Robert P. Colwell

God tells me how the music should sound, but you stand in the way.

—Arturo Toscanini, to a trumpet player

n June 1990, T joined Intel Corporation’s new Ore-

gon microprocessor design division as a senior com-

puter architect on a new project, the P6. This divi-

sion would eventually grow to thousands of people

but at the moment it had a population of exactly
one—me. I spent my first day buried in forms, picking
primary health-care providers mostly on the basis of
how much I liked their names. The second day, my boss
stuck his head in my office and said, “Your job is to beat
the P5 chip by a factor of two on the same process tech-
nology. Any questions?” I replied, “Three. What’s a P5?
Can you tell me more about Intel’s process technology
plans? And where’s the bathroom?”

P35, as it turned out, was the chip the Intel Santa Clara
design team was developing, the team that had created
the very successful 386 and 486 chips. PS5 would become
the original Pentium processor when it debuted in 1993,
but in June 1990, my time frame, P5 was little more
than a letter and number.

The P6 project was to follow the PS5 by two years.
Extrapolating from Moore’s Law, it appeared that P6
might have as many as eight to 10 million transistors
and could become a product as soon as late 1994. My
job and the job of the team I was to help recruit was
simply to figure out what to do with those transistors
and then do it.

In summer 1992, two years after joining the project,
I was promoted to architecture manager and served as

Excerpted with permission from The Pentium Chronicles: The
People, Passion, and Politics Behind the Landmark Chips, Wiley-
IEEE Computer Society Press. Copyright © 2006, IEEE Computer
Society.

0018-9162/06/$20.00 © 2006 IEEE

Published by the IEEE Computer Society

Intel’s lead TA-32 architect from 1992 through 2000.

Somewhat to my surprise, the P6 design project turned
out to be a watershed event in the history of the com-
puter industry and the Internet; it could keep up with
the industry’s fastest chips, especially those from
reduced-instruction-set computer (RISC) manufactur-
ers, and it had enough flexibility and headroom to serve
as the basis for many future proliferation designs.

It also gave Intel a foothold in the maturing worksta-
tion market, and it immediately established them in the
server space just as the Internet was driving up demand
for inexpensive Web servers.

The P6 project would eventually grow to over 400
design and validation engineers and take 4.5 years to
production. But that huge investment paid off—Pé6
became the Pentium Pro microprocessor, was adapted
to become the Pentium Il and then the Pentium III, and,
most recently, has evolved into the Centrino mobile line.
From the basic design have come numerous Xeon and
Celeron variants.

In short, the P6 has become the most successful general-
purpose processor ever created, with hundreds of mil-
lions of chips being shipped. This book is my personal
account of that project, with occasional excursions into
Pentium 4.

P6 PROJECT CONTEXT
To fully appreciate where the P6 came from, you must
first consider the industry and technology context.
The microelectronics industry has been blessed for
several decades with an amazing benefaction: The sili-
con chips on which we place our circuits improve dras-
tically about every two years. New process technology

January 2006 m

historically provides twice the number of transistors,
makes them fundamentally faster, and generally reduces
the power requirement as well.

If we were to do no engineering other than to simply
convert an existing design to the newly developed sili-
con process, the resulting chip would be faster and
cheaper without our having done very much work. That
sword has two edges, though. The good news is that if
I start designing a new CPU chip today toward a pro-
duction goal that is, say, three years away, I know I can
count on having a new process technology. So I design
to that new process technology’s particular set of design
rules, and T am pretty confident that this better tech-
nology plus my design team’s clever
innovations will give my new chip a
clear advantage over what is avail-
able today.

But the main reason to go through
the expense and effort of designing
anew CPU is that it will be substan-
tially better than what exists. For
microprocessors, “better” generally
means higher overall performance
that will enable more interesting
software applications, such as oper-
ating systems with improved user interfaces and shoot-
’em-up games with ever-more-realistically rendered
bad guys.

My new chip has to deliver higher performance than
its predecessors or I have accomplished nothing. My
competition will also migrate to the new process tech-
nology within my three-year horizon, and its existing
chip will have become faster. That’s the sword’s other
edge: The target isn’t stationary. A new chip has to beat
the competition’s new design, as well as any process-
migration chips from any source, including my own
company.

My and my fellow chip architects’ job was, therefore,
to find ways of organizing the new microprocessor’s
internal design so that it would clearly be superior to any
others. Naturally, the first step was to identify “any oth-
ers” and thereby establish the focus of our project goals.

In 1990, Intel was still developing Intel 486 chips—
33 MHz, 50 MHz, and 66 MHz, eventually reaching
100 MHz by 1992. PS5 was the code name of the design
project being done in Santa Clara by (mostly) the same
team that had produced the 486 and the 386 before that.

