
R. M. Tomasulo

An Efficient Algorithm for Exploiting
Multiple Arithmetic Units

Abstract: This paper describes the methods employed in the floating-point area of the System/360 Model 91 to exploit the
existence of multiple execution units. Basic to these techniques is a simple common data busing and register tagging scheme which
permits simultaneous execution of independent instructions while preserving the essential precedences inherent in the instruction stream.
The common data bus improves performance by efficiently utilizing the execution units without requiring specially optimized code.
Instead, the hardware, by 'looking ahead' about eight instructions, automatically optimizes the program execution on a local basis.

The application of these techniques is not limited to floating-point arithmetic or System/360 architecture. It may be used in almost
any computer having multiple execution units and one or more 'accumulators.' Both of the execution units, as well as the associated
storage buffers, multiple accumulators and input/output buses, are extensively checked.

Introduction

After storage access time has been satisfactorily reduced
through the use of buffering and overlap techniques, even
after the instruction unit has been pipelined to operate
at a rate approaching one instruction per cycle,1 there
remains the need to optimize the actual performance of
arithmetic operations, especially floating-point. Two
familar problems confront the designer in his attempt to
balance execution with issuing. First, individual operations
are not fast enough* to allow simple serial execution.
Second, it is difficult to achieve the fastest execution
times in a universal execution unit. In other words, cir
cuitry designed to do both multiply and add will do
neither as fast as two units each limited to one kind of
instruction.

The first step toward surmounting these obstacles has
been presented," i.e., the division of the execution func
tion into two independent parts, a fixed-point execu
tion area and a floating-point execution area. While this
relieves the physical constraint and makes concurrent
execution possible, there is another consideration. In order
to secure a performance increase the program must con
tain an intimate mixture of fixed-point and floating-point
instructions. Obviously, it is not always feasible for the
programmer to arrange this and, indeed, many of the
programs of greatest interest to the user consist almost
wholly of floating-point instructions. The subject of this
paper, then, is the method used to achieve concurrent

• During the planning phase, floating-point multiply was taken to be
six cycles, divide as eighteen cycles and add as two cycles. A subse-
quent paper" explains how times of 12, and 2 were actually achieved.
This permitted the use of only one. of two, multipliers and one
adder, pipelined to start an add cycle.

execution of floating-point instructions in the IBM Sys
tem/360 Model 91. Obviously, one begins with multiple
execution units, in this case an adder and a multi
plier/divider.'

It might appear that achieving the concurrent operation
of these two units does not differ substantially from the
attainment of fixed-floating overlap. However, in the latter
case the architecture limits each of the instruction classes
to its own set of accumulators and this guarantees inde
pendence.* In the former case there is only one set of
accumulators, which implies program-specified sequences
of dependent operations. Now it is no longer simply a
matter of classifying each instruction as fixed-point or
floating-point, a classification which is independent of
previous instructions. Rather, it is a question of deter
mining each instruction's relationship with all previous,
incompleted instructions. Simply stated, the objective
must be to preserve essential precedences while allowing
the greatest possible overlap of independent operations.

This objective is achieved in the Model 91 through a
scheme called the common data bus (COB). It makes
possible maximum concurrency with minimal effort
(usually none) by the programmer or, more importantly,
by the compiler. At the same time, the hardware required
is small and logically simple. The CnB can function with
any number of accumulators and any number of execution
units. In short, it provides a hardware algorithm for the
automatic, efficient exploitation of multiple execution
units.

