
Appears in Proceedings of the IEEE, September 2017.

Error Characterization, Mitigation, and Recovery in
Flash-Memory-Based Solid-State Drives

Yu Cai† Saugata Ghose† Erich F. Haratsch‡ Yixin Luo† Onur Mutlu§†
†Carnegie Mellon University ‡Seagate Technology §ETH Zürich

ABSTRACT
NAND flash memory is ubiquitous in everyday life today because
its capacity has continuously increased and cost has continuously
decreased over decades. This positive growth is a result of two key
trends: (1) effective process technology scaling; and (2) multi-level
(e.g., MLC, TLC) cell data coding. Unfortunately, the reliability of
raw data stored in flash memory has also continued to become
more difficult to ensure, because these two trends lead to (1) fewer
electrons in the flash memory cell floating gate to represent the
data; and (2) larger cell-to-cell interference and disturbance effects.
Without mitigation, worsening reliability can reduce the lifetime
of NAND flash memory. As a result, flash memory controllers in
solid-state drives (SSDs) have become much more sophisticated:
they incorporate many effective techniques to ensure the correct
interpretation of noisy data stored in flash memory cells. In this
article, we review recent advances in SSD error characterization,
mitigation, and data recovery techniques for reliability and lifetime
improvement. We provide rigorous experimental data from state-of-
the-art MLC and TLC NAND flash devices on various types of flash
memory errors, to motivate the need for such techniques. Based on
the understanding developed by the experimental characterization,
we describe several mitigation and recovery techniques, including
(1) cell-to-cell interference mitigation; (2) optimal multi-level cell
sensing; (3) error correction using state-of-the-art algorithms and
methods; and (4) data recovery when error correction fails. We
quantify the reliability improvement provided by each of these
techniques. Looking forward, we briefly discuss how flash memory
and these techniques could evolve into the future.

1 INTRODUCTION
Solid-state drives (SSDs) are widely used in computer systems today
as a primary method of data storage. In comparison with magne-
tic hard drives, the previously dominant choice for storage, SSDs
deliver significantly higher read and write performance, with or-
ders of magnitude of improvement in random-access input/output
(I/O) operations, and are resilient to physical shock, while requi-
ring a smaller form factor and consuming less static power. SSD
capacity (i.e., storage density) and cost-per-bit have been impro-
ving steadily in the past two decades, which has led to the wide-
spread adoption of SSD-based data storage in most computing
systems, from mobile consumer devices [65, 76] to enterprise data
centers [51, 122, 142, 162, 178].

The first major driver for the improved SSD capacity and cost-
per-bit has beenmanufacturing process scaling, which has increased
the number of flash memory cells within a fixed area. Internally,
commercial SSDs are made up of NAND flash memory chips, which
provide nonvolatile memory storage (i.e., the data stored in NAND

flash is correctly retained even when the power is disconnected)
using floating gate (FG) transistors [77, 121, 130] or charge trap
transistors [50, 186]. In this paper, we mainly focus on floating gate
transistors, since they are the most common transistor used in
today’s flash memories. A floating gate transistor constitutes a flash
memory cell. It can encode one or more bits of digital data, which
is represented by the level of charge stored inside the transistor’s
floating gate. The transistor traps charge within its floating gate,
which dictates the threshold voltage level at which the transistor
turns on. The threshold voltage level of the floating gate is used to
determine the value of the digital data stored inside the transistor.
When manufacturing process scales down to a smaller technology
node, the size of each flash memory cell, and thus the size of the
transistor, decreases, which in turn reduces the amount of charge
that can be trapped within the floating gate. Thus, process scaling
increases storage density by enabling more cells to be placed in a
given area, but it also causes reliability issues, which are the focus
of this paper.

The second major driver for improved SSD capacity has been
the use of a single floating gate transistor to represent more than
one bit of digital data. Earlier NAND flash chips stored a single bit
of data in each cell (i.e., a single floating gate transistor), which was
referred to as single-level cell (SLC) NAND flash. Each transistor
can be set to a specific threshold voltage within a fixed range of
voltages. SLC NAND flash divided this fixed range into two voltage
windows, where one window represents the bit value 0 and the
other window represents the bit value 1. Multi-level cell (MLC)
NAND flash was commercialized in the last two decades, where the
same voltage range is instead divided into four voltage windows
that represent each possible 2-bit value (00, 01, 10, and 11). Each
voltage window in MLC NAND flash is therefore much smaller than
a voltage window in SLC NAND flash. This makes it more difficult
to identify the value stored in a cell. More recently, triple-level cell
(TLC) flash has been commercialized [4, 62], which further divides
the range, providing eight voltage windows to represent a 3-bit
value. Quadruple-level cell (QLC) flash, storing a 4-bit value per
cell, is currently being developed [145]. Encoding more bits per
cell increases the capacity of the SSD without increasing the chip
size, yet it also decreases reliability by making it more difficult to
correctly store and read the bits.

The two major drivers for the higher capacity, and thus the ubi-
quitous commercial success, of flash memory as a storage device,
are also major drivers for its reduced reliability and are the causes of
its scaling problems. As the amount of charge stored in each NAND
flash cell decreases, the voltage for each possible bit value is distri-
buted over a wider voltage range due to greater process variation,
and the margins (i.e., the width of the gap between neighboring
voltage windows) provided to ensure the raw reliability of NAND
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flash chips have been diminishing, leading to a greater probability
of flash memory errors with newer generations of SSDs. NAND
flash memory errors can be induced by a variety of sources [14],
including flash cell wearout [14, 15, 116], errors introduced during
programming [12, 18, 116, 153], interference from operations per-
formed on adjacent cells [16, 18, 26, 56, 108, 126, 149, 151], and data
retention issues due to charge leakage [14, 17, 24, 25, 126].

To compensate for this, SSDs employ sophisticated error-correc-
ting codes (ECCs) within their controllers. An SSD controller uses
the ECC information stored alongside a piece of data in the NAND
flash chip to detect and correct a number of raw bit errors (i.e., the
number of errors experienced before correction is applied) when the
piece of data is read out. The number of bits that can be corrected
for every piece of data is a fundamental tradeoff in an SSD. A
more sophisticated ECC can tolerate a larger number of raw bit
errors, but it also consumes greater area overhead and latency.
Error characterization studies [14, 15, 56, 116, 126, 153] have found
that, due to NAND flash wearout, the probability of raw bit errors
increases as more program/erase (P/E) cycles (i.e., write accesses, or
writes) are performed to the drive. The raw bit error rate eventually
exceeds the maximum number of errors that can be corrected by
ECC, at which point data loss occurs [17, 22, 122, 162]. The lifetime
of a NAND-flash-memory-based SSD is determined by the number
of P/E cycles that can be performed successfully while avoiding data
loss for a minimum retention guarantee (i.e., the required minimum
amount of time, after being written, that the data can still be read
out without uncorrectable errors).

The decreasing raw reliability of NAND flash memory chips has
drastically impacted the lifetime of commercial SSDs. For example,
older SLC NAND-flash-based SSDs were able to withstand 150,000
P/E cycles (writes) to each flash cell, but contemporary 1x-nm (i.e.,
15–19 nm) process-based SSDs consisting of MLC NAND flash can
sustain only 3,000 P/E cycles [120, 153, 206]. With the raw reliability
of a flash chip dropping so significantly, approaches to mitigating
reliability issues in NAND-flash-based SSDs have been the focus of
an important body of research. A number of solutions have been
proposed to increase the lifetime of contemporary SSDs, ranging
from changes to the low-level device behavior (e.g., [12, 15, 16, 201])
to making SSD controllers much more intelligent in dealing with
individual flash memory chips (e.g., [17, 21, 23–26, 62, 115, 116]). In
addition, various mechanisms have been developed to successfully
recover data in the event of data loss that may occur during a read
operation to the SSD (e.g., [16, 17, 21]).

In this work, we provide a comprehensive overview of the state of
flash-memory-based SSD reliability, with a focus on (1) fundamental
causes of flash memory errors, backed up by (2) quantitative error
data collected from real state-of-the-art flash memory devices, and
(3) sophisticated error mitigation and data recovery techniques
developed to tolerate, correct, and recover from such errors. To
this end, we first discuss the architecture of a state-of-the-art SSD,
and describe mechanisms used in a commercial SSD to reduce the
probability of data loss (Section 2). Next, we discuss the low-level
behavior of the underlying NAND flash memory chip in an SSD,
to illustrate fundamental reasons why errors can occur in flash
memory (Section 3). We then discuss the root causes of these errors,
quantifying the impact of each error source using experimental

characterization data collected from real NAND flash memory chips
(Section 4). For each of these error sources, we describe various state-
of-the-art mechanisms that mitigate the induced errors (Section 5).
We next examine several error recovery flows to successfully extract
data from the SSD in the event of data loss during a read operation
(Section 6). Then, we look to the future to foreshadow how the
reliability of SSDs might be affected by emerging flash memory
technologies (Section 7). Finally, we briefly examine how other
memory technologies (such as DRAM, which is used prominently
in a modern SSD, and emerging nonvolatile memory) suffer from
similar reliability issues to SSDs (Section 8).

2 STATE-OF-THE-ART SSD ARCHITECTURE
In order to understand the root causes of reliability issues within
SSDs, we first provide an overview of the system architecture of a
state-of-the-art SSD. The SSD consists of a group of NAND flash
memories (or chips) and a controller, as shown in Figure 1. A host
computer communicates with the SSD through a high-speed host
interface (e.g., SAS, SATA, PCIe bus), which connects to the SSD
controller. The controller is then connected to each of the NAND
flash chips via memory channels.
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Figure 1: (a) SSD system architecture, showing controller
(Ctrl) and chips. (b) Detailed view of connections between
controller components and chips.

