burks, Goldstein, von Neumann, 

“Preliminary discussion of the logical design 
of an electronic computing instrument,” 1946.



The Von Neumann Model
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The Von Neumann Model
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Memory
◼ The memory stores 

❑ Data
❑ Programs

◼ The memory contains bits
❑ Bits are grouped into bytes (8 bits) and words (e.g., 8, 16, 32 bits)

◼ How the bits are accessed determines the addressability
❑ E.g., word-addressable
❑ E.g., 8-bit addressable (or byte-addressable)

◼ The total number of addresses is the address space
❑ In LC-3, the address space is 216

◼ 16-bit addresses

❑ In MIPS, the address space is 232

◼ 32-bit addresses

❑ In x86-64, the address space is (up to) 248

◼ 48-bit addresses

13



Word-Addressable Memory

◼ Each data word has a unique address

❑ In MIPS, a unique address for each 32-bit data word

❑ In LC-3, a unique address for each 16-bit data word
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00000000

00000001

00000002

00000003

. 
 .
  
.

Word Address

8 9 A B C D E F 

F 2 F 1 F 0 F 7

1 3 C 8 1 7 5 5

D 1 6 1 7 A 1 C Word 3

Word 2

Word 1

Word 0

. 
 .
  

.

. 
 .
  

.

Data MIPS memory



◼ Each byte has a unique address

❑ Actually, MIPS is byte-addressable

❑ LC-3b (updated version of LC-3) is byte-addressable, too

Word 3

Word 2

Word 1

Word 0

. 
 .
  
.

. 
 .
  
.

Data

8 9 A B C D E F

F 2 F 1 F 0 F 7

1 3 C 8 1 7 5 5

D 1 6 1 7 A 1 C

MIPS memory

Byte-Addressable Memory
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00000000

00000004

00000008

0000000C

. 
 .
  
.

Byte Address 

of the Word

How are these four bytes 
addressed?



Big Endian vs Little Endian

◼ Jonathan Swift’s Gulliver’s Travels

❑ Little Endians broke their eggs on the little end of the egg

❑ Big Endians broke their eggs on the big end of the egg

16



Big Endian vs Little Endian
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0

4

8

C

. 
 .
  

.

Word 

Address

. 
 .
  

.

Byte 

Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C

. 
 .
  

.
Byte 

Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSBMSB
(Most Significant Byte)

LSB
(Least Significant Byte)



Big Endian vs Little Endian
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0

4

8

C

. 
 .
  

.

Word 

Address

. 
 .
  

.

Byte 

Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C

. 
 .
  

.
Byte 

Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSB

Does this really matter?

Answer: No, it is a convention

Qualified answer: No, except when one big-

endian system and one little-endian system

have to share data

MSB
(Most Significant Byte)

LSB
(Least Significant Byte)



Accessing Memory: MAR and MDR

◼ There are two ways of accessing memory
❑ Reading or loading

❑ Writing or storing

◼ Two registers are necessary to access memory

❑ Memory Address Register (MAR)

❑ Memory Data Register (MDR)

◼ To read

❑ Step 1: Load the MAR with the address

❑ Step 2: Data is placed in MDR

◼ To write
❑ Step 1: Load the MAR with the address and the MDR with the data

❑ Step 2: Activate Write Enable signal

19



The Von Neumann Model
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Processing Unit

◼ The processing unit can consist of many functional units

◼ We start with a simple Arithmetic and Logic Unit (ALU), 
which executes computations

❑ LC-3: ADD, AND, NOT (XOR in LC-3b)

❑ MIPS: add, sub, mult, and, nor, sll, slr, slt…

◼ The ALU processes quantities that are referred to as words

❑ Word length in LC-3 is 16 bits

❑ In MIPS it is 32 bits

◼ Temporary storage: Registers

❑ E.g., to calculate (A+B)*C, the intermediate result of A+B is 
stored in a register

21



Registers

◼ Memory is big but slow

◼ Registers

❑ Ensure fast access to operands

❑ Typically one register contains one word

◼ Register set or file

❑ LC-3 has 8 general purpose registers (GPR)

◼ R0 to R7: 3-bit register number

◼ Register size = Word length = 16 bits

❑ MIPS has 32 registers

◼ Register size = Word length = 32 bits

22



MIPS Register File
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Name Register Number Usage

$0 0 the constant value 0

$at 1 assembler temporary

$v0-$v1 2-3 function return value

$a0-$a3 4-7 function arguments

$t0-$t7 8-15 temporary variables

$s0-$s7 16-23 saved variables

$t8-$t9 24-25 temporary variables

$k0-$k1 26-27 OS temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 function return address



The Von Neumann Model
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Input and Output

◼ Many devices can be used for input and output

◼ They are called peripherals

❑ Input

◼ Keyboard

◼ Mouse

◼ Scanner

◼ Disks

◼ Etc.