* Such dependencies as exist are handled by the store- fetch sequenc
ing of the storage bus and the condition code control described in the
following paper." 25

IBM JOURNAL' JANUARY 1967

STORAGE BUS INSTRUCTION UNIT

FLO

1

•6 FLOATING
----~----s

OPERAND 1 r
4 STACK 8

BUFFERS (FLB) 3
CONTROL

i(FlOS) FLOATING-POINT 4
CONTROL

2 REGISTERS (FLR) 2
f--------

J 0
-~

1- I DECODER I •ATING-POINT FLOATING-POINT STORE 3
BUFFER REGiSTER

(FLB) BUS (FLR) BUS CONTROL DATA 2

BUFFERS (SOS) 1

i
1 1 TO STORAGE

~ • T 1
SINK I SOURCE ICTRd rCTRLI SINK I SOURCE

\ ADDER / ~'''~''O"'Y
I RESULT I I RESULT I

• J.
t f RESULT SUS

The distinction between source and sink will become
quite important during the discussion of precedence and
should be fixed firmly in mind. All of the instructions
(except store and compare) have the following form:

storage is really the sink of a store. (Rl and R2 refer to
fields as defined by Systemj360 architecture.)

In the pseudo-register-to-register format "seen" by the
FLOS the R2 field can have three different meanings. It
can bean FLR as in a normal register-to-register instruc
tion. If the program contains a storage-to-register in
struction, the R2 field designates the floating-point buffer
(FLB) assigned by the instruction unit to receive the
storage operand. Finally, R2 can designate a store data
buffer (SDB) assigned by the instruction unit to store
instructions. In the first two cases R2 is the source of an
operand; in the last case it is a sink. Thus, the instruction
unit maps all of storage into the 6 floating-point buffers
and 3 store data buffers so that the FLOS sees only pseudo
register-to-register operations.

R2 ------» Rl
Register Register

26

Figure 1 Data registers and transfer paths without COB.

The next section of this paper will discuss the physical
framework of registers, data paths and execution circuitry
which is implied by the architecture and the overall CPU
structure presented in a previous paper.' Within this
framework one can subsequently discuss the problem of
precedence, some possible solutions, and the selected
solution, the CDB. In conclusion will be a summary of
the results obtained.

Definitions and data paths

While the reader is assumed to be familiar with System/360
architecture and mnemonics, the terminology as modified
by the context of the Model 91 organization will be re
viewed here. The instruction unit, in preparing instruc
tions for the floating-point operation stack (FLOS), maps
both storage-to-register and register-to-register instruc
tions into a pseudo-register-to-register format. In this
format RI is always one of the four floating-point regis
ters (FLR) defined by the architecture. It is usually the
sink of the instruction, i.e., it is the FLR whose contents
are set equal to the result of the operation. Store opera
tions are the sole exception" wherein RI specifies the
source of the operand to be placed in storage. A word in

