
The Superblock: An E�ective Technique

for VLIW and Superscalar Compilation

Wen-mei W. Hwu Scott A. Mahlke William Y. Chen Pohua P. Chang

Nancy J. Warter Roger A. Bringmann Roland G. Ouellette Richard E. Hank

Tokuzo Kiyohara Grant E. Haab John G. Holm Daniel M. Lavery �

Abstract

A compiler for VLIW and superscalar processors must expose su�cient instruction-level parallelism

(ILP) to e�ectively utilize the parallel hardware. However, ILP within basic blocks is extremely limited

for control-intensive programs. We have developed a set of techniques for exploiting ILP across basic

block boundaries. These techniques are based on a novel structure called the superblock . The superblock

enables the optimizer and scheduler to extract more ILP along the important execution paths by sys-

tematically removing constraints due to the unimportant paths. Superblock optimization and scheduling

have been implemented in the IMPACT-I compiler. This implementation gives us a unique opportunity

to fully understand the issues involved in incorporating these techniques into a real compiler. Superblock

optimizations and scheduling are shown to be useful while taking into account a variety of architectural

features.

Index terms - code scheduling, control-intensive programs, instruction-level parallel processing, op-

timizing compiler, pro�le information, speculative execution, superblock, superscalar processor, VLIW

processor.

�The authors are with the Center for Reliable and High-Performance Computing, University of Illinois, Urbana-Champaign,

Illinois, 61801. Pohua Chang is now with Intel Corporation. Roland Ouellette is now with Digital Equipment Corporation.

Tokuzo Kiyohara is with Matsushita Electric Industrial Co., Ltd., Japan. Daniel Lavery is also with the Center for Supercom-

puting Research and Development at the University of Illinois at Urbana-Champaign.

1

To Appear: Journal of Supercomputing, 1993 2

1 Introduction

VLIW and superscalar processors contain multiple data paths and functional units, making them capable of

issuing multiple instructions per clock cycle [Colwell et al. 1987; Fisher 1981; Horst et al. 1990; Intel 1989;

Rau et al. 1989; Warren 1990]. As a result, the peak performance of the coming generation of VLIW and

superscalar processors will range from two to eight times greater than their scalar predecessors which execute

at most one instruction per clock cycle. However, previous studies have shown that using conventional code

optimization and scheduling methods, superscalar and VLIW processors cannot produce a sustained speedup

of more than two for control-intensive programs [Jouppi and Wall 1989; Schuette and Shen 1991; Smith et al.

1989]. For such programs, conventional compilation methods do not provide enough support to utilize these

processors.

Traditionally, the primary objective of code optimization is to reduce the number and complexity of

executed instructions. Few existing optimizing compilers attempt to increase the instruction-level parallelism,

or ILP 1, of the code. This is because most optimizing compilers have been designed for scalar processors,

which bene�t little from the increased ILP. Since VLIW and superscalar processors can take advantage of

the increased ILP, it is important for the code optimizer to expose enough parallelism to fully utilize the

parallel hardware.

The amount of ILP within basic blocks is extremely limited for control-intensive programs. Therefore, the

code optimizer must look beyond basic blocks to �nd su�cient ILP. We have developed a set of optimizations

to increase ILP across basic block boundaries. These optimizations are based on a novel structure called the

superblock. The formation and optimization of superblocks increases the ILP along the important execution

paths by systematically removing constraints due to the unimportant paths. Because these optimizations

increase the ILP within superblocks, they are collectively referred to as superblock ILP optimizations.

Unlike code optimization, code scheduling for VLIW processors has received extensive treatment in the

literature [Aiken and Nicolau 1988; Bernstein and Rodeh 1991; Ellis 1985; Fisher 1981; Gupta and So�a

1990]. In particular, the trace scheduling technique invented by Fisher has been shown to be very e�ective

for rearranging instructions across basic blocks [Fisher 1981]. An important issue for trace scheduling is

the compiler implementation complexity incurred by the need to maintain correct program execution after

1One can measure the ILP as the average number of simultaneously executable instructions per clock cycle. It is a function

of the data and control dependences between instructions in the program as well as the instruction latencies of the processor

hardware. It is independent of all other hardware constraints.

To Appear: Journal of Supercomputing, 1993 3

moving instructions across basic blocks. The code scheduling technique described in this paper, which is

derived from trace scheduling, employs the superblock. Superblock ILP optimizations remove constraints,

and the code scheduler implementation complexity is reduced. This code scheduling approach will be referred

to as superblock scheduling.

In order to characterize the cost and e�ectiveness of the superblock ILP optimizations and superblock

scheduling, we have implemented these techniques in the IMPACT-I compiler developed at the University

of Illinois. The fundamental premise of this project is to provide a complete compiler implementation

that allows us to quantify the impact of these techniques on the performance of VLIW and superscalar

processors by compiling and executing large control-intensive programs. In addition, this compiler allows us

to fully understand the issues involved in incorporating these optimization and scheduling techniques into

a real compiler. Superblock optimizations are shown to be useful while taking into account a variety of

architectural parameters.

Section 2 of this paper introduces the superblock. Section 3 gives a concise overview of the superblock ILP

optimizations and superblock scheduling. Section 4 presents the cost and performance of these techniques.

The concluding remarks are made in Section 5.

2 The Superblock

The purpose of code optimization and scheduling is to minimize the execution time while preserving the

program semantics. When this is done globally, some optimization and scheduling decisions may decrease

the execution time for one control path while increasing the time for another path. By making these decisions

in favor of the more frequently executed path, an overall performance improvement can be achieved.

Trace scheduling is a technique that was developed to allow scheduling decisions to be made in this

manner [Ellis 1985; Fisher 1981]. In trace scheduling the function is divided into a set of traces that

represent the frequently executed paths. There may be conditional branches out of the middle of the trace

(side exits) and transitions from other traces into the middle of the trace (side entrances). Instructions are

scheduled within each trace ignoring these control-
ow transitions. After scheduling, bookkeeping is required

to ensure the correct execution of o�-trace code.

Code motion past side exits can be handled in a fairly straightforward manner. If an instruction I is

moved from above to below a side exit, and the destination of I is used before it is rede�ned when the side

To Appear: Journal of Supercomputing, 1993 4

Instr 1

Instr 2

Instr 3

Instr 4

Instr 3

Instr 5

Instr 4

.

.

.

.

.

.

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

.

.

.

.

.

.

(a)

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

.

.

.

.

.

.
Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

.

.

.

.

.

.

(b)

Instr 5

Figure 1: Instruction scheduling across trace side entrances. (a) Moving an instruction below a side entrance.
(b) Moving an instruction above a side entrance.

exit is taken, then a copy of I must also be placed between the side exit and its target. Movement of an

instruction from below to above a branch can also be handled without too much di�culty. The method for

doing this is described in section 3.4.