Task 1 was, therefore, to scope out the P35, analyze its
performance potential, investigate the techniques the
Santa Clara team was using, and then come up with
something that would be twice as fast.

Betting on CISC

Other Intel chips were not the only competition.
Throughout the 1980s, the RISC/CISC debate was
boiling.

m Computer

The chip architects’ job
was to find ways of
organizing the new

microprocessor’s internal
design so that it would clearly
be superior to any others.

RISC’s general premise was that computer instruction
sets such as Digital Equipment Corporation’s VAX
instruction set had become unnecessarily complicated
and counterproductively large and arcane.

In engineering, all other things being equal, simpler
is always better, and sometimes much better. All other
things are never equal, of course, and commercial
designers kept adding to the already large steaming pile
of VAX instructions in the hope of continuing to inno-
vate while maintaining backward compatibility with the
existing software code base.

RISC researchers promised large performance
increases, easier engineering, and many other benefits
from their design style. A substantial
part of the computer engineering
community believed that Complex
Instruction Set Computers (CISCs)
such as the VAX and Intel’s x86s
would be pushed aside by sheer
force of RISC’s technical advantages.

In 1990, it was still not clear how
the RISC/CISC battle would end.
Some of my engineering friends
thought I was either masochistic or
irrational. Having just swum ashore
from the sinking of the Multiflow ship (Multiflow was a
computer systems startup that folded in 1990), I imme-
diately signed on to a “doomed” x86 design project. In
their eyes, no matter how clever my design team was, we
were inevitably going to be swept aside by superior tech-
nology.

But my own analysis of the RISC/ CISC debates was
that we could, in fact, import nearly all of RISC’s tech-
nical advantages to a CISC design. The rest we could
overcome with extra engineering, a somewhat larger die
size, and the sheer economics of large product shipment
volume.

Although larger die sizes are generally not desirable
because they typically imply higher production cost and
higher power dissipation, in the early 1990s, power dis-
sipation was low enough that fairly easy cooling solu-
tions were adequate. And although production costs were
a factor of die size, they were much, much more depen-
dent on volume being shipped, and in that arena, CISCs
had an enormous advantage over their RISC challengers.

In joining Intel’s new x86 design team, I was betting
heavily that my understanding was right. P6 would have
to beat Intel’s previous chips, AMD’s best competitive
effort, and at least keep the most promising RISC chips
within range.

Proliferation thinking

We quickly realized we were not just “designing a
chip” with the Pé6 project.

Intel’s modus operandi is for a flagship team (like the
P6) to start with a blank sheet, conceive a new microar-

chitecture, design a chip around it, and produce rela-
tively limited production volumes.

Why is that a good plan, in an industry where large
economies prevail? There are several reasons. The first
is that the architects must be fairly aggressive in their
new design; they will want to spend every transistor they
can get, because they know how to translate additional
transistors into additional performance, and perfor-
mance sells. This means that the first instantiation of
their concept will fill the die, making it large.

The physics of manufacturing silicon chips is such that
a larger die is much less economical than a smaller one,
since fewer such chips fit onto a silicon wafer, and also
because random manufacturing
defects are much more likely to ruin
a large chip than a small one.
Because of this large-die issue, the
first version of a new microarchitec-
ture will be expensive, which auto-
matically limits its sales volume.

But the second, third, and nth pro-
liferations of the original chip are the
moneymakers. These follow-on
designs convert the design to a new
silicon process technology, thereby
gaining all the traditional Moore’s Law benefits. The chip
gets smaller because its transistors and wires are smaller.
It gets faster because smaller transistors are faster. Smaller
is also cheaper—more silicon die fit on a given silicon
wafer, and there will be more good die per wafer, with
less die area exposed to potential contamination.
Moreover, the team is much smaller than the original
design team, and it only takes about a year instead of 3
to S years for the flagship process.

Henry Petroski points out that this flagship/prolifer-
ation paradigm is not unique to the microprocessor
industry: “All innovative designs can be expected to be
somewhat uneconomical in the sense that they require
a degree of research, development, demonstration, and
conservatism that their technology descendants can take
for granted.”*

When it became clear that P6’s real importance to Intel
was not so much its first instantiation (which Intel even-
tually marketed as the Pentium Pro), but in its “prolif-
erability,” we began to include proliferation thinking in
our design decisions. Early in the project, proliferability
figured prominently in discussions about the P6’s front-
side bus, the interconnect structure by which the CPU
and its chip set would communicate. Some of the mar-
keting folks pointed out that if the P6 had the same front-
side bus as the PS5 (Pentium) project, then our new CPU
would have ready-made motherboards when silicon
arrived. If the P6’s chip set was delayed for some reason,
we could debug our new CPU on the P5’s chip set.

