
Digital Design and Computer Architecture (252-0028-00L), Spring 2021

Optional HW 3: Microarchitecture, ISA, and Performance Evaluation

Instructor: Prof. Onur Mutlu
TAs: Juan Gomez-Luna, Jisung Park, Hasan Hassan, Mohammed Alser, Lois Orosa, Minesh Patel,

Jawad Haj-Yahya, Haiyu Mao, Behzad Salami, Jeremie Kim, Giray Yaglikci, Can Firtina,
Geraldo De Oliveira Junior, Rahul Bera, Konstantinos Kanellopoulos, Nika Mansouri, Gagandeep Singh

Released: Thursday, April 15, 2021

1 Big versus Little Endian Addressing

Consider the 32-bit hexadecimal number 0xcafe2b3a.

1. What is the binary representation of this number in little endian format? Please clearly mark the bytes
and number them from low (0) to high (3).

2. What is the binary representation of this number in big endian format? Please clearly mark the bytes
and number them from low (0) to high (3).

1/27

2 The MIPS ISA

2.1 Warmup: Computing a Fibonacci Number
The Fibonacci number Fn is recursively defined as

F (n) = F (n− 1) + F (n− 2),

where F (1) = 1 and F (2) = 1. So, F (3) = F (2) + F (1) = 1 + 1 = 2, and so on. Write the MIPS assembly
for the fib(n) function, which computes the Fibonacci number F (n):

int fib(int n)
{
int a = 0;
int b = 1;
int c = a + b;
while (n > 1) {
c = a + b;
a = b;
b = c;
n--;

}
return c;

}

Remember to follow MIPS calling convention and its register usage (just for your reference, you may not
need to use all of these registers):
• The argument n is passed in register $4.
• The result (i.e., c) should be returned in $2.
• $8 to $15 are caller-saved temporary registers.
• $16 to $23 are callee-saved temporary registers.
• $29 is the stack pointer register.
• $31 stores the return address.

Note: A summary of the MIPS ISA is provided at the end of this handout.

2/27

3/27

2.2 MIPS Assembly for REP MOVSB
MIPS is a simple ISA. Complex ISAs—such as Intel’s x86—often use one instruction to perform the function
of many instructions in a simple ISA. Here you will implement the MIPS equivalent for a single Intel x86
instruction, REP MOVSB, which is specified as follows.

The REP MOVSB instruction uses three fixed x86 registers: ECX (count), ESI (source), and EDI
(destination). The “repeat” (REP) prefix on the instruction indicates that it will repeat ECX times. Each
iteration, it moves one byte from memory at address ESI to memory at address EDI, and then increments
both pointers by one. Thus, the instruction copies ECX bytes from address ESI to address EDI.

(a) Write the corresponding assembly code in MIPS ISA that accomplishes the same function as this in-
struction. You can use any general purpose register. Indicate which MIPS registers you have chosen to
correspond to the x86 registers used by REP MOVSB. Try to minimize code size as much as possible.

(b) What is the size of the MIPS assembly code you wrote in (a), in bytes? How does it compare to REP
MOVSB in x86 (note: REP MOVSB occupies 2 bytes)?

(c) Assume the contents of the x86 register file are as follows before the execution of the REP MOVSB:

EAX: 0xccccaaaa
EBP: 0x00002222
ECX: 0xFEE1DEAD
EDX: 0xfeed4444
ESI: 0xdecaffff
EDI: 0xdeaddeed
EBP: 0xe0000000
ESP: 0xe0000000

Now, consider the MIPS assembly code you wrote in (a). How many total instructions will be executed
by your code to accomplish the same fuction as the single REP MOVSB in x86 accomplishes for the
given register state?

4/27

(d) Assume the contents of the x86 register file are as follows before the execution of the REP MOVSB:

EAX: 0xccccaaaa
EBP: 0x00002222
ECX: 0x00000000
EDX: 0xfeed4444
ESI: 0xdecaffff
EDI: 0xdeaddeed
EBP: 0xe0000000
ESP: 0xe0000000

Now, answer the same question in (c) for the above register values.

