DESIGN OF DIGITAL CIRCUITS (252-0028-00L), SPRING 2019

OpTIONAL HW 5: BRANCH PREDICTION, VLIW AND SYSTOLIC ARRAYS
SOLUTIONS

Instructor: Prof. Onur Mutlu
TAs: Mohammed Alser, Can Firtina, Hasan Hassan, Juan Gomez Luna, Lois Orosa, Giray Yaglikci

Released: Monday, May 6, 2019

1 Branch Prediction I

A processor implements an in-order pipeline with multiple stages. Each stage completes in a single cycle.
The pipeline stalls upon fetching a conditional branch instruction and resumes execution once the condition
of the branch is evaluated. There is no other case in which the pipeline stalls.

1.1 Part I: Microbenchmarking

You create a microbenchmark as follows to explore the pipeline characteristics:

LOOP1:
SUB R1, R1, #1 // R1 =Rl - 1
BGT R1, LOOP1 // Branch to LOOP1 if R1 > O

LOOP2:
B LOOP2 // Branch to LOOP2
// Repeats until program is killed

The microbenchmark takes one input value R1 and runs until it is killed (e.g., via an external interrupt).

You carefully run the microbenchmark using three different input values as summarized in Table[l} You
terminate the microbenchmark using an external interrupt such that each run is guaranteed to execute the
same number of dynamic instructions. Unfortunately, your testing infrastructure does not give you the
actual number of instructions executed.

Initial R1 Value | Number of Cycles Taken
4 51
8 63
16 87

Table 1: Microbenchmark results.

Using this information, you need to determine the following three experiment characteristics. Clearly
show all work to receive full points!

1. How many dynamic instructions are executed?

2. How many stages are in the pipeline?

3. For how many cycles does a conditional branch instruction cause a stall?

1/22

1. 33 dynamic instructions
2. 7 pipeline stages
3. 3 cycles
Explanation: We have a system of equations in the variables:
e (' is the total number of cycles taken
e P is the total number of pipeline stages

I is the total number of dynamic instructions executed

e B is the number of conditional branch instructions executed
e D is the number of cycles stalled for each conditional branch

The total number of cycles can be expressed as C =P+ 1 —1+ Bx D.
Table [1| gives us B and C, which results in a system of three equations with three unknowns:

e51=P+I1—-1+4%xD
e 63=P+1—-1+8xD
e 87T=P+I1—-1+16%D

Solving this system, we obtain I =33, P =7,D =3

1.2 Part II: Performance Enhancement

To improve performance, the architects add a mystery branch prediction mechanism. They keep the rest of
the design exactly the same as before. You re-run the microbenchmark for the same number of total dynamic
instructions with the new design, and you find that with R1 = 4, the microbenchmark executes in 48 cycles.

Based on this given information, determine which of the following branch prediction mechanisms could be
the mystery branch predictor implemented in the new version of the processor. For each branch prediction
mechanism below, you should circle the configuration parameters that makes it match the performance of
the mystery branch predictor.

a) Static Branch Predictor
Could this be the mystery branch predictor: YES NO

If YES, for which configuration below is the answer YES? Pick an option for each configuration parameter.

I) Static Prediction Direction

Always taken Always not taken

Explain:

YES, if the static prediction direction is always not taken.

Explanation: The execution time corresponds to 3 mispredictions and 1 correct prediction. The correct
prediction occurs when the branch condition evaluates to TRUE and execution falls through to the following
instruction (i.e., NOT TAKEN).

2/22

b) Last Time Branch Predictor
Could this be the mystery branch predictor?

YES NO

If YES, for which configuration is the answer YES? Pick an option for each configuration parameter.

I) Imitial Prediction Direction

Taken Not taken

IT) Local for each branch instruction (PC-based) or global (shared among all branches) history?
Local Global

Explain:

NO.
Explanation: The last-time predictor will make a correct prediction at least three times, which means
that it cannot be the mystery predictor.

¢) Backward taken, Forward not taken (BTFN)
Could this be the mystery branch predictor?

YES NO

Explain:

NO.

Explanation: The BTFN predictor makes exactly one misprediction, which is the opposite of what the
mystery predictor achieves.

d) Forward taken, Backwards not taken (FTBN)
Could this be the mystery branch predictor?

YES NO

Explain:

YES.

