
Digital Design & Computer Arch.

Lecture 9: Von Neumann Model &

Instruction Set Architectures

Prof. Onur Mutlu

ETH Zürich

Spring 2021

25 March 2021

Assignment: Required Lecture Video

◼ Why study computer architecture? Why is it important?

◼ Future Computing Platforms: Challenges & Opportunities

◼ Required Assignment

❑ Watch one of Prof. Mutlu’s lectures and analyze either (or both)

❑ https://www.youtube.com/watch?v=kgiZlSOcGFM (May 2017)

❑ https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page summary of one of the lectures and email us

◼ What are your key takeaways?

◼ What did you learn?

◼ What did you like or dislike?

◼ Submit your summary to Moodle – Deadline: April 5
2

https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=421558

Extra Assignment 2: Moore’s Law (I)

◼ Paper review

◼ G.E. Moore. "Cramming more components onto integrated
circuits," Electronics magazine, 1965

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page review

❑ Upload PDF file to Moodle – Deadline: April 5

◼ I strongly recommend that you follow my guidelines for

(paper) review (see next slide)

3

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (II)

◼ Guidelines on how to review papers critically

❑ Guideline slides: pdf ppt

❑ Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

❑ Example reviews on “Main Memory Scaling: Challenges and

Solution Directions” (link to the paper)

◼ Review 1

◼ Review 2

❑ Example review on “Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)

◼ Review 1

4

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

Agenda for Today & Next Few Lectures

◼ The von Neumann model

◼ LC-3: An example of von Neumann machine

◼ LC-3 and MIPS Instruction Set Architectures

◼ LC-3 and MIPS assembly and programming

◼ Introduction to microarchitecture and single-cycle

microarchitecture

◼ Multi-cycle microarchitecture

5

Required Readings

◼ This week
❑ Von Neumann Model, LC-3, and MIPS

◼ P&P, Chapters 4, 5

◼ H&H, Chapter 6
◼ P&P, Appendices A and C (ISA and microarchitecture of LC-3)

◼ H&H, Appendix B (MIPS instructions)

❑ Programming
◼ P&P, Chapter 6

❑ Recommended: H&H Chapter 5, especially 5.1, 5.2, 5.4, 5.5

◼ Next week
❑ Introduction to microarchitecture and single-cycle microarchitecture

◼ H&H, Chapter 7.1-7.3
◼ P&P, Appendices A and C

❑ Multi-cycle microarchitecture
◼ H&H, Chapter 7.4

◼ P&P, Appendices A and C

6

What Will We Learn Today?

◼ The von Neumann model

❑ LC-3: An example von Neumann machine

◼ Instruction Set Architectures: LC-3 and MIPS

❑ Operate instructions

❑ Data movement instructions

❑ Control instructions

◼ Instruction formats

◼ Addressing modes

7

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

The Von Neumann Model

8

Basic Elements of a Computer

◼ In past lectures we learned

❑ Combinational circuits

❑ Sequential circuits

◼ With them, we can build

❑ Decision elements

❑ Storage elements

◼ Basic elements of a computer

◼ To get a task done by a computer we need

❑ Computer

❑ Data

❑ Program: A set of instructions

◼ Instruction: the smallest piece of work in a computer

9

The Von Neumann Model
◼ Let’s start building the computer

◼ In order to build a computer we need a model

◼ John von Neumann proposed a fundamental model in 1946
◼ It consists of 5 parts

❑ Memory
❑ Processing unit
❑ Input
❑ Output
❑ Control unit

◼ Throughout this lecture, we consider two examples of the von
Neumann model
❑ LC-3
❑ MIPS

10

Burks, Goldstein, von Neumann,

“Preliminary discussion of the logical design
of an electronic computing instrument,” 1946.

The Von Neumann Model

11

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

The Von Neumann Model

12

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

Memory
◼ The memory stores

❑ Data
❑ Programs

◼ The memory contains bits
❑ Bits are grouped into bytes (8 bits) and words (e.g., 8, 16, 32 bits)

◼ How the bits are accessed determines the addressability
❑ E.g., word-addressable
❑ E.g., 8-bit addressable (or byte-addressable)

◼ The total number of addresses is the address space
❑ In LC-3, the address space is 216

◼ 16-bit addresses

❑ In MIPS, the address space is 232

◼ 32-bit addresses

❑ In x86-64, the address space is (up to) 248

◼ 48-bit addresses

13

Word-Addressable Memory

◼ Each data word has a unique address

❑ In MIPS, a unique address for each 32-bit data word

❑ In LC-3, a unique address for each 16-bit data word

14

00000000

00000001

00000002

00000003

.
 .

.