More complex bookkeeping must be done when code is moved above and below side entrances. Figure 1

illustrates this bookkeeping. In Figure 1(a), when Instr 1 is moved below the side entrance (to after Instr 4),

the side entrance is moved below Instr 1. Instr 3 and Instr 4 are then copied to the side entrance. Likewise,

in Figure 1(b), when Instr 5 is moved above the side entrance, it must also be copied to the side entrance.

Side entrances can also make it more complex to apply optimizations to traces. For example, Figure 2

shows how copy propagation can be applied to the trace and the necessary bookkeeping for the o�-trace

code. In this example, in order to propagate the value of r1 from I1 to I3, bookkeeping must be performed.

Before propagating the value of r1, the side entrance is moved to below I3 and instructions I2 and I3 are

copied to the side entrance.

The bookkeeping associated with side entrances can be avoided if the side entrances are removed from

the trace. A superblock is a trace which has no side entrances. Control may only enter from the top but

may leave at one or more exit points. Superblocks are formed in two steps. First, traces are identi�ed using

execution pro�le information [Chang and Hwu 1988]. Second, a process called tail duplication is performed

to eliminate any side entrances to the trace [Chang et al. 1991b]. A copy is made of the tail portion of

the trace from the �rst side entrance to the end. All side entrances into the trace are then moved to the

corresponding duplicate basic blocks. The basic blocks in a superblock need not be consecutive in the code.

However, our implementation restructures the code so that all blocks in a superblock appear in consecutive

To Appear: Journal of Supercomputing, 1993 5

(a) (b)

.

.

.

.

.

.

r2 <- label(_A)

r1 <- 4

.

.

.

.

.

.

r2 <- label(_A)

r1 <- 4

r3 <- mem(r2+4)r3 <- mem(r2+r1)

r1 <- 64

.

.

.

r2 <- label(_A)

r3 <- mem(r2+r1)

r1 <- 64

.

.

.

I1:

I2:

I3:

I1:

I2:

I3:

I2’:

I3’:

Figure 2: Applying copy propagation to an instruction trace. (a) Before copy propagation. (b) After copy
propagation with bookkeeping code inserted.

order for better cache performance.

The formation of superblocks is illustrated in Figure 3. Figure 3(a) shows a weighted
ow graph which

represents a loop code segment. The nodes correspond to basic blocks and arcs correspond to possible

control transfers. The count of each basic block indicates the execution frequency of that basic block.

In Figure 3(a), the count of fA;B;C;D;E; Fg is f100; 90; 10;0;90;100g, respectively. The count of each

control transfer indicates the frequency of invoking these control transfers. In Figure 3(a), the count of

fA! B;A! C;B ! D;B ! E;C ! F;D! F;E ! F; F ! Ag is f90; 10; 0; 90; 10; 0; 90; 99g, respectively.

Clearly, the most frequently executed path in this example is the basic block sequence < A;B;E; F >. There

are three traces: fA;B;E; Fg, fCg, and fDg. After trace selection, each trace is converted into a superblock.

In Figure 3(a), we see that there are two control paths that enter the fA;B;E; Fg trace at basic block F .

Therefore, we duplicate the tail part of the fA;B;E; Fg trace starting at basic block F . Each duplicated basic

block forms a new superblock that is appended to the end of the function. The result is shown in Figure 3(b).

Note that there are no longer side entrances into the most frequently traversed trace, < A;B;E; F >; it has

become a superblock.

Superblocks are similar to the extended basic blocks. An extended basic block is de�ned as a sequence

of basic blocks B1...Bk such that for 1 � i < k, Bi is the only predecessor of Bi+1 and B1 does not have

a unique predecessor [Aho et al. 1986]. The di�erence between superblocks and extended basic blocks lies

mainly in how they are formed. Superblock formation is guided by pro�le information and side entrances

are removed to increase the size of the superblocks. It is possible for the �rst basic block in a superblock to

To Appear: Journal of Supercomputing, 1993 6

C

D

0

10

99

10

A

B

E

F

1

90
10

100

90
0

90

1

90

90

100

0

1

C

D

0

10

10

A

B

E

F

90
10

100

90
0

90

90

900

F’

10

0.1

0.9

90

89.1

9.9

(a) (b)

Y

Z Z

Y

Figure 3: An example of superblock formation.

have a unique predecessor.

3 Superblock ILP Optimization and Scheduling

Before superblock scheduling is performed, superblock ILP optimizations are applied which enlarge the

superblock and increase instruction parallelism by removing dependences.

3.1 Superblock Enlarging Optimizations

The �rst category of superblock ILP optimizations is superblock enlarging optimizations. The purpose of

these optimizations is to increase the size of the most frequently executed superblocks so that the superblock

scheduler can manipulate a larger number of instructions. It is more likely the scheduler will �nd independent

instructions to schedule at every cycle in a superblock when there are more instructions to choose from. An

important feature of superblock enlarging optimizations is that only the most frequently executed parts of a

program are enlarged. This selective enlarging strategy keeps the overall code expansion under control [Chang

To Appear: Journal of Supercomputing, 1993 7

et al. 1991b]. Three superblock enlarging optimizations are described as follows.

Branch Target Expansion. Branch target expansion expands the target superblock of a likely taken

control transfer which ends a superblock. The target superblock is copied and appended to the end of

the original superblock. Note that branch target expansion is not applied for control transfers which are

loop backedges. Branch target expansion continues to increase the size of a superblock until a prede�ned

superblock size is reached, or the branch ending the superblock does not favor one direction.

Loop Peeling. Superblock loop peeling modi�es a superblock loop (a superblock which ends with a

likely control transfer to itself) which tends to iterate only a few times for each loop execution. The loop

body is replaced by straight-line code consisting of the �rst several iterations of the loop. 2 The original

loop body is moved to the end of the function to handle executions which require additional iterations. After

loop peeling, the most frequently executed preceding and succeeding superblocks can be expanded into the

peeled loop body to create a single large superblock.

Loop Unrolling. Superblock loop unrolling replicates the body of a superblock loop which tends to

iterate many times. To unroll a superblock loop N times, N � 1 copies of the superblock are appended to

the original superblock. The loop backedge control transfers in the �rst N � 1 loop bodies are adjusted or

removed if possible to account for the unrolling. If the iteration count is known on loop entry, it is possible

to remove these transfers by using a preconditioning loop to execute the �rst mod N iterations. However,

preconditioning loops are not currently inserted for unrolled loops.

3.2 Superblock Dependence Removing Optimizations

The second category of superblock ILP optimizations is superblock dependence removing optimizations.