.. Compares do not, of course) alter the contents of R L

Rl op
Register

source

or

buffer
source sink

R. M. TOMASULO

JNSTRUCTION UNIT I DECODE

EXECUTION UNIT

~~~~~~fION r---···-----3 TO 10 CYCLE ACCESS---...._~-1 i~Arf~JT~6~ I
I I
I I

TRANSMIT OP I I
TO FLOS I I

I I
I I

I ,LOS I~~t~~~I~Lr ITRANSMIT FLR I I EXECUTioN -----1DECODE TO UNIT

Figure 2 Timing relationship between instruction unit and FLOS decode for the processing of one instruction.

For example, the instruction ADO, 2 means "place the
double-precision sum of registers a and 2 in register 0,"
i.e., RO R2-7 RO. Note that RI is really both a source
and a sink.* Nevertheless, it will be called the sink and R2
the source in all subsequent discussion.

This definition of operations and the machine organiza
tion taken together imply a set of data registers with
transfer paths among them. These are shown in Fig. 1.
The major sets of registers (FLR's, FLB's, FLOS and
SDB's) have already been discussed, both above and in
a preceding paper." Two additional registers, one sink
and one source, are shown feeding each execution circuit.
Initially these registers were considered to be the internal
working registers required by the execution circuits and
put to multiple use in a way to be described below. Later,
their function was generalized under the reservation station
concept and they were dissociated from their "working"
function.

In actually designing a machine the data paths evolve
as the design progresses. Here, however, a complete, first
pass data path will be shown to facilitate discussion. To
illustrate the operation let us consider, in tum, four kinds
of instructions-load of a register from storage, storage
to-register arithmetic, register-to-register arithmetic, and
store. Let us first see how each can be accomplished in
vacuo; then what difficulties arise when each is embedded
in the context of a program. For simplicity double
precision (64-bit operands) will be used throughout.

Figure 2 shows the timing relationship between the
instruction unit's handling of an instruction and its
processing by the FLOS decode. When the FLOS decodes
a load, the buffer which will receive the operand has not
yet been loaded from storage.t Rather than holding the
decode until the operand arrives, the FLOS sets control
bits associated with the buffer which cause its content
to be transmitted to the adder when it "goes full." The

* This economy of specification compounds the difficulties of achiev
ing concurrency while preserving precedence, as will he seen tater.

t A FULL/EMPTY control bit indicates this. The bit is set FULL
by the Main Storage Control Element and EMPTY when the buffer is
used. LOAD uses the adder in order to minimize the buffer outgates
and the FLR in gates.

adder receives control information which causes it to send
data to floating-point register RI, when its source reg
ister is set full by the buffer.

If the instruction is a storage-to-register arithmetic func
tion, the storage operand is handled as in load (control
bits cause it to be forwarded to the proper unit) but the
floating-point register, along with the operation, is sent
by the decoder to the appropriate unit. After receiving
the buffer the unit will execute the operation and send the
result to register RL

In register-to-register arithmetic instructions two float
ing point registers are transmitted on successive cycles to
the appropriate execution unit.

Stores are handled like storage-to-register arithmetic
functions, except that the content of the floating-point
register is sent to a store data buffer rather than to an
execution unit.

Thus far, the handling of one instruction at a time has
proven rather straightforward. Now consider the following
"program" :

Example 1

LD FO FLBI LOAD register FOfrom buffer I

MD FO FLB2 MULTIPLY register FO by buffer 2

The load can be handled as before, but what about the
multiply? Certainly FO and FLB2 cannot be sent to the
multiplier as in the case of the isolated multiply, since
FLBI has not yet been set into FO.* This sequence illus
trates the cardinal precedence principle: No floating
point register may participate in an operation if it is the
sink of another, incompleted instruction. That is, a register
cannot be used until its contents reflect the result of the
most recent operation to use that register as its sink.

The design presented thus far has not incorporated any
mechanism for dealing with this situation. Three functions
must be required of any such mechanism:

(1) It must recognize the existence of a dependency.

* Note that the program calls for the product of FLBl and FLB2 to
be placed in FO. This hints at the CDB concept. 27

EXPLOITING MULTIPLE ARITHMETIC UNITS



F2

x~
I
I

t
31 CYCLES

LEGEND
0 DECODE

AG ADDRESS GENERATE

STORAGE ACCESS

X TRANSMISSION
FNm RESULT TO FLR FN

H EXECUTION

NOTE: ALTERNATE LINES
SHOW FLOS ACTIVITY

I X 1

I 0 1 X I

IX~4

I 0 I X I

F2

X f----t-Q]

(a)

I x ~--o::f
I D I x I

FO

I x 1-1-f--f--1ITJ

I D I x I
1 x I

1 D 1 x I

FLU
FO

X r----OJ

I 0 I

STORAGE
ACCESS

1 0 I

INSTRUCTION
UNIT

AD F2, F4

AD F4, A

AD F2, FO

MD FO, E

LD F4, B

LD F2, C

LD FO,DID

IX~2

LD FO,O I o I AG I
I 0 I X I

LO F2,C 1 0 1 AG I
I 0 I X I

LD F4,B I D I AG I
I 0 I X I

MO FO,E I 0 I AG I

AD F2,FO I 0 I

AD F4,A I 0 lAG 1

AD F2,F4 I 0 I

IX~2

FO

I x 1-1-f--f--1ITJ

I D I x I
I x I

I D I x I N

I x f-----+--OJ
I D I x I

Ixlx~2

I 0 I X I :
t

26 CYCLES

DECODE HOLO·UP
DUE TO BUSY
SINK REG.

(b)

Figure 3 Timing for the instruction sequence required to perform the function A + B -+- C + D * E : (a) without reserva
tion stations, (b) with reservation stations included in the register set.