Explanation: The FTBN predictor makes exactly one correct prediction, which is what we observe from
the microbenchmark.

3/22

e) Two-bit Counter Based Prediction (using saturating arithmetic)

Could this be the mystery branch predictor?

YES NO

If YES, for which configuration is the answer YES? Pick an option for each configuration parameter.

I) Initial Prediction Direction

00 (Strongly not taken) 01 (Weakly not taken)
10 (Weakly taken) 11 (Strongly taken)

IT) Local for each branch instruction (i.e., PC-based, without any interference between different

branches) or global (i.e., a single counter shared among all branches) history?

Local Global

Explain:

YES, using either local or global history registers with an initial value of 00.
Explanation: There is only one branch, so we cannot differentiate local vs. global registers. Either way,
only the 00 configuration results in 3 mispredictions and 1 correct prediction.

4/22

© ® N e ;A W N e

[N
w N = O

-
'S

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2 Branch Prediction II

Assume a processor that implements an ISA with eight registers (RO-R7). In this ISA, the main memory is
byte-addressable and each word contains 4 bytes. The processor employs a branch predictor to reduce the
overhead of the branches. The ISA implements the instructions given in the following table:

Instructions ‘ Description
la R;, Address load the effective Address into R;
move Ri, Rj R; + Rj

move R;, (R;)

R; + Memory[R,]

move (Rl), Rj

Memory|[R;] < R;

li R;, Imm R; «+ Imm

add R;, R;, Ry, R, +— R; + Ry,

addi R;, Rj, Imm | R; + R; + Imm

cmp R;, R; Compare: Set sign flag, if R; < R;; set zero flag, if R; = R;

cmp R;, (R;)

Compare: Set sign flag, if R; < Memory|R,|; set zero flag, if R; = Memory|R,|

cmpi R;, Imm

Compare: Set sign flag, if R; < Imm; set zero flag, if R; = Imm.

jg label Jump to the target address if both of sign and zero flags are zero.
jnz label Jump to the target address if zero flag is zero.
halt Stop executing instructions.

The processor executes the following program. Answer the questions below related to the accuracy of the
branch predictors that the processor can potentially implement.

la RO, Array
move R6, RO
1i R1, 4
move R5, R1
move R7, R1
move R2, RO
addi R2, R2, 4
Loop:
move R3, (R2)
cmp R3, (RO)
jg Next_Iteration
move R4, (RO)
move (RO), R3
move (R2), R4
Next_Iteration:
addi RO, RO, 4
addi R2, R2, 4
addi R1, R1, -1
cmpi R1, O
jnz Loop
move R1, R7
addi R5, R5, -1
move RO, R6
move R2, RO
addi R2, R2, 4
cmpi R56, O
jnz Loop
halt
.data
Array: word 5, 20, 1, -5, 34

5/22

(a) What would be the prediction accuracy using a shared one-bit-history (last time) branch predictor for
all the branches? The initial state of the predictor is "taken".

Answer: 19/36.

Note that initial values of both R; and Rs are 4; and they change only before the branches in lines 20
and 27 respectively. Both branches follow the pattern of T-T-T-NT, which creates a nested loop.

At each iteration of the internal loop, adjacent elements (pointed by Ry and Rg) are swapped, if
Memory[Ry] < Memory[Rz]. Then, both Ry and R4 are incremented by 4. So they point to the next
element in the next iteration.

Therefore, the code sorts the elements in Array in increasing order.

Table below shows the behavior of each branch through the code. Here T means that the corresponding
branch is taken at specified turn, whereas N indicates that it is not taken.

1 2 3 4 5 6 v 8 9 10 11 12 13 14 15 16 17 18
Linell | T N N T N N T T

Line20 T T T N T T T N
Line27 T T

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Linell | N T T T T T T T

Line20 T T T N T T T N
Line27 T N

One-bit-history branch predictor suggests that the next branch’s behavior will be the same with the last
one. Table below shows the predictor states, hits, and misses through the execution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Predictor State T T T N T N T T N T N T N T T
Branch Behavior | T T N T N T T N T N T N T T T
Hit/Miss H H M M M M H M M M M M M H H
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Predictor State T N N T T T T T T N T T T
Branch Behavior | T N T T T T T T T N T T T T
Hit/Miss H M M M M H H H H H M M H H H
31 32 33 34 35 36
Predictor State T T T T T N
Branch Behavior | T T T T N N
Hit/Miss H H H H M H

6/22

(b) What would be the prediction accuracy using a shared two-bit-history (two-bit counter) branch pre-
dictor for all the branches? Assume that the initial state of the two-bit-history branch predictor is
"weakly taken". The "weakly taken" state transitions to "weakly not-taken" state on misprediction.
Similarly, the "weakly not-taken" taken state transitions to "weakly taken" state on misprediction. A
correct prediction in one of the "weak" states transitions the state to the corresponding "strong" state.