2.1 Flash Memory Organization
Figure 2 shows an example of how NAND flash memory is orga-
nized within an SSD. The flash memory is spread across multiple
flash chips, where each chip contains one or more flash dies, which
are individual pieces of silicon wafer that are connected together
to the pins of the chip. Contemporary SSDs typically have 4–16
chips per SSD, and can have as many as 16 dies per chip. Each
chip is connected to one or more physical memory channels, and
these memory channels are not shared across chips. A flash die
operates independently of other flash dies, and contains between
one and four planes. Each plane contains hundreds to thousands
of flash blocks. Each block is a 2D array that contains hundreds of
rows of flash cells (typically 256–1024 rows) where the rows store
contiguous pieces of data. Much like banks in a multi-bank memory
(e.g., DRAM banks [31, 91, 92, 100, 102, 104, 105, 131, 137, 138]),
the planes can execute flash operations in parallel, but the planes
within a die share a single set of data and control buses [1]. Hence,
an operation can be started in a different plane in the same die in
a pipelined manner, every cycle. Figure 2 shows how blocks are
organized within chips across multiple channels. In the rest of this
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work, without loss of generality, we assume that a chip contains a
single die.
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Figure 2: Flash memory organization.

Data in a block is written at the unit of a page, which is typically
between 8 and 16 kB in size in NAND flash memory. All read and
write operations are performed at the granularity of a page. Each
block typically contains hundreds of pages. Blocks in each plane are
numbered with an ID that is unique within the plane, but is shared
across multiple planes. Within the block, each page is numbered in
sequence. The controller firmware groups blocks with the same ID
number across multiple chips and planes together into a superblock.
Within each superblock, the pages with the same page number are
considered a superpage. The controller opens one superblock (i.e.,
an empty superblock is selected for write operations) at a time, and
typically writes data to the NAND flash memory one superpage
at a time to improve sequential read/write performance and make
error correction efficient, since some parity information is kept at
superpage granularity (see Section 2.3). Having the ability to write
to all of the pages in a superpage simultaneously, the SSD can fully
exploit the internal parallelism offered by multiple planes/chips,
which in turn maximizes write throughput.

2.2 Memory Channel
Each flash memory channel has its own data and control connection
to the SSD controller, much like a main memory channel has to
the DRAM controller [90, 91, 93, 132, 134, 137, 138, 173, 174]. The
connection for each channel is typically an 8- or 16-bit wide bus
between the controller and one of the flash memory chips [1]. Both
data and flash commands can be sent over the bus.

Each channel also contains its own control signal pins to indicate
the type of data or command that is on the bus. The address latch
enable (ALE) pin signals that the controller is sending an address,
while the command latch enable (CLE) pin signals that the controller
is sending a flash command. Every rising edge of the write enable
(WE) signal indicates that the flash memory should write the piece
of data currently being sent on the bus by the SSD controller. Simi-
larly, every rising edge of the read enable (RE) signal indicates that
the flash memory should send the next piece of data from the flash
memory to the SSD controller.

Each flash memory die connected to a memory channel has its
own chip enable (CE) signal, which selects the die that the control-
ler currently wants to communicate with. On a channel, the bus

broadcasts address, data, and flash commands to all dies within the
channel, but only the die whose CE signal is active reads the infor-
mation from the bus and executes the corresponding operation.

2.3 SSD Controller
The SSD controller, shown in Figure 1b, is responsible for managing
the underlying NAND flash memory, and for handling I/O requests
received from the host. To perform these tasks, the controller runs
firmware, which is often referred to as the flash translation layer
(FTL). FTL tasks are executed on one or more embedded processors
that exist inside the controller. The controller has access to DRAM,
which can be used to store various controller metadata (e.g., how
host memory addresses map to physical SSD addresses) and to ca-
che relevant (e.g., frequently accessed) SSD pages [122, 161]. When
the controller handles I/O requests, it performs a number of opera-
tions on the data, such as scrambling the data to improve raw bit
error rates, performing ECC encoding/decoding, and in some cases
compressing the data and employing superpage-level data parity. We
briefly examine the various tasks of the SSD controller.

Flash Translation Layer. The main duty of the FTL is to ma-
nage the mapping of logical addresses (i.e., the address space utilized
by the host) to physical addresses in the underlying flash memory
(i.e., the address space for actual locations where the data is stored,
visible only to the SSD controller) for each page of data [40, 58]. By
providing this indirection between address spaces, the FTL can re-
map the logical address to a different physical address (i.e., move the
data to a different physical address)without notifying the host.Whe-
never a page of data is written to by the host or moved for under-
lying SSDmaintenance operations (e.g., garbage collection [35, 202];
see below), the old data (i.e., the physical location where the over-
written data resides) is simply marked as invalid in the physical
block’s metadata, and the new data is written to a page in the flash
block that is currently open for writes (see Section 3.4 for more
detail on how writes are performed).

Over time, page invalidations cause fragmentationwithin a block,
where a majority of pages in the block become invalid. The FTL
periodically performs garbage collection, which identifies each of
the highly fragmented flash blocks and erases the entire block
(after migrating any remaining valid pages to a new block, with
the goal of fully populating the new block with valid pages) [35,
202]. Garbage collection often aims to select the blocks with the
least amount of utilization (i.e., the fewest valid pages) first. When
garbage collection is complete, and a block has been erased, it is
added to a free list in the FTL. When the block currently open for
writes becomes full, the SSD controller selects a new block to open
from the free list.

The FTL is also responsible for wear leveling, to ensure that
all of the blocks within the SSD are evenly worn out [35, 202].
By evenly distributing the wear (i.e., the number of P/E cycles
that take place) across different blocks, the SSD controller reduces
the heterogeneity of the amount of wearout across these blocks,
extending the lifetime of the device. Wear-leveling algorithms are
invoked when the current block that is being written to is full
(i.e., no more pages in the block are available to write to), and the
controller selects a new block for writes from the free list. The
wear-leveling algorithm dictates which of the blocks from the free
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list is selected. One simple approach is to select the block in the free
list with the lowest number of P/E cycles to minimize the variance
of the wearout amount across blocks, though many algorithms have
been developed for wear leveling [34, 54].

Flash Reliability Management. The SSD controller performs
many background optimizations that improve flash reliability. These
flash reliability management techniques, as we will discuss in more
detail in Section 5, can effectively improve flash lifetime at a very
low cost, since the optimizations are usually performed during idle
times, when the interference with the running workload is mini-
mized. These management techniques sometimes require small
metadata storage in memory (e.g., for storing optimal read refe-
rence voltages [16, 17, 116]), or require a timer (e.g., for triggering
refreshes in time [24, 25]).

Compression. Compression can reduce the size of the data writ-
ten to minimize the number of flash cells worn out by the original
data. Some controllers provide compression, as well as decompres-
sion, which reconstructs the original data from the compressed data
stored in the flash memory [110, 209]. The controller may contain a
compression engine, which, for example, performs the LZ77 or LZ78
algorithms. Compression is optional, as some types of data being
stored by the host (e.g., JPEG images, videos, encrypted files, files
that are already compressed) may not be compressible.

Data Scrambling and Encryption. The occurrence of errors
in flash memory is highly dependent on the data values stored into
the memory cells [14, 18, 26]. To reduce the dependence of the error
rate on data values, an SSD controller first scrambles the data before
writing it into the flash chips [27, 84]. The key idea of scrambling is
to probabilistically ensure that the actual value written to the SSD
contains an equal number of randomly distributed zeroes and ones,
thereby minimizing any data-dependent behavior. Scrambling is
performed using a reversible process, and the controller descrambles
the data stored in the SSD during a read request. The controller
employs a linear feedback shift register (LFSR) to perform scrambling
and descrambling. An n-bit LFSR generates 2n−1 bits worth of
pseudo-random numbers without repetition. For each page of data
to be written, the LFSR can be seeded with the logical address of
that page, so that the page can be correctly descrambled even if
maintenance operations (e.g., garbage collection) migrate the page
to another physical location, as the logical address is unchanged.
(This also reduces the latency of maintenance operations, as they
do not need to descramble and rescramble the data when a page
is migrated.) The LFSR then generates a pseudo-random number
based on the seed, which is then XORedwith the data to produce the
scrambled version of the data. As the XOR operation is reversible,
the same process can be used to descramble the data.

In addition to the data scrambling employed to minimize data
value dependence, several SSD controllers include data encryp-
tion hardware [41, 64, 189]. An SSD that contains data encryp-
tion hardware within its controller is known as a self-encrypting
drive (SED). In the controller, data encryption hardware typically
employs AES encryption [41, 45, 144, 189], which performs multi-
ple rounds of substitutions and permutations to the unencrypted
data in order to encrypt it. AES employs a separate key for each

round [45, 144]. In an SED, the controller contains hardware that ge-
nerates the AES keys for each round, and performs the substitutions
and permutations to encrypt or decrypt the data using dedicated
hardware [41, 64, 189].

Error-Correcting Codes. ECC is used to detect and correct the
raw bit errors that occur within flash memory. A host writes a page
of data, which the SSD controller splits into one or more chunks.
For each chunk, the controller generates a codeword, consisting of
the chunk and a correction code. The strength of protection offered
by ECC is determined by the coding rate, which is the chunk size
divided by the codeword size. A higher coding rate provides weaker
protection, but consumes less storage, representing a key reliability
tradeoff in SSDs.