(2) It must cause the correct sequencing of the dependent
instructions.

meet the performance goal. The next section will present
several alternatives for accomplishing these objectives.

28

(3) It must distinguish between the given sequence and
such sequences as

LD FO, FLBl
MD F2, FLB2

Here it must allow the independent MD to proceed
regardless of the disposition of the LD.

The first two requirements are necessary to preserve the
logical integrity of the program; the third is necessary to

Preservation of precedence

Perhaps the simplest scheme for preserving precedence is
as follows. A "busy" bit is associated with each of the four
floating-point registers. This bit is set when the FLOS
decode issues an instruction designating the register as a
sink; it is reset when the executing unit returns the result
to the register. No instruction can be issued by the FLOS
if the busy bit of its sink is on. If the source of a register
to-register instruction has its busy bit on, the FLOS sets

R. M. TOMASULO



control bits associated with the source register. When a
result is entered into the register, these control bits cause
the register to be sent via the FLR bus to the unit waiting
for it as a source.

This scheme easily meets the first two requirements.
The third is met with the help of the programmer; he
must use different registers to achieve overlap. For ex
ample, the expression A + BCD * E can be pro
grammed as follows:

Example 2

LD FO, D
LD F2, C
LD F4, B
MD FO, E
AD F2, FO
AD F4, A
AD F2, F4

FO = 0
F2 = C
F4 = B
FO = D*E
F2=C D*E
F4 = A B
F2 A B C+D*E

plicity they are treated as if they were actual units. Thus,
in the future, we will speak of Adder 1 (AI), Adder 2 (A2),
etc., and MID 1 and MID 2.

Figure 3b shows the effect of the addition of reservation
stations on the problem running time: fivecycles have been
eliminated. Note that the second AD now overlaps the
MD and actually executes before the first AD. While the
speed increase is gratifying and the busy bit method easy
to implement, there remains a dependence on the pro
grammer. Note that the expression could have been coded
this way:

Example 3a

LD Fa, E
MD Fa, 0

AD Fa, C
AD Fa, B

AD FO, A

Now overlap is impossible and the program will run six
cycles longer despite having two fewer instructions. Sup
pose however, that this program is part of a loop, as below:

Iteration n + 1 of LOOP 1 will appear to the FLOS to
depend on iteration n, since the instructions in both
iterations have the same sink. But it is clear that the two
iterations are, in fact, independent. This example illustrates
a second way in which two instruction sequences can be
independent. The first way, of course, is for the two strings
to have different sink registers. The second way is for the
second string to begin with a load. By its definition a

The busy bit scheme should allow the second add and
the multiply to be executed simultaneously (really, in
any order) since they use different sinks. Unfortunately, the
timing chart of Fig. 3a shows not only that the expected
overlap does not occur but also that many cycles are
lost to transmission time. The overlap fails to materialize
because the first add uses the result of the multiply, and
the adder must wait for that result. Cycles are lost to
control because so many of the instructions use the adder.
The FLOS cannot decode an instruction unless a unit is
available to execute it. When an assigned unit finishes
execution, it takes one cycle to transmit the fact to the
FLOS so that it can decode a waiting instruction. Similarly,
when the FLOS is held up because of a busy sink register,
it cannot begin to decode until the result has been entered
into the register.

One solution that could be considered is the addition of
one or more adders. If this were done and some programs
timed, however, it would become apparent that the execu
tion circuitry would be in use only a small part of the time.
Most of the lost time would occur while the adder waited
for operands which are the result of previous instructions.
What is required is a device to collect operands (and con
trol information) and then engage the execution circuitry
when all conditions are satisfied. But this is precisely the
function of the sink and source registers in Fig. 1. There
fore, the better solution is to associate more than one set of
registers (control, sink, source) with each execution unit.
Each such set is called a reservation station. * Now instruc
tion issuing depends on the availability of the appropriate
kind of reservation station. In the Model 91 there are three
add and two multiplyIdivide reservation stations. For sim-

• The fetch and store buffers can be considered as specialized, one
operand reservation stations. Previous systems, such as the I.B:i\f 70JD,
have in effect employed one "reservation station" ahead of each execu
tion unit. The extension to several reservation stations adds to the
effectiveness of the execution hardware,

Example 3b

LOOP 1

LOOP 2

LD FO, Ei
MD Fa, Di
AD FO, Ci
AD FO, Bi
AD PO, Ai
STD Fa, Fi
BXH i, -1, 0, LOOP 1 (decrease i by 1,
branch if i > 0)
LD FO, Ei
LD F2, Ei+ 1
MD FO, Di
MD F2, Di
AD Fa, Ci
AD F2, Ci
AD Fa, Bi
AD F2, Bi 1
AD FO, Ai
AD F2, Ai+ 1
STD Fa, Fi
STD F2, Fi + 1
BXH i, - 2, 0, LOOP 2

29

EXPLOITING MULTlPLE ARITHMETIC UNITS



30

load launches a new, independent string because it in
structs the computer to destroy the previous contents of
the specified register. Unfortunately, the busy bit scheme
does not recognize this possibility. If overlap is to be
achieved with this scheme, the programmer must write
LOOP 2. (This technique is called doubling or unravelling.