❑ Output

◼ Monitor

◼ Printer

◼ Disks

◼ Etc.

❑ In LC-3, we consider keyboard and monitor

25



The Von Neumann Model
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Control Unit

◼ The control unit is similar to the conductor of an orchestra

◼ It conducts the step-by-step process of executing (every 
instruction in) a program

◼ It keeps track of the instruction being executed with an 
instruction register (IR), which contains the instruction

◼ Another register contains the address of the next 

instruction to execute. It is called program counter (PC) or 
instruction pointer (IP)

27



Programmer Visible (Architectural) State
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M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter

memory address
of the current instruction

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state



The Von Neumann Model
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Von Neumann Model: Two Key Properties

◼ Von Neumann model is also called stored program computer 
(instructions in memory). It has two key properties:

◼ Stored program

❑ Instructions stored in a linear memory array

❑ Memory is unified between instructions and data

◼ The interpretation of a stored value depends on the control signals

◼ Sequential instruction processing

❑ One instruction processed (fetched, executed, completed) at a time

❑ Program counter (instruction pointer) identifies the current instruction

❑ Program counter is advanced sequentially except for control transfer 
instructions

30



LC-3: A Von Neumann Machine
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LC-3: A Von Neumann Machine

32

Scanned by CamScanner

Control signals

Data

ALU: 2 inputs, 1 output

Memory Data 

Register

Memory Address

Register
16-bit 

addressable

Keyboard

KBDR (data), KBSR (status)

Monitor
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Registers (GPR)
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Stored Program & Sequential Execution
◼ Instructions and data are stored in memory

❑ Typically the instruction length is the word length

◼ The processor fetches instructions from memory sequentially
❑ Fetches one instruction
❑ Decodes and executes the instruction
❑ Continues with the next instruction

◼ The address of the current instruction is stored in the program 
counter (PC)

❑ If word-addressable memory, the processor increments the PC by 1 
(in LC-3)

❑ If byte-addressable memory, the processor increments the PC by the 
word length (4 in MIPS)
◼ In MIPS the OS typically sets the PC to 0x00400000 (start of a 

program)

33



◼ A sample MIPS program

❑ 4 instructions stored in consecutive words in memory

◼ No need to understand the program now. We will get back to it

A Sample Program Stored in Memory

34

. 
 .

  
.

Instructions

8 C 0 A 0 0 2 0

0 2 3 2 8 0 2 0

2 2 6 8 F F F 4

0 1 6 D 4 0 2 2 

. 
 .

  
.

00400000

00400004

00400008

0040000C

. 
 .

  
.

Address

. 
 .

  
.

lw $t2, 32($0)

add $s0, $s1, $s2

addi $t0, $s3, -12

sub $t0, $t3, $t5

MIPS assembly

0x8C0A0020

0x02328020

0x2268FFF4

0x016D4022

Machine code

← PC



The Instruction

◼ An instruction the most basic unit of computer processing

❑ Instructions are words in the language of a computer

❑ Instruction Set Architecture (ISA) is the vocabulary

◼ The language of the computer can be written as

❑ Machine language: Computer-readable representation (that is, 
0’s and 1’s)