Answer: 26/36.
Explanation:
follows: ST: Strongly Taken, WT: Weakly Taken, WN: Weakly Not-taken, SN: Strongly Not-taken.

Branch behavior is the same with question (a), since both of them are shared predictors.

Table below shows the predictor states, hits, and misses through the code. Used abbreviations are as

29 30 31 32 33 34 35 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Predictor State wr ST ST WI ST WT ST ST WT ST WT ST WT ST
Branch Behavior T T N T N T T N T N T N T T
Hit/Miss H H M H M H H M H M H M H H

15 16 17 18 19 20 21 22 23 24 25 26 27 28
Predictor State ST ST ST WI' ST WI ST ST ST ST ST ST WT ST
Branch Behavior T T N T N T T T T T T N T T
Hit/Miss H H M H M H H H H H H M H H

Predictor State ST ST ST ST ST ST ST WT
Branch Behavior T T T T T T N N
Hit/Miss H H H H H H M M

7/22

(¢) What would be the prediction accuracy using two-bit-history (two-bit counter) branch predictor for
each branch? The initial state is "weakly taken" and the state transitions are the same as in part (b).

Answer:
e [L11: 8/16
e 1.20: 12/16
o 127: 3/4
e All Branches: 23/36
Explanation: Private predictors update their states only based on the behaviors of corresponding

branches.

1 2 3 4 5 6 7 8 9 10 11 12
L11 Predictor State WT ST WT WN WT WN
L11 Branch Behavior T N N
L11 Hit/Miss H M H

N
M

z 'z
Z 4

L20 Predictor State WT ST ST ST WT
L20 Branch Behavior T T T N T
L20 Hit/Miss H H H M

L27 Predictor State WT
L27 Branch Behavior T
127 Hit/Miss H

13 14 15 16 17 18 19 20 21 22 23 24
L11 Predictor State SN WN WwWT WN WT

L11 Branch Behavior T
L11 Hit/Miss M

24
2z
24
sl

L20 Predictor State ST ST ST WwWT ST ST
L20 Branch Behavior T T N T T T
L.20 Hit/Miss H H M H H H

L27 Predictor State ST
L27 Branch Behavior T
L27 Hit/Miss H

25 26 27 28 29 30 31 32 33 34 35 36
L11 Predictor State ST ST ST ST ST
L11 Branch Behavior T T T T T
L11 Hit/Miss H H H H H

L20 Predictor State ST WT ST ST
L20 Branch Behavior N T T T
L.20 Hit/Miss M H H H

z2z 2

L27 Predictor State ST
L27 Branch Behavior T
L27 Hit/Miss H

zz A

8/22

3 Delayed Branching I

You are designing an ISA that uses delayed branch instructions. You are trying to decide how many
instructions to place into the branch delay slot. How many branch delay slots would you need for the
following different implementations? Explain your reasoning briefly.

(a) An in-order processor where conditional branches resolve during the 4th stage

3

(b) An out-of-order processor with 64 unified reservation station entries where conditional branches resolve
during the 2nd cycle of branch execution. The processor has 15 pipeline stages until the start of the
execution stages

We don’t know.

9/22

4 Delayed Branching II

A machine has a five-stage pipeline consisting of fetch, decode, execute, mem and write-back stages. The
machine uses delay slots to handle control dependences. Jump targets, branch targets and destinations are
resolved in the execute stage.

a) What is the number of delay slots needed to ensure correct operation?

2

b) Which instruction(s) in the assembly sequences below would you place in the delay slot(s), assuming
the number of delay slots you answered for part(a)? Clearly rewrite the code with the appropriate
instruction(s) in the delay slot(s).