It requires twice as much storage but it runs faster by
enabling two iterations to be executed simultaneously.)

Attempts were made to improve the busy bit scheme
so as to handle this case. The most tempting approach is
the expansion of the bit into a counter. This would appear
to allow more than one instruction with a given sink to
be issued. As each is issued, the FLOS increments the
counter; as each is executed the counter is decremented.
However, major difficulty is caused by the fact that storage
operands do not return in sequence. This can cause the
result of instruction n + 1 to be placed in a register before
that of n. When n completes, it erroneously destroys the
register contents.

Some of the other proposals considered would, if imple
mented, have been of such logical complexity as to jeop
ardize the achievement of a fast cycle.

The Common Data Bus

The preceding sections were intended to portray the dif
ficulties of achieving concurrency among floating-point
instructions and to show some of the steps in the evolution
of a design to overcome them. It is clear, in retrospect,
that the previous algorithms failed for lack of a way to
uniquely identify each instruction and to use this informa
tion to sequence execution and set results into the floating
point registers. As far as action by the FLOS is concerned,
the only thing unique to a particular instruction is the
unit which will execute it. This, then, must form the
basis of the common data bus (CDB).

Figure 4 shows the data paths required for operation of
the CDB. * When Fig. 4 is compared with Fig. 1 the
following changes, in addition to the reservation stations,
are evident: Another output port has been added to the
buffers. This port has been combined with the results
from the adder and multiplier/divider; the combination
is the CDB. The CDB now goes not only to the registers
but also to the sink and source registers of all reservation
stations, including the store data buffers but excluding
the floating-point buffers. This data path will enable loads
to be executed without the adder and will make the re
sult of any operation available to all units without first
going through a floating-point register.

Note that the CDB is fed by all units that can alter a
register and that it feeds all units which can have a register
as an operand. The control part of the CDB enumerates

* The FLB and FLR busses are retained for performance reasons.
Everything conld be done by a slight extension of the CDB but time
would be lost due to conflicts over the common facility.

the units which feed the CDB. Thus the floating-point
buffers 1 through 6 are assigned the numbers 1 through 6;
the three adders (actually reservation stations) are num
bered 10 through 12; the two multiplier/dividers are 8 and
9. Since there are eleven contributors to the CDB, a four
bit binary number sufficesto enumerate them. This number
is called a tag. A tag is associated with each of the four
floating-point registers (in addition to the busy bit*),
with both the source and sink registers of each of the five
reservation stations and with each of the three Store Data
Buffers. Thus a total of 17 four-bit fag registers has been
added, as shown in Fig. 4.

Tags also appear in another context. A tag is generated
by the CDB priority controls to identify the unit whose
result will next appear on the CDB. Its use will be made
clear shortly.

Operation of this complex is as follows. In decoding
each instruction the FLOS checks the busy bit of each of
the specified floating-point registers. If that bit is zero,
the content of the register(s) may be sent to the selected unit
via the FLR bus, just as before. Upon issuing the instruc
tion, which requires only that a unit be available to execute
it, the FLOS not only sets the busy bit of the sink register
but also sets its tag to the designation of the selected unit.
The source register control bits remain unchanged. As an
example, take the instruction, AD FO, FLBI. After issuing
this instruction to Adder 1 the control bits of FO would be:

BB TAG
1 1010 (AI)

So far the only change from previous methods is the
setting of the tag. The significant difference occurs when
the FLOS finds the busy bit on at decode time. Previously,
this caused a suspension of decoding until the bit went
off. Now the FLOS will issue the instruction and update
the tag. In so doing it will not transmit the register con
tents to the selected unit but it will transmit the "old" tag.
For example, suppose the previous AD was followed by a
second AD. At the end of the decode of this second AD,
FO's control bits would be:

BB TAG
1 1011 (A2)

One cycle later the sink tag of the A2 reservation station
would be 1010, i.e., the same as AI, the unit whose result
will be required by A2.

Let us look ahead temporarily to the execution of the
first AD. Some time after the start of execution but before
the end," Al will request the CDB. Since the CDB is fed
by many sources, its time-sharing is controlled by a central

* The busy bit is no longer necessary since its function can be per
formed by use of an unassigned tag number. However, it is conve
nient to retain it.

t Since the required lead time is two cycles, the request is made at
the start of execution for an add-type instruction.

R. M. TOMASULO



STORAGE BUS INSTRUCTION UNIT

!
~

~....-

~~::~
FLOATING·._..

+POINT

(FlB) OPERAND 8
4 CONTROL ........-
3 STACK (FLOS) BUSY FLOATING·POINT 4

TAGS
BITS REGISTERS (FIR) 2

f..-........_ .. _ ..._--
1 0,

+
I DECODER I • •I I

CONTROL ITAGS

STORE 3

DATABUEEERS 2

(SOB) 1

-.
ELB BUS

.._-""~

FLR BUS

• COB t
+ +

I TAG SINK TAG! SOURCE