❑ Assembly language: Human-readable representation

◼ We will look at LC-3 instructions and MIPS instructions

◼ Let us start with some example instructions

35



Instruction Types

◼ There are three main types of instructions

◼ Operate instructions

❑ Execute instructions in the ALU

◼ Data movement instructions

❑ Read from or write to memory

◼ Control flow instructions

❑ Change the sequence of execution

36



An Example Operate Instruction

◼ Addition

❑ add: mnemonic to indicate the operation to perform

❑ b, c: source operands

❑ a: destination operand

❑ a ← b + c

37

a = b + c; add a, b, c

High-level code Assembly



Registers

◼ We map variables to registers

38

add a, b, c b = R1

c = R2

a = R0

Assembly LC-3 registers

b = $s1

c = $s2

a = $s0

MIPS registers



◼ Addition

From Assembly to Machine Code in LC-3

39

ADD  R0, R1, R2

LC-3 assembly

Field Values

Machine Code

0x1042
Machine Code, in short (hexadecimal)

1 0 1 0 00 2

OP DR SR1 SR2

0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0

OP DR SR1 SR2

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3



Instruction Format (or Encoding)

◼ LC-3

❑ OP = opcode (what the instruction does)

◼ E.g., ADD = 0001

❑ Semantics: DR ← SR1 + SR2

◼ E.g., AND = 0101

❑ Semantics: DR ← SR1 AND SR2

❑ SR1, SR2 = source registers

❑ DR = destination register
40

OP DR SR1 0 00 SR2

4 bits 3 bits 3 bits 3 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3



◼ Addition

From Assembly to Machine Code in MIPS

41

0 17 18 16 0 32

op rs rt rd shamt funct

add $s0, $s1, $s2

MIPS assembly

Field Values

0x02328020

000000 10001 10010 10000 00000 100000

op rs rt rd shamt funct

Machine Code

15 11 10 6 05162021252631

rd ← rs + rt



Instruction Formats: R-Type in MIPS

◼ R-type
❑ 3 register operands

◼ MIPS

❑ 0 = opcode

❑ rs, rt = source registers

❑ rd = destination register

❑ shamt = shift amount (only shift operations)

❑ funct = operation in R-type instructions

42

0 rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits



Reading Operands from Memory

◼ With the operate instructions, such as addition, we tell the 
computer to execute arithmetic (or logic) computations in 

the ALU

◼ We also need instructions to access the operands from 
memory

◼ Next, we see how to read (or load) from memory

◼ Writing (or storing) is performed in a similar way, but we 
will talk about that later

43



Reading Word-Addressable Memory

◼ Load word

❑ load: mnemonic to indicate the load word operation

❑ A: base address

❑ i: offset

◼ E.g., immediate or literal (a constant)

❑ a: destination operand

❑ Semantics: a ← Memory[A + i]

44

a = A[i]; load a, A, i

High-level code Assembly



Load Word in LC-3 and MIPS

◼ LC-3 assembly

◼ MIPS assembly

45

a = A[2]; LDR  R3, R0, #2

High-level code LC-3 assembly

R3 ← Memory[R0 + 2]

a = A[2]; lw $s3, 2($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 2]

These instructions use a particular addressing mode
(i.e., the way the address is calculated), called base+offset



Load Word in Byte-Addressable MIPS

◼ MIPS assembly

◼ Byte address is calculated as: word_address * bytes/word

❑ 4 bytes/word in MIPS

❑ If LC-3 were byte-addressable (i.e., LC-3b), 2 bytes/word

46

a = A[2]; lw $s3, 8($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 8]



◼ LC-3

◼ MIPS

Instruction Format With Immediate

47

6 3 0 4

OP DR BaseR offset6

LDR  R3, R0, #4

LC-3 assembly

Field Values

35 16 19 8

op rs rt imm

lw $s3, 8($s0)

MIPS assembly

Field Values

I-Type
15 0162021252631

5 0689111215



How are These Instructions Executed?

◼ By using instructions we can speak the language of the 
computer

◼ Thus, we now know how to tell the computer to

❑ Execute computations in the ALU by using, for instance, an 
addition

❑ Access operands from memory by using the load word 
instruction

◼ But, how are these instructions executed on the computer?