Word Address

8 9 A B C D E F

F 2 F 1 F 0 F 7

1 3 C 8 1 7 5 5

D 1 6 1 7 A 1 C Word 3

Word 2

Word 1

Word 0

.
 .

.

.
 .

.

Data MIPS memory

◼ Each byte has a unique address

❑ Actually, MIPS is byte-addressable

❑ LC-3b (updated version of LC-3) is byte-addressable, too

Word 3

Word 2

Word 1

Word 0

.
 .

.

.
 .

.

Data

8 9 A B C D E F

F 2 F 1 F 0 F 7

1 3 C 8 1 7 5 5

D 1 6 1 7 A 1 C

MIPS memory

Byte-Addressable Memory

15

00000000

00000004

00000008

0000000C

.
 .

.

Byte Address

of the Word

How are these four bytes
addressed?

Big Endian vs Little Endian

◼ Jonathan Swift’s Gulliver’s Travels

❑ Little Endians broke their eggs on the little end of the egg

❑ Big Endians broke their eggs on the big end of the egg

16

Big Endian vs Little Endian

17

0

4

8

C

.
 .

.

Word

Address

.
 .

.

Byte

Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C

.
 .

.
Byte

Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSBMSB
(Most Significant Byte)

LSB
(Least Significant Byte)

Big Endian vs Little Endian

18

0

4

8

C

.
 .

.

Word

Address

.
 .

.

Byte

Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C

.
 .

.
Byte

Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSB

Does this really matter?

Answer: No, it is a convention

Qualified answer: No, except when one big-

endian system and one little-endian system

have to share data

MSB
(Most Significant Byte)

LSB
(Least Significant Byte)

Accessing Memory: MAR and MDR

◼ There are two ways of accessing memory
❑ Reading or loading

❑ Writing or storing

◼ Two registers are necessary to access memory

❑ Memory Address Register (MAR)

❑ Memory Data Register (MDR)

◼ To read

❑ Step 1: Load the MAR with the address

❑ Step 2: Data is placed in MDR

◼ To write
❑ Step 1: Load the MAR with the address and the MDR with the data

❑ Step 2: Activate Write Enable signal

19

The Von Neumann Model

20

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

Processing Unit

◼ The processing unit can consist of many functional units

◼ We start with a simple Arithmetic and Logic Unit (ALU),
which executes computations

❑ LC-3: ADD, AND, NOT (XOR in LC-3b)

❑ MIPS: add, sub, mult, and, nor, sll, slr, slt…

◼ The ALU processes quantities that are referred to as words

❑ Word length in LC-3 is 16 bits

❑ In MIPS it is 32 bits

◼ Temporary storage: Registers

❑ E.g., to calculate (A+B)*C, the intermediate result of A+B is
stored in a register

21

Registers

◼ Memory is big but slow

◼ Registers

❑ Ensure fast access to operands

❑ Typically one register contains one word

◼ Register set or file

❑ LC-3 has 8 general purpose registers (GPR)

◼ R0 to R7: 3-bit register number

◼ Register size = Word length = 16 bits

❑ MIPS has 32 registers

◼ Register size = Word length = 32 bits

22

MIPS Register File

23

Name Register Number Usage

$0 0 the constant value 0

$at 1 assembler temporary

$v0-$v1 2-3 function return value

$a0-$a3 4-7 function arguments

$t0-$t7 8-15 temporary variables

$s0-$s7 16-23 saved variables

$t8-$t9 24-25 temporary variables

$k0-$k1 26-27 OS temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 function return address

The Von Neumann Model

24

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

Input and Output

◼ Many devices can be used for input and output

◼ They are called peripherals

❑ Input

◼ Keyboard

◼ Mouse

◼ Scanner

◼ Disks

◼ Etc.

❑ Output

◼ Monitor

◼ Printer

◼ Disks

◼ Etc.

❑ In LC-3, we consider keyboard and monitor

25

The Von Neumann Model

26

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

Control Unit

◼ The control unit is similar to the conductor of an orchestra

◼ It conducts the step-by-step process of executing (every
instruction in) a program

◼ It keeps track of the instruction being executed with an
instruction register (IR), which contains the instruction

◼ Another register contains the address of the next

instruction to execute. It is called program counter (PC) or
instruction pointer (IP)

27

Programmer Visible (Architectural) State

28

M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter

memory address
of the current instruction

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state

The Von Neumann Model

29

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

Von Neumann Model: Two Key Properties

◼ Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

◼ Stored program

❑ Instructions stored in a linear memory array

❑ Memory is unified between instructions and data

◼ The interpretation of a stored value depends on the control signals

◼ Sequential instruction processing

❑ One instruction processed (fetched, executed, completed) at a time

❑ Program counter (instruction pointer) identifies the current instruction

❑ Program counter is advanced sequentially except for control transfer
instructions

