DiciTAL DESIGN AND COMPUTER ARCHITECTURE (252-0028-00L), SPRING 2021
OpTiONAL HW 7: MEMORY HIERARCHY, CACHES, PREFETCHING, AND VIRTUAL MEMORY

Instructor: Prof. Onur Mutlu
TAs: Juan Gomez-Luna, Jisung Park, Hasan Hassan, Mohammed Alser, Lois Orosa, Minesh Patel,
Jawad Haj-Yahya, Haiyu Mao, Behzad Salami, Jeremie Kim, Giray Yaglikci, Can Firtina,
Geraldo De Oliveira Junior, Rahul Bera, Konstantinos Kanellopoulos, Nika Mansouri, Gagandeep Singh

Released: Friday, June 11, 2021

1 Instruction and Data Caches

Consider the following loop is executed on a system with a small instruction cache (I-cache) of size 16 B.
The data cache (D-cache) is fully associative of size 1 KB. Both caches use 16-byte blocks. The instruction
length and data word size are 4 B. The initial value of register $1 is 40. The value of $0 is 0. (Note: Assume
that the first instruction of the loop is aligned to the beginning of a cache block).

Loop: 1w  $6, X($1)
addi $6, $6, 1
sw  $6, Y($1)
subi $1, $1, 4
beq $1, $0, Exit
J Loop

Exit:

(a) Compute I-cache and D-cache miss rates, considering:

e X and Y are different arrays.

e X and Y are the same array.
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(b) Compute the average number of cycles per instruction (CPI), using a baseline ideal CPI (ideal caches)
equal to 2, and a miss latency equal to 10 clock cycles.

(¢) A compiler could unroll this loop for optimization. How would this affect CPI?

(d) How would the result of part (a) change with a 32-byte I-cache?
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2 Reverse Engineering Caches 1

You'’re trying to reverse-engineer the characteristics of a cache in a system so that you can design a more
efficient, machine-specific implementation of an algorithm you’re working on. To do so, you’ve come up with
four patterns that access various bytes in the system in an attempt to determine the following four cache
characteristics:

e Cache block size (8, 16, 32, 64, or 128 B)
e Cache associativity (2-, 4-, or 8-way)

e Cache size (4 or 8KB)

e Cache replacement policy (LRU or FIFO)

However, the only statistic that you can collect on this system is cache hit rate after performing the
access pattern. Here is what you observe:

Access Pattern Addresses Accessed (Oldest — Youngest) Hit Rate
A 0 4096 8192 12288 16384 4096 O 1/7
B 0 1024 2048 3072 4096 5120 6144 3072 O 1/9
C 0 4 8 16 32 64 128 256 512 4/9
D 128 1152 2176 3200 128 4224 1152 2/7

Based on what you observe, what are the following characteristics of the cache? (Be sure to justify clearly
your answer for full credit.)

(a) Cache block size (8, 16, 32, 64, or 128 B)?

(b) Cache associativity (2-, 4-, or 8-way)?

(c¢) Cache size (4 or 8KB)?
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(d) Cache replacement policy (LRU or FIFO)?
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3 Reverse Engineering Caches 11

You are trying to reverse-engineer the characteristics of a cache in a system, so that you can design a more
efficient, machine-specific implementation of an algorithm you are working on. To do so, you have come up
with three patterns that access various bytes in the system in an attempt to determine the following four
cache characteristics:

e Cache block size (8, 16, 32, 64, or 128 B)
e Cache associativity (1-, 2-, 4-, or 8-way)
e Cache size (4 or 8KB)

e Cache replacement policy (LRU or FIFO)

However, the only statistic that you can collect on this system is cache hit rate after performing the
access pattern. Here is what you observe:

Sequence Addresses Accessed (Oldest — Youngest) Hit Rate
1. 0 4 8 16 64 128 1/2
2. 31 8192 63 16384 4096 8192 64 16384 5/8
3. 32768 0 129 1024 3072 8192 1/3

Assume that the cache is initially empty at the beginning of the first sequence, but not at the beginning of
the second and third sequences. The sequences are executed back-to-back, i.e., no other accesses take place
between the three sequences. Thus, at the beginning of the second (third) sequence, the contents
are the same as at the end of the first (second) sequence.