I) ADD R5 <- R4, R3
OR R3 <- R1, R2
SUB R7 <- R5, R6
J X

Delay Slots

LW R10 <- (R7)
ADD R6 <- R1, R2
X:

Solution:

ADD R5 <- R4, R3
JX

OR R3 <- R1, R2
SUB R7 <- R5, R6
LW R10 <- (R7)
ADD R6 <- R1, R2
X:

II) ADD R5 <- R4, R3
OR R3 <- R1, R2
SUB R7 <- R5, R6
BEQ R5 <- R7, X

LW R10 <- (R7)
ADD R6 <- R1, R2
X:

10/22

Solution:

ADD R5 <- R4, R3
SUB R7 <- R5, R6
BEQ R5 <- R7, X
OR R3 <- R1, R2
NOP

LW R10 <- (R7)
ADD R6 <- R1, R2
X:

III) ADD R2 <- R4, R3
OR R5 <- R1, R2
SUB R7 <- R5, R6
BEQ R5 <- R7, X

LW R10 <- (R7)
ADD R6 <- R1, R2
X:

Solution:

ADD R2 <- R4, R3
OR R5 <- R1, R2
SUB R7 <- R5, R6
BEQ R5 <- R7, X
NOP

NOP

LW R10 <- (R7)
ADD R6 <- R1, R2
X:

¢) Can you modify the pipeline to reduce the number of delay slots (without introducing branch predic-
tion)? Clearly state your solution and explain why.

Move the resolution of jump targets and branch targets and destinations to the decode stage.
Jumps and branches would get resolved one cycle earlier and hence one delay slot would be enough to
ensure correct operation.

11/22

5 VLIW I

You are using a tool that transforms machine code that is written for the MIPS ISA to code in a VLIW
ISA. The VLIW ISA is identical to MIPS except that multiple instructions can be grouped together into
one VLIW instruction. Up to N MIPS instructions can be grouped together (N is the machine width, which
depends on the particular machine). The transformation tool can reorder MIPS instructions to fill VLIW
instructions, as long as loads and stores are not reordered relative to each other (however, independent loads
and stores can be placed in the same VLIW instruction).

You give the tool the following MIPS program (we have numbered the instructions for reference below):

(01) 1w $t0 < 0($a0)
(02) 1w $t2 < 8($a0)
(03) 1w $t1 < 4($a0)
(04) add $t6 <« $t0, $t1
(05) 1w $t3 «— 12($a0)
(06) sub $t7 « $t1, $t2
(07) 1w $t4 « 16($a0)
(08) 1w $t5 « 20($a0)
(09) srlv $s2 < $t6, $t7
(10) sub $s1 <« $t4, $t5
(11) add $s0 <« $t3, $t4
(12) sllv $s4 <« $t7, $s1
(13) srlv $s3 « $t6, $s0
(14) sllv $s5 « $s0, $si1
(15) add $s6 < $s3, $s4
(16) add $s7 < $s4, $s6
(17) srlv $t0 < $s6, $s7
(18) srlv $t1 « $t0, $s7

(a) Draw the dataflow graph of the program. Represent instructions as numbered nodes (01 through 18)
and flow dependencies as directed edges (arrows).

@) (@) () (@) () ()
LR PR KB

@

(@) () ()

N

(o
|
L

12/22

(b) When you run the tool with its settings targeted for a particular VLIW machine, you find that the
resulting VLIW code has 9 VLIW instructions. What minimum value of N must the target VLIW
machine have?

N = 3. If N = 2, then the VLIW program must have at least 11 MIPS instructions, and the number of
VLIW instructions either stays the same or decreases as width is increased by one MIPS instruction.

(c) Write the MIPS instruction numbers (from the code above) corresponding to each VLIW instruction,
for this value of N. When there is more than one MIPS instruction that could be placed into a VLIW
instruction, choose the instruction that comes earliest in the original MIPS program.

MIPS | MIPS | MIPS | MIPS [MIPS [MIPS | MIPS | MIPS | MIPS | MIPS
Instr Instr Instr Instr Instr Instr Instr Instr Instr Instr
No No No No No No No No No No

VLIW Instr.1: 01 02 03
VLIW Instr.2: 04 05 06
VLIW Instr.3: 07 08 09
VLIW Instr.4: 10 11

VLIW Instr.5: 12 13 14

VLIW Instr.6: 15
VLIW Instr.7: 16
VLIW Instr.8: 17
VLIW Instr.9: 18

(d) You find that the code is still not fast enough when it runs on the VLIW machine, so you contact the
VLIW machine vendor to buy a machine with a larger machine-width "N". What minimum value of N
would yield the maximum possible performance (i.e., the fewest VLIW instructions), assuming that all
MIPS instructions (and thus VLIW instructions) complete with the same fixed latency and assuming
no cache misses?