The ECC algorithm employed (typically BCH [6, 66, 109, 168] or
LDPC [55, 119, 168, 207]; see Section 6), as well as the length of the
codeword and the coding rate, determine the total error correction
capability, i.e., the maximum number of raw bit errors that can be
corrected by ECC. ECC engines in contemporary SSDs are able to
correct data with a relatively high raw bit error rate (e.g., between
10−3 and 10−2 [72]) and return data to the host at an error rate that
meets traditional data storage reliability requirements (e.g., a post-
correction error rate of 10−15 in the JEDEC standard [74]). The error
correction failure rate (PECFR ) of an ECC implementation, with a
codeword length of l where the codeword has an error correction
capability of t bits, can be modeled as:

PECFR =
l∑

k=t+1

(
l

k

)
(1 − BER)(l−k )BERk (1)

where BER is the bit error rate of the NAND flash memory. We
assume in this equation that errors are independent and identically
distributed.

In addition to the ECC information, a codeword contains cyclic
redundancy checksum (CRC) parity information [161].When data is
being read from the NAND flash memory, there may be times when
the ECC algorithm incorrectly indicates that it has successfully
corrected all errors in the data, when uncorrected errors remain. To
ensure that incorrect data is not returned to the user, the controller
performs a CRC check in hardware to verify that the data is error
free [157, 161].

Data Path Protection. In addition to protecting the data from
raw bit errors within the NAND flash memory, newer SSDs in-
corporate error detection and correction mechanisms throughout
the SSD controller, in order to further improve reliability and data
integrity [161]. These mechanisms are collectively known as data
path protection, and protect against errors that can be introduced
by the various SRAM and DRAM structures that exist within the
SSD.1 Figure 3 illustrates the various structures within the control-
ler that employ data path protection mechanisms. There are three
data paths that require protection: (1) the path for data written by
the host to the flash memory, shown as a red solid line in Figure 3;
(2) the path for data read from the flash memory by the host, shown
as a green dotted line; and (3) the path for metadata transferred

1See Section 8 for a discussion on the possible types of errors that can be present in
DRAM.
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between the firmware (i.e., FTL) processors and the DRAM, shown
as a blue dashed line.
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Figure 3: Data path protection employed within the control-
ler.

In the write data path of the controller (the red solid line shown
in Figure 3), data received from the host interface (❶ in the figure) is
first sent to a host FIFO buffer (❷). Before the data is written into the
host FIFO buffer, the data is appended with memory protection ECC
(MPECC) and host FIFO buffer (HFIFO) parity [161]. The MPECC
parity is designed to protect against errors that are introduced when
the data is stored within DRAM (which takes place later along the
data path), while the HFIFO parity is designed to protect against
SRAM errors that are introduced when the data resides within the
host FIFO buffer. When the data reaches the head of the host FIFO
buffer, the controller fetches the data from the buffer, uses theHFIFO
parity to correct any errors, discards the HFIFO parity, and sends
the data to the DRAMmanager (❸). The DRAMmanager buffers the
data (which still contains the MPECC information) within DRAM
(❹), and keeps track of the location of the buffered data inside the
DRAM. When the controller is ready to write the data to the NAND
flash memory, the DRAM manager reads the data from DRAM.
Then, the controller uses the MPECC information to correct any
errors, and discards the MPECC information. The controller then
encodes the data into an ECC codeword (❺), generates CRC parity
for the codeword, and then writes both the codeword and the CRC
parity to a NAND flash FIFO buffer (❻) [161]. When the codeword
reaches the head of this buffer, the controller uses CRC parity to
correct any errors in the codeword, and then dispatches the data to
the flash interface (❼), which writes the data to the NAND flash
memory. The read data path of the controller (the green dotted line
shown in Figure 3) performs the same procedure as the write data
path, but in reverse order [161].

Aside from buffering data along the write and read paths, the
controller uses the DRAM to store essential metadata, such as the
table that maps each host data address to a physical block address
within the NAND flash memory [122, 161]. In the metadata path
of the controller (the blue dashed line shown in Figure 3), the
metadata is often read from or written to DRAM by the firmware
processors. In order to ensure correct operation of the SSD, the
metadata must not contain any errors. As a result, the controller
uses memory protection ECC (MPECC) for the metadata stored
within DRAM [118, 161], just as it did to buffer data along the
write and read data paths. Due to the lower rate of errors in DRAM

compared to NAND flash memory (see Section 8), the employed
memory protection ECC algorithms are not as strong as BCH or
LDPC. We describe common ECC algorithms employed for DRAM
error correction in Section 8.

Bad Block Management. Due to process variation or uneven
wearout, a small number of flash blocks may have a much higher
raw bit error rate (RBER) than an average flash block. Mitigating
or tolerating the RBER on these flash blocks often requires a much
higher cost than the benefit of using them. Thus, it is more efficient
to identify and record these blocks as bad blocks, and avoid using
them to store useful data. There are two types of bad blocks: original
bad blocks (OBBs), which are defective due to manufacturing issues
(e.g., process variation), and growth bad blocks (GBBs), which fail
during runtime [179].

The flash vendor performs extensive testing, known as bad block
scanning, to identify OBBs when a flash chip is manufactured [125].
Initially, all blocks are kept in the erased state, and contain the
value 0xFF in each byte (see Section 3.1). Inside each OBB, the bad
block scanning procedure writes a specific data value (e.g., 0x00) to a
specific byte locationwithin the block that indicates the block status.
A good block (i.e., a block without defects) is not modified, and thus
its block status byte remains at the value 0xFF. When the SSD is
powered up for the first time, the SSD controller iterates through all
blocks and checks the value stored in the block status byte of each
block. Any block that does not contain the value 0xFF is marked
as bad, and is recorded in a bad block table stored in the controller.
A small number of blocks in each plane are set aside as reserved
blocks (i.e., blocks that are not used during normal operation), and
the bad block table automatically remaps any operation originally
destined to an OBB to one of the reserved blocks. The bad block
table remaps an OBB to a reserved block in the same plane, to
ensure that the SSD maintains the same degree of parallelism when
writing to a superpage, thus avoiding performance loss. Less than
2% of all blocks in the SSD are expected to be OBBs [146].

The SSD identifies growth bad blocks during runtime by mo-
nitoring the status of each block. Each superblock contains a bit
vector indicating which of its blocks are GBBs. After each program
or erase operation to a block, the SSD reads the status reporting
registers to check the operation status. If the operation has failed,
the controller marks the block as a GBB in the superblock bit vector.
At this point, the controller uses superpage-level parity to recover
the data that was stored in the GBB (see Superpage-Level Parity
below), and all data in the superblock is copied to a different super-
block. The superblock containing the GBB is then erased. When
the superblock is subsequently opened, blocks marked as GBBs are
not used, but the remaining blocks can store new data.

Superpage-Level Parity. In addition to ECC to protect against
bit-level errors, many SSDs employ RAID-like parity [49, 78, 124,
155]. The key idea is to store parity information within each super-
page to protect data from ECC failures that occur within a single
chip or plane. Figure 4 shows an example of how the ECC and pa-
rity information are organized within a superpage. For a superpage
that spans across multiple chips, dies, and planes, the pages stored
within one die or one plane (depending on the implementation)
are used to store parity information for the remaining pages. Wit-
hout loss of generality, we assume for the rest of this section that a
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superpage that spans c chips and d dies per chip stores parity infor-
mation in the pages of a single die (which we call the parity die),
and that it stores user data in the pages of the remaining (c ×d) − 1
dies. When all of the user data is written to the superpage, the
SSD controller XORs the data together one plane at a time (e.g., in
Figure 4, all of the pages in Plane 0 are XORed with each other),
which produces the parity data for that plane. This parity data is
written to the corresponding plane in the parity die, e.g., Plane 0
page in Die (c × d) − 1 in the figure.

Logical Block

. . .

Data ECC
Plane 0, Block m, Page n

… Data ECC Data ECC

RAID Parity
Plane 0, Block m, Page n

RAID Parity
Plane 1, Block m, Page n

ECC Codeword

Data ECC
Plane 1, Block m, Page n

… Data ECC Data ECC

Data ECC
Plane 0, Block m, Page n

… Data ECC Data ECC

Data ECC
Plane 1, Block m, Page n

… Data ECC Data ECC
+

+

Die 0

Die (c×d)–2

Die (c×d)–1

. . .

Figure 4: Example layout of ECC codewords, logical blocks,
and superpage-level parity for superpage n in superblockm.
In this example, we assume that a logical block contains two
codewords.

The SSD controller invokes superpage-level parity when an ECC
failure occurs during a host software (e.g., OS, file system) access
to the SSD. The host software accesses data at the granularity of
a logical block (LB), which is indexed by a logical block address
(LBA). Typically, an LB is 4 kB in size, and consists of several ECC
codewords (which are usually 512 BB to 2 kB in size) stored consecu-
tively within a flash memory page, as shown in Figure 4. During the
LB access, a read failure can occur for one of two reasons. First, it is
possible that the LB data is stored within a hidden GBB (i.e., a GBB
that has not yet been detected and excluded by the bad block mana-
ger). The probability of storing data in a hidden GBB is quantified
as PHGBB . Note that because bad block management successfully
identifies and excludes most GBBs, PHGBB is much lower than the
total fraction of GBBs within an SSD. Second, it is possible that at
least one ECC codeword within the LB has failed (i.e., the codeword
contains an error that cannot be corrected by ECC). The probability
that a codeword fails is PECFR (see Error-Correcting Codes above).
For an LB that contains K ECC codewords, we can model PLBFail ,
the overall probability that an LB access fails (i.e., the rate at which
superpage-level parity needs to be invoked), as:

PLBFail = PHGBB + [1 − PHGBB ] × [1 − (1 − PECFR )K ] (2)

In Equation 2, PLBFail consists of (1) the probability that an LB is
inside a hidden GBB (left side of the addition); and (2) for an LB
that is not in a hidden GBB, the probability of any codeword failing
(right side of the addition).