30

LC-3: A Von Neumann Machine

31

LC-3: A Von Neumann Machine

32

Scanned by CamScanner

Control signals

Data

ALU: 2 inputs, 1 output

Memory Data

Register

Memory Address

Register
16-bit

addressable

Keyboard

KBDR (data), KBSR (status)

Monitor

DDR (data), DSR (status)

8 General Purpose

Registers (GPR)

Finite State Machine

(for Generating Control Signals)

Instruction

Register

Program

Counter

ALU operation

GateALU

Stored Program & Sequential Execution
◼ Instructions and data are stored in memory

❑ Typically the instruction length is the word length

◼ The processor fetches instructions from memory sequentially
❑ Fetches one instruction
❑ Decodes and executes the instruction
❑ Continues with the next instruction

◼ The address of the current instruction is stored in the program
counter (PC)

❑ If word-addressable memory, the processor increments the PC by 1
(in LC-3)

❑ If byte-addressable memory, the processor increments the PC by the
word length (4 in MIPS)
◼ In MIPS the OS typically sets the PC to 0x00400000 (start of a

program)

33

◼ A sample MIPS program

❑ 4 instructions stored in consecutive words in memory

◼ No need to understand the program now. We will get back to it

A Sample Program Stored in Memory

34

.
 .

.

Instructions

8 C 0 A 0 0 2 0

0 2 3 2 8 0 2 0

2 2 6 8 F F F 4

0 1 6 D 4 0 2 2

.
 .

.

00400000

00400004

00400008

0040000C

.
 .

.

Address

.
 .

.

lw $t2, 32($0)

add $s0, $s1, $s2

addi $t0, $s3, -12

sub $t0, $t3, $t5

MIPS assembly

0x8C0A0020

0x02328020

0x2268FFF4

0x016D4022

Machine code

← PC

The Instruction

◼ An instruction the most basic unit of computer processing

❑ Instructions are words in the language of a computer

❑ Instruction Set Architecture (ISA) is the vocabulary

◼ The language of the computer can be written as

❑ Machine language: Computer-readable representation (that is,
0’s and 1’s)

❑ Assembly language: Human-readable representation

◼ We will look at LC-3 instructions and MIPS instructions

◼ Let us start with some example instructions

35

Instruction Types

◼ There are three main types of instructions

◼ Operate instructions

❑ Execute instructions in the ALU

◼ Data movement instructions

❑ Read from or write to memory

◼ Control flow instructions

❑ Change the sequence of execution

36

An Example Operate Instruction

◼ Addition

❑ add: mnemonic to indicate the operation to perform

❑ b, c: source operands

❑ a: destination operand

❑ a ← b + c

37

a = b + c; add a, b, c

High-level code Assembly

Registers

◼ We map variables to registers

38

add a, b, c b = R1

c = R2

a = R0

Assembly LC-3 registers

b = $s1

c = $s2

a = $s0

MIPS registers

◼ Addition

From Assembly to Machine Code in LC-3

39

ADD R0, R1, R2

LC-3 assembly

Field Values

Machine Code

0x1042
Machine Code, in short (hexadecimal)

1 0 1 0 00 2

OP DR SR1 SR2

0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0

OP DR SR1 SR2

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

Instruction Format (or Encoding)

◼ LC-3

❑ OP = opcode (what the instruction does)

◼ E.g., ADD = 0001

❑ Semantics: DR ← SR1 + SR2

◼ E.g., AND = 0101

❑ Semantics: DR ← SR1 AND SR2

❑ SR1, SR2 = source registers

❑ DR = destination register
40

OP DR SR1 0 00 SR2

4 bits 3 bits 3 bits 3 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

◼ Addition

From Assembly to Machine Code in MIPS

41

0 17 18 16 0 32

op rs rt rd shamt funct

add $s0, $s1, $s2

MIPS assembly

Field Values

0x02328020

000000 10001 10010 10000 00000 100000

op rs rt rd shamt funct

Machine Code

15 11 10 6 05162021252631

rd ← rs + rt

Instruction Formats: R-Type in MIPS

◼ R-type
❑ 3 register operands

◼ MIPS

❑ 0 = opcode

❑ rs, rt = source registers

❑ rd = destination register

❑ shamt = shift amount (only shift operations)

❑ funct = operation in R-type instructions

42

0 rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Reading Operands from Memory

◼ With the operate instructions, such as addition, we tell the
computer to execute arithmetic (or logic) computations in

the ALU

◼ We also need instructions to access the operands from
memory

◼ Next, we see how to read (or load) from memory

◼ Writing (or storing) is performed in a similar way, but we
will talk about that later