5/27

3 Dataflow (I)

Draw the data flow graph for the fib(n) function from Question 2.1. You may use the following data flow
nodes in your graph:
• + (addition)
• > (left operand is greater than right operand)
• Copy (copy the value on the input to both outputs)
• BR (branch, with the semantics discussed in class, label the True and False outputs)

You can use constant inputs (e.g., 1) that feed into the nodes. Clearly label all the nodes, program
inputs, and program outputs. Try to the use fewest number of data flow nodes possible.

6/27

4 Dataflow (II)

• We define the switch node in Figure 1 to have 2 inputs (I, Ctrl) and 1 output (O). The Ctrl input
always enters perpendicularly to the switch node. If the Ctrl input has a True token (i.e., a token with
a value of 1), the O wire propogates the value on the I wire. Else, the 2 input tokens (I, Ctrl) are
consumed, and no token is generated at the output (O).

• We define the inverter node in Figure 2 to have 1 input (I) and 1 output (O). The node negates the
input token (i.e., O = !I).

• We define the TF node in Figure 3 to have 3 inputs (IF , IT , Ctrl) and 1 output (O). When Ctrl is
set to True, O takes IT . When Ctrl is set to False, O takes IF .

• The ≥ node outputs True only when the left input is greater than or equal to the right input.

• The +1 node outputs the input plus one.

• The + node outputs the sum of the two inputs.

• A node generates an output token when tokens exist at every input, and all input tokens are consumed.

• Where a single wire splits into multiple wires, the token travelling on the wire is replicated to all wires.

I

Ctrl

O

I O

Figure 1: Switch Node

I

Ctrl

O

IO

Figure 2: Inverter Node

F

T

IF
IT

O

Ctrl

Figure 3: TF Node

Consider the dataflow graph on the following page. Numbers in dashed boxes represent tokens (with the
value indicated by the number) in the initial state. The X and Y inputs automatically produce tokens as
soon as the previous token on the wire is consumed. The order of these tokens follows the pattern (note, the
following are all single digit values spaced appropriately for the reader to easily notice the pattern):

X: 0 01 011 0111 01111
Y: 1 22 333 4444 55555

Consider the dataflow graph on the following page. Please clearly describe the sequence of tokens gener-
ated at the output (OUT).

7/27

>

>+1

+

0

0

0

OUT Y

Y

X

TF

0

X:	0	01	011	0111	01111	….

FT

TF

1

0

8/27

5 Dataflow (III)

(a) What does the following dataflow program do? Specify clearly in less than 10 words (one could specify
this function in three words).

<

m n

FTF T

=0?

TFTF

ANSWER

9/27

(b) What does the following dataflow graph do (10 words or less)? (Hint: Identify what Module 1 and
Module 2 perform.)

C * C

A B

FT FTTF TF

<

TF TF

=0?

FT FT

Module 1

=0?

TF TF FT FT

1

ANSWER
+

1

Module 2

Legend
C Copy

A

B

C

Initially C=A
Then C=B

 A B

C

C=A-B

10/27

(c) What does the following dataflow graph do (15 words or less)?
(Note that the inputs, A and B, are non-negative integers.)

11/27

6 Microarchitecture vs. ISA (I)

a) Briefly explain the difference between the microarchitecture level and the ISA level in the transformation
hierarchy. What information does the compiler need to know about the microarchitecture of the machine
in order to compile a given program correctly?

b) Classify the following attributes of a machine as either a property of its microarchitecture or ISA:

Microarchitecture? ISA? Attribute
The machine does not have a subtract instruction
The ALU of the machine does not have a subtract unit
The machine does not have condition codes
A 5-bit immediate can be specified in an ADD instruction
It takes n cycles to execute an ADD instruction
There are 8 general purpose registers
A 2-to-1 mux feeds one of the inputs to ALU
The register file has one input port and two output ports

12/27

7 Microarchitecture vs. ISA (II)

A new CPU has two comprehensive user manuals available for purchase as shown in Table 2.