These optimizations eliminate data dependences between instructions within frequently executed superblocks,

which increases the ILP available to the code scheduler. As a side e�ect, some of these optimizations increase

the number of executed instructions. However, by applying these optimizations only to frequently executed

superblocks, the code expansion incurred is regulated. Five superblock dependence removing optimizations

are described as follows.

Register Renaming. Reuse of registers by the compiler and variables by the programmer introduces

arti�cial anti and output dependences and restricts the e�ectiveness of the scheduler. Many of these arti�cial

dependences can be eliminated with register renaming [Kuck et al. 1981]. Register renaming assigns unique

2Using the pro�le information, the loop is peeled its expected number of iterations.

To Appear: Journal of Supercomputing, 1993 8

registers to di�erent de�nitions of the same register. A common use of register renaming is to rename

registers within individual loop bodies of an unrolled superblock loop.

Operation Migration. Operation migration moves an instruction from a superblock where its result is

not used to a less frequently executed superblock. By migrating an instruction, all of the data dependences

associated with that instruction are eliminated from the original superblock. Operation migration is per-

formed by detecting an instruction whose destination is not referenced in its home superblock. Based on a

cost constraint, a copy of the instruction is placed at the target of each exit of the superblock in which the

destination of the instruction is live. Finally, the original instruction is deleted.

Induction Variable Expansion. Induction variables are used within loops to index through loop

iterations and through regular data structures such as arrays. When data access is delayed due to depen-

dences on induction variable computation, ILP is typically limited. Induction variable expansion eliminates

rede�nitions of induction variables within an unrolled superblock loop. Each de�nition of the induction

variable is given a new induction variable, thereby eliminating all anti, output, and
ow dependences among

the induction variable de�nitions. However an additional instruction is inserted into the loop preheader to

initialize each newly created induction variable. Also, patch code is inserted if the induction variable is used

outside the superblock to recover the proper value for the induction variable.

Accumulator Variable Expansion. An accumulator variable accumulates a sum or product in each

iteration of a loop. For loops of this type, the accumulation operation often de�nes the critical path within

the loop. Similar to induction variable expansion, anti, output, and
ow dependences between instructions

which accumulate a total are eliminated by replacing each de�nition of accumulator variable with a new

accumulator variable. Unlike induction variable expansion, though, the increment or decrement value is

not required to be constant within the superblock loop. Again, initialization instructions for these new

accumulator variables must be inserted into the superblock preheader. Also, the new accumulator variables

are summed at all superblock exit points to recover the value of the original accumulator variable. Note that

accumulator variable expansion applied to
oating point variables may not be safe for programs which rely

on the order which arithmetic operations are performed to maintain accuracy. For programs of this type, an

option is provided for the user to disable accumulator variable expansion of
oating point variables.

Operation Combining. Flow dependences between pairs of instructions with the same precedence

each with a compile-time constant source operand can be eliminated with operation combining [Nakatani

and Ebcioglu 1989]. Flow dependences which can be eliminated with operation combining often arise between

To Appear: Journal of Supercomputing, 1993 9

Original Loop

Loop
Unroll

Dependence
Removal

L1 : if (A[i] == 1) C += B[i]
 i++
 if (i < N) goto L1
L2 :

pre : r11 = r1
r21 = r1 + 4
r31 = r1 + 8
r14 = r4
r24 = 0
r34 = 0

L1 : r12 = MEM(A + r11)
bne (r12 1) L13
r13 = MEM(B + r11)
r14 = r14 + r13
bge (r21 N’) L2

r22 = MEM(A + r21)
bne (r22 1) L23
r23 = MEM(B + r21)
r24 = r24 + r23
bge (r31 N’) L2

r32 = MEM(A + r31)
bne (r32 1) L33
r33 = MEM(B + r31)
r34 = r34 + r33
r11 = r11 + 12
r21 = r21 + 12
r31 = r31 + 12
blt (r11 N’) L1

L2 : r4 = r14 + r24
r4 = r4 + r34

L13 : r11 = r11 + 4
r21 = r21 + 4
r31 = r31 + 4
blt (r11 N’) L1
goto L2

L23 : r11 = r11 + 8
r21 = r21 + 8
r31 = r31 + 8
blt (r11 N’) L1
goto L2

L33 : r11 = r11 + 12
r21 = r21 + 12
r31 = r31 + 12
blt (r11 N’) L1
goto L2

(a)

(b)

(c)

(d)

L1 : r2 = MEM(A + r1)
bne (r2 1) L3
r3 = MEM(B + r1)
r4 = r4 + r3
r1 = r1 + 4
blt (r1 N’) L1

L2 :

r1 = r1 + 4
blt (r1 N’) L1
goto L2

L3 :

L1 : r2 = MEM(A + r1)
bne (r2 1) L3
r3 = MEM(B + r1)
r4 = r4 + r3
r1 = r1 + 4
bge (r1 N’) L2

r2 = MEM(A + r1)
bne (r2 1) L3
r3 = MEM(B + r1)
r4 = r4 + r3
r1 = r1 + 4
bge (r1 N’) L2

r2 = MEM(A + r1)
bne (r2 1) L3
r3 = MEM(B + r1)
r4 = r4 + r3
r1 = r1 + 4
blt (r1 N’) L1

L2 :

r1 = r1 + 4
blt (r1 N’) L1
goto L2

L3 :

Figure 4: An application of superblock ILP optimizations, (a) original program segment, (b) assembly
code after superblock formation, (c) assembly code after superblock loop unrolling, (d) assembly code after
superblock dependence removal optimizations.

address calculation instructions and memory access instructions. Also, similar opportunities occur for loop

variable increments and loop exit branches. The
ow dependence is removed by substituting the expression

of the �rst instruction into the second instruction and evaluating the constants at compile time.

Example. An example to illustrate loop unrolling, register renaming, induction variable expansion, and

accumulator variable expansion is shown in Figure 4. This example assumes that the condition of the if

statement within the loop is likely to be true. After superblock formation, the resulting assembly code is

shown in Figure 4(b). To enlarge the superblock loop, loop unrolling is applied. The loop is unrolled three

times in this example (Figure 4(c)). After loop unrolling, data dependences limit the amount of ILP in the

superblock loop.

The dependences among successive updates of r4 (Figure 4(c)) are eliminated with accumulator variable

expansion. In Figure 4(d), three temporary accumulators, r14, r24, and r34, are created within the su-

To Appear: Journal of Supercomputing, 1993 10

perblock loop. After accumulator expansion, all updates to r4 within one iteration of the unrolled loop are

independent of one another. In order to maintain correctness, the temporary accumulators are properly ini-

tialized in the loop preheader (pre), and the values are summed at the loop exit point (L2). The dependences

among successive updates of r1 along with updates of r1 and succeeding load instructions (Figure 4(c)) are

eliminated with induction variable expansion. In Figure 4(d), three temporary induction variables, r11, r21,

and r31, are created within the superblock loop. After induction variable expansion, the chain of depen-

dences created by the induction variable is eliminated within one iteration of the unrolled loop. Finally,

register renaming is applied to the load instructions to eliminate output dependences. After all superblock

ILP optimizations are applied, the execution of the original loop bodies within the unrolled superblock loop

may be completely overlapped by the scheduler.