43

Reading Word-Addressable Memory

◼ Load word

❑ load: mnemonic to indicate the load word operation

❑ A: base address

❑ i: offset

◼ E.g., immediate or literal (a constant)

❑ a: destination operand

❑ Semantics: a ← Memory[A + i]

44

a = A[i]; load a, A, i

High-level code Assembly

Load Word in LC-3 and MIPS

◼ LC-3 assembly

◼ MIPS assembly

45

a = A[2]; LDR R3, R0, #2

High-level code LC-3 assembly

R3 ← Memory[R0 + 2]

a = A[2]; lw $s3, 2($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 2]

These instructions use a particular addressing mode
(i.e., the way the address is calculated), called base+offset

Load Word in Byte-Addressable MIPS

◼ MIPS assembly

◼ Byte address is calculated as: word_address * bytes/word

❑ 4 bytes/word in MIPS

❑ If LC-3 were byte-addressable (i.e., LC-3b), 2 bytes/word

46

a = A[2]; lw $s3, 8($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 8]

◼ LC-3

◼ MIPS

Instruction Format With Immediate

47

6 3 0 4

OP DR BaseR offset6

LDR R3, R0, #4

LC-3 assembly

Field Values

35 16 19 8

op rs rt imm

lw $s3, 8($s0)

MIPS assembly

Field Values

I-Type
15 0162021252631

5 0689111215

How are These Instructions Executed?

◼ By using instructions we can speak the language of the
computer

◼ Thus, we now know how to tell the computer to

❑ Execute computations in the ALU by using, for instance, an
addition

❑ Access operands from memory by using the load word
instruction

◼ But, how are these instructions executed on the computer?

❑ The process of executing an instruction is called is the
instruction cycle

48

The Instruction Cycle

◼ The instruction cycle is a sequence of steps or phases, that an
instruction goes through to be executed
❑ FETCH

❑ DECODE

❑ EVALUATE ADDRESS

❑ FETCH OPERANDS

❑ EXECUTE

❑ STORE RESULT

◼ Not all instructions have the six phases

❑ LDR does not require EXECUTE

❑ ADD does not require EVALUATE ADDRESS

❑ Intel x86 instruction ADD [eax], edx is an example of instruction
with six phases

49

After STORE RESULT, a New FETCH

❑ FETCH

❑ DECODE

❑ EVALUATE ADDRESS

❑ FETCH OPERANDS

❑ EXECUTE

❑ STORE RESULT

50

FETCH

◼ The FETCH phase obtains the instruction from memory and
loads it into the instruction register

◼ This phase is common to every instruction type

◼ Complete description

❑ Step 1: Load the MAR with the contents of the PC, and

simultaneously increment the PC

❑ Step 2: Interrogate memory. This results the instruction to be
placed in the MDR

❑ Step 3: Load the IR with the contents of the MDR

51

FETCH in LC-3

52

Scanned by CamScanner

Step 1: Load
MAR and

increment PC

Step 2: Access
memory

Step 3: Load IR
with the content

of MDR

DECODE

◼ The DECODE phase identifies the instruction

◼ Recall the decoder (Lecture 5, Slides 47-48)

❑ A 4-to-16 decoder identifies which of the 16 opcodes is going
to be processed

◼ The input is the four bits IR[15:12]

◼ The remaining 12 bits identify what else is needed to

process the instruction

53

DECODE in LC-3

54

Scanned by CamScanner

DECODE
identifies the

instruction to be
processed

EVALUATE ADDRESS

◼ The EVALUATE ADDRESS phase computes the address of
the memory location that is needed to process the

instruction

◼ This phase is necessary in LDR

❑ It computes the address of the data word that is to be read
from memory

❑ By adding an offset to the content of a register

◼ But not necessary in ADD

55

EVALUATE ADDRESS in LC-3

56

Scanned by CamScanner

LDR calculates
the address by

adding a
register and an

immediate

ADD

FETCH OPERANDS

◼ The FETCH OPERANDS phase obtains the source operands
needed to process the instruction

◼ In LDR

❑ Step 1: Load MAR with the address calculated in EVALUATE
ADDRESS

❑ Step 2: Read memory, placing source operand in MDR

◼ In ADD

❑ Obtain the source operands from the register file

❑ In most current microprocessors, this phase can be done at
the same time the instruction is being decoded

57

FETCH OPERANDS in LC-3

58

Scanned by CamScanner

LDR loads MAR
(step 1), and

places the
results in MDR

(step 2)

EXECUTE

◼ The EXECUTE phase executes the instruction

❑ In ADD, it performs addition in the ALU

59

EXECUTE in LC-3

60

Scanned by CamScanner

ADD adds SR1
and SR2

STORE RESULT

◼ The STORE RESULT phase writes to the designated
destination

◼ Once STORE RESULT is completed, a new instruction cycle

starts (with the FETCH phase)