❑ The process of executing an instruction is called is the 
instruction cycle

48



The Instruction Cycle

◼ The instruction cycle is a sequence of steps or phases, that an 
instruction goes through to be executed
❑ FETCH

❑ DECODE

❑ EVALUATE ADDRESS

❑ FETCH OPERANDS

❑ EXECUTE

❑ STORE RESULT

◼ Not all instructions have the six phases

❑ LDR does not require EXECUTE

❑ ADD does not require EVALUATE ADDRESS

❑ Intel x86 instruction ADD [eax], edx is an example of instruction 
with six phases

49



After STORE RESULT, a New FETCH

❑ FETCH

❑ DECODE

❑ EVALUATE ADDRESS

❑ FETCH OPERANDS

❑ EXECUTE

❑ STORE RESULT

50



FETCH

◼ The FETCH phase obtains the instruction from memory and 
loads it into the instruction register

◼ This phase is common to every instruction type

◼ Complete description

❑ Step 1: Load the MAR with the contents of the PC, and 

simultaneously increment the PC

❑ Step 2: Interrogate memory. This results the instruction to be 
placed in the MDR

❑ Step 3: Load the IR with the contents of the MDR

51



FETCH in LC-3

52

Scanned by CamScanner
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DECODE

◼ The DECODE phase identifies the instruction

◼ Recall the decoder (Lecture 5, Slides 47-48)

❑ A 4-to-16 decoder identifies which of the 16 opcodes is going 
to be processed

◼ The input is the four bits IR[15:12]

◼ The remaining 12 bits identify what else is needed to 

process the instruction

53



DECODE in LC-3

54

Scanned by CamScanner

DECODE 
identifies the 

instruction to be 
processed



EVALUATE ADDRESS

◼ The EVALUATE ADDRESS phase computes the address of 
the memory location that is needed to process the 

instruction

◼ This phase is necessary in LDR

❑ It computes the address of the data word that is to be read 
from memory

❑ By adding an offset to the content of a register

◼ But not necessary in ADD

55



EVALUATE ADDRESS in LC-3

56

Scanned by CamScanner
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FETCH OPERANDS

◼ The FETCH OPERANDS phase obtains the source operands 
needed to process the instruction

◼ In LDR

❑ Step 1: Load MAR with the address calculated in EVALUATE 
ADDRESS

❑ Step 2: Read memory, placing source operand in MDR

◼ In ADD

❑ Obtain the source operands from the register file

❑ In most current microprocessors, this phase can be done at 
the same time the instruction is being decoded

57



FETCH OPERANDS in LC-3

58

Scanned by CamScanner
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EXECUTE

◼ The EXECUTE phase executes the instruction

❑ In ADD, it performs addition in the ALU

59



EXECUTE in LC-3

60

Scanned by CamScanner

ADD adds SR1 
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STORE RESULT

◼ The STORE RESULT phase writes to the designated 
destination

◼ Once STORE RESULT is completed, a new instruction cycle

starts (with the FETCH phase)

61



STORE RESULT in LC-3

62

Scanned by CamScanner

LDR loads MDR 
into DR



The Instruction Cycle

❑ FETCH

❑ DECODE

❑ EVALUATE ADDRESS

❑ FETCH OPERANDS

❑ EXECUTE

❑ STORE RESULT

63



Changing the Sequence of Execution

◼ A computer program executes in sequence (i.e., in program 
order)

❑ First instruction, second instruction, third instruction and so on

◼ Unless we change the sequence of execution

◼ Control instructions allow a program to execute out of 
sequence

❑ They can change the PC by loading it during the EXECUTE 

phase

❑ That wipes out the incremented PC (loaded during the FETCH 
phase)

64



Jump in LC-3

◼ Unconditional branch or jump

◼ LC-3

❑ BaseR = Base register

❑ PC ← R2 (Register identified by BaseR)

❑ Variations

◼ RET: special case of JMP where BaseR = R7

◼ JSR, JSRR: jump to subroutine

65

JMP  R2

1100 000 000000

4 bits

BaseR

3 bits

This is register
addressing mode



Jump in MIPS

◼ Unconditional branch or jump

◼ MIPS

❑ 2 = opcode

❑ target = target address

❑ PC ← PC✝[31:28] | sign-extend(target) * 4

❑ Variations

◼ jal: jump and link (function calls)