Based on what you observe, what are the following characteristics of the cache?

(a) Cache block size (8, 16, 32, 64, or 128 B)?
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(b) Cache associativity (1-, 2-, 4-, or 8-way)?

(c¢) Cache size (4 or 8KB)?
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(d) Cache replacement policy (LRU or FIFO)?
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4 Tracing the Cache

Assume you have three toy CPUs: 6808-D, 6808-T, and 6808-F. All three CPUs feature one level of cache.
The cache size is 128 bytes, the cache block size is 32 bytes, and the cache uses LRU replacement. The only
difference between the three CPUs is the associativity of the cache:

e 6808-D uses a direct mapped cache.
e 6808-T uses a two-way associative cache.
e G808-F uses a fully associative cache.

You run the SPECMem3000 program to evaluate the CPUs. This benchmark program tests only memory
read performance by issuing read requests to the cache. Assume that the cache is empty before you run the
benchmark. The cache accesses generated by the program are as follows, in order of access from left to right:

A, B, A, H, B, G, H, H, A, E, H, D, H, G, C, C, G, C, A, B, H, D, E, C, C, B, A, D, E, F

Each letter represents a unique cache block. All 8 cache blocks are contiguous in memory. However,
the ordering of the letters does not necessarily correspond to the ordering of the cache blocks in memory.
For 6808-D, you observe the following cache misses in order of generation:

A, B, A, H, B, G, A, E, D, H, C, G, C, B, D, A, F

(a) By using the above trace, please identify which cache blocks are in the same set for the 6808-D processor.
Please be clear.

(b) Please write down the sequence of cache misses for the 6808-F processor in their order of generation.
(Hint: You might want to write down the cache state after each request).
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(¢) For 6808-T, you observed the following five cache misses in order of generation:
A, B, H, G, E

But, unfortunately, your evaluation setup broke before you could observe all cache misses for the 6808-T.
Using the given information, which cache blocks are in the same set for the 6808-T processor?

(d) Please write down the sequence of cache misses for the 6808-T processor in their order of generation.
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(e) What is the cache miss rate for each processor?
6808-D:

6808-T:

6808-F":
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5 Analyzing Cache Structure

Below, we have given you four different sequences of addresses generated by a program running on a processor
with a data cache. Cache hit ratio for each sequence is also shown below. Assuming that the cache is initially
empty at the beginning of each sequence, find out the following parameters of the processor’s data cache:

e Associativity (1, 2 or 4 ways)

e Block size (1, 2, 4, 8, 16, or 32 bytes)
e Total cache size (256 B, or 512 B)

e Replacement policy (LRU or FIFO)

Assumptions: all memory accesses are one byte accesses. All addresses are byte addresses.

] Sequence No. \ Address Sequence \ Hit Ratio ‘
1 0, 2, 4, 8, 16, 32 0.33
2 0, 512, 1024, 1536, 2048, 1536, 1024, 512, 0 0.33
3 0, 64, 128, 256, 512, 256, 128, 64, 0 0.33
4 0, 512, 1024, 0, 1536, 0, 2048, 512 0.25
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6 Caches

A byte-addressable system with 16-bit addresses ships with a two-way set associative, writeback cache with
perfect LRU replacement. The tag store (including the tag and all other meta-data) requires a total of 4352
bits of storage. What is the block size of the cache? Assume that the LRU information is maintained on a
per-set basis as a single bit. (Hint: 4352 = 212 4 28 )
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7 Cache Performance Analysis

We are going to microbenchmark the cache hierarchy of a computer with the following two codes. The array
data contains 32-bit unsigned integer values. For simplicity, we consider that accesses to the array latency
bypass all caches (i.e., latency is not cached). timer () returns a timestamp in cycles.