N = 6. This is the maximum width of the dataflow graph and results in 7 VLIW instructions (see below).
If N = 5, then the VLIW program will instead have 8 VLIW instructions. Increasing N further does not
allow any more MIPS instructions to be parallelized in wider VLIW instructions.

(e) Write the MIPS instruction numbers corresponding to each VLIW instruction, for this optimal value
of N. Again, as in part (c) above, pack instructions such that when more than one instruction can
be placed in a given VLIW instruction, the instruction that comes first in the original MIPS code is
chosen.

13/22

Instr Instr Instr Instr Instr Instr Instr Instr Instr Instr
No No No No No No No No No No

VLIW Instr.1: 01 02 03 05 07 08
VLIW Instr.2: 04 06 10 11
VLIW Instr.3: 09 12 13 14

VLIW Instr.4: 15
VLIW Instr.5: 16
VLIW Instr.6: 17
VLIW Instr.7: 18
VLIW Instr.8:
VLIW Instr.9:

(f) A competing processor design company builds an in-order superscalar processor with the same machine-
width N as the width you found above in part(b). The machine has the same clock frequency as the
VLIW processor. When you run the original MIPS program on this machine, you find that it executes
slower than the corresponding VLIW progra m on the VLIW machine in part (b). Why could this be
the case?

Concurrently fetched instructions can be dependent in a superscalar processor, requiring bubbles in the
pipeline to be processed. A VLIW code translator can reorder instructions to minimize such bubbles.
Note that the superscalar processor is in-order in this question.

(g) When you run some other program on this superscalar machine, you find it runs faster than the
corresponding VLIW program on the VLIW machine. Why could this be the case?

VLIW code must have explicit NOPs; the superscalar processor does not require these NOPs. Higher code
density results in a higher I-cache hit rate and lower required fetch bandwidth.

14/22

6 VLIW II

Explain the motivation for VLIW in one sentence.

Enable multiple instruction issue with simple hardware. Independent instructions can be statically sched-
uled into a single VLIW instruction that can fed into multiple functional units concurrently

You are the human compiler for a VLIW machine whose specifications are as follows:

e There are 3 fully pipelined functional units (ALU, MU and FPU).

Integer Arithmetic Logic Unit (ALU) has a 1-cycle latency.

Memory Unit (MU) has a 2-cycle latency.

Floating Point Unit (FPU) has a 3-cycle latency, and can perform either FADD or FMUL (floating
point add / floating point multiply) on floating point registers.

This machine has only 4 integer registers (rl .. r4) and 4 floating point registers (f1 .. f4)

e The machine does not implement hardware interlocking or data forwarding.

a) For the given assembly code on the next page, fill Table 1 (on the next page) with the appropriate
VLIW instructions for only one iteration of the loop (The C code is also provided for your reference).
Provide the VLIW instructions that lead to the best performance. Use the minimum number of VLIW
instructions. Table 1 should only contain instructions provided in the assembly example. For all the
instruction tables, show the NOP instructions you may need to insert. Note that BNE is executed in
the ALU.

The base addresses for A, B, C are stored in rl, r2, r3 respectively. The address of the last element in
the array C[N-1] is stored in r4, where N is an integer multiplier of 10! (read: 10 factorial).

15/22

C Code Assembly Code

float A[N]; loop: LD f1, 0 (zrl)
float C[N]; LD f2, 0 (r2)
int B[N]; FMUL f1, f1, f1
// code to initialize A and B FADD f1, f1, f2
for (int i=0; i<N; i++) ADDI r3, r3, 4
C[i] = A[i] = A[i] + B[il; ST f1, -4, (x3)

ADDI r1, r1, 4
ADDI r2, r2, 4
BNE r3, r4, loop

’ VLIW Instruction ‘ ALU ‘ MU ‘ FPU ‘

1 ADDIrl, rl, 4 LD {1, 0(r1) NOP

2 ADDI 12,12, 4 LD 2, 0(r2) NOP

3 NOP NOP FMUL f1, f1, f1
4 NOP NOP NOP

5 NOP NOP NOP

6 NOP NOP FADD 11, {1, £2
7 NOP NOP NOP

8 ADDI 13, 13, 4 NOP NOP

9 BNE 3, r4, ST f1, -4(r3) NOP

loop

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Table 1

What is the performance in Ops/VLIW instruction (Operations/VLIW instruction) for this design?
An operation here refers to an instruction (in the Assembly Code), excluding NOPs.