◼ jr: jump register

66

2 target

6 bits 26 bits

j target

J-Type

jr $s0

j uses pseudo-
direct addressing 

mode

✝This is the incremented PC

jr uses register
addressing mode



LC-3 Data Path

67
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Opcodes in LC-3

68



Control of the Instruction Cycle
◼ State 1

❑ The FSM asserts GatePC and 
LD.MAR

❑ It selects input (+1) in PCMUX and 
asserts LD.PC

◼ State 2
❑ MDR is loaded with the instruction

◼ State 3
❑ The FSM asserts GateMDR and 

LD.IR

◼ State 4
❑ The FSM goes to next state 

depending on opcode

◼ State 63
❑ JMP loads register into PC

◼ Full state diagram in Patt&Pattel, 
Appendix C
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The Instruction Cycle

❑ FETCH

❑ DECODE

❑ EVALUATE ADDRESS

❑ FETCH OPERANDS

❑ EXECUTE

❑ STORE RESULT

70



LC-3 and MIPS 

Instruction Set Architectures
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The Instruction Set

◼ It defines opcodes, data types, and addressing modes

◼ ADD and LDR have been our first examples

72

ADD

1 0 1 0 00 2

OP DR SR1 SR2

6 3 0 4

OP DR BaseR offset6

LDR

Register mode

Base+offset mode



The Instruction Set Architecture
◼ The ISA is the interface between what the software commands 

and what the hardware carries out

◼ The ISA specifies
❑ The memory organization

◼ Address space (LC-3: 216, MIPS: 232)
◼ Addressability (LC-3: 16 bits, MIPS: 32 bits)

◼ Word- or Byte-addressable

❑ The register set
◼ R0 to R7 in LC-3

◼ 32 registers in MIPS

❑ The instruction set
◼ Opcodes
◼ Data types

◼ Addressing modes
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Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons



Opcodes

◼ Large or small sets of opcodes could be defined

❑ E.g, HP Precision Architecture: an instruction for A*B+C

❑ E.g, x86 ISA: multimedia extensions (MMX), later SSE and AVX

❑ E.g, VAX ISA: opcode to save all information of one program 
prior to switching to another program

◼ Tradeoffs are involved

❑ Hardware complexity vs. software complexity

◼ In LC-3 and in MIPS there are three types of opcodes

❑ Operate

❑ Data movement

❑ Control
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Opcodes in LC-3b
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Funct in MIPS R-Type Instructions (I)

76Harris and Harris, Appendix B: MIPS Instructions

Opcode is 0
in MIPS R-

Type 
instructions.
Funct defines 
the operation



Funct in MIPS R-Type Instructions (II)

77Harris and Harris, Appendix B: MIPS Instructions

◼ Find the complete list of instructions in the appendix



Data Types

◼ An ISA supports one or several data types

◼ LC-3 only supports 2’s complement integers

❑ Negative of a 2’s complement binary value X = NOT(X) + 1

◼ MIPS supports

❑ 2’s complement integers

❑ Unsigned integers

❑ Floating point

◼ Again, tradeoffs are involved

❑ What data types should be supported and what should not be?
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Data Type Tradeoffs

◼ What is the benefit of having more or high-level data types
in the ISA?

◼ What is the disadvantage?

◼ Think compiler/programmer vs. microarchitect

◼ Concept of semantic gap

❑ Data types coupled tightly to the semantic level, or complexity 
of instructions

◼ Example: Early RISC architectures vs. Intel 432

❑ Early RISC machines: Only integer data type

❑ Intel 432: Object data type, capability based machine

❑ VAX: Complex types, e.g., doubly-linked list
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Addressing Modes

◼ An addressing mode is a mechanism for specifying where 
an operand is located

◼ There five addressing modes in LC-3

❑ Immediate or literal (constant)

◼ The operand is in some bits of the instruction

❑ Register

◼ The operand is in one of R0 to R7 registers

❑ Three of them are memory addressing modes

◼ PC-relative

◼ Indirect

◼ Base+offset

◼ In addition, MIPS has pseudo-direct addressing (for j and 
jal), but does not have indirect addressing
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Operate Instructions
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Operate Instructions

◼ In LC-3, there are three operate instructions

❑ NOT is a unary operation (one source operand)

◼ It executes bitwise NOT

❑ ADD and AND are binary operations (two source operands)

◼ ADD is 2’s complement addition

◼ AND is bitwise SR1 & SR2

◼ In MIPS, there are many more

❑ Most of R-type instructions (they are binary operations)

◼ E.g., add, and, nor, xor…

❑ I-type versions (i.e., with one immediate operand) of the R-

type operate instructions

❑ F-type operations, i.e., floating-point operations
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◼ NOT assembly and machine code

NOT in LC-3

83

NOT  R3, R5

LC-3 assembly

Field Values

Machine Code

9 3 5 1 1 1 1 1 1

OP DR SR

1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1

OP DR SR

15 12 11 9 8 6 05

Register file

SR

DR

From 
FSM

There is no NOT in MIPS. How is it implemented?