~~~
K*-;INK

I TAG I SOURCE ICTRL!

I TAG SINK ! TAG! SO~ TAG SINK I TAG! SOURCE iCTRL!
t-..

I TAG SINK ! TAG I SOURCE CTRL

\~,,~""""!ADDER /
RESULT I I RESULT I

• t
! COMMON DATA BUS (CDB) t

Figure 4 Data registers and transfer paths, including CDB and reservation stations.

unit in place of the register contents. The unit continuously
compares this tag with that generated by the CDB priority
control. When a match is detected, the unit ingates from
the CDB. The unit begins executing as soon as it has both
operands. It may receive one or both operands from either
the CDB or the FLR bus; the source operand for storage
to-register instructions is transmitted via the FLB bus.

As each instruction is issued the existing tag(s) is (are)
transmitted to the selected unit and then the sink tag is
updated. By passing tags around in this fashion, all opera
tions having the same sink are correctly sequenced while
other operations are allowed to proceed independently.
Finally, the floating-point register tag controls the chang
ing of the register itself, thereby ensuring that only the
most recent instruction will change the register. This has
the interesting consequence that a loop of the following
kind:

Example 5

priority circuit. If the CDB is free, the priority control
signals the requesting adder, AI, to outgate its result and
it broadcasts the tag of the requestor (1010 in this case)
to all reservation stations. Each active reservation station
(selected but awaiting a register operand) compares its
sink and source tags to the CDB tag. If they match, the
reservation station ingates the data from the CDB. In a
similar manner, the CDB tag is compared with the tag
of each busy floating-point register. All busy registers
with matching tags ingate from the CDB and reset their
busy bits.