3.3 Superblock Scheduling

After the superblock ILP optimizations are applied, superblock scheduling is performed. Code scheduling

within a superblock consists of two steps: dependence graph construction followed by list scheduling. A

dependence graph is a data structure which represents the control and data dependences between instruc-

tions. A control dependence is initially assigned between each instruction and every preceding branch in the

superblock. Some control dependences may then be removed according to the available hardware support

described in the following section. After the appropriate control dependences have been eliminated, list

scheduling using the dependence graph, instruction latencies, and resource constraints is performed on the

superblock.

3.4 Speculative Execution Support

Speculative execution refers to the execution of an instruction before it is known that its execution is required.

Such an instruction will be referred to as a speculative instruction. Speculative execution occurs when the

superblock scheduler moves an instruction J above a preceding conditional branch B. During run time, J

will be executed before B, i.e., J is executed regardless of the branch direction of B. However, according to

the original program order, J should be executed only if B is not taken. 3 Therefore, the execution result

of J must not be used if B is taken, which is formally stated as follows:

3Note that the blocks of a superblock are laid out sequentially by the compiler. Each instruction in the superblock is always

on the fall-through path of its preceding conditional branch.

To Appear: Journal of Supercomputing, 1993 11

Restriction 1. The destination of J is not used before it is rede�ned when B is taken.

This restriction usually has very little e�ect on code scheduling after superblock ILP optimization. For

example, in Figure 4(d), after dependence removal in block L1, the instruction that loads B[i] into r13 can

be executed before the direction the preceding bne instruction is known. Note that the execution result of

this load instruction must not be used if the branch is taken. This is trivially achieved because r13 is never

used before de�ned if the branch is taken; the value thus loaded into r13 will be ignored in the subsequent

execution.

A more serious problem with speculative execution is the prevention of premature program termination

due to exceptions caused by speculative instructions. Exceptions caused by speculative instructions which

would not have executed on a sequential machine must be ignored, which leads to the following restriction:

Restriction 2. J will never cause an exception that may terminate program execution when branch B

is taken.

In Figure 4(d), the execution of the instruction that loads B[i] into r13 could potentially cause a memory

access violation fault. If this instruction is speculatively scheduled before its preceding branch and such

a fault occurs during execution, the exception should be ignored if the branch was taken. Reporting the

exception if the branch is taken would have incorrectly terminated the execution of the program.

Two levels of hardware support for Restriction 2 will be examined in this paper: restricted percolation

model and general percolation model. The restricted percolation model includes no support for disregarding

the exceptions generated by the speculative instructions. For conventional processors, memory load, memory

store, integer divide, and all
oating point instructions can cause exceptions. When using the restricted

percolation model, these instructions may not be moved above branches unless the compiler can prove that

those instructions can never cause an exception when the preceding branch is taken. The limiting factor

of the restricted percolation model is the inability to move potential trap-causing instructions with long

latency, such as load instructions, above branches. When the critical path of a superblock contains many of

these instructions, the performance of the restricted percolation model is limited.

The general percolation model eliminates Restriction 2 by providing a non-trapping version of instructions

that can cause exceptions [Chang et al. 1991a]. Exceptions that may terminate program execution are

avoided by converting all speculative instructions which can potentially cause exceptions into their non-

trapping versions. For programs in which detection of exceptions is important, the loss of exceptions can

be recovered with additional architectural and compiler support [Mahlke et al. 1992]. However, in this

To Appear: Journal of Supercomputing, 1993 12

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

AAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A

AA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A

AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAA
AAAA
AAAA

AAAA
AAAA

A
A

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA
AAAA
AAAA

A
A

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAAA AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAA AAAAAAAAAAAAAA
AA
AA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

A AAA
AAAA
AAAA

AAAA
AAAA

AAA
AAA

AA
AAAA
AAAA

AAAA
AAAA

A
A

AA
AAAA
AAAA

A
A

AAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

82%

2%4%
12%

AA
AA
AA

Base

Profile

AA
AA
AA

Superblock Formation

AA
AA Superblock Optimization

Figure 5: Compiler code size break down. The entire compiler consists of approximately 92,000 lines of C
code with one code generator.

paper only the non-trapping execution support is utilized. In Section 4.6, we will show how the general

percolation model allows the superblock scheduler to exploit much more of the ILP exposed by superblock

ILP optimizations than the restricted percolation model.

4 Implementation Cost and Performance Results

In this section, we report the implications of superblock ILP optimization and scheduling on compiler size,

compile time, and output code performance. We additionally examine three architectural factors that di-

rectly a�ect the e�ectiveness of superblock ILP optimizations and scheduling: speculative execution support,

instruction cache misses, and data cache misses.

4.1 Compiler Size

The IMPACT-I C compiler serves two important purposes. First, it is intended to generate highly opti-

mized code for existing commercial microprocessors. We have constructed code generators for the MIPS

R2000TM, SPARCTM, Am29000TM, i860TM, and HP PA-RISCTM processors. Second, it provides a platform

for studying new code optimization techniques for instruction-level parallel processing. New code optimiza-

tion techniques, once validated, can be immediately applied to the VLIW and superscalar implementations

of existing and new commercial architectures.

Figure 5 shows the percentage of compiler size due to each level of compiler sophistication. The base

level accounts for the C front-end, traditional code optimizations, graph-coloring-based register allocation,

basic block scheduling, and one code generator [Chaitin 1982; Chow and Hennessy 1990]. The traditional

optimizations include classical local and global code optimizations, function inline expansion, instruction

placement optimization, pro�le-based branch prediction, and constant preloading [Aho et al. 1986; Hwu and

To Appear: Journal of Supercomputing, 1993 13

Chang 1989a; Hwu and Chang 1989b]. The pro�le level generates dynamic execution frequency information

and feeds this information back to the compiler. The superblock formation level performs trace selection,

tail duplication, and superblock scheduling. The superblock ILP optimization level performs branch expan-

sion, loop unrolling, loop peeling, register renaming, induction variable expansion, accumulator expansion,

operation migration, and operation combining. As shown in Figure 5, the compiler source code dedicated to

the superblock techniques is only about 14% of the entire IMPACT-I compiler.