Manual Title Cost Description
the_isa.pdf CHF 1 million describes the ISA in detail

the_microarchitecture.pdf CHF 10 million describes the microarchitecture in detail

Table 1: Manual Costs

Unfortunately, the manuals are extremely expensive, and you can only afford one of the two. If both
manuals might be useful, you would prefer the cheaper one.

For each of the following questions that you would like to answer, decide which manual is more likely to
help. Note: we will subtract 1 point for each incorrect answer.

1. The latency of a branch predictor misprediction.

1. the_isa.pdf 2. the_microarchitecture.pdf

2. The size of a physical memory page.

1. the_isa.pdf 2. the_microarchitecture.pdf

3. The memory-mapped locations of exception vectors.

1. the_isa.pdf 2. the_microarchitecture.pdf

4. The function of each bit in a programmable branch-predictor configuration register.

1. the_isa.pdf 2. the_microarchitecture.pdf

5. The bit-width of the interface between the CPU and the L1 cache.

1. the_isa.pdf 2. the_microarchitecture.pdf

6. The number of pipeline stages in the CPU.

1. the_isa.pdf 2. the_microarchitecture.pdf

7. The order in which loads and stores are executed by a multi-core CPU.

1. the_isa.pdf 2. the_microarchitecture.pdf

8. The memory addressing modes available for arithmetic operations.

1. the_isa.pdf 2. the_microarchitecture.pdf

9. The program counter width.

1. the_isa.pdf 2. the_microarchitecture.pdf

10. The number of cache sets at each level of the cache hierarchy.

1. the_isa.pdf 2. the_microarchitecture.pdf

13/27

8 ISA vs. Microarchitecture (III)

A new CPU has two comprehensive user manuals available for purchase as shown in Table 2.

Manual Title Cost Description
the_isa.pdf CHF 1 million describes the ISA in detail

the_microarchitecture.pdf CHF 10 million describes the microarchitecture in detail

Table 2: Manual Costs

Unfortunately, the manuals are extremely expensive, and you can only afford one of the two. If both
manuals might be useful, you would prefer the cheaper one.

For each of the following questions that you would like to answer, decide which manual is more likely to
help. Note: we will subtract 1 point for each incorrect answer, and award 0 points for unanswered questions.

1. The integer multiplication algorithm used by the ALU.

1. the_isa.pdf 2. the_microarchitecture.pdf

2. The program counter width.

1. the_isa.pdf 2. the_microarchitecture.pdf

3. Branch misprediction penalty.

1. the_isa.pdf 2. the_microarchitecture.pdf

4. The ability to flush the TLB from the OS.

1. the_isa.pdf 2. the_microarchitecture.pdf

5. The size of the Reorder Buffer in an Out-of-Order CPU.

1. the_isa.pdf 2. the_microarchitecture.pdf

6. The fetch width of a superscalar CPU.

1. the_isa.pdf 2. the_microarchitecture.pdf

7. SIMD instruction support.

1. the_isa.pdf 2. the_microarchitecture.pdf

8. The memory addresses of the memory-mapped devices of the CPU (e.g., keyboard).

1. the_isa.pdf 2. the_microarchitecture.pdf

9. The number of non-programmable registers in the CPU.

1. the_isa.pdf 2. the_microarchitecture.pdf

10. The replacement policy of the L1 data cache.

1. the_isa.pdf 2. the_microarchitecture.pdf

11. The memory controller’s scheduling algorithm.

14/27

1. the_isa.pdf 2. the_microarchitecture.pdf

12. The number of bits required for the destination register of a load instruction.

1. the_isa.pdf 2. the_microarchitecture.pdf

13. Description of the support for division and multiplication between integers.

1. the_isa.pdf 2. the_microarchitecture.pdf

14. The mechanism to enter in a system call in the OS.

1. the_isa.pdf 2. the_microarchitecture.pdf

15. The size of the addressable memory.

1. the_isa.pdf 2. the_microarchitecture.pdf

15/27

9 Performance Metrics

• If a given program runs on a processor with a higher frequency, does it imply that the processor always
executes more instructions per second (compared to a processor with a lower frequency)? (Use less than
10 words.)