1

16/22

b) Assume now we decide to unroll the loop once. Fill Table 2 with the new VLIW instructions. You
should optimize for latency first, then instruction count. You can choose to use different offsets,

immediates and registers, but you may not use any new instructions.

’ VLIW Instruction \ ALU \ MU \ FPU
1 NOP LD {1, 0(r1) NOP
2 ADDIr1,r1, 8 LD 13, 4(r1) NOP
3 NOP LD f2, 0(r2) FMUL f1, f1, f1
4 ADDI 2, r2, 8 LD f4, 4(r2) FMUL f£3, {3, {3
5 NOP NOP NOP
6 NOP NOP FADD f1, f1, £2
7 NOP NOP FADD 13, 3, f4
8 NOP NOP NOP
9 ADDI 13, 13, 8 ST {1, 0(x3) NOP
10 BNE 13, r4, ST £3, -4(x3) NOP
loop
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Table 2

What is the performance in Ops/VLIW instruction for this design?

14/10

¢) Assume now we have unlimited registers and the loop is fully optimized (unrolled to the best
performance possible). What is the performance in Ops/cycle for this design? Show your work and
explain clearly how you arrived at your answer. You are not required to draw any tables, but you
may choose to do so to aid your explanation. (Hint: trace the dependent instructions)

17/22

29/15. Notice that we can add 3 MU ops (2 LDs and 1 ST) and 2 FPU ops per unroll, while the ALU ops
remain constant at 4. If you trace the table carefully, you will observe that the MU instruction stream
will have 1 op/cycle by the time we unroll the loop five times. At this point, we have 4 + 15 + 10
= 29 instructions over 15 cycles. Any further unrolling will result in a smaller ops/cycle since the MU
instruction stream is already saturated.

18/22

7 Systolic Arrays

Figure |1| shows a systolic array processing element.

Each processing element takes in two inputs, M and N, and outputs P and Q. Each processing element
also contains an “accumulator” R that can be read from and written to. The initial value of the “accumulator”
is 0.

Figure 2 shows a systolic array composed of 9 processing elements. The smaller boxes are the inputs to
the systolic array and the larger boxes are the processing elements. You will program this systolic array to
perform the following calculation:

Coo Col Co2 agp ap1 Qo2 boo bor bo2
clp ci1 ci2| = |ap ain aiz| x [bio b1 b2
Co0 C21 C22 G20 Q21 (22 bag ba1 bag

In each time cycle, each processing element will take in its two inputs, perform any necessary actions,
and write on its outputs. The time cycle labels on the input boxes determine which time cycle the inputs
will be fed into their corresponding processing elements. Any processing element input that is not driven
will default to 0, and any processing element that has no output arrow will have its output ignored.

After all the calculations finish, each processing element’s “accumulator” will hold one element of the final
result matrix, arranged in the correct order.

(a) Please describe the operations that each individual processing element performs, using mathe- matical
equations and the variables M, N, P, Q and R.
N
R

T

Q

Figure 1: A systolic array processing element

M—

M
P—

N
Q:

R+ MxN
R =

19/22

(b) Please fill in all 30 input boxes in Figure [2 so that the systolic array computes the correct matrix
multiplication result described on the previous page. (Hint: Use a;; and b;;.)

4 | 0 ‘ 0 b2,
3 0 ‘bZI b1,
TIME 2 b20 b11 b02
1 bio ‘bm 0
0 | b 0 0
(TIME
1
4 3 2 1 0 l l l
‘ 0 ‘ 0 ‘ ap2 do1 Aoo —> > >
‘ 0 ‘ ain d1q EET) 0 ‘ —> > —>
az azy ao 0 ‘ 0 ‘ —> > —>

Figure 2: A systolic array

20/22

8 BONUS: Branch Prediction

Assume the following piece of code that iterates through a large array populated with completely (i.e.,
truly) random positive integers. The code has four branches (labeled B1, B2, B3, and B4). When we say
that a branch is taken, we mean that the code inside the curly brackets is executed.

for (int i=0; i<N; i++) { /* Bl =/

val = arrayl[il; /* TAKEN PATH for Bl */
if (val % 2 == 0) { /* B2 */

sum += val; /* TAKEN PATH for B2 x/
}
if (val % 3 ==0) { /* B3 %/

sum += val; /* TAKEN PATH for B3 x/
}
if (val % 6 == 0) { /* B4 */

sum += val; /* TAKEN PATH for B4 x/
}

}

(a) Of the four branches, list all those that exhibit local correlation, if any.