Operate Instructions

◼ We are already familiar with LC-3’s ADD and AND with 
register mode (R-type in MIPS)

◼ Now let us see the versions with one literal (i.e., immediate) 

operand

◼ Subtraction is another necessary operation

❑ How is it implemented in LC-3 and MIPS?
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Operate Instr. with one Literal in LC-3
◼ ADD and AND

❑ OP = operation
◼ E.g., ADD = 0001 (same OP as the register-mode ADD)

❑ DR ← SR1 + sign-extend(imm5)

◼ E.g., AND = 0101 (same OP as the register-mode AND)
❑ DR ← SR1 AND sign-extend(imm5)

❑ SR1 = source register

❑ DR = destination register

❑ imm5 = Literal or immediate (sign-extend to 16 bits)
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OP DR SR1 1 imm5

4 bits 3 bits 3 bits 5 bits



◼ ADD assembly and machine code 

ADD with one Literal in LC-3
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ADD R1, R4, #-2

LC-3 assembly

Field Values

Machine Code

1 1 4 1 -2

OP DR SR imm5

0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0

OP DR SR imm5

15 12 11 9 8 6 05 4

Register file

SR

DR

From 
FSM

Instruction register

Sign-
extend



Instructions with one Literal in MIPS

◼ I-type
❑ 2 register operands and immediate

◼ Some operate and data movement instructions

❑ opcode = operation

❑ rs = source register

❑ rt = 
◼ destination register in some instructions (e.g., addi, lw)

◼ source register in others (e.g., sw)

❑ imm = Literal or immediate
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opcode rs rt imm

6 bits 5 bits 5 bits 16 bits



◼ Add immediate

Add with one Literal in MIPS
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0 17 16 5

op rs rt imm

addi $s0, $s1, 5

MIPS assembly

Field Values

001000 10001 10010 0000 0000 0000 0101

op rs rt imm

Machine Code

0x22300005

rt ← rs + sign-extend(imm)



Subtract in LC-3

◼ MIPS assembly

◼ LC-3 assembly

◼ Tradeoff in LC-3

❑ More instructions

❑ But, simpler control logic
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a = b + c - d; add $t0, $s0, $s1

sub $s3, $t0, $s2

High-level code MIPS assembly

a = b + c - d; ADD  R2, R0, R1

NOT  R4, R3

ADD  R5, R4, #1

ADD  R6, R2, R5

High-level code LC-3 assembly

2’s 

complement 

of R3



Subtract Immediate

◼ MIPS assembly

◼ LC-3

90

a = b - 3; subi $s1, $s0, 3

High-level code MIPS assembly

Is subi necessary in MIPS?

addi $s1, $s0, -3

MIPS assembly

a = b - 3; ADD R1, R0, #-3

High-level code LC-3 assembly



Data Movement Instructions 

and Addressing Modes
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Data Movement Instructions

◼ In LC-3, there are seven data movement instructions

❑ LD, LDR, LDI, LEA, ST, STR, STI

◼ Format of load and store instructions

❑ Opcode (bits [15:12])

❑ DR or SR (bits [11:9])

❑ Address generation bits (bits [8:0])

❑ Four ways to interpret bits, called addressing modes

◼ PC-Relative Mode

◼ Indirect Mode

◼ Base+offset Mode

◼ Immediate Mode

◼ In MIPS, there are only Base+offset and immediate modes
for load and store instructions
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PC-Relative Addressing Mode

◼ LD (Load) and ST (Store)

❑ OP = opcode

◼ E.g., LD = 0010

◼ E.g., ST = 0011

❑ DR = destination register in LD

❑ SR = source register in ST

❑ LD: DR ← Memory[PC✝ + sign-extend(PCoffset9)]