• If a processor executes more of a given program’s instructions per second, does it imply that the processor
always finishes the program faster (compared to a processor that executes fewer instructions per second)?
(Use less than 10 words.)

16/27

10 Performance Evaluation (I)

Your job is to evaluate the potential performance of two processors, each implementing a different ISA. The
evaluation is based on its performance on a particular benchmark. On the processor implementing ISA A,
the best compiled code for this benchmark performs at the rate of 10 IPC. That processor has a 500MHz
clock. On the processor implementing ISA B, the best compiled code for this benchmark performs at the
rate of 2 IPC. That processor has a 600MHz clock.
• What is the performance in Millions of Instructions per Second (MIPS) of the processor implementing
ISA A?

• What is the performance in MIPS of the processor implementing ISA B?

• Which is the higher performance processor: A B Don’t know
Briefly explain your answer.

17/27

11 Performance Evaluation (II)

You are the leading engineer of a new processor. Both the design of the processor and the compiler for it
are already done. Now, you need to decide if you will send the processor to manufacturing at its current
stage or if you will delay the production to introduce last-minute improvements to the design. To make the
decision, you meet with your team to brainstorm about how to improve the design. Together, after profiling
the target applications for the processor, you come up with two options:

• Keep the current project. For version A of the processor, the clock frequency is 600 MHz, and the
following measurements are obtained:

Instruction Class CPI Frequency of Occurrence

A 2 40%

B 3 25%

C 3 25%

D 7 10%

• Include optimizations to the design. For version B of the processor, the clock frequency is 700
MHz. The ISA for processor B includes three new types of instructions. Those three new types of
instructions increase the total number of executed instructions for processor B by 50%, in comparison
to processor A. The following measurements are obtained:

Instruction Class CPI Frequency of Occurrence

A 2 15%

B 2 15%

C 4 10%

D 6 10%

E 1 10%

F 2 20%

G 2 20%

(a) What is the CPI of each version? Show your work.
CPIA:

CPIB :

18/27

(b) What are the MIPS (Million Instructions Per Second) of each version? Show your work.

MIPSA:

MIPSB :

(c) Considering your team is aiming to release to the market the processor that gives better performance
when executing the target application, which processor version will you choose as the final design? Show
your work.

19/27

12 Performance Evaluation (III)

A multi-cycle processor P1 executes load instructions in 10 cycles, store instructions in 8 cycles, arithmetic
instructions in 4 cycles, and branch instructions in 4 cycles. Consider an application A where 20% of all
instructions are load instructions, 20% of all instructions are store instructions, 50% of all instructions are
arithmetic instructions, and 10% of all instructions are branch instructions.

(a) What is the CPI of application A when executing on processor P1? Show your work.

(b) A new design of the processor doubles the clock frequency of P1. However, the latencies of the load,
store, arithmetic, and branch instructions increase by 2, 2, 2, and 1 cycles, respectively. We call this new
processor P2. The compiler used to generate instructions for P2 is the same as for P1. Thus, it produces
the same number of instructions for program A. What is the CPI of application A when executing on
processor P2? Show your work.

(c) Which processor is faster (P1 or P2)? By how much? Show your work.

20/27

(d) There is some extra area available in the chip of processor P1, where extra hardware can fit. You can
decide to include in your processor a faster branch execution unit or a faster memory device. The faster
branch execution unit reduces the latency of branch instructions by a factor of 4. The memory device
reduces the latency of the memory operations by a factor of 2. Which design do you choose? Show your
work.

21/27

13 Single-Cycle Processor Datapath

In this problem, you will modify the single-cycle datapath we built up in Lecture 11 to support the JAL
instruction. The datapath that we will start with is provided below. Your job is to implement the necessary
data and control signals to support the JAL instruction, which we define to have the following semantics:

JAL : R31← PC+ 4

PC← PC31...28 || Immediate || 02

Add to the datapath on the next page the necessary data and control signals to implement the JAL instruction.
Draw and label all components and wires very clearly (give control signals meaningful names; if selecting a
subset of bits from many, specify exactly which bits are selected; and so on).