(1) j = 0;
for (i=0; i<size; i+=stride){
start = timer();
d = datali];
stop = timer();
latency[j++] = stop - start;
¥

(2) for (i=0; i<sizel; i+=stridel){

d = datali];

}

j=0;

for (i=0; i<size2; it+=stride2){
start = timer();
d = datal[i];
stop = timer();
latency[j++] = stop - start;

}

The cache hierarchy has two levels. L1 is a 4kB set associative cache.

(a) When we run code (1), we obtain the latency values in the following chart for the first 64 reads to the
array data (in the first 64 iterations of the loop) with stride equal to 1. What are the cache block sizes
in L1 and L27
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(b) Using code (2) with stridel = stride2 = 32, sizel = 1056, and size2 = 1024, we observe latency [0]
= 300 cycles. However, if sizel = 1024, latency[0] = 100 cycles. What is the maximum number of
ways in L1? (Note: The replacement policy can be either FIFO or LRU).

(¢) We want to find out the exact replacement policy, assuming that the associativity is the maximum
obtained in part (b). We first run code (2) with stridel = 32, sizel = 1024, stride2 = 64, and size2
= 1056. Then (after resetting j), we run code (1) with stride = 32 and size = 1024. We observe
latency[1] = 100 cycles. What is the replacement policy? Explain. (Hint: The replacement policy can
be either FIFO or LRU. You need to find the correct one and explain).
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(d) Now we carry out two consecutive runs of code (1) for different values of size. In the first run, stride
is equal to 1. In the second run, stride is equal to 16. We ignore the latency results of the first run,
and average the latency results of the second run. We obtain the following graph. What do the four
parts shown with the arrows represent?
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After arrow 4:

Explain as needed (if you need more):
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8 Memory Hierarchy

An enterprising computer architect is building a new machine for high-frequency stock trading and needs to
choose a CPU. She will need to optimize her setup for memory access latency in order to gain a competitive
edge in the market. She is considering two different prototype enthusiast CPUs that advertise high memory
performance:

(A) Dragonfire-980 Hyper-Z
(B) Peregrine G-Class XTreme

She needs to characterize these CPUs to select the best one, and she knows from Prof. Mutlu’s course that
she is capable of reverse-engineering everything she needs to know. Unfortunately, these CPUs are not yet
publicly available, and their exact specifications are unavailable. Luckily, important documents were recently
leaked, claiming that all three CPUs have:

e Exactly 1 high-performance core
e LRU replacement policies (for any set-associative caches)

e Inclusive caching (i.e., data in a given cache level is present upward throughout the memory hierarchy.
For example, if a cache line is present in L1, the cache line is also present in L2 and L3 if available.)

e Constant-latency memory structures (i.e., an access to any part of a given memory structure takes the
same amount of time)

e Cache line, size, and associativity are all size aligned to powers of two

Being an ingenious engineer, she devises the following simple application in order to extract all of the
information she needs to know. The application uses a high-resolution timer to measure the amount of time
it takes to read data from memory with a specific pattern parameterized by STRIDE and MAX_ADDRESS:

start_timer()
repeat N times:

memory_address <- random_data()

READ [ (memory_address * STRIDE) Y, MAX_ADDRESS]
end_timer ()

Assume 1) this code runs for a long time, so all memory structures are fully warmed up, i.e., repeatedly
accessed data is already cached, and 2) N is large enough such that the timer captures only steady-state
information.

By sweeping STRIDE and MAX_ADDRESS, the computer architect can glean information about the various
memory structures in each CPU.

She produces Figure [1] for CPU A and Figure [2] for CPU B.

Your task: Using the data from the graphs, reverse-engineer the following system parameters. If the
parameter does not make sense (e.g., L3 cache in a 2-cache system), mark the box with an ”X”. If the
graphs provide insufficient information to ascertain a desired parameter, simply mark it as "N/A”.
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(a) Fill in the blanks for Dragonfire-980 Hyper-Z.
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Figure 1: Execution time of the test code on CPU A for various values of STRIDE and MAX_ADDRESS. STRIDE
values are labeled on curves themselves for clarity. Note that the curves for strides 1, 2, 4, and 8 overlap in
the figure.