Two steps toward the goal of preserving precedence
have been accomplished by the foregoing. First, the second
AD cannot start until the first AD finishes because it
cannot receive both its operands until the result of the
first AD appears on the CDB. Secondly, the result of the
first AD cannot change register FO once the second AD
is issued, since the tag in FO will not match At. These are
precisely the desired effects.

Before proceeding with more detailed considerations let
us recapitulate the essence of the method. The floating
point register tag identifies the last unit whose result is
destined for the register. When an instruction is issued
that requires a busy register the tag is sent to the selected

LOOP LD FO,

AD FO,

STD FO,

BXH i,

Ai

Bi

Ci STORE

1, 0, LOOP 31

EXPLOITING MULTIPLE ARITHMETIC UNITS

FO

LD Fa, FLBII 0 IAGI ' , ,-- 0

Figure 5 Timing sequence for Example 6, showing effect
of CDB.

o COB SLOT

fLOS DECODES NOT SHOWN

may execute indefinitely without any change in the con
tents of FO. Under normal conditions only the final itera
tion will place its result in FO.

As mentioned previously, there are two ways of starting
an independent instruction string. The first is to specify a
different sink register and the second is to load a register.
The CDB handles the former in essentially the same way
as the busy bit scheme. The load, which had been a dif
ficult problem previously, is now very simple. Regard
less of the register tag or busy bit, a load turns the busy
bit on and sets the tag equal to the floating-point buffer
which the instruction unit had assigned to the load. This
causes subsequent instructions to sequence on the buffer
rather than on whatever unit may have identified the
register as its sink prior to the load. The buffer controls
are set to request the CDB when the storage operand
arrives. The following example and Fig. 5 show this clearly.

FO, FLBl
F2, FO move FO to F2

AD
LDR

store took place during the CDB cycle following the divide.
In a similar fashion a register-to-register load of a busy
register is accomplished by moving the tag of the source
floating-point register to the tag of the sink floating-point
register. For example, in the sequence

the tag of FO will be 1010 (AI) at the time the LDR is
decoded. The decoder simply sets F2's tag to 1010. Now,
when the result of the AD appears on the CDB both FO
and F2 will ingate since the CDB tag of 1010 will match
the tag of each register. Thus, no unit or extra time was
required for the execution of the LDR.

A number of details have been omitted from this dis
cussion in order to clarify the concept, but really only
two are of operational significance. First, every unit must
request the CDB two cycles before it finishes execution.
(These two cycles are required for propagation of the
request to the CDB controls, the establishment of priority
among competing units, and propagation of a "select"
signal to the chosen unit.) This limits the execution time of
any instruction to a two-cycle minimum. (Of course, the
faster the execution the less the need for, or gain from,
concurrency.) It also adds one* cycle to the access time
for loads. Because of buffering and overlap, this does not
usually cause an increase in problem running time.

The second point is concerned with mixed precision.
Because the architectural definition causes the low-order
part of an FLR to be preserved during single-precision
operation, an error can occur in the following kind of
program:

WITH BUSY BIT
SCHEME ONLY

r---------- ..
I FO I
, r-' I
I L_.J I
I FO I

: ~---[=-J:
I I.. .J

>-- --1dO
IDIAGI

IDIAGI E;;J0
IDIAGI ,--- 0

I 0 IAGI >----CI0

WITH COB

AD Fa, FLB4

DO Fa, FLB2

STD Fa

LD Fa, FLB3

* It does not add two cycles since storage gives one cycle prenotifica
tion of the arrival of data.

t Further complications arise from the fact that single-precision
multiply produces a double-precision product. This is handled sepa
rately but with the same time penalty as above.

Since only the last instruction, which is single-precision,
will change FO,the low order result of the double-precision
AD will be lost. This is handled by associating a bit with
each register to indicate whether a particular register is
the sink of an outstanding single- or double-precision
instruction. If this bit does not match the "length" of the
instruction being decoded, the decode is suspended until
the busy bit goes off. While this stratagemt solves the
logic problem, it does so at the expense of performance.
Unfortunately, no way has been found to avoid this. Note,
however, that all-single- or all-double-precision programs
run at the maximum possible speed. It is only the interface
between single- and double-precision to the same sink
register that suffers delay.