22/27

14 REP MOVSB

Let’s say you are the lead architect of the next flagship processor at Advanced Number Devices (AND). You
have decided that you want to use the LC-3b ISA for your next product, but your customers want a smaller
semantic gap and marketing is on your case about it. So, you have decided to implement your favorite x86
instruction, REP MOVSB, in LC-3b.

Specifically, you want to implement the following definition for REP MOVSB (in LC-3b parlance): REP-
MOVSB SR1, SR2, DR which is encoded in LC-3b machine code as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1010 DR SR1 0 0 0 SR2

REPMOVSB uses three registers: SR1 (count), SR2 (source), and DR (destination). It moves a byte
from memory at address SR2 to memory at address DR, and then increments both pointers by one. This is
repeated SR1 times. Thus, the instruction copies SR1 bytes from address SR2 to address DR. Assume that
the value in SR1 is greater than or equal to zero.

(a) Complete the state diagram shown below, using the notation of the LC-3b state diagram. Describe
inside each bubble what happens in each state and assign each state an appropriate state number. Add
additional states not present in the original LC-3b design as you see fit.

23/27

24/27

(b) Add to the LC-3b datapath any additional structures and any additional control signals needed to
implement REPMOVSB. Clearly label your additional control signals with descriptive names. Describe
what value each control signal would take to control the datapath in a particular way.

25/27

(c) Describe any changes you need to make to the LC-3b microsequencer. Add any additional logic and
control signals you need. Clearly describe the purpose and function of each signal and the values it
would take to control the microsequencer in a particular way.

26/27

MIPS Instruction Summary

Opcode Example Assembly Semantics

add add $1, $2, $3 $1 = $2 + $3

sub sub $1, $2, $3 $1 = $2 - $3

add immediate addi $1, $2, 100 $1 = $2 + 100

add unsigned addu $1, $2, $3 $1 = $2 + $3

subtract unsigned subu $1, $2, $3 $1 = $2 - $3

add immediate unsigned addiu $1, $2, 100 $1 = $2 + 100

multiply mult $2, $3 hi, lo = $2 * $3

multiply unsigned multu $2, $3 hi, lo = $2 * $3

divide div $2, $3 lo = $2/$3, hi = $2 mod $3

divide unsigned divu $2, $3 lo = $2/$3, hi = $2 mod $3

move from hi mfhi $1 $1 = hi

move from low mflo $1 $1 = lo

and and $1, $2, $3 $1 = $2 & $3

or or $1, $2, $3 $1 = $2 | $3

and immediate andi $1, $2, 100 $1 = $2 & 100

or immediate ori $1, $2, 100 $1 = $2 | 100

shift left logical sll $1, $2, 10 $1 = $2 « 10

shift right logical srl $1, $2, 10 $1 = $2 » 10

load word lw $1, 100($2) $1 = memory[$2 + 100]

store word sw $1, 100($2) memory[$2 + 100] = $1

load upper immediate lui $1, 100 $1 = 100 « 16

branch on equal beq $1, $2, label if ($1 == $2) goto label

branch on not equal bne $1, $2, label if ($1 != $2) goto label

set on less than slt $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0

set on less than immediate slti $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0

set on less than unsigned sltu $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0

set on less than immediate sltui $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0

jump j label goto label

jump register jr $31 goto $31

jump and link jal label $31 = PC + 4; goto label

27/27

	Big versus Little Endian Addressing
	The MIPS ISA
	Warmup: Computing a Fibonacci Number
	MIPS Assembly for REP MOVSB

	Dataflow (I)
	Dataflow (II)
	Dataflow (III)
	Microarchitecture vs. ISA (I)
	Microarchitecture vs. ISA (II)
	ISA vs. Microarchitecture (III)
	Performance Metrics
	Performance Evaluation (I)
	Performance Evaluation (II)
	Performance Evaluation (III)
	Single-Cycle Processor Datapath
	REP MOVSB