These arguments were absolutely correct on the sur-
face, but they overlooked the bigger picture: Long-term,

32-bit code would be
the battleground for the
RISC/CISC conflict,

and also the future
of general software
development.

the PS5 bus was woefully inadequate for the much higher
system performance levels we believed we would get
from the P6’s proliferations. We had also begun consid-
ering whether a multiprocessor design was feasible, and
the PS5 bus was very inappropriate for such systems. We
could do a lot better with the new packaging and bus
driver circuits that were becoming available.

Another design decision that proliferation thinking
heavily influenced was the relative performance of 16-
and 32-bit code. 16-bit code was legacy code from the
DOS era. We knew P6 would have to run all Intel
Architecture x86 code to be considered compatible, but
we believed that as the years rolled by, 16-bit code
would become increasingly irrele-
vant. (The ascendancy of 32-bit
code over 16-bit probably seems
perfectly obvious today, and the
trend was indeed unmistakable. But
as in music, politics, and electronics,
timing is everything.) 32-bit code
would be the battleground for the
RISC/CISC conflict, and also the
future of general software develop-
ment, and we intended to make a
good showing there. So we concen-
trated on designing the P6 core for great 32-bit perfor-
mance, and with 16-bit performance, it would be “you
get what you get.”

The gauntlet

That was pretty much the environment of the P6 pro-
ject. We were designing a product we hoped would be
immediately profitable, but we were willing to com-
promise it to some extent on behalf of future prolifer-
ations. P6 would have competition within the company
from the PS5 chip and outside the company from other
x86 vendors and the RISC competitors.

Although some of us were very experienced in com-
puter systems and silicon chip design, a team as large as
the one we were envisioning would have to have a large
percentage of novice “RCGs” (recent college graduates),
and we were still a brand new division, with no x86
track record. Over the next 5 years, Intel would bet sev-
eral hundred million dollars that we would find answers
to these challenges.

We not only found the answers, but we also came up
with a microarchitecture that propelled Intel into vol-
ume servers, fundamentally changing the server space
by making servers cheap enough that every business
could afford one. (Such servers were, of course, essen-
tial for the explosive growth of the worldwide Web in
the mid 1990s, but we hesitate to take credit for the
Internet. That goes to Al Gore. Ask him. He’ll tell you.)
Intel also realized a handsome profit from the three mil-
lion Pentium Pro microprocessors it sold, so we hit that
goal too.

January 2006

But at the beginning of those 5 years, about all we
had were some big ideas and a short time in which to
cultivate them.

DEVELOPING BIG IDEAS

The first step in growing an idea is not to forget it
when it comes to you. Composers, writers, and engi-
neers routinely work hard at simply remembering their
glimpses of brilliance as they arise. Then they try to
incorporate their brainchild into the current project and
move on to the next challenge. For small ideas, those
that affect primarily your own work, any number of
techniques will allow those good ideas to flourish.

Not so with big ideas. Big ideas involve a lot of peo-
ple, time, and money, all of which
are necessary but not sufficient con-
ditions for success.

Engineering projects begin with a
perceived need or opportunity, which
spawns an idea, some realizable way
to fill that need. Even if your boss just
tells you to do something, you still
“need” to do it. So ideas start with
“Wouldn’t it be great if we had a
bridge spanning San Francisco har-
bor to Marin County?”; or, “What if we placed towers
every so often along busy highways, and used them to
relay radiotelephone traffic?” (I know! We could call
them “cell phones!); or, “We could put up satellites, time
their movement and transmissions, and then use them
to determine someone’s exact position on the Earth’s sur-
face,” and so on.

In 1961, President John F. Kennedy committed the
United States to placing a man on the moon by the end
of the 1960s and returning him safely to Earth.2 That
was the perceived need or opportunity. NASA engineers
had to conceive ways to realize that vision. Could they
make booster rockets safe enough to carry humans into
space? What were the feasible ways of landing a craft
on the lunar surface such that it could later take off
again? How could that hardware be transported from
Earth to the moon? Should it be launched directly as a
straight shot, or should the lunar attempt launch from
the Earth’s orbit?

The process NASA followed was to identify several
promising ideas and then attack each one to see if they
could find a showstopper flaw in it. They systematically
eliminated the plans that would not work and increased
their focus on the ones that survived. In the end, they set-
tled on a compound plan that included the orbit around
Earth, the trip to the moon, a lunar orbit, and a landing
craft with two pieces, one for landing (which would be
left behind) and one for takeoff and return to lunar orbit.