61

STORE RESULT in LC-3

62

Scanned by CamScanner

LDR loads MDR
into DR

The Instruction Cycle

❑ FETCH

❑ DECODE

❑ EVALUATE ADDRESS

❑ FETCH OPERANDS

❑ EXECUTE

❑ STORE RESULT

63

Changing the Sequence of Execution

◼ A computer program executes in sequence (i.e., in program
order)

❑ First instruction, second instruction, third instruction and so on

◼ Unless we change the sequence of execution

◼ Control instructions allow a program to execute out of
sequence

❑ They can change the PC by loading it during the EXECUTE

phase

❑ That wipes out the incremented PC (loaded during the FETCH
phase)

64

Jump in LC-3

◼ Unconditional branch or jump

◼ LC-3

❑ BaseR = Base register

❑ PC ← R2 (Register identified by BaseR)

❑ Variations

◼ RET: special case of JMP where BaseR = R7

◼ JSR, JSRR: jump to subroutine

65

JMP R2

1100 000 000000

4 bits

BaseR

3 bits

This is register
addressing mode

Jump in MIPS

◼ Unconditional branch or jump

◼ MIPS

❑ 2 = opcode

❑ target = target address

❑ PC ← PC✝[31:28] | sign-extend(target) * 4

❑ Variations

◼ jal: jump and link (function calls)

◼ jr: jump register

66

2 target

6 bits 26 bits

j target

J-Type

jr $s0

j uses pseudo-
direct addressing

mode

✝This is the incremented PC

jr uses register
addressing mode

LC-3 Data Path

67

Scanned by CamScanner

PC

Multiplexer

GatePC

LD.MAR

GateMDR

LD.IR

Opcodes in LC-3

68

Control of the Instruction Cycle
◼ State 1

❑ The FSM asserts GatePC and
LD.MAR

❑ It selects input (+1) in PCMUX and
asserts LD.PC

◼ State 2
❑ MDR is loaded with the instruction

◼ State 3
❑ The FSM asserts GateMDR and

LD.IR

◼ State 4
❑ The FSM goes to next state

depending on opcode

◼ State 63
❑ JMP loads register into PC

◼ Full state diagram in Patt&Pattel,
Appendix C

69

The Instruction Cycle

❑ FETCH

❑ DECODE

❑ EVALUATE ADDRESS

❑ FETCH OPERANDS

❑ EXECUTE

❑ STORE RESULT

70

LC-3 and MIPS

Instruction Set Architectures

71

The Instruction Set

◼ It defines opcodes, data types, and addressing modes

◼ ADD and LDR have been our first examples

72

ADD

1 0 1 0 00 2

OP DR SR1 SR2

6 3 0 4

OP DR BaseR offset6

LDR

Register mode

Base+offset mode

The Instruction Set Architecture
◼ The ISA is the interface between what the software commands

and what the hardware carries out

◼ The ISA specifies
❑ The memory organization

◼ Address space (LC-3: 216, MIPS: 232)
◼ Addressability (LC-3: 16 bits, MIPS: 32 bits)

◼ Word- or Byte-addressable

❑ The register set
◼ R0 to R7 in LC-3

◼ 32 registers in MIPS

❑ The instruction set
◼ Opcodes
◼ Data types

◼ Addressing modes

73

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Opcodes

◼ Large or small sets of opcodes could be defined

❑ E.g, HP Precision Architecture: an instruction for A*B+C

❑ E.g, x86 ISA: multimedia extensions (MMX), later SSE and AVX

❑ E.g, VAX ISA: opcode to save all information of one program
prior to switching to another program

◼ Tradeoffs are involved

❑ Hardware complexity vs. software complexity

◼ In LC-3 and in MIPS there are three types of opcodes

❑ Operate

❑ Data movement

❑ Control

74

Opcodes in LC-3b

75

Funct in MIPS R-Type Instructions (I)

76Harris and Harris, Appendix B: MIPS Instructions

Opcode is 0
in MIPS R-

Type
instructions.
Funct defines
the operation

Funct in MIPS R-Type Instructions (II)

77Harris and Harris, Appendix B: MIPS Instructions

◼ Find the complete list of instructions in the appendix

Data Types

◼ An ISA supports one or several data types

◼ LC-3 only supports 2’s complement integers

❑ Negative of a 2’s complement binary value X = NOT(X) + 1

◼ MIPS supports

❑ 2’s complement integers

❑ Unsigned integers

❑ Floating point

◼ Again, tradeoffs are involved

❑ What data types should be supported and what should not be?

78

Data Type Tradeoffs

◼ What is the benefit of having more or high-level data types
in the ISA?