When a read failure occurs for an LB in plane p, the SSD control-
ler reconstructs the data using the other LBs in the same superpage.

To do this, the controller reads the LBs stored in plane p in the other
(c ×d) − 1 dies of the superpage, including the LBs in the parity die.
The controller then XORs all of these LBs together, which retrieves
the data that was originally stored in the LB whose access failed.
In order to correctly recover the failed data, all of the LBs from the
(c × d) − 1 dies must be correctly read. The overall superpage-level
parity failure probability Ppar ity (i.e., the probability that more
than one LB contains a failure) for an SSD with c chips of flash
memory, with d dies per chip, can be modeled as [155]:

Ppar ity = PLBFail × [1 − (1 − PLBFail )(c×d )−1] (3)
Thus, by designating one of the dies to contain parity information
(in a fashion similar to RAID 4 [155]), the SSD can tolerate the com-
plete failure of the superpage data in one die without experiencing
data loss during an LB access.

2.4 Design Tradeoffs for Reliability
Several design decisions impact the SSD lifetime (i.e., the duration of
time that the SSD can be used within a bounded probability of error
without exceeding a given performance overhead). To capture the
tradeoff between these decisions and lifetime, SSD manufacturers
use the following model:

Lifetime (Years) = PEC × (1 + OP)
365 × DWPD ×WA × Rcompress

(4)

In Equation 4, the numerator is the total number of full drive
writes the SSD can endure (i.e., for a drive with an X -byte capacity,
the number of times X bytes of data can be written). The num-
ber of full drive writes is calculated as the product of PEC, the
total P/E cycle endurance of each flash block (i.e., the number of
P/E cycles the block can sustain before its raw error rate exceeds
the ECC correction capability), and 1 + OP, where OP is the over-
provisioning factor selected by the manufacturer. Manufacturers
overprovision the flash drive by providing more physical block
addresses, or PBAs, to the SSD controller than the advertised capa-
city of the drive, i.e., the number of logical block addresses (LBAs)
available to the operating system. Overprovisioning improves per-
formance and endurance, by providing additional free space in the
SSD so that maintenance operations can take place without stalling
host requests. OP is calculated as:

OP = PBA count − LBA count
LBA count (5)

The denominator in Equation 4 is the number of full drive wri-
tes per year, which is calculated as the product of days per year
(i.e., 365), DWPD, and the ratio between the total size of the data
written to flash media and the size of the data sent by the host
(i.e., WA × Rcompress ). DWPD is the number of full disk writes
per day (i.e., the number of times per day the OS writes the ad-
vertised capacity’s worth of data). DWPD is typically less than
1 for read-intensive applications, and could be greater than 5 for
write-intensive applications [24]. WA (write amplification) is the
ratio between the amount of data written into NAND flash me-
mory by the controller over the amount of data written by the host
machine. Write amplification occurs because various procedures
(e.g., garbage collection [35, 202]; and remapping-based refresh,
Section 5.3) in the SSD perform additional writes in the background.
For example, when garbage collection selects a block to erase, the
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pages that are remapped to a new block require background writes.
Rcompress , or the compression ratio, is the ratio between the size
of the compressed data and the size of the uncompressed data, and
is a function of the entropy of the stored data and the efficiency
of the compression algorithms employed in the SSD controller.
In Equation 4, DWPD and Rcompress are largely determined by
the workload and data compressibility, and cannot be changed to
optimize flash lifetime. For controllers that do not implement com-
pression, we set R compress to 1. However, the SSD controller can
trade off other parameters between one another to optimize flash
lifetime. We discuss the most salient tradeoffs next.

Tradeoff Between Write Amplification and Overprovisio-
ning. As mentioned in Section 2.3, due to the granularity mismatch
between flash erase and program operations, garbage collection
occasionally remaps remaining valid pages from a selected block to
a new flash block, in order to avoid block-internal fragmentation.
This remapping causes additional flash memory writes, leading to
write amplification. In an SSD with more overprovisioned capacity,
the amount of write amplification decreases, as the blocks selected
for garbage collection are older and tend to have fewer valid pages.
For a greedy garbage collection algorithm and a random-access wor-
kload, the correlation betweenWA andOP can be calculated [48, 67],
as shown in Figure 5. In an ideal SSD, both WA and OP should be
minimal, i.e., WA = 1 and OP = 0%, but in reality there is a tradeoff
between these parameters: when one increases, the other decreases.
As Figure 5 shows, WA can be reduced by increasing OP, and with
an infinite amount of OP, WA converges to 1. However, the re-
duction of WA is smaller when OP is large, resulting in diminishing
returns.
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Figure 5: Relationship between write amplification (WA)
and the overprovisioning factor (OP).

In reality, the relationship between WA and OP is also a function
of the storage space utilization of the SSD. When the storage space
is not fully utilized, many more pages are available, reducing the
need to invoke garbage collection, and thus WA can approach 1
without the need for a large amount of OP.

Tradeoff Between P/E Cycle Endurance and Overprovisi-
oning. PEC and OP can be traded against each other by adjusting
the amount of redundancy used for error correction, such as ECC
and superpage-level parity (as discussed in Section 2.3). As the error
correction capability increases, PEC increases because the SSD can
tolerate the higher raw bit error rate that occurs at a higher P/E cy-
cle count. However, this comes at a cost of reducing the amount of
space available for OP, since a stronger error correction capability
requires higher redundancy (i.e., more space). Table 1 shows the

corresponding OP for four different error correction configurations
for an example SSD with 2.0 TB of advertised capacity and 2.4 TB
(20% extra) of physical space. In this table, the top two configura-
tions use ECC-1 with a coding rate of 0.93, and the bottom two
configurations use ECC-2 with a coding rate of 0.90, which has
higher redundancy than ECC-1. Thus, the ECC-2 configurations
have a lower OP than the top two. ECC-2, with its higher redun-
dancy, can correct a greater number of raw bit errors, which in
turn increases the P/E cycle endurance of the SSD. Similarly, the
two configurations with superpage-level parity have a lower OP
than configurations without superpage-level parity, as parity uses
a portion of the overprovisioned space to store the parity bits.

Table 1: Tradeoff between strength of error correction confi-
guration and amount of SSD space left for overprovisioning.

Error Correction Configuration Overprovisioning Factor
ECC-1 (0.93), no superpage-level parity 11.6%
ECC-1 (0.93), with superpage-level parity 8.1%
ECC-2 (0.90), no superpage-level parity 8.0%
ECC-2 (0.90), with superpage-level parity 4.6%

When the ECC correction strength is increased, the amount of
overprovisioning in the SSD decreases, which in turn increases
the amount of write amplification that takes place. Manufacturers
must find and use the correct tradeoff between ECC correction
strength and the overprovisioning factor, based on which of the two
is expected to provide greater reliability for the target applications
of the SSD.

3 NAND FLASH MEMORY BASICS
A number of underlying properties of the NAND flash memory
used within the SSD affect SSD management, performance, and
reliability [5, 8, 126]. In this section, we present a primer on NAND
flash memory and its operation, to prepare the reader for under-
standing our further discussion on error sources (Section 4) and
mitigation mechanisms (Section 5). Recall from Section 2.1 that
within each plane, flash cells are organized as multiple 2D arrays
known as flash blocks, each of which contains multiple pages of
data, where a page is the granularity at which the host reads and
writes data. We first discuss how data is stored in NAND flash me-
mory. We then introduce the three basic operations supported by
NAND flash memory: read, program, and erase.

3.1 Storing Data in a Flash Cell
NAND flash memory stores data as the threshold voltage of each
flash cell, which is made up of a floating gate transistor. Figure 6
shows a cross section of a floating gate transistor. On top of a flash
cell is the control gate (CG) and below is the floating gate (FG). The
floating gate is insulated on both sides, on top by an interpoly oxide
layer and at the bottom by a tunnel oxide layer. As a result, the
electrons programmed on the floating gate do not discharge even
when flash memory is powered off.

For single-level cell (SLC) NAND flash, each flash cell stores a
1-bit value, and can be programmed to one of two threshold voltage
states, which we call the ER and P1 states. Multi-level cell (MLC)
NAND flash stores a 2-bit value in each cell, with four possible
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Figure 6: Flash cell (i.e., floating gate transistor) cross
section.

states (ER, P1, P2, and P3), and triple-level cell (TLC) NAND flash
stores a 3-bit value in each cell with eight possible states (ER, P1–
P7). Each state represents a different value, and is assigned a voltage
window within the range of all possible threshold voltages. Due to
variation across program operations, the threshold voltage of flash
cells programmed to the same state is initially distributed across
this voltage window.

Figure 7 illustrates the threshold voltage distribution of MLC
(top) and TLC (bottom) NAND flash memories. The x-axis shows
the threshold voltage (Vth ), which spans a certain voltage range.
The y-axis shows the probability density of each voltage level across
all flash memory cells. The threshold voltage distribution of each
threshold voltage state can be represented as a probability density
curve that spans over the state’s voltage window.
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Figure 7: Threshold voltage distribution of MLC (top) and
TLC (bottom) NAND flash memory.

We label the distribution curve for each state with the name of
the state and a corresponding bit value. Note that some manufactu-
rers may choose to use a different mapping of values to different
states. The bit values of adjacent states are separated by a Hamming
distance of 1. We break down the bit values for MLC into the most
significant bit (MSB) and least significant bit (LSB), while TLC is
broken down into the MSB, the center significant bit (CSB), and the
LSB. The boundaries between neighboring threshold voltage win-
dows, which are labeled asVa ,Vb , andVc for the MLC distribution
in Figure 7, are referred to as read reference voltages. These voltages
are used by the SSD controller to identify the voltage window (i.e.,
state) of each cell upon reading the cell.