Table 1: Fill in the following table for CPU A (Dragonfire-980 Hyper-Z)

System Parameter CPU A: Dragonfire-980 Hyper-Z
L1 L2 \ L3 \ DRAM

Cache Line Size (B)

Cache Associativity

Total Cache Size (B)

Access Latency (ns) !

Le.g., DRAM access latency means the latency of fetching the data from DRAM to L3, not the latency
of bringing the data from the DRAM all the way down to the CPU. Similarly, L3 access latency means
the latency of fetching the data from L3 to L2. L1 access latency is the latency to bring the data to the
CPU from the L1 cache.
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(b) Fill in the blanks for Peregrine G-Class XTreme.
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Figure 2: Execution time of the test code on CPU B for various values of STRIDE and MAX_ADDRESS. STRIDE
values are labeled on curves themselves for clarity. Note that the curves for strides 1, 2, 4, 8, 16, and 32
overlap in the figure.

Table 2: Fill in the following table for CPU B (Peregrine G-Class XTreme)

System Parameter CPU B: Peregrine G-Class XTreme
L1 | L2 | L3 | DRAM

Cache Line Size (B)

Cache Associativity

Total Cache Size (B)

Access Latency (ns) !

Le.g., DRAM access latency means the latency of fetching the data from DRAM to L3, not the latency
of bringing the data from the DRAM all the way down to the CPU. Similarly, L.3 access latency means
the latency of fetching the data from L3 to L2. L1 access latency is the latency to bring the data to the
CPU from the L1 cache.
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9 Virtual Memory

An ISA supports an 8-bit, byte-addressable virtual address space. The corresponding physical memory has
only 128 bytes. Each page contains 16 bytes. A simple, one-level translation scheme is used and the page
table resides in physical memory. The initial contents of the frames of physical memory are shown below.

Frame Number | Frame Contents
0 Empty
Page 13
Page 5
Page 2
Empty
Page 0
Empty
Page Table

| O U | W N =

A three-entry translation lookaside buffer that uses Least Recently-Used (LRU) replacement is added to
this system. Initially, this TLB contains the entries for pages 0, 2, and 13. For the following sequence of
references, put a circle around those that generate a TLB hit and put a rectangle around those that generate
a page fault. What is the hit rate of the TLB for this sequence of references? (Note: LRU policy is used to
select pages for replacement in physical memory.)

References (to pages): 0, 13, 5, 2, 14, 14, 13, 6, 6, 13, 15, 14, 15, 13, 4, 3.

(a) At the end of this sequence, what three entries are contained in the TLB?

(b) What are the contents of the 8 physical frames?
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10 Virtual Memory and Caching 1

A 2-way set associative write back cache with perfect LRU replacement requires 15 x 29 bits of storage to
implement its tag store (including bits for valid, dirty and LRU). The cache is virtually indexed, physically
tagged. The virtual address space is 1 MB, page size is 2 KB, cache block size is 8 bytes.

(a) What is the size of the data store of the cache in bytes?

(b) How many bits of the virtual index come from the virtual page number?

(c) What is the physical address space of this memory system?
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11 Virtual Memory and Caching 11

A four-way set-associative writeback cache has a 2'! * 89-bit tag store. The cache uses a custom replacement
policy that requires 9 bits per set. The cache block size is 64 bytes. The cache is virtually-indexed and
physically-tagged. Data from a given physical address can be present in up to eight different sets in the
cache. The system uses hierarchical page tables with two levels. Each level of the page table contains 1024
entries. A page table may be larger or smaller than one page. The TLB contains 64 entries.

(a) How many bits of the virtual address are used to choose a set in the cache?

(b) What is the size of the cache data store?