◼ What is the disadvantage?

◼ Think compiler/programmer vs. microarchitect

◼ Concept of semantic gap

❑ Data types coupled tightly to the semantic level, or complexity
of instructions

◼ Example: Early RISC architectures vs. Intel 432

❑ Early RISC machines: Only integer data type

❑ Intel 432: Object data type, capability based machine

❑ VAX: Complex types, e.g., doubly-linked list
79

Addressing Modes

◼ An addressing mode is a mechanism for specifying where
an operand is located

◼ There five addressing modes in LC-3

❑ Immediate or literal (constant)

◼ The operand is in some bits of the instruction

❑ Register

◼ The operand is in one of R0 to R7 registers

❑ Three of them are memory addressing modes

◼ PC-relative

◼ Indirect

◼ Base+offset

◼ In addition, MIPS has pseudo-direct addressing (for j and
jal), but does not have indirect addressing

80

Operate Instructions

81

Operate Instructions

◼ In LC-3, there are three operate instructions

❑ NOT is a unary operation (one source operand)

◼ It executes bitwise NOT

❑ ADD and AND are binary operations (two source operands)

◼ ADD is 2’s complement addition

◼ AND is bitwise SR1 & SR2

◼ In MIPS, there are many more

❑ Most of R-type instructions (they are binary operations)

◼ E.g., add, and, nor, xor…

❑ I-type versions (i.e., with one immediate operand) of the R-

type operate instructions

❑ F-type operations, i.e., floating-point operations
82

◼ NOT assembly and machine code

NOT in LC-3

83

NOT R3, R5

LC-3 assembly

Field Values

Machine Code

9 3 5 1 1 1 1 1 1

OP DR SR

1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1

OP DR SR

15 12 11 9 8 6 05

Register file

SR

DR

From
FSM

There is no NOT in MIPS. How is it implemented?

Operate Instructions

◼ We are already familiar with LC-3’s ADD and AND with
register mode (R-type in MIPS)

◼ Now let us see the versions with one literal (i.e., immediate)

operand

◼ Subtraction is another necessary operation

❑ How is it implemented in LC-3 and MIPS?

84

Operate Instr. with one Literal in LC-3
◼ ADD and AND

❑ OP = operation
◼ E.g., ADD = 0001 (same OP as the register-mode ADD)

❑ DR ← SR1 + sign-extend(imm5)

◼ E.g., AND = 0101 (same OP as the register-mode AND)
❑ DR ← SR1 AND sign-extend(imm5)

❑ SR1 = source register

❑ DR = destination register

❑ imm5 = Literal or immediate (sign-extend to 16 bits)

85

OP DR SR1 1 imm5

4 bits 3 bits 3 bits 5 bits

◼ ADD assembly and machine code

ADD with one Literal in LC-3

86

ADD R1, R4, #-2

LC-3 assembly

Field Values

Machine Code

1 1 4 1 -2

OP DR SR imm5

0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0

OP DR SR imm5

15 12 11 9 8 6 05 4

Register file

SR

DR

From
FSM

Instruction register

Sign-
extend

Instructions with one Literal in MIPS

◼ I-type
❑ 2 register operands and immediate

◼ Some operate and data movement instructions

❑ opcode = operation

❑ rs = source register

❑ rt =
◼ destination register in some instructions (e.g., addi, lw)

◼ source register in others (e.g., sw)

❑ imm = Literal or immediate

87

opcode rs rt imm

6 bits 5 bits 5 bits 16 bits

◼ Add immediate

Add with one Literal in MIPS

88

0 17 16 5

op rs rt imm

addi $s0, $s1, 5

MIPS assembly

Field Values

001000 10001 10010 0000 0000 0000 0101

op rs rt imm

Machine Code

0x22300005

rt ← rs + sign-extend(imm)

Subtract in LC-3

◼ MIPS assembly

◼ LC-3 assembly

◼ Tradeoff in LC-3

❑ More instructions

❑ But, simpler control logic

89

a = b + c - d; add $t0, $s0, $s1

sub $s3, $t0, $s2

High-level code MIPS assembly

a = b + c - d; ADD R2, R0, R1

NOT R4, R3

ADD R5, R4, #1

ADD R6, R2, R5

High-level code LC-3 assembly

2’s

complement

of R3

Subtract Immediate

◼ MIPS assembly

◼ LC-3

90

a = b - 3; subi $s1, $s0, 3

High-level code MIPS assembly

Is subi necessary in MIPS?

addi $s1, $s0, -3

MIPS assembly

a = b - 3; ADD R1, R0, #-3

High-level code LC-3 assembly

Data Movement Instructions

and Addressing Modes

91

Data Movement Instructions

◼ In LC-3, there are seven data movement instructions

❑ LD, LDR, LDI, LEA, ST, STR, STI

◼ Format of load and store instructions

❑ Opcode (bits [15:12])