3.2 Flash Block Design
Figure 8 shows the high-level internal organization of a NAND
flash memory block. Each block contains multiple rows of cells

(typically 128–512 rows). Each row of cells is connected together by
a common wordline (WL, shown horizontally in Figure 8), typically
spanning 32K–64K cells. All of the cells along the wordline are
logically combined to form a page in an SLC NAND flash memory.
For an MLC NAND flash memory, the MSBs of all cells on the same
wordline are combined to form an MSB page, and the LSBs of all
cells on the wordline are combined to form an LSB page. Similarly,
a TLC NAND flash memory logically combines the MSBs on each
wordline to form an MSB page, the CSBs on each wordline to form
a CSB page, and the LSBs on each wordline to form an LSB page.
In MLC NAND flash memory, each flash block contains 256–1024
flash pages, each of which are typically 8–16 kB in size.
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Figure 8: Internal organization of a flash block.

Within a block, all cells in the same column are connected in
series to form a bitline (BL, shown vertically in Figure 8) or string.
All cells in a bitline share a common ground (GND) on one end,
and a common sense amplifier (SA) on the other for reading the
threshold voltage of one of the cells when decoding data. Bitline
operations are controlled by turning the ground select line (GSL)
and string select line (SSL) transistor of each bitline on or off. The
SSL transistor is used to enable operations on a bitline, and the
GSL transistor is used to connect the bitline to ground during a
read operation [127]. The use of a common bitline across multiple
rows reduces the amount of circuit area required for read and write
operations to a block, improving storage density.

3.3 Read Operation
Data can be read from NAND flash memory by applying read refe-
rence voltages onto the control gate of each cell, to sense the cell’s
threshold voltage. To read the value stored in a single-level cell,
we need to distinguish only the state with a bit value of 1 from
the state with a bit value of 0. This requires us to use only a single
read reference voltage. Likewise, to read the LSB of a multi-level
cell, we need to distinguish only the states where the LSB value is
1 (ER and P1) from the states where the LSB value is 0 (P2 and P3),
which we can do with a single read reference voltage (Vb in the top
half of Figure 7). To read the MSB page, we need to distinguish the
states with an MSB value of 1 (ER and P3) from those with an MSB
value of 0 (P1 and P2). Therefore, we need to determine whether
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the threshold voltage of the cell falls between Va and Vc , requiring
us to apply each of these two read reference voltages (which can
require up to two consecutive read operations) to determine the
MSB.

Reading data from a triple-level cell is similar to the data read
procedure for a multi-level cell. Reading the LSB for TLC again
requires applying only a single read reference voltage (Vd in the
bottom half of Figure 7). Reading the CSB requires two read refe-
rence voltages to be applied, and reading the MSB requires four
read reference voltages to be applied.

As Figure 8 shows, cells from multiple wordlines (WL in the
figure) are connected in series on a shared bitline (BL) to the sense
amplifier, which drives the value that is being read from the block
onto the memory channel for the plane. In order to read from a
single cell on the bitline, all of the other cells (i.e., unread cells) on
the same bitline must be switched on to allow the value that is being
read to propagate through to the sense amplifier. The NAND flash
memory achieves this by applying the pass-through voltage onto
the wordlines of the unread cells, as shown in Figure 9a. When the
pass-through voltage (i.e., the maximum possible threshold voltage
Vpass ) is applied to a flash cell, the source and the drain of the cell
transistor are connected, regardless of the voltage of the floating
gate. Modern flash memories guarantee that all unread cells are
passed through to minimize errors during the read operation [16].
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Vpass
Vpass

Vpass

Vread

(b) Program

Vpass
Vpass

Vpass

Vprogram
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Figure 9: Voltages applied toflash cell transistors on a bitline
to perform (a) read, (b) program, and (c) erase operations.

3.4 Program and Erase Operations
The threshold voltage of a floating gate transistor is controlled
through the injection and ejection of electrons through the tunnel
oxide of the transistor, which is enabled by the Fowler–Nordheim
(FN) tunneling effect [5, 52, 156]. The tunneling current (JFN ) [8,
156] can be modeled as:

JFN = αFN E2oxe
−βFN /Eox (6)

In Equation 6, αFN and βFN are constants, and Eox is the electric
field strength in the tunnel oxide. As Equation 6 shows, JFN is
exponentially correlated with Eox .

During a program operation, electrons are injected into the floa-
ting gate of the flash cell from the substrate when applying a high
positive voltage to the control gate (see Figure 6 for a diagram of

the flash cell). The pass-through voltage is applied to all of the other
cells on the same bitline as the cell that is being programmed as
shown in Figure 9b. When data is programmed, charge is trans-
ferred into the floating gate through FN tunneling by repeatedly
pulsing the programming voltage, in a procedure known as incre-
mental step-pulse programming (ISPP) [5, 126, 175, 185]. During
ISPP, a high programming voltage (Vproдram ) is applied for a very
short period, which we refer to as a step-pulse. ISPP then verifies the
current voltage of the cell using the voltage Vver if y . ISPP repeats
the process of applying a step-pulse and verifying the voltage until
the cell reaches the desired target voltage. In the modern all-bitline
NAND flash memory, all flash cells in a single wordline are pro-
grammed concurrently. During programming, when a cell along
the wordline reaches its target voltage but other cells have yet to
reach their target voltage, ISPP inhibits programming pulses to the
cell by turning off the SSL transistor of the cell’s bitline.

In SLC NAND flash and older MLC NAND flash, one-shot pro-
gramming is used, where all of the ISPP step-pulses required to
program a cell are applied back to back until all cells in the wordline
are fully programmed. One-shot programming does not interleave
the program operations to a wordline with the program operati-
ons to another wordline. In newer MLC NAND flash, the lack of
interleaving between program operations can introduce a signi-
ficant amount of cell-to-cell program interference on the cells of
immediately-adjacent wordlines (see Section 4.3).

To reduce the impact of program interference, the controller em-
ploys two-step programming for sub-40 nmMLC NAND flash [18,
151]: it first programs the LSBs into the erased cells of an unpro-
grammed wordline, and then programs the MSBs of the cells using a
separate program operation [12, 15, 149, 151]. Between the program-
ming of the LSBs and the MSBs, the controller programs the LSBs
of the cells in the wordline immediately above [12, 15, 149, 151].
Figure 10 illustrates the two-step programming algorithm. In the
first step, a flash cell is partially programmed based on its LSB value,
either staying in the ER state if the LSB value is 1, or moving to a
temporary state (TP) if the LSB value is 0. The TP state has a mean
voltage that falls between states P1 and P2. In the second step, the
LSB data is first read back into an internal buffer register within the
flash chip to determine the cell’s current threshold voltage state,
and then further programming pulses are applied based on the
MSB data to increase the cell’s threshold voltage to fall within the
voltage window of its final state. Programming in MLC NAND flash
is discussed in detail in [12] and [15].
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Figure 10: Two-step programming algorithm for MLC flash.
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TLC NAND flash takes a similar approach to the two-step pro-
gramming of MLC, with a mechanism known as foggy-fine pro-
gramming [111], which is illustrated in Figure 11. The flash cell is
first partially programmed based on its LSB value, using a binary
programming step in which very large ISPP step-pulses are used
to significantly increase the voltage level. Then, the flash cell is
partially programmed again based on its CSB and MSB values to
a new set of temporary states (these steps are referred to as foggy
programming, which uses smaller ISPP step-pulses than binary
programming). Due to the higher potential for errors during TLC
programming as a result of the narrower voltage windows, all of
the programmed bit values are buffered after the binary and foggy
programming steps into SLC buffers that are reserved in each chip/
plane. Finally, fine programming takes place, where these bit values
are read from the SLC buffers, and the smallest ISPP step-pulses are
applied to set each cell to its final threshold voltage state. The pur-
pose of this last fine programming step is to fine tune the threshold
voltage such that the threshold voltage distributions are tightened
(bottom of Figure 11).
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Figure 11: Foggy-fine programming algorithm for TLCflash.

Though programming sets a flash cell to a specific threshold
voltage using programming pulses, the voltage of the cell can drift
over time after programming. When no external voltage is applied
to any of the electrodes (i.e., CG, source, and drain) of a flash cell, an
electric field still exists between the FG and the substrate, generated
by the charge present in the FG. This is called the intrinsic electric
field [8], and it generates stress-induced leakage current (SILC) [5,
46, 143], a weak tunneling current that leaks charge away from the
FG. As a result, the voltage that a cell is programmed to may not
be the same as the voltage read for that cell at a subsequent time.

In NAND flash, a cell can be reprogrammed with new data only
after the existing data in the cell is erased. This is because ISPP can
only increase the voltage of the cell. The erase operation resets the
threshold voltage state of all cells in the flash block to the ER state.
During an erase operation, electrons are ejected from the FG of the
flash cell into the substrate by inducing a high negative voltage on
the cell transistor. The negative voltage is induced by setting the CG
of the transistor to GND, and biasing the transistor body (i.e., the
substrate) to a high voltage (Verase ), as shown in Figure 9c. Because
all cells in a flash block share a common transistor substrate (i.e.,
the bodies of all transistors in the block are connected together), a
flash block must be erased in its entirety [127].