❑ ST: Memory[PC✝ + sign-extend(PCoffset9)] ← SR

93

OP DR/SR PCoffset9

4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC



◼ LD assembly and machine code 

LD in LC-3
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LD R2, 0x1AF

LC-3 assembly

Field Values

Machine Code

2 2 0x1AF

OP DR PCoffset9

0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 

OP DR PCoffset9

15 12 11 9 8 0

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address 
calculation

2. Memory 
read

3. DR is 
loaded

The memory address is only +255 to -256 

locations away of the LD or ST instruction

Limitation: The PC-relative addressing mode

cannot address far away from the 
instruction



Indirect Addressing Mode

◼ LDI (Load Indirect) and STI (Store Indirect)

❑ OP = opcode

◼ E.g., LDI = 1010

◼ E.g., STI = 1011

❑ DR = destination register in LDI

❑ SR = source register in STI

❑ LDI: DR ← Memory[Memory[PC✝ + sign-extend(PCoffset9)]]

❑ STI: Memory[Memory[PC✝ + sign-extend(PCoffset9)]] ← SR
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OP DR/SR PCoffset9

4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC



◼ LDI assembly and machine code 

LDI in LC-3
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LDI R3, 0x1CC

LC-3 assembly

Field Values

Machine Code

A 3 0x1CC

OP DR PCoffset9

1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 

OP DR PCoffset9

15 12 11 9 8 0

Now the address of the operand can be anywhere in the memory

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address 
calculation

2. Memory 
read

5. DR is 
loaded

4. Memory 
read

3. Loaded 
address 
from MDR 
to MAR



Base+Offset Addressing Mode

◼ LDR (Load Register) and STR (Store Register)

❑ OP = opcode

◼ E.g., LDR = 0110

◼ E.g., STR = 0111

❑ DR = destination register in LDR

❑ SR = source register in STR

❑ LDR: DR ← Memory[BaseR + sign-extend(offset6)]

❑ STR: Memory[BaseR + sign-extend(offset6)] ← SR
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OP DR/SR offset6

4 bits 3 bits 6 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

BaseR

3 bits



◼ LDR assembly and machine code 

LDR in LC-3
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LDR R1, R2, 0x1D

LC-3 assembly

Again, the address of the operand can be anywhere in the memory

1. Address 
calculation

2. Memory 
read

3. DR is 
loaded

Field Values

6 1 0x1D

OP DR offset6

2

BaseR

Machine Code

0 1 1 0 0 0 1 0 1 1 1 0 1

OP DR offset6

15 12 11 9 8 0

0 1 0

BaseR

6 5

Register file

DR

Instruction register

Sign-
extend

BaseR

001 0100110



Base+Offset Addressing Mode in MIPS

◼ In MIPS, lw and sw use base+offset mode (or base 
addressing mode)

◼ imm is the 16-bit offset, which is sign-extended to 32 bits
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A[2] = a; sw $s3, 8($s0)

High-level code MIPS assembly

Memory[$s0 + 8] ← $s3

43 16 19 8

op rs rt imm

Field Values



An Example Program in MIPS and LC-3
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a    = A[0];

c    = a + b - 5;

B[0] = c; 

A = $s0

b = $s2

B = $s1

High-level code MIPS registers

LDR  R5, R0, #0

ADD  R6, R5, R2

ADD  R7, R6, #-5

STR  R7, R1, #0

LC-3 assembly

lw   $t0, 0($s0)

add  $t1, $t0, $s2

addi $t2, $t1, -5

sw   $t2, 0($s1)

MIPS assembly

A = R0

b = R2

B = R1

LC-3 registers



Immediate Addressing Mode

◼ LEA (Load Effective Address)

❑ OP = 1110

❑ DR = destination register 

❑ LEA: DR ← PC✝ + sign-extend(PCoffset9)
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OP DR PCoffset9

4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

What is the difference from PC-Relative addressing mode?