❑ DR or SR (bits [11:9])

❑ Address generation bits (bits [8:0])

❑ Four ways to interpret bits, called addressing modes

◼ PC-Relative Mode

◼ Indirect Mode

◼ Base+offset Mode

◼ Immediate Mode

◼ In MIPS, there are only Base+offset and immediate modes
for load and store instructions

92

PC-Relative Addressing Mode

◼ LD (Load) and ST (Store)

❑ OP = opcode

◼ E.g., LD = 0010

◼ E.g., ST = 0011

❑ DR = destination register in LD

❑ SR = source register in ST

❑ LD: DR ← Memory[PC✝ + sign-extend(PCoffset9)]

❑ ST: Memory[PC✝ + sign-extend(PCoffset9)] ← SR

93

OP DR/SR PCoffset9

4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

◼ LD assembly and machine code

LD in LC-3

94

LD R2, 0x1AF

LC-3 assembly

Field Values

Machine Code

2 2 0x1AF

OP DR PCoffset9

0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1

OP DR PCoffset9

15 12 11 9 8 0

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address
calculation

2. Memory
read

3. DR is
loaded

The memory address is only +255 to -256

locations away of the LD or ST instruction

Limitation: The PC-relative addressing mode

cannot address far away from the
instruction

Indirect Addressing Mode

◼ LDI (Load Indirect) and STI (Store Indirect)

❑ OP = opcode

◼ E.g., LDI = 1010

◼ E.g., STI = 1011

❑ DR = destination register in LDI

❑ SR = source register in STI

❑ LDI: DR ← Memory[Memory[PC✝ + sign-extend(PCoffset9)]]

❑ STI: Memory[Memory[PC✝ + sign-extend(PCoffset9)]] ← SR

95

OP DR/SR PCoffset9

4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

◼ LDI assembly and machine code

LDI in LC-3

96

LDI R3, 0x1CC

LC-3 assembly

Field Values

Machine Code

A 3 0x1CC

OP DR PCoffset9

1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0

OP DR PCoffset9

15 12 11 9 8 0

Now the address of the operand can be anywhere in the memory

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address
calculation

2. Memory
read

5. DR is
loaded

4. Memory
read

3. Loaded
address
from MDR
to MAR

Base+Offset Addressing Mode

◼ LDR (Load Register) and STR (Store Register)

❑ OP = opcode

◼ E.g., LDR = 0110

◼ E.g., STR = 0111

❑ DR = destination register in LDR

❑ SR = source register in STR

❑ LDR: DR ← Memory[BaseR + sign-extend(offset6)]

❑ STR: Memory[BaseR + sign-extend(offset6)] ← SR

97

OP DR/SR offset6

4 bits 3 bits 6 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

BaseR

3 bits

◼ LDR assembly and machine code

LDR in LC-3

98

LDR R1, R2, 0x1D

LC-3 assembly

Again, the address of the operand can be anywhere in the memory

1. Address
calculation

2. Memory
read

3. DR is
loaded

Field Values

6 1 0x1D

OP DR offset6

2

BaseR

Machine Code

0 1 1 0 0 0 1 0 1 1 1 0 1

OP DR offset6

15 12 11 9 8 0

0 1 0

BaseR

6 5

Register file

DR

Instruction register

Sign-
extend

BaseR

001 0100110

Base+Offset Addressing Mode in MIPS

◼ In MIPS, lw and sw use base+offset mode (or base
addressing mode)

◼ imm is the 16-bit offset, which is sign-extended to 32 bits

99

A[2] = a; sw $s3, 8($s0)

High-level code MIPS assembly

Memory[$s0 + 8] ← $s3

43 16 19 8

op rs rt imm

Field Values

An Example Program in MIPS and LC-3

100

a = A[0];

c = a + b - 5;

B[0] = c;

A = $s0

b = $s2

B = $s1

High-level code MIPS registers

LDR R5, R0, #0

ADD R6, R5, R2

ADD R7, R6, #-5

STR R7, R1, #0

LC-3 assembly

lw $t0, 0($s0)

add $t1, $t0, $s2

addi $t2, $t1, -5

sw $t2, 0($s1)

MIPS assembly

A = R0

b = R2

B = R1

LC-3 registers

Immediate Addressing Mode

◼ LEA (Load Effective Address)

❑ OP = 1110

❑ DR = destination register

❑ LEA: DR ← PC✝ + sign-extend(PCoffset9)

101

OP DR PCoffset9

4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

What is the difference from PC-Relative addressing mode?