(¢) How many bits in the Physical Frame Number must overlap with the set index bits in the virtual address?

(d) On the following blank figure representing a virtual address, draw in bitfields and label bit positions for
cache block offset and set number. Be complete, showing the beginning and ending bits of each field.

Virtual Address:

(e) On the following blank figure representing a physical address, draw in bitfields and label bit positions
for physical frame number and page offset. Be complete, showing the beginning and ending bits of each
field.

Physical Address:

(f) What is the page size?
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(g) What is the size of the virtual address space?

(h) What is the size of the physical address space
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12 Prefetching

An architect is designing the prefetch engine for his machine. He first runs two applications A and B on the
machine, with a stride prefetcher.
Application A:

uint8_t a[1000];

sum = 0;

for (4 = 0; i < 1000; i += 4) {
sum += ali];

}

Application B:

uint8_t a[1000];

sum = 0;

for (i = 1; i < 1000; i *= 4) {
sum += al[i];

}

i and sum are in registers, while the array a is in memory. A cache block is 4 bytes in size.

(a) What is the prefetch accuracy and coverage for applications A and B using a stride prefetcher. This
stride prefetcher detects the stride between two consecutive memory accesses and prefetches the cache
block at this stride distance from the currently accessed block.

(b) Suggest a prefetcher that would provide better accuracy and coverage for
i) application A?
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ii) application B?

(¢c) Would you suggest using runahead execution for
i) application A. Why or why not?

ii) application B. Why or why not?
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13 Data Prefetching

Qualtel is designing a next-gen low-power mobile processor codenamed Nemo. You and your colleagues are
tasked with designing the prefetcher for Nemo. Nemo has a single core, one level of cache, and a DRAM-based
main memory system.

You need to examine different prefetcher designs and analyze the trade-offs involved.

e For all parts of this question, you need to compute the coverage, accuracy and bandwidth over of the
prefetcher in its steady state.

e If there is a request to a cache block that has gone to main memory, a new request for the same cache
block will not go to main memory as the outstanding request has not yet completed. Instead the new
request will be coalesced with already outstanding request.

You run an application libclassical that has the following memory access pattern (note that these are
cache block addresses):

A A+1, A+2, A+7, A48, A+9, A+14, A+15, A+16, A+21, A4+22, A+23, ..
Assume this pattern continues for a long time.

(a) You first design a stride prefetcher that observes the last three cache block requests. If there is a constant
stride .S between the last three requests, the prefetcher issues a prefetch to the next cache block using the
stride S. In absence of a constant stride, the prefetcher refrains from prefetching. What is the coverage
of your stride prefetcher for 1ibclassical? Show your work. Prefetcher coverage is defined as

Total number of correctly predicted prefetch requests

Total number of unique cache block requests without the prefetcher

(b) What is the the accuracy of your stride prefetcher for libclassical? Show your work. Prefetcher
accuracy is defined as

Total number of correctly predicted prefetch requests

Total number of prefetched requests
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(¢) Your colleague designs a new prefetcher that, on a cache block access, prefetches the next N cache blocks.
The coverage and accuracy of this prefetcher are 66.67% and 50% respectively for 1ibclassical. What
is the value of N7 Show your work.

(d) The bandwidth overhead of the prefetcher can be defined as

Total number of unique cache block requests with the prefetcher

Total number of unique cache block requests without the prefetcher

What is the bandwidth overhead of this next-N-block prefetcher for libclassical? Show your work.

(e) What is the minimum value of N required to achieve a 100% prefetch coverage for
libclassical? Show your work. Remember that you should consider the prefetcher’s coverage in its
steady state.
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(f) What is the bandwidth overhead at this value of N7 Show your work.

(g) However, you are not happy with the bandwidth overhead required to achieve a prefetch coverage of
100% with a next-N-block prefetcher. You aim to design a prefetcher that achieves a coverage of 100%
with a 1x bandwidth overhead. Propose a prefetcher design that accomplishes this goal. Be concrete
and clear.
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