4 NAND FLASH ERROR
CHARACTERIZATION

Each block in NAND flash memory is used in a cyclic fashion, as is
illustrated by the observed raw bit error rates seen over the lifetime
of a flash memory block in Figure 12. At the beginning of a cycle,
known as a program/erase (P/E) cycle, an erased block is opened (i.e.,
selected for programming). Data is then programmed into the open
block one page at a time. After all of the pages are programmed,
the block is closed, and none of the pages can be reprogrammed
until the whole block is erased. At any point before erasing, read
operations can be performed on a valid programmed page (i.e., a
page containing data that has not been modified by the host). A
page is marked as invalid when the data stored at that page’s logical
address by the host is modified. As ISPP can only inject more charge
into the floating gate but cannot remove charge from the gate, it is
not possible to modify data to a new arbitrary value in place within
existing NAND flash memories. Once the block is erased, the P/E
cycling behavior repeats until the block is worn out (i.e., the block
can no longer avoid data loss over the course of the minimum data
retention period guaranteed by the manufacturer). Although the
5x-nm (i.e., 50–59 nm) generation of MLCNAND flash could endure
~10,000 P/E cycles per block before being worn out, modern 1x-nm
(i.e., 15–19 nm) MLC and TLC NAND flash can endure only ~3,000
and ~1,000 P/E cycles per block, respectively [95, 120, 153, 206].

time
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Program errors
Cell-to-cell interference errors

......

N-1
Program/Erase Cycles

N N+1

increase in errors from N to 
N+1 P/E cycles due to wearout

Figure 12: Pictorial depiction of errors accumulating within
a NAND flash block as P/E cycle count increases.

As shown in Figure 12, several different types of errors can be
introduced at any point during the P/E cycling process: P/E cycling
errors, program errors, errors due to cell-to-cell program interference,
data retention errors, and errors due to read disturb. As discussed
in Section 3.1, the threshold voltage of flash cells programmed to
the same state is distributed across a voltage window due to va-
riation across program operations and across different flash cells.
Several types of errors introduced during the P/E cycling process,
such as data retention and read disturb, cause the threshold voltage
distribution of each state to shift and widen. Due to the shift and
widening, the tails of the distributions of each state can enter the
margin that originally existed between each of the two neighboring
states’ distributions. Thus, the threshold voltage distributions of
different states can start overlapping, as shown in Figure 13. When
the distributions overlap with each other, the read reference volta-
ges can no longer correctly identify the state of some flash cells
in the overlapping region, leading to raw bit errors during a read
operation.
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Figure 13: Threshold voltage distribution shifts and wide-
ning can cause the distributions of two neighboring states
to overlap with each other (compare to Figure 7), leading to
read errors.

In this section, we discuss the causes of each type of error in
detail, and characterize the impact that each error type has on the
amount of raw bit errors occurring within NAND flash memory.
We use an FPGA-based testing platform [13] to characterize state-
of-the-art TLC NAND flash chips. We use the read-retry operation
present in NAND flash devices to accurately read the cell threshold
voltage [15–18, 24, 26, 53, 116, 150] (for a detailed description of
the read-retry operation, see Section 5.4). As absolute threshold
voltage values are proprietary information to flash vendors, we
present our results using normalized voltages, where the nominal
maximum value of Vth is equal to 512 in our normalized scale, and
where 0 represents GND. We also describe characterization results
and observations for MLC NAND flash chips. These MLC NAND
results are taken from our prior works [10, 12, 14–18, 24–26, 116],
which provide more detailed error characterization results and ana-
lyses. To our knowledge, this paper provides the first experimental
characterization and analysis of errors in real TLC NAND flash
memory chips.

We later discuss mitigation techniques for these flash memory
errors in Section 5, and provide procedures to recover in the event
of data loss in Section 6.

4.1 P/E Cycling Errors
A P/E cycling error occurs when either (1) an erase operation fails
to reset a cell to the ER state; or (2) when a program operation fails
to set the cell to the desired target state. P/E cycling errors occur
because electrons become trapped in the tunnel oxide after stress
from repeated P/E cycles. Errors due to such electron trapping
(which we refer to as P/E cycling noise) continue to accumulate
over the lifetime of a NAND flash block. This behavior is called
wearout, and it refers to the phenomenon where, as more writes
are performed to a block, there are a greater number of raw bit
errors that must be corrected, exhausting more of the fixed error
correction capability of the ECC (see Section 2.3).

Figure 14 shows the threshold voltage distribution of TLC NAND
flash memory after 0 P/E cycles and after 3,000 P/E cycles, without
any retention or read disturb errors present (which we ensure
by reading the data immediately after programming). The mean
and standard deviation of each state’s distribution are provided in
Table 4 in the Appendix (for other P/E cycle counts as well). We
make two observations from the two distributions. First, as the P/E
cycle count increases, each state’s threshold voltage distribution
systematically (1) shifts to the right and (2) becomes wider. Second,
the amount of the shift is greater for lower-voltage states (e.g., the
ER and P1 states) than it is for higher-voltage states (e.g., the P7
state).
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Figure 14: Threshold voltage distribution of TLC NAND
flash memory after 0 P/E cycles and 3,000 P/E cycles.

The threshold voltage distribution shift occurs because as more
P/E cycles take place, the quality of the tunnel oxide degrades, allo-
wing electrons to tunnel through the oxide more easily [129]. As
a result, if the same ISPP conditions (e.g., programming voltage,
step-pulse size, program time) are applied throughout the lifetime
of the NAND flash memory, more electrons are injected during
programming as a flash memory block wears out, leading to higher
threshold voltages, i.e., the right shift of the distribution. The dis-
tribution of each state widens due to the process variation present
in (1) the wearout process, and (2) the cell’s structural characteris-
tics. As the distribution of each voltage state widens, more overlap
occurs between neighboring distributions, making it less likely for
a read reference voltage to determine the correct value of the cells
in the overlapping regions, which leads to a greater number of raw
bit errors.

The threshold voltage distribution trends we observe here for
TLC NAND flash memory trends are similar to trends observed
previously forMLCNANDflashmemory [14, 15, 116, 153], although
the MLC NAND flash characterizations reported in past studies
span up to a larger P/E cycle count than the TLC experiments
due to the greater endurance of MLC NAND flash memory. More
findings on the nature of wearout and the impact of wearout on
NAND flash memory errors and lifetime can be found in our prior
work [10, 14, 15, 116].

4.2 Program Errors
Program errors occur when data read directly from the NAND
flash array contains errors, and the erroneous values are used to
program the new data. Program errors occur in two major cases:
(1) partial programming during two-step or foggy-fine program-
ming, and (2) copyback (i.e., when data is copied inside the NAND
flash memory during a maintenance operation) [68]. During two-
step programming for MLC NAND flash memory (see Figure 10), in
between the LSB and MSB programming steps of a cell, threshold
voltage shifts can occur on the partially-programmed cell. These
shifts occur because several other read and program operations to
cells in other pages within the same block may take place, causing
interference to the partially-programmed cell. Figure 15 illustrates
how the threshold distribution of the ER state widens and shifts to
the right after the LSB value is programmed (step 1 in the figure).
The widening and shifting of the distribution causes some cells
that were originally partially programmed to the ER state (with
an LSB value of 1) to be misread as being in the TP state (with an
LSB value of 0) during the second programming step (step 2 in the
figure). As shown in Figure 15, the misread LSB value leads to a
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program error when the final cell threshold voltage is program-
med [12, 116, 153]. Some cells that should have been programmed
to the P1 state (representing the value 01) are instead programmed
to the P2 state (with the value 00), and some cells that should have
been programmed to the ER state (representing the value 11) are
instead programmed to the P3 state (with the value 10).
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1. Program
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2. Program
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Figure 15: Impact of program errors during two-step pro-
gramming on cell threshold voltage distribution.

The incorrect values that are read before the second program-
ming step are not corrected by ECC, as they are read directly inside
the NAND flash array, without involving the controller (where the
ECC engine resides). Similarly, during foggy-fine programming
for TLC NAND flash (see Figure 11), the data may be read incor-
rectly from the SLC buffers used to store the contents of partially-
programmed wordlines, leading to errors during the fine program-
ming step. Program errors occur during copyback [68] when valid
data is read out from a block during maintenance operations (e.g., a
block about to be garbage collected) and reprogrammed into a new
block, as copyback operations do not go through the SSD controller.

Program errors that occur during partial programming predo-
minantly shift data from lower-voltage states to higher-voltage
states. For example, in MLC NAND flash, program errors predo-
minantly shift data that should be in the ER state (11) into the P3
state (10), or data that should be in the P1 state (01) into the P2
state (00) [12]. This occurs because MSB programming can only
increase (and not reduce) the threshold voltage of the cell from its
partially-programmed voltage (and thus cannot move a multi-level
cell that should be in the P3 state into the ER state, or one that
should be in the P2 state into the P1 state). TLC NAND flash is
much less susceptible to program errors than MLC NAND flash, as
the data read from the SLC buffers in TLC NAND flash has a much
lower error rate than data read from a partially-programmed MLC
NAND flash wordline [167].

From a rigorous experimental characterization of modern
MLC NAND flash memory chips [12], we find that program er-
rors occur primarily due to two types of errors affecting the
partially-programmed data. First, cell-to-cell program interference
(Section 4.3) on a partially-programmed wordline is no longer neg-
ligible in newer NAND flash memory compared to older NAND
flash memory, due to manufacturing process scaling. As flash cells

become smaller and are placed closer to each other, cells in partially-
programmedwordlines becomemore susceptible to bit flips. Second,
partially-programmed cells are more susceptible to read disturb
errors than fully-programmed cells (Section 4.5), as the threshold
voltages stored in these cells are no more than approximately half
of Vpass [12], and cells with lower threshold voltages are more
likely to experience read disturb errors.