Answer: Instructions with PC-Relative mode access memory,
but LEA does not → Hence the name Load Effective Address

◼ LEA assembly and machine code

LEA in LC-3

102

LEA R5, #-3

LC-3 assembly

Field Values

Machine Code

E 5 0x1FD

OP DR PCoffset9

1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1

OP DR PCoffset9

15 12 11 9 8 0

Register file

DR

Instruction register

Sign-
extend

Incremented PC

Immediate Addressing Mode in MIPS

◼ In MIPS, lui (load upper immediate) loads a 16-bit
immediate into the upper half of a register and sets the

lower half to 0

◼ It is used to assign 32-bit constants to a register

103

a = 0x6d5e4f3c; # $s0 = a

lui $s0, 0x6d5e

ori $s0, 0x4f3c

High-level code MIPS assembly

Addressing Example in LC-3

◼ What is the final value of R3?

104

x30F4

P&P, Chapter 5.3.5

◼ What is the final value of R3?

◼ The final value of R3 is 5

x30F4

Addressing Example in LC-3

105

LEA

ADD

ST

AND

ADD

STR

LDI

-3

14

-5

5

14

-9

0

R3 = M[M[PC – 9]] = M[M[0x30FD – 9]] =

R1 = PC – 3 = 0x30F7 – 3 = 0x30F4

R2 = R1 + 14 = 0x30F4 + 14 = 0x3102

M[PC - 5] = M[0x030F4] = 0x3102

R2 = 0

R2 = R2 + 5 = 5

M[R1 + 14] = M[0x30F4 + 14] = M[0x3102] = 5

M[M[0x30F4]] = M[0x3102] = 5

P&P, Chapter 5.3.5

Control Flow Instructions

106

Control Flow Instructions

◼ Allow a program to execute out of sequence

◼ Conditional branches and jumps

❑ Conditional branches are used to make decisions

◼ E.g., if-else statement

❑ In LC-3, three condition codes are used

❑ Jumps are used to implement

◼ Loops

◼ Function calls

❑ JMP in LC-3 and j in MIPS

107

Condition Codes in LC-3

◼ Each time one GPR (R0-R7) is written, three single-bit registers
are updated

◼ Each of these condition codes are either set (set to 1) or cleared
(set to 0)

❑ If the written value is negative

◼ N is set, Z and P are cleared

❑ If the written value is zero

◼ Z is set, N and P are cleared

❑ If the written value is positive

◼ P is set, N and Z are cleared

◼ x86 and SPARC are examples of ISAs that use condition codes

108

Conditional Branches in LC-3
◼ BRz (Branch if Zero)

❑ n, z, p = which condition code is tested (N, Z, and/or P)
◼ n, z, p: instruction bits to identify the condition codes to be tested
◼ N, Z, P: values of the corresponding condition codes

❑ PCoffset9 = immediate or constant value

❑ if ((n AND N) OR (p AND P) OR (z AND Z))
◼ then PC ← PC✝ + sign-extend(PCoffset9)

❑ Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp

109

BRz PCoffset9

0000 n PCoffset9

4 bits 9 bits

z p

✝This is the incremented PC

Conditional Branches in LC-3

◼ BRz

110

BRz 0x0D9

What if n = z = p = 1?*
(i.e., BRnzp)

And what if n = z = p = 0?

Instruction
register

Program
Counter

Condition
registers

n z p

*n, z, p are the instruction bits to identify the condition codes to be tested

Conditional Branches in MIPS
◼ beq (Branch if Equal)

❑ 4 = opcode

❑ rs, rt = source registers

❑ offset = immediate or constant value

❑ if rs == rt
◼ then PC ← PC✝ + sign-extend(offset) * 4

❑ Variations: beq, bne, blez, bgtz

111

4 rs rt offset

6 bits 5 bits 5 bits 16 bits

beq $s0, $s1, offset

✝This is the incremented PC

◼ This is an example of tradeoff in the instruction set

❑ The same functionality requires more instructions in LC-3

❑ But, the control logic requires more complexity in MIPS

beq $s0, $s1, offset

Branch If Equal in MIPS and LC-3

112

LC-3 assemblyMIPS assembly

NOT R2, R1

ADD R3, R2, #1

ADD R4, R3, R0

BRz offset

Subtract

(R0 - R1)

What We Learned

◼ The von Neumann model

❑ LC-3: An example von Neumann machine

◼ Instruction Set Architectures: LC-3 and MIPS

❑ Operate instructions

❑ Data movement instructions

❑ Control instructions

◼ Instruction formats

◼ Addressing modes

113

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Digital Design & Computer Arch.

Lecture 9: Von Neumann Model &

Instruction Set Architectures

Prof. Onur Mutlu

ETH Zürich

Spring 2021

25 March 2021