At every step of the Apollo program, this overall con-
cept determined the engineering and research. The two-
stage lunar lander could be accurately estimated as to

m Computer

to accomplish some task
than reinvent everything.

weight and size, which set the thrust requirement for
the lander’s engines. The overall thrust required to get
the rocket, its fuel, and the lander into Earth orbit in
turn guided the development of the huge Saturn V
booster. The various docking and undocking maneuvers
implied a need for airtight docking seals and maneu-
vering thrusters.

Our approach to the P6 project was a lot like NASA’s
approach to the moon shot. We tried as much as possi-
ble to reuse existing solutions, tools, and methods, but
we knew at the outset that existing technology, tools, and
project management methods would not suffice to get
our project where we wanted it to go. So we purposefully
arranged the design team to address special technology
challenges in circuits, buses, valida-
tion, and multiprocessing.

Good engineers
would much rather
use a known-good method

Defining success and failure

Engineers generally recognize the
validity of the saying, “Creativity is
a poor substitute for knowing what
you’re doing.” (Ignore what Albert
Einstein is reputed to have said:
“Imagination is more important
than knowledge.” That might be
valid for a scientist, but as an engineer, I know that I
can’t simply imagine my bridge tolerating a certain
load.) Good engineers would much rather use a known-
good method to accomplish some task than reinvent
everything. In this way, they are free to concentrate their
creativity on the parts of the design that really need it,
and they reduce overall risk.

On the other hand, if we apply this thinking to over-
all engineering project management, we are in trouble.
Our instinct to exhaustively research project manage-
ment methods, pick the best one, and implement it will
lead us to an infinite loop because new project manage-
ment methods are being written faster than we can read
them. Worse, there’s no apparent consensus among these
learned treatises, so there’s no easy way to synthesize a
“best-of” project management methodology. Moreover,
methods that work on one project may fail badly on the
next because the reward for succeeding on one design
project is that you get to do it again, except that the next
project will be at least twice as difficult. That’s the dark
cloud around the Moore’s Law silver lining.

Large, successful engineering companies must con-
stantly struggle to balance their corporate learning (as
embodied in their codex of Best Known Methods)
against the need of each new project to innovate around
problems that no one has faced before. In a very impor-
tant sense, the P6 project was blessed with a team whose
members either had never worked on Intel’s x86 chips
or had never worked at Intel. This helped enormously
in getting the right balance of historical answers and
new challenges.

Senior wisdom

In most cases, a company will present the “new pro-
ject” need or opportunity to a few senior engineers who
then have the daunting job of thoroughly evaluating
project requirements and answering a two-pronged
question: What constitutes success for this project and
what constitutes failure? They must identify possible
avenues for the project to pursue that will lead to the
promised land.

The path is not easily recognizable. Nature is biased
against success: For every plan that works, thousands
fail, many of them initially quite plausible. And the suc-
cess criteria are not simply the logical converse of fail-
ure conditions. For the P6, success criteria included
performance above a certain level
and failure criteria included power
dissipation above some threshold.

In essence, a few senior people are
making choices that will implicitly
or explicitly guide the efforts of hun-
dreds (or in NASA’s case, tens of
thousands) of others over the pro-
ject’s life. It is, therefore, crucial that project leadership
be staffed correctly and get this phase right, or it will be
extremely hard for the project to recover. Do not begin
the project until the right leadership is in place.

Occasionally, you will see articles about computer pro-
grammers who are wildly talented at cranking out good
code. Such people do exist. We don’t really know where
they come from, and we don’t know how to make more
of them, but we know them when we see them. To try to
put these superprogrammers into perspective, their output
is usually compared to that of their less sensational com-
patriots—“one superprogrammer can turn out as much
code in a day as three of her coworkers could in a week.”

As with senior project leadership, this kind of com-
parison misses the point: You can’t substitute higher
numbers of less gifted people for the efforts of these cho-
sen few. Quantity cannot replace quality. Guard these
folks when you find them, because you cannot replace
them, and their intuitions and insights are essential to
getting a project onto the right track and keeping it there
through production.

FOUR PROJECT PHASES

Small projects involving only a few engineers can suc-
ceed on a seat-of-the-pants, just-do-whatever-needs-doing
basis. As long as an experienced engineer is in charge—
one who can recognize when the team has found a work-
able product concept and when to drive the project
forward—the project can succeed. But large projects suf-
fer from this ad hoc treatment. Large projects can be out-
rageously inefficient if not managed properly and might
even implode if allowed to stall long enough. Large pro-
jects require structure and scheduling.

Although we certainly had structure and a schedule,

Large projects can be
outrageously inefficient

if not managed properly.

we did not start with the conceptual framework that
forms the backbone of this book. Rather, the framework
presented is a product of my attempt to impose order
and labels on what we actually did, with the benefit of
hindsight and the passage of time.

The four major phases I've been able to distill are

1. Concept

2. Refinement
3. Realization
4. Production

In the concept phase, senior engineers consider the
request or opportunity and try to brainstorm ways to
satisfy it. If the need was “a better
way to get from downtown San
Francisco to Marin County,” they
would create a set of possible solu-
tions that might include ferries, tun-
nels, bridges, trained dolphins,
blimps, water wings, submarines,
inflated inner tubes, human cannon-
balls, and jet-skis. (Remember, this is the anything-goes
brainstorming phase.)

The refinement phase weeds out the implausible solu-
tions and prioritizes the rest so that the project’s limited
engineering effort concentrates on the ideas that are most
likely to pan out. Of the initial set of, say, 10 or 20 ideas
that exit the concept phase, only two or three are likely
to survive the refinement phase. One of these will be des-
ignated the plan-of-record and will receive the most
attention at the beginning of the realization phase.

Realization is the actual engineering process. The
design team takes the best idea that has emerged from
the refinement phase (and may even have been the
instrument by which refinement occurs) and implements
the prototype product.

The last phase of the engineering process—produc-
tion, driving what you’ve created into solid high vol-
ume—is often overlooked by design teams. Design teams
must shepherd their creation all the way through vol-
ume production, not simply transfer responsibility to
some production engineering group at the first sale.

As in any project framework, the four project phases
overlap. The project as a whole may be transitioning
from concept to refinement over a few weeks or months.
Any design engineer in the project might be at some point
in this transition, substantially lagging or leading the rest
of the project. One part of a design team might be fin-
ishing a previous design and thus be unable to join a new
effort until most of the concept phase is over.

This four-stage model can be extremely useful as a
management tool, as well as a way to coordinate the
design team. (I wish we had recognized it as such.) The
team should superimpose the four stages on the overall
project schedule, so that everybody knows how to best

January 2006

make their local decisions. Ideas that are worth chasing
down when the project is in the concept phase might
have to be triaged at later phases, for example.

THE BUSINESS OF EXCELLENCE

I would be remiss if I did not emphasize the role of
the P6 team.

In the 1970s, the Pittsburgh Steelers football team
won four Super Bowls. It wasn’t just that the Steelers
had dominating players at so many positions. It wasn’t
just that they were well trained and executed brilliantly
much of the time and at least competently the rest. It
wasn’t even that the Steelers were underdogs for the first
half of the 1970s. It was that the Steelers were deter-
mined to win. There was a palpable sense about that
team that they would face and subdue any challenge
that turned up. They would do whatever it took to suc-
ceed, and their definition of success was to be the best
in the world at what they did.

The P6 team had those qualities. We relied heavily on
Randy Steck’s excellent innate managerial instincts and
constant drive to improve and a very experienced senior
technical leadership who didn’t have to be told what to
do next. We also had an entrepreneurial slay-the-drag-

ons-as-they-appear resilience and a willingness to try
new things. In the end, P6 turned out the way it did
because an incredibly talented design and architecture
team was fervently committed to making it a success.

Iam not implying that we necessarily knew more than
other project managers, nor am I suggesting that ours
was a better approach than any project management
book would propose (although I am sure it was better
than some). I simply want to relate what we did, why we
did it that way, and how it turned out. ...

References

1. H. Petroski, Design Paradigms, Cambridge Univ. Press, 1994
2. R. Turnill, The Moonlandings: An Eyewitness Account, Cam-
bridge Univ. Press, 2003.

Robert P. Colwell, the 20035 recipient of the IEEE Com-
puter Society/ACM Eckert-Mauchly Award, was Intel’s
chief 1A32 architect through the Pentium 11, 111, and 4
microprocessors. He is now an independent consultant.
Contact him at bob.colwell@comcast.net.

Computer

magazine

looks ahead &
to future

technologies

m Computer

\| ° Computer, the flagship publication of the IEEE Computer Society,
publishes peer-reviewed technical content that covers all aspects of

computer science, computer engineering, technology, and applications.

e Articles selected for publication in Computer are edited to enhance
readability for the nearly 100,000 computing professionals who

receive this monthly magazine.

¢ Readers depend on Computer to provide current, unbiased, thoroughly

researched information on the newest directions in computing technology.

To submit a manuscript for peer review,
see Computer’s author guidelines:

www.computer.org/computer/author.htm