4.2 Benchmark Programs

Benchmark Size Benchmark Description Pro�le Description Input Description

cccp 4787 GNU C preprocessor 20 C source �les (100 - 5000 lines) 1 C source �le (4000 lines)
cmp 141 compare �les 20 similar/dissimilar �les 2 similar �les (4000 lines)
compress 1514 compress �les 20 C source �les (100 - 5000 lines) 1 C source �le (4000 lines)
eqn 2569 typeset math formulas 20 ditro� �les (100 - 4000 lines) 1 ditro� �le (17000 lines)
eqntott 3461 boolean minimization 5 �les of boolean equations standard SPEC 92 input
espresso 6722 boolean minimization 20 original espresso benchmarks opa
grep 464 string search 20 C source �les with search strings 1 C source �le (4000 lines)
lex 3316 lexical analyzer generator 5 lexers for C, lisp, pascal, awk, pic C lexer
li 7747 lisp interpreter 5 gabriel benchmarks queens 7
tbl 2817 format tables for tro� 20 ditro� �les (100 - 4000 lines) 1 ditro� �le (5000 lines)
wc 120 word count 20 C source �les (100 - 5000 lines) 1 C source �le (4000 lines)
yacc 2303 parser generator 10 grammars for C, pascal, pic, eqn C grammar

Table 1: The benchmarks.

Table 1 shows the characteristics of the benchmark programs to be used in our compile time and output

code performance experiments. The Size column indicates the sizes of the benchmark programs measured

in numbers of lines of C code excluding comments. The remaining columns describe the benchmarks, the

input �les used for pro�ling, and the input �le used for performance comparison. In a few cases, such as lex

and yacc, one of the pro�le inputs was used as the test input due to an insu�cient number of realistic test

cases. Most of the benchmark programs are large and complex enough that it would be virtually impossible

to conduct experimentation using these programs without a working compiler.

4.3 Base Code Calibration

All the superblock ILP optimization and scheduling results will be reported as speedup over the code gen-

erated by a base compilation. For the speedup measures to be meaningful, it is important to show that

the base compilation generates e�cient code. This is done by comparing the execution time of our base

compilation output against that produced by two high quality production compilers. In Table 2, we compare

the output code execution time against that of the MIPSTM C compiler (release 2.1, -O4) and the GNUTM C

To Appear: Journal of Supercomputing, 1993 14

compiler (release 1.37.1, -O), on a DECstation3100TM which uses a MIPS R2000 processor. The MIPS:O4

and GNU:O columns show the normalized execution time for code generated by the MIPS and GNU C

compilers with respect to the IMPACT base compilation output. The results show that our base compiler

performs slightly better than the two production compilers for all benchmark programs. Therefore, all the

speedup numbers reported in the subsequent sections are based on an e�cient base code.

Benchmark IMPACT.O5 MIPS.O4 GNU.O

cccp 1.00 1.08 1.09
cmp 1.00 1.04 1.05
compress 1.00 1.02 1.06
eqn 1.00 1.09 1.10
eqntott 1.00 1.04 1.33
espresso 1.00 1.02 1.15
grep 1.00 1.03 1.23
lex 1.00 1.01 1.04
li 1.00 1.14 1.32
tbl 1.00 1.02 1.08
wc 1.00 1.04 1.15
yacc 1.00 1.00 1.11

Table 2: Execution times of benchmarks on DECstation3100

4.4 Compile Time Cost

Due to the prototype nature of IMPACT-I, very little e�ort has been spent minimizing compile time. During

the development of the superblock ILP optimizer, compile time was given much less concern than correctness,

output code performance, clear coding style, and ease of software maintenance. Therefore, the compile time

results presented in this section do not necessarily represent the cost of future implementations of superblock

ILP optimizations and scheduling. Rather, the compile time data is presented to provide some initial insight

into the compile time cost of superblock techniques.

Figure 6 shows the percentage increase in compile time due to each level of compiler sophistication beyond

base compilation on a SPARCstation-IITM workstation. To show the cost of program pro�ling, we separated

the compile time cost of deriving the execution pro�le. The pro�ling cost reported for each benchmark

in Figure 6 is the cost to derive the execution pro�le for a typical input �le. To acquire stable pro�le

information, one should pro�le each program with multiple input �les.

The superblock formation part of the compile time re
ects the cost of trace selection, tail duplication,

and increased scheduling cost going from basic block scheduling to superblock scheduling. For our set of

benchmarks, the overhead of this part is between 2% and 23% of the base compilation time.

The superblock ILP optimization part of the compile time accounts for the cost of branch expansion, loop

To Appear: Journal of Supercomputing, 1993 15

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
AAAAA

AAAA
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA

A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

A
A
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

A
AAAAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA

A
A

AAAA
AAAA

A
A
AAAAA

AAAAA

AAAA
AAAA

AAAAA

AAAA
AAAA

AAAAA

AAAA
AAAA
AAAA

AAAAA

N
orm

aliz
ed

 C
om

pile
 Ti
m

e

0

1

2

3

4

5

cccp

cm
p

com
press

eqn

eqntott

espresso

grep

lex li tbl w
c

yacc

Superblock Optimization

AA
AA
AA

Superblock Formation

AA
AAProfile

AA
AA
AA

Base

7.12

Figure 6: Compile time cost of superblock ILP optimizations.

unrolling, loop peeling, and dependence removing optimizations, as well as the further increase in scheduling

cost due to enlarged superblocks. Note that the overhead varies substantially across benchmarks. Although

the average overhead is about 101% of the base compilation time, the overhead is as high as 522% for

cmp. After examining the compilation process in detail, we found out that superblock enlargement created

some huge superblocks for cmp. Because there are several O(N2) algorithms used in ILP optimization and

code scheduling, where N is the number of instructions in a superblock, the compile time cost increased

dramatically due to these huge superblocks. This problem can be solved by the combination of superblock

size control and more e�cient optimization and scheduling algorithms to decrease the worst-case compile

time overhead.

4.5 Performance of Superblock ILP Optimization and Scheduling

The compile time and base code calibration results presented in this paper have been based on real machine

execution time. From this point on, we will report the performance of benchmarks based on simulation

of a wide variety of superscalar processor organizations. All results will be reported as speedup over a

scalar processor executing the base compilation output code.4 The scalar processor is based on the MIPS

R2000 instruction set with extensions for enhanced branch capabilities [Kane 1987]. These include squashing

branches, additional branch opcodes such as BLT and BGT, and the ability to execute multiple branches

per cycle [Hwu and Chang 1993]. The underlying microarchitecture stalls for
ow dependent instructions,

To Appear: Journal of Supercomputing, 1993 16

AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA

AAAAAA
AAA

AAA
AAA
AAA
AAA

AAAAAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAAAAA
AAA
AAA
AAA

AAA
AAA
AAAAAA

AAA
AAA
AAA
AAA
AAA
AAAAAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAAAAA
AAA
AAA
AAA