More findings on the nature of program errors and the impact
of program errors on NAND flash memory lifetime can be found in
our prior work [12, 116].

4.3 Cell-to-Cell Program Interference Errors
Program interference refers to the phenomenonwhere the program-
ming of a flash cell induces errors on adjacent flash cells within
a flash block [18, 26, 44, 56, 108]. The interference occurs due to
parasitic capacitance coupling between these cells. As a result, when
the threshold voltage of an adjacent flash cell increases, the thres-
hold voltage of the victim cell increases as well. The unintended
threshold voltage shifts can eventually move a cell into a different
state than the one it was originally programmed to, leading to a bit
error.

We have shown, based on our experimental analysis of modern
MLC NAND flash memory chips, that the threshold voltage change
of the victim cell can be accurately modeled as a linear combination
of the threshold voltage changes of the adjacent cells when they
are programmed, using linear regression with least-square-error
estimation [18, 26]. The cells that are physically located immediately
next to the victim cell (called the immediately-adjacent cells) are
the major contributors to the cell-to-cell interference of a victim
cell [18]. Figure 16 shows the eight immediately-adjacent cells for
a victim cell in 2D planar NAND flash memory.
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Wordline N

Wordline N-1

Bitline M Bitline M+1Bitline M-1
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Cell

Bitline
Neighbor

Bitline
Neighbor

Wordline
Neighbor

Wordline
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Diagonal
Neighbor

Diagonal
Neighbor

Diagonal
Neighbor

Diagonal
Neighbor

Figure 16: Immediately-adjacent cells that can induce pro-
gram interference on a victim cell that is on wordline N and
bitline M.

The amount of interference that program operations to the
immediately-adjacent cells can induce on the victim cell is expres-
sed as:

∆Vvict im =
∑
X

KX∆VX (7)

where ∆Vvict im is the change in voltage of the victim cell due
to cell-to-cell program interference, KX is the coupling coefficient
between cellX and the victim cell, and ∆VX is the threshold voltage
change of cell X during programming. Table 2 lists the coupling
coefficients for both 2y-nm and 1x-nm NAND flash memory. We
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make two key observations from Table 2. First, we observe that
the coupling coefficient is greatest for wordline neighbors (i.e.,
immediately-adjacent cells on the same bitline, but on a neighboring
wordline) [18]. The coupling coefficient is directly related to the
effective capacitance C between cell X and the victim cell, which
can be calculated as:

C = εS/d (8)
where ε is the permittivity, S is the effective cell area of cell X that
faces the victim cell, and d is the distance between the cells. Of the
immediately-adjacent cells, the wordline neighbor cells have the
greatest coupling capacitance with the victim cell, as they likely
have a large effective facing area to, and a small distance from, the
victim cell compared to other surrounding cells. Second, we observe
that the coupling coefficient grows as the feature size decreases [18,
26]. As NAND flash memory process technology scales down to
smaller feature sizes, cells become smaller and get closer to each
other, which increases the effective capacitance between them. As
a result, at smaller feature sizes, it is easier for an immediately-
adjacent cell to induce program interference on a victim cell. We
conclude that (1) the program interference an immediately-adjacent
cell induces on a victim cell is primarily determined by the distance
between the cells and the immediately-adjacent cell’s effective area
facing the victim cell; and (2) the wordline neighbor cell causes the
highest such interference, based on empirical measurements.

Table 2: Coupling coefficients for immediately-adjacent
cells.

Process Wordline Bitline Diagonal
Technology Neighbor Neighbor Neighbor

2y-nm 0.060 0.032 0.012
1x-nm 0.110 0.055 0.020

Due to the order of program operations performed in NANDflash
memory, many immediately-adjacent cells do not end up inducing
interference after a victim cell is fully programmed (i.e., once the
victim cell is at its target voltage). In modern all-bitline NAND flash
memory, all flash cells on the same wordline are programmed at
the same time, and wordlines are fully programmed sequentially
(i.e., the cells on wordline i are fully programmed before the cells
on wordline i + 1). As a result, an immediately-adjacent cell on the
wordline below the victim cell or on the same wordline as the victim
cell does not induce program interference on a fully-programmed
victim cell. Therefore, the major source of program interference on
a fully-programmed victim cell is the programming of the wordline
immediately above it.

Figure 17 shows how the threshold voltage distribution of a
victim cell shifts when different values are programmed onto its
immediately-adjacent cells in the wordline above the victim cell
for MLC NAND flash, when one-shot programming is used. The
amount by which the victim cell distribution shifts is directly corre-
lated with the number of programming step-pulses applied to the
immediately-adjacent cell. That is, when an immediately-adjacent
cell is programmed to a higher-voltage state (which requires more
step-pulses for programming), the victim cell distribution shifts
further to the right [18]. When an immediately-adjacent cell is set
to the ER state, no step-pulses are applied, as an unprogrammed

cell is already in the ER state. Thus, no interference takes place.
Note that the amount by which a fully-programmed victim cell
distribution shifts is different when two-step programming is used,
as a fully-programmed cell experiences interference from only one
of the two programming steps of a neighboring wordline [12].
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Figure 17: Impact of cell-to-cell program interference on a
victim cell during one-shot programming, depending on the
value its neighboring cell is programmed to.

More findings on the nature of cell-to-cell program interference
and the impact of cell-to-cell program interference on NAND flash
memory errors and lifetime can be found in our prior work [10, 12,
18, 26].

4.4 Data Retention Errors
Retention errors are caused by charge leakage over time after a
flash cell is programmed, and are the dominant source of flash me-
mory errors, as demonstrated previously [14, 17, 24, 25, 126, 177].
As flash memory process technology scales to smaller feature sizes,
the capacitance of a flash cell, and the number of electrons stored
on it, decreases. State-of-the-art (i.e., 1x-nm) MLC flash memory
cells can store only ~100 electrons [206]. Gaining or losing several
electrons on a cell can significantly change the cell’s voltage le-
vel and eventually alter its state. Charge leakage is caused by the
unavoidable trapping of charge in the tunnel oxide [17, 107]. The
amount of trapped charge increases with the electrical stress indu-
ced by repeated program and erase operations, which degrade the
insulating property of the oxide.

Two failure mechanisms of the tunnel oxide lead to retention loss.
Trap-assisted tunneling (TAT) occurs because the trapped charge
forms an electrical tunnel, which exacerbates the weak tunneling
current, SILC (see Section 3.4). As a result of this TAT effect, the
electrons present in the floating gate (FG) leak away much faster
through the intrinsic electric field. Hence, the threshold voltage
of the flash cell decreases over time. As the flash cell wears out
with increasing P/E cycles, the amount of trapped charge also in-
creases [17, 107], and so does the TAT effect. At high P/E cycles,
the amount of trapped charge is large enough to form percolation
paths that significantly hamper the insulating properties of the gate
dielectric [17, 46], resulting in retention failure. Charge detrapping,
where charge previously trapped in the tunnel oxide is freed spon-
taneously, can also occur over time [17, 46, 107, 200]. The charge
polarity can be either negative (i.e., electrons) or positive (i.e., ho-
les). Hence, charge detrapping can either decrease or increase the
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threshold voltage of a flash cell, depending on the polarity of the
detrapped charge.

Figure 18 illustrates how the voltage distribution shifts for data
we program into TLC NAND flash, as the data sits untouched
over a period of one day, one month, and one year. The mean
and standard deviation are provided in Table 5 in the Appendix
(which includes data for other retention ages as well). These results
are obtained from real flash memory chips we tested. We distill
three major findings from these results, which are similar to our
previously reported findings for retention behavior on MLC NAND
flash memory [17].
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Figure 18: Threshold voltage distribution for TLC NAND
flash memory after one day, one month, and one year of re-
tention time.

First, as the retention age (i.e., the length of time after program-
ming) of the data increases, the threshold voltage distributions of
the higher-voltage states shift to lower voltages, while the thres-
hold voltage distributions of the lower-voltage states shift to higher
voltages. As the intrinsic electric field strength is higher for the
cells in higher-voltage states, TAT is the dominant failure mecha-
nism for these cells, which can only decrease the threshold voltage,
as the resulting SILC can flow only in the direction of the intrin-
sic electric field generated by the electrons in the FG. Cells at the
lowest-voltage states, where the intrinsic electric field strength is
low, do not experience high TAT, and instead contain many holes
(i.e., positive charge) that leak away as the retention age grows,
leading to increase in threshold voltage.

Second, the threshold voltage distribution of each state beco-
mes wider with retention age. Charge detrapping can cause cells
to shift in either direction (i.e., toward lower or higher voltages),
contributing to the widening of the distribution. The rate at which
TAT occurs can also vary from cell to cell, as a result of process
variation, which further widens the distribution.

Third, the threshold voltage distributions of higher-voltage states
shift by a larger amount than the distributions of lower-voltage
states. This is again a result of TAT. Cells at higher-voltage states
have greater intrinsic electric field intensity, which leads to larger
SILC. A cell where the SILC is larger experiences a greater drop in
its threshold voltage than a cell where the SILC is smaller.

More findings on the nature of data retention and the impact of
data retention behavior on NAND flash memory errors and lifetime
can be found in our prior work [10, 14, 17, 24, 25].

4.5 Read Disturb Errors
Read disturb is a phenomenon in NAND flash memory where
reading data from a flash cell can cause the threshold voltages
of other (unread) cells in the same block to shift to a higher va-
lue [14, 16, 44, 56, 126, 148, 176]. While a single threshold voltage

shift is small, such shifts can accumulate over time, eventually be-
coming large enough to alter the state of some cells and hence
generate read disturb errors.