Answer: Instructions with PC-Relative mode access memory, 
but LEA does not → Hence the name Load Effective Address



◼ LEA assembly and machine code 

LEA in LC-3

102

LEA R5, #-3

LC-3 assembly

Field Values

Machine Code

E 5 0x1FD

OP DR PCoffset9

1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 

OP DR PCoffset9

15 12 11 9 8 0

Register file

DR

Instruction register

Sign-
extend

Incremented PC



Immediate Addressing Mode in MIPS

◼ In MIPS, lui (load upper immediate) loads a 16-bit 
immediate into the upper half of a register and sets the 

lower half to 0

◼ It is used to assign 32-bit constants to a register
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a = 0x6d5e4f3c; # $s0 = a

lui $s0, 0x6d5e

ori $s0, 0x4f3c

High-level code MIPS assembly



Addressing Example in LC-3

◼ What is the final value of R3?

104

x30F4

P&P, Chapter 5.3.5



◼ What is the final value of R3?

◼ The final value of R3 is 5

x30F4

Addressing Example in LC-3
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LEA

ADD

ST

AND

ADD

STR

LDI

-3

14

-5

5

14

-9

0

R3 = M[M[PC – 9]] = M[M[0x30FD – 9]] =

R1 = PC – 3 = 0x30F7 – 3 = 0x30F4

R2 = R1 + 14 = 0x30F4 + 14 = 0x3102

M[PC - 5] = M[0x030F4] = 0x3102

R2 = 0

R2 = R2 + 5 = 5

M[R1 + 14] = M[0x30F4 + 14] = M[0x3102] = 5

M[M[0x30F4]] = M[0x3102] = 5

P&P, Chapter 5.3.5



Control Flow Instructions
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Control Flow Instructions

◼ Allow a program to execute out of sequence

◼ Conditional branches and jumps

❑ Conditional branches are used to make decisions

◼ E.g., if-else statement

❑ In LC-3, three condition codes are used

❑ Jumps are used to implement

◼ Loops

◼ Function calls

❑ JMP in LC-3 and j in MIPS
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Condition Codes in LC-3

◼ Each time one GPR (R0-R7) is written, three single-bit registers
are updated

◼ Each of these condition codes are either set (set to 1) or cleared 
(set to 0)

❑ If the written value is negative

◼ N is set, Z and P are cleared

❑ If the written value is zero

◼ Z is set, N and P are cleared

❑ If the written value is positive

◼ P is set, N and Z are cleared

◼ x86 and SPARC are examples of ISAs that use condition codes
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Conditional Branches in LC-3
◼ BRz (Branch if Zero)

❑ n, z, p = which condition code is tested (N, Z, and/or P)
◼ n, z, p: instruction bits to identify the condition codes to be tested
◼ N, Z, P: values of the corresponding condition codes

❑ PCoffset9 = immediate or constant value

❑ if ((n AND N) OR (p AND P) OR (z AND Z))
◼ then PC ← PC✝ + sign-extend(PCoffset9)

❑ Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp
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BRz PCoffset9

0000 n PCoffset9

4 bits 9 bits

z p

✝This is the incremented PC



Conditional Branches in LC-3

◼ BRz

110

BRz 0x0D9

What if n = z = p = 1?*
(i.e., BRnzp)

And what if n = z = p = 0?

Instruction 
register

Program 
Counter

Condition 
registers

n  z  p 

*n, z, p are the instruction bits to identify the condition codes to be tested



Conditional Branches in MIPS
◼ beq (Branch if Equal)

❑ 4 = opcode

❑ rs, rt = source registers

❑ offset = immediate or constant value

❑ if rs == rt
◼ then PC ← PC✝ + sign-extend(offset) * 4

❑ Variations: beq, bne, blez, bgtz
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4 rs rt offset

6 bits 5 bits 5 bits 16 bits

beq $s0, $s1, offset

✝This is the incremented PC



◼ This is an example of tradeoff in the instruction set

❑ The same functionality requires more instructions in LC-3

❑ But, the control logic requires more complexity in MIPS

beq $s0, $s1, offset

Branch If Equal in MIPS and LC-3
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LC-3 assemblyMIPS assembly

NOT  R2, R1

ADD  R3, R2, #1

ADD  R4, R3, R0

BRz offset

Subtract 

(R0 - R1)



What We Learned

◼ The von Neumann model

❑ LC-3: An example von Neumann machine

◼ Instruction Set Architectures: LC-3 and MIPS

❑ Operate instructions

❑ Data movement instructions

❑ Control instructions

◼ Instruction formats

◼ Addressing modes
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Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons
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