Only B1.

B2, B3, B4 are not locally correlated. Just like consecutive outcomes of a die, an element being a multiple
of N (N is 2, 3, and 6, respectively for B2, B3, and B4) has no bearing on whether the next element is also
a multiple of N.

(b) Which of the four branches are globally correlated, if any? Explain in less than 20 words.

B4 is correlated with B2 and B3. This means that if B2 and B3 are taken then B4 should always be taken
(as 6 is a common multiple of 2 and 3).

Now assume that the above piece of code is running on a processor that has a global branch predictor.
The global branch predictor has the following characteristics.

e Global history register (GHR): 2 bits.

e Pattern history table (PHT): 4 entries.

e Pattern history table entry (PHTE): 11-bit signed saturating counter (possible values: -1024-1023)
e Before the code is run, all PHTEs are initially set to 0.

e As the code is being run, a PHTE is incremented (by one) whenever a branch that corresponds to that
PHTE is taken, whereas a PHTE is decremented (by one) whenever a branch that corresponds to that
PHTE is not taken.

21/22

(c) After 120 iterations of the loop, calculate the expected value for only the first PHTE and fill it in the

shaded box below. (Please write it as a base-10 value, rounded to the nearest one’s digit.)

Hint. For a given iteration of the loop, first consider, what is the probability that both B1 and B2 are
taken? Given that they are, what is the probability that B3 will increment or decrement the PHTE?
Then consider...

Show your work.

Without loss of generality, let’s take a look at the numbers from 1 through 6..

For a single iteration of the loop, the PHTE has four chances of being incremented/decremented, once
at each branch.

e B3’s contribution to PHTE. The probability that both B1 and B2 are taken is denoted as P(B1_T &&
B2 _T), which is equal to P(B1_T)*P(B2_T) = 1*1/2 = 1/2 (out of the six numbers, only 2, 4, and 6
are divisible by 2). Given that B1 and B2 are taken, the probability that B3 is also taken, is equal to Q
= 1/3 (out of 2, 4, 6 only 6 is divisible by 3). Therefore, the PHTE will be incremented with probability
1/2*1/3 = 1/6 and decremented with probability 1/2%(1-1/3) = 1/3 (out of 2, 4, 6 2 and 4 are not
divisible by 3). The net contribution of B3 to PHTE is 1/6-1/3 = -1/6.

e B4’s contribution to PHTE. P(B2_T && B3_T) = 1/6. P(B4_T | B2 T && B3_T) = R — 1. B4’s
net contribution is 1/6*1 = 1/6.

e B1’s contribution to PHTE. P(B3_T && B4 T) =1/6. P(B1_T | B3 _T && B4 _T) = 1. B1’s net
contribution is 1/6*1 = 1/6.

e B2’s contribution to PHTE. P(B4 T && B1 T) =1/6*1 = 1/6. P(B2 T | B4 T && B1 T) =
1/2. This is because B4 is the last branch in the for loop and thus it has no effect on B2 from the
next iteration. So B2 is taken whenever we have one of the values 2, 4, 6 out of the six values.B2’s net
contribution is 1/6*1/2 - 1/6*1/2 = 0.

For a single iteration, the net contribution to the PHTE, summed across all the four branches, is equal to
1/6. Since there are 120 iterations, the expected PHTE value is equal to 1/6%120=20.

Ly 1% PHTE
Yl SO 2" PHTE
GHR e N 3" PHTE

) 4™ PHTE
PHT

22/22

	Branch Prediction I
	Part I: Microbenchmarking
	Part II: Performance Enhancement

	Branch Prediction II
	Delayed Branching I
	Delayed Branching II
	VLIW I
	VLIW II
	Systolic Arrays
	BONUS: Branch Prediction