The failure mechanism of a read disturb error is similar to the
mechanism of a normal program operation. A program operation ap-
plies a high programming voltage (e.g., +15V) to the cell to change
the cell’s threshold voltage to the desired range. Similarly, a read
operation applies a high pass-through voltage (e.g., +6V) to all other
cells that share the same bitline with the cell that is being read. Alt-
hough the pass-through voltage is not as high as the programming
voltage, it still generates a weak programming effect on the cells
it is applied to [16], which can unintentionally change these cells’
threshold voltages.

Figure 19 shows how read disturb errors impact threshold voltage
distributions in real TLC NAND flash memory chips. We use blocks
that have endured 2,000 P/E cycles, and we experimentally study
the impact of read disturb on a single wordline in each block. We
then read from a second wordline in the same block 1, 10K, and
100K times to induce different levels of read disturb. The mean and
standard deviation of each distribution are provided in Table 6 in
the Appendix. We derive three major findings from these results,
which are similar to our previous findings for read disturb behavior
in MLC NAND flash memory [16].
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Figure 19: Threshold voltage distribution for TLC NAND
flash memory after 1, 10K, and 100K read disturb operati-
ons.

First, as the read disturb count increases, the threshold voltages
increase (i.e., the voltage distribution shifts to the right). In particu-
lar, we find that the distribution shifts are greater for lower-voltage
states, indicating that read disturb impacts cells in the ER and P1
states the most. This is because we apply the same pass-through
voltage (Vpass ) to all unread cells during a read operation, regard-
less of the threshold voltages of the cells. A lower threshold voltage
on a cell induces a larger voltage difference (Vpass −Vth ) through
the tunnel oxide layer of the cell, and in turn generates a stronger
tunneling current, making the cell more vulnerable to read disturb
(as described in detail in our prior work [16]).

Second, cells whose threshold voltages are closer to the point at
which the voltage distributions of the ER and P1 states intersect
are more vulnerable to read disturb errors. This is because process
variation causes different cells to have different degrees of vulne-
rability to read disturb. We find that cells that are prone to read
disturb end up at the right tail of the threshold voltage distribution
of the ER state, as these cells’ threshold voltages increase more
rapidly, and that cells that are relatively resistant to read disturb
end up at the left tail of the threshold voltage distribution of the
P1 state, as their threshold voltages increase more slowly. We can
exploit this divergent behavior of cells that end up at the left and
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right distribution tails to perform error recovery in the event of an
uncorrectable error, as we discuss in Section 6.4.

Third, unlike with the other states, the threshold voltages of
the cells at the left tail of the highest-voltage state (P7) in TLC
NAND flash memory actually decreases as the read disturb count
increases. This occurs for two reasons: (1) applying Vpass causes
electrons to move from the floating gate to the control gate for a cell
at high voltage (i.e., a cell containing a large number of electrons),
thus reducing its threshold voltage [16, 203]; and (2) some retention
time elapses while we sweep the voltages during our read disturb
experiments, inducing trap-assisted tunneling (see Section 4.4) and
leading to retention errors that decrease the voltage.

More findings on the nature of read disturb and the impact of
read disturb on NAND flash memory errors and lifetime can be
found in our prior work [16].

4.6 Large-Scale Studies on SSD Errors
The error characterization studies we have discussed so far examine
the susceptibility of real NAND flash memory devices to specific
error sources, by conducting controlled experiments on individual
flash devices in controlled environments. To examine the aggregate
effect of these error sources on flash devices that operate in the
field, several recent studies have analyzed the reliability of SSDs
deployed at a large scale (i.e., tens to hundreds of thousands of SSDs)
in production data centers [122, 142, 162]. Unlike the controlled low-
level error characterization studies discussed in Sections 4.1 through
4.5, these large-scale studies analyze the observed errors and error
rates in an uncontrolled manner, i.e., based on real data center
workloads operating at field conditions as opposed to controlled
access patterns and controlled conditions. As such, these large-
scale studies can study flash memory behavior and reliability using
only a black-box approach, where they are able to access only
the registers used by the SSD to record select statistics. On the
other hand, these studies incorporate the effects of a real system,
including the system software stack and real workloads [122], on
the flash memory devices, which is not present in the controlled
small-scale studies.

These large-scale studies have made a number of observations
across large sets of SSDs. We highlight five key observations from
these studies. First, SSD failure rates do not increase monotoni-
cally with the P/E cycle count, and instead exhibit several distinct
periods of reliability, where the failure rates between each period
can vary by as much as 81.7% [122]. Second, the raw bit error rate
grows with the age of the device even if the P/E cycle count is held
constant, indicating that mechanisms such as silicon aging are li-
kely contributing to the error rate [142]. Third, the observed failure
rate of SSDs has been noted to be significantly higher than the
failure rates specified by the manufacturers [162]. Fourth, higher
operating temperatures can lead to higher failure rates, but modern
SSDs employ throttling techniques that reduce the access rates to
the underlying flash chips, which can greatly reduce the negative
reliability impact of higher temperatures [122]. Fifth, while SSD
failure rates are higher than specified, the overall occurrence of
uncorrectable errors is lower than expected because (1) effective
bad block management policies (see Section II-C) are implemented
in SSD controllers; and (2) certain types of error sources, such as

read disturb [122, 142] and incomplete erase operations [142], have
yet to become a major source of uncorrectable errors at the system
level.

5 ERROR MITIGATION
Several different types of errors can occur in NAND flash memory,
as we described in Section 4. As NAND flash memory continues to
scale to smaller technology nodes, the magnitude of these errors
has been increasing [120, 153, 206]. This, in turn, uses up the limited
error correction capability of ECC more rapidly than in past flash
memory generations and shortens the lifetime of modern SSDs. To
overcome the decrease in lifetime, a number of error mitigation
techniques, which exploit intrinsic properties of the different types
of errors to reduce the rate at which they lead to raw bit errors, have
been designed. In this section, we discuss how the flash controller
mitigates each of the error types via proposed error mitigation
mechanisms. Table 3 shows the techniques we overview and which
errors (from Section 4) they mitigate.

Table 3: List of different types of errors mitigated by NAND
flash error mitigation mechanisms.
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Shadow Program Sequencing X[12, 18] (Section 5.1)
Neighbor-Cell Assisted Error XCorrection [26] (Section 5.2)

Refresh X X[24, 25, 128, 147] (Section 5.3)
Read-Retry X X X[15, 53, 201] (Section 5.4)

Voltage Optimization X X X[16, 17, 75] (Section 5.5)
Hot Data Management X X X X X[59, 60, 115] (Section 5.6)

Adaptive Error Mitigation X X X X X[23, 36, 62, 190, 193] (Section 5.7)

5.1 Shadow Program Sequencing
As discussed in Section 4.3, cell-to-cell program interference is a
function of the distance between the cells of the wordline that is
being programmed and the cells of the victim wordline. The impact
of program interference is greatest on a victimwordline when either
of the victim’s immediately-adjacent wordlines is programmed (e.g.,
if we program WL1 in Figure 8, WL0 and WL2 experience the
greatest amount of interference). Early MLC flash memories used
one-shot programming, where both the LSB and MSB pages of a
wordline are programmed at the same time. As flash memory scaled
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to smaller process technologies, one-shot programming resulted
in much larger amounts of cell-to-cell program interference. As a
result, manufacturers introduced two-step programming for MLC
NANDflash (see Section 3.4), where the SSD controller writes values
of the two pages within a wordline in two independent steps.

The SSD controller minimizes the interference that occurs du-
ring two-step programming by using shadow program sequen-
cing [12, 18, 149] to determine the order that data is written to
different pages in a block. If we program the LSB and MSB pages
of the same wordline back to back, as shown in Figure 20a, both
programming steps induce interference on a fully-programmed
wordline (i.e., a wordline where both the LSB and MSB pages are
already written). For example, if the controller programs both pages
of WL1 back to back, shown as bold page programming operations
in Figure 20a, the program operations induce a high amount of
interference on WL0, which is fully programmed. The key idea of
shadow program sequencing is to ensure that a fully-programmed
wordline experiences interference minimally, i.e., only during MSB
page programming (and not during LSB page programming). In
shadow program sequencing, we assign a unique page number to
each page within a block, as shown in Figure 20b. The LSB page of
wordline i is numbered page 2i − 1, and the MSB page is numbered
page 2i + 2. The only exceptions to the numbering are the LSB page
of wordline 0 (page 0) and the MSB page of the last wordline n
(page 2n + 1). Two-step programming writes to pages in increa-
sing order of page number inside a block [12, 18, 149], such that a
fully-programmed wordline experiences interference only from the
MSB page programming of the wordline directly above it, shown
as the bold page programming operation in Figure 20b. With this
programming order/sequence, the LSB page of the wordline above,
and both pages of the wordline below, do not cause interference
to fully-programmed data [12, 18, 149], as these two pages are pro-
grammed before programming the MSB page of the given wordline.
Foggy-fine programming in TLC NAND flash (see Section 3.4) uses
a similar ordering to reduce cell-to-cell program interference, as
shown in Figure 20c.
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Figure 20: Order in which the pages of each wordline (WL)
are programmedusing (a) a bad programming sequence, and
using shadow sequencing for (b) MLC and (c) TLC NAND
flash. The bold page programming operations for WL1 in-
duce cell-to-cell program interference when WL0 is fully
programmed.

Shadow program sequencing is an effective solution to minimize
cell-to-cell program interference on fully-programmed wordlines

during two-step programming, and is employed in commercial
SSDs today.

5.2 Neighbor-Cell Assisted Error Correction
The threshold voltage shift that occurs due to program interfe-
rence is