32

Example 6

LD FO, FLBl
DD FO, FLB2 DIVIDE
STD FO, A
LD FO, FLB3
AD FO, FLB4

Note that the add finishes before the divide. The dashed
line portion of Fig. 5 shows what would happen if the
busy bit scheme alone were used. Figure 6 displays the
sequences followed under the two schemes. This figure
graphically illustrates the bottleneck caused by using a
single sink register with a busy bit scheme. Because all
data must pass through this register, the program is
reduced to strictly sequential execution, steps 1 through 7.
With the CDB, on the other hand, the sink register hardly
appears and the program is broken into two independent,
concurrent sequences. This facility of the CDB obviates
the need for loop doubling.

The CDB makes it possible to execute some instructions
in, effectively, no time at all. In the above example the

LD
AD
AE

FO,
FO,
FO,

FLBI
FLB2
FLB3

R. M. TOMASULO

(a)

(b)

Figure 6 Functional sequence for Example 6 (a) with busy
bit controls only, (b) with COB.

Conclusions

Two concepts of some significance to the design of high
performance computers have been presented. The first,
reservation stations, is simply an expeditious method of
buffering, in an environment where the transmission time
between units is of consequence. Because of the disparity
between storage access and circuit speeds and because of
dependencies between successive operations, it is observed
(given multiple execution units) that each unit spends
much of its time waiting for operands. In effect, the reserva
tion stations do the waiting for operands while the execu
tion circuitry is free to be engaged by whichever reservation
station fills first.

The second, and more important, innovation, the CDB,
utilizes the reservation stations and a simple tagging
scheme to preserve precedence while encouraging con
currency. In conjunction with the various kinds of buf
fering in the CPU, the CDS helps render the Model 91
less sensitive to programming. It should be evident, how
ever, that the programmer still exercises substantial control
over how much concurrency will occur. The two different
programs for doing A + B + C + D * E illustrate this
clearly.

It might appear that the CDB adds one cycle to the
execution time of each operation, but in fact it does not.
In practice only 30 nsec of the 60-nsec CDB interval are
required to perform all of the CDB functions. The remain
ing time could. in this case, be used by the execution unit
to achieve a shorter effective cycle. For example, if an add
requires 120 nsec, then add plus the COB time required
is 150 nsec. Therefore, as far as the add is concerned. the
machine cycle could be 50 nsec, Besides, even without the
CDB, a similar amount of time would be required to trans
mit results both to the floating-point registers and back
as an input to the unit generating the result.

The following program. a typical partial differential
equation inner loop, illustrates the possible performance
increase.

LOOP MD FO, Ai
AD FO, Bi
LD F2, Ci
SDR F2, FO
MDR F2. F6
ADZ F2. Ci
STD F2, Ci
BXH i, -1, 0, LOOP

Without the CDB one iteration of the loop would use
17 cycles, allowing 4 per MD, 3 per AD and nothing for
LD or STD. With the CDB one iteration requires 11 cycles.
For this kind of code the CDB improves performance by
about one-third.

Acknowledgments

The author wishes to acknowledge the contributions of
Messrs. D. W. Anderson and D. M. Powers, who ex
tended the original concept, and Mr. W. D. Silkman,
who implemented all of the central control logic discussed
in the paper.

References

L O. W. Anderson, F. J. Sparacio and R. M. Tomasulo,
"The System/360 Model 91: Machine Philosophy and In
struction Handling," IBM Journal 11, 8 (1967) (this issue).

2. S. F. Anderson, J. Earle, R. E. Goldschmidt and D. M.
Powers, "The System/360 Model 91 Floating-Point Execu
tion Unit," IBM Journal 11, 34 (1967) (this issue).

Received September 16, 1965.

33

EXPLOITING MULTIPLE ARITHMETIC UNITS