AAA
AAA
AAAAAA

AAA
AAA
AAA
AAA
AAA

AAAAAA
AAA
AAA
AAA
AAA
AAA

AAAAAAAAA
AAA

AAA
AAA
AAAAAA
AAA

AAA
AAA

AAA
AAA
AAAAAA

AAA
AAA
AAA

AAA
AAAAAA

AAAAAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAAAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAAAAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAAAAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAAAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Sp
ee

du
p

1

2

3

4

5

6

7

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

AAA
AAASuperblock Optimization

AAA
AAA
AAA

Superblock Formation

AAA
AAATraditional Optimizations

cccp cmp compress eqn e qntott expresso g rep lex li t bl wc yacc

Figure 7: Performance improvement due to superblock ILP optimization. The speedup numbers are relative
to the scalar processor with base level compilation.

resolves output dependences with register renaming, and resolves anti-dependences by fetching operands at

an early stage of the pipeline. The instruction latencies assumed in the simulations are: 1 cycle for integer

add, subtract, comparison, shift, and logic operations, 2 cycles for load in cache, 1 cycle for store, 2 cycles for

branches, 3 cycles for integer multiply, 10 cycles for integer divide, 3 cycles for
oating point add, subtract,

multiply, comparison, and conversion, and 10 cycles for
oating point divide. The load and store latency for

data cache misses will be discussed in Section 4.8.

To derive the execution cycles for a particular level of compiler optimization and a processor con�guration,

a simulation is performed for each benchmark. Although the base scalar processor is always simulated with

the output code from the base compilation, the superscalar processors are simulated with varying levels

of optimization. Experimental results presented in this section assume ideal cache for both scalar and

superscalar processors. This allows us to focus on the e�ectiveness of the compiler to utilize the processor

resources. The e�ect of cache misses will be addressed in Sections 4.7 and 4.8.

In Figure 7, the performance improvement due to each additional level of compiler sophistication is shown

for superscalar processors with varying instruction issue and execution resources. An issue K processor has

the capacity to issue K instructions per cycle. In this experiment, the processors are assumed to have

uniform function units, thus there are no restrictions on the permissible combinations of instructions among

the K issued in the same cycle.

As shown in Figure 7, both superblock formation and superblock ILP optimization signi�cantly increase

the performance of superscalar processors. In fact, without these techniques, the superscalar processors

To Appear: Journal of Supercomputing, 1993 17

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAAAAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAAAAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAAAAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAAAAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAAAAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAAAAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAAAAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAAAAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAAAAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAAAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAAAAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA

AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAAAAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAAAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Sp
ee

du
p

1

2

3

4

5

6

7

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

AA
AAGeneral Percolation

AA
AARestricted Perc olation

cccp cmp compress eqn e qntott expresso g rep lex li t bl wc yacc

Figure 8: E�ect of speculative support on superblock ILP optimization results.

achieve little speedup over the base scalar processor. Note that for cmp, grep, and wc, a 4-issue processor

achieves more than four times speedup over the base processor. This speedup is superlinear because the

4-issue processor executes code with superblock optimization whereas the base processor only executes tra-

ditionally optimized code. For the 4-issue processor, the cumulative performance improvement due to the

superblock techniques range from 53% to 293% over the base compilation. This data clearly demonstrates

the e�ectiveness of the superblock techniques.

4.6 E�ect of Speculative Execution

The general code percolation model is perhaps the most important architectural support for superblock

ILP optimization and scheduling. The ability to ignore exceptions for speculative instructions allows the

superblock scheduler to fully exploit the increased parallelism due to superblock ILP optimizations. This

advantage is quanti�ed in Figure 8. The general code percolation model allows the compiler to exploit from

13% to 143% more instruction level parallelism for issue 8. Without hardware support, the scheduler can

take advantage of some of the parallelism exposed by superblock optimization. However, using speculative

instructions in the general code percolation model, the scheduler is able to improve the performance of the

8-issue processor to between 2.36 and 7.12 times speedup. Furthermore, as the processor issue rate increases,

the importance of general code percolation increases. For most benchmarks with restricted percolation, little

speedup is obtained from a 4-issue processor to a 8-issue processor. However, when general percolation is

used, substantial improvements are observed from a 4-issue processor to a 8-issue processor. These results

con�rm our qualitative analysis in Section 3.4.

To Appear: Journal of Supercomputing, 1993 18

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
AAAAA AAAA

AAAA
AAAA

A
A
A

AAAA
AAAA

AAAAA AAAA AAAA
AAAA

A
A
AAAA
AAAA
AAAA

AAAA
AAAA

A
A

AAAA
AAAA

AAAA
AAAA

A
A
AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA

A
A

AAAA
AAAA
AAAA AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

A
A

AAAA
AAAA AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
AAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A

O
utp

ut
C
od

e E
xp

an
sio

n

0

1

2

3

4

5

cccp

cm
p

com
press

eqn

eqntott

espresso

grep

lex li tbl w
c

yacc

AAA
AAASuperblock Optimizations

AAA
AAA
AAA

Superblock Formation

AAA
AAATraditional Optimizations

.

Figure 9: Output code size expansion due to superblock ILP techniques.

4.7 Instruction Cache E�ects

The expansion of code from superblock formation and superblock optimizations will have an e�ect on in-

struction cache performance. Most superblock ILP optimizations rely on code duplication to enlarge the

scheduling scope. Some optimizations, such as accumulator expansion, add new instructions to maintain the

correctness of execution after optimization. As shown in Figure 9, the superblock ILP optimizations signif-

icantly increase the code size. The code sizes of eqn and cmp are increased by 23% and 355% respectively.

Such code expansion can potentially degrade instruction cache performance. In addition, each stall cycle

due to cache misses has a greater impact on the performance of superscalar processors than that of scalar

processors. Therefore, it is important to evaluate the impact of instruction cache misses on the performance

of superblock ILP optimizations.

Figure 10 shows the speedup of an 8-issue processor over the base scalar processor when taking instruc-

tion cache miss penalty into account. The four bars associated with each benchmark correspond to four

combinations of two optimization levels and two cache re�ll latencies. The two cumulative optimization

levels are superblock formation (A,C) and superblock ILP optimization (B,D). The two cache re�ll latencies

are 16 and 32 clock cycles. Each bar in Figure 10 has four sections shown the relative performance of four

cache sizes: 1K, 4K, 16K, and ideal. The caches are direct mapped with 32-byte blocks. Each instruction

cache miss is assumed to cause the processors to stall for the cache re�ll latency minus the overlap cycles

due to a load forwarding mechanism [Chen et al. 1991]. Since instruction cache misses a�ect both the base

scalar processor performance and the superscalar processors performance, speedup is calculated by taking

To Appear: Journal of Supercomputing, 1993 19

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA

AAAAAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAAAA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA

AAA
AAA
AAA

AAAAAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AA
AA
AA

AA
AA
AA
AA
AA

AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAAAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA

AAAA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAAAA
AAA
AAA

AAA
AAA
AAA
AAA

AA
AA

AA
AA
AAAAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAAAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAAAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA

AAAAAA
AAA

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AAAA
AA
AA
AA
AA

AA
AA
AA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA
AAAAAA

AA
AA
AA
AA

AAA
AAAAAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AA
AA

AA
AA
AA

AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA

AAA
AAA
AAA

AAA
AAAAAA

AAA
AAA
AAA
AAA

AA
AA

AA
AA
AA
AA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AAAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AA
AA

AA
AA

AAA
AAAAAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA

AA
AA
AA

AAA

AAA
AAA
AAA

AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA

AAA
AAA
AAA
AAA
AAASp

ee
du

p

1

2

3

4

5

6

7

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D

Ideal cache

AA
AA
AA

16k instruction cache

AA
AA
AA

4k instruction cache

AA
AA1k instruction cache

cccp cmp compress eqn e qntott expresso g rep lex li t bl wc yacc

Figure 10: Instruction cache e�ect on superblock ILP techniques (where, A and C represent superblock
formation, B and D superblock optimization, A and B have a cache re�ll latency of 16 cycles, C and D have
a cache re�ll latency of 32 cycles).

instruction cache misses into account for both performance measurements.

As shown in Figure 10, for larger caches, superblock ILP optimizations increase performance despite

the e�ect of cache misses. Even for 1K caches, superblock ILP optimizations increase performance for

all but compress, grep, and wc. The performance approaches that of ideal cache when the instruction

cache is 16K bytes or larger for both 16 cycle and 32 cycle cache re�ll latencies. Since most modern

high performance computers have more than 64K bytes of instruction cache, the performance advantage of

superblock ILP optimizations is expected to be relatively una�ected by instruction misses in future high

performance computer systems.

4.8 Data Cache E�ects

Because superblock optimizations do not a�ect the number of data memory accesses, the number of extra

cycles due to data cache misses remains relatively constant across the optimization levels. However, since

the superblock optimizations reduce the number of execution cycles, the overhead due to data cache misses

increases. Figure 11 shows the e�ect of four cache con�gurations on the performance of an 8-issue processor.

The data cache organizations have the same block size and re�ll latencies as those used in the instruction

cache experiments, but the cache sizes are 4K, 16K, 64K, and ideal. Note that data cache misses have more

in
uence on the performance results than instruction cache misses. This is particularly true for the compress,

eqntott, and lex benchmarks where there is a noticeable di�erence between the speedups for the 64K cache

To Appear: Journal of Supercomputing, 1993 20

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAAAAA
AAA
AAA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AAAAAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA

AAAAA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA

AAAAAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAAA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAAAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAAAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA

AA
AA
AA
AA

AAAAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAAAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA

AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAAAA
AAA

AAA
AAAAAA

AA
AA

AA
AA
AA
AA

AA
AA
AAA
AAA
AAA
AAA

AAA
AAA

AAA

AAA
AAA
AAA

AA

AA
AA
AA

AAA
AAA
AAA
AAA
AAA

AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AA
AA
AA

AA
AA
AA

AAA

AAA
AAA
AAA

AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA

AAA

AAA
AAA AAA

AA
AA
AA

AA

AA
AA
AA
AA

AAA
AAAAAA

AAA

AAAAAA
AAA

AA
AA

AA
AA
AA
AA
AA

AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA

AAA
AAA

AAA

AAA

AA
AA

AA

AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA

AA
AA

AA

AAA
AAA
AAA

AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AA
AAAA

AA
AA

AAA
AAA

AAA

AAA
AAA

AAA

AA
AA

AA

AA
AA
AA
AA

AAA
AAA

AAA
AAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA
AAASp

ee
du

p

1

2

3

4

5

6

7

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D

Ideal cache

AA
AA
AA

64k data cache

AA
AA
AA

16k data cache

AA
AA4k data cache

cccp cmp compress eqn e qntott expresso g rep lex li t bl wc yacc

Figure 11: Data cache e�ect on superblock ILP techniques. (where, A and C represent superblock formation,
B and D superblock optimization, A and B have a cache re�ll latency of 16 cycles, C and D have a cache
re�ll latency of 32 cycles).

and the ideal cache. The poor cache performance in the case of the compress benchmark, can be attributed

to large internal data structures. The compress benchmark has two large tables, each larger than 64K bytes

when large input �les are used. The e�ect of the data cache on the performance of superblock optimizations

illustrates the need to include data prefetching and other load latency hiding techniques in the compiler.

5 Conclusion

Control intensive programs challenge instruction level parallel processing compilers with excess constraints

from many possible execution paths. In order to compile these programs e�ectively, we have designed

the superblock ILP optimizations and superblock scheduling to systematically remove constraints due to

unimportant execution paths. The IMPACT-I prototype proves that it is feasible to implement superblock

ILP optimization and superblock scheduling in a real compiler. The development e�ort dedicated to the

prototype implementation is about 10 person-years in an academic environment.

The implementation of the superblock techniques accounts for approximately 14% of the compiler source

code. Superblock techniques add an average overhead of 101% to the base compilation time. We would

like to emphasize that the prototype is not tuned for fast compilation. The results here do not necessarily

represent the compile time cost of commercial implementations. Rather, these numbers are reported to prove

that the compile time overhead is acceptable in a prototypical implementation.

Using simulation, we demonstrate that superscalar processors achieve much higher performance with su-

To Appear: Journal of Supercomputing, 1993 21

perblock ILP optimization and superblock scheduling. For example, the improvement for an 4-issue processor

ranges from 53% to 293% across the benchmark programs.

Three architecture factors strongly in
uence the performance of superscalar and VLIW processors: spec-

ulative execution support, instruction cache misses, and data cache misses. We have shown that the general

code percolation model allows the compiler to exploit from 13% to 143% more instruction level parallelism.

Considering the moderate cost of speculative execution hardware, we expect that many future superscalar

and VLIW systems will provide such support.

Although the instruction cache misses can potentially cause large performance degradation, we found

that the benchmark performance results remain una�ected for instruction caches of reasonable size. Since

most workstations have more than 64K bytes of instruction cache, we do not expect the instruction misses to

reduce the performance advantage of superblock ILP optimizations. Similar conclusions can be drawn for the

data cache. However, several benchmarks require more advanced data prefetching techniques to compensate

for the e�ect of high cache miss rates.

In conclusion, the IMPACT-I prototype proves that superblock ILP optimization and scheduling are

not only feasible but also cost e�ective. It also demonstrates that substantial speedup can be achieved by

superscalar and VLIW processors over the current generation of high performance RISC scalar processors.

It provides one important set of data points to support instruction level parallel processing as an important

technology for the next generation of high performance processors.

Acknowledgments

The authors would like to acknowledge all the members of the IMPACT research group for their support.

This research has been supported by the National Science Foundation (NSF) under Grant MIP-8809478, Dr.

Lee Hoevel at NCR, Hewlett-Packard, the AMD 29K Advanced Processor Development Division, Matsushita

Electric Corporation, Joint Services Engineering Programs (JSEP) under Contract N00014-90-J-1270, and

the National Aeronautics and Space Administration (NASA) under Contract NASA NAG 1-613 in coopera-

tion with the Illinois Computer Laboratory for Aerospace Systems and Software (ICLASS). Scott Mahlke is

supported by an Intel Fellowship. Grant Haab is supported by a Fannie and John Hertz Foundation Grad-

uate Fellowship. John Holm is supported by an AT&T Fellowship. Daniel Lavery is also supported by the

Center for Supercomputing Research and Development at the University of Illinois at Urbana-Champaign

To Appear: Journal of Supercomputing, 1993 22

under Grant DOE DE-FGO2-85ER25001 from the U.S. Department of Energy, and the IBM Corporation.

References

Aho, A., Sethi, R., and Ullman, J. 1986. Compilers: Principles, Techniques, and Tools. Addison-Wesley,

Reading, MA.

Aiken, A. and Nicolau, A. 1988. A development environment for horizontal microcode. IEEE Transactions

on Software Engineering, 14, (May), 584{594.

Bernstein, D. and Rodeh, M. 1991. Global instruction scheduling for superscalar machines. In Proceedings

of the ACM SIGPLAN 1991 Conference on Programming Language Design and Implementation (June),

241{255.

Chaitin, G. J. 1982. Register allocation and spilling via graph coloring. In Proceedings of the ACM SIGPLAN

82 Symposium on Compiler Construction (June), 98{105.

Chang, P. P. and Hwu, W. W. 1988. Trace selection for compiling large C application programs to microcode.

In Proceedings of the 21st International Workshop on Microprogramming and Microarchitecture (Nov.),

188{198.

Chang, P. P., Mahlke, S. A., Chen, W. Y., Warter, N. J., and Hwu, W. W. 1991a. IMPACT: An architectural

framework for multiple-instruction-issue processors. In Proceedings of the 18th International Symposium

on Computer Architecture (May), 266{275.

Chang, P. P., Mahlke, S. A., and Hwu, W. W. 1991b. Using pro�le information to assist classic code

optimizations. Software Practice and Experience, 21, 12 (Dec.):1301{1321.

Chen, W. Y., Chang, P. P., Conte, T. M., and Hwu, W. W. 1991. The e�ect of code expanding optimizations

on instruction cache design. Technical Report CRHC-91-17, Center for Reliable and High-Performance

Computing, University of Illinois, Urbana, IL.

Chow, F. C. and Hennessy, J. L. 1990. The priority-based coloring approach to register allocation. ACM

Transactions on Programming Languages and Systems, 12, (Oct.), 501{536.

To Appear: Journal of Supercomputing, 1993 23

Colwell, R. P., Nix, R. P., O'Donnell, J. J., Papworth, D. B., and Rodman, P. K. 1987. A VLIW architecture

for a trace scheduling compiler. In Proceedings of the 2nd International Conference on Architectural

Support for Programming Languages and Operating Systems (Apr.), 180{192.

Ellis, J. 1985. Bulldog: A Compiler for VLIW Architectures. The MIT Press, Cambridge, MA.

Fisher, J. A. 1981. Trace scheduling: A technique for global microcode compaction. IEEE Transactions on

Computers, c-30, (July), 478{490.

Gupta, R. and So�a, M. L. 1990. Region scheduling: An approach for detecting and redistributing parallelism.

IEEE Transactions on Software Engineering, 16, (Apr.), 421{431.

Horst, R. W., Harris, R. L., and Jardine, R. L. 1990. Multiple instruction issue in the NonStop Cyclone

processor. In Proceedings of the 17th International Symposium on Computer Architecture (May), 216{

226.

Hwu, W. W. and Chang, P. P. 1989a. Achieving high instruction cache performance with an optimizing

compiler. In Proceedings of the 16th International Symposium on Computer Architecture (May), 242{

251.

Hwu, W. W. and Chang, P. P. 1989b. Inline function expansion for compiling realistic C programs. In Pro-

ceedings of the ACM SIGPLAN 1989 Conference on Programming Language Design and Implementation

(June), 246{257.

Hwu, W. W. and Chang, P. P. Accepted for publication. E�cient instruction sequencing with inline target

insertion. IEEE Transactions on Computers.

Intel 1989. i860 64-Bit Microprocessor. Santa Clara, CA.

Jouppi, N. P. and Wall, D.W. 1989. Available instruction-level parallelism for superscalar and superpipelined

machines. In Proceedings of the 3rd International Conference on Architectural Support for Programming

Languages and Operating Systems (Apr.), 272{282.

Kane, G. 1987. MIPS R2000 RISC Architecture. Prentice-Hall, Inc., Englewood Cli�s, NJ.

Kuck, D. J. 1978. The Structure of Computers and Computations. John Wiley and Sons, New York, NY.

To Appear: Journal of Supercomputing, 1993 24

Kuck, D. J., Kuhn, R. H., Padua, D. A., Leasure, B., and Wolfe, M. 1981. Dependence graphs and compiler

optimizations. In Proceedings of the 8th ACM Symposium on Principles of Programming Languages

(Jan.), 207{218.

Mahlke, S. A., Chen, W. Y., Hwu, W. W., Rau, B. R., and ansker, M. S. S. 1992. Sentinel scheduling

for VLIW and superscalar processors. In Proceedings of 5th International Conference on Architectural

Support for Programming Languages and Operating Systems (Oct.).

Nakatani, T. and Ebcioglu, K. 1989. Combining as a compilation technique for VLIW architectures. In

Proceedings of the 22nd International Workshop on Microprogramming and Microarchitecture (Sept.),

43{55.

Rau, B. R., Yen, D. W. L., Yen, W., and Towle, R. A. 1989. The Cydra 5 departmental supercomputer.

IEEE Computer, (Jan.), 12{35.

Schuette, M. A. and Shen, J. P. 1991. An instruction-level performance analysis of the Multi
ow TRACE

14/300. In Proceedings of the 24th International Workshop on Microprogramming and Microarchitecture

(Nov.), 2{11.

Smith, M. D., Johnson, M., and Horowitz, M. A. 1989. Limits on multiple instruction issue. In Proceedings

of the 3rd International Conference on Architectural Support for Programming Languages and Operating

Systems (Apr.), 290{302.

Warren, Jr., H. S. 1990. Instruction scheduling for the IBM RISC system/6000 processor. IBM Journal of

Research and Development, 34, (Jan.), 85{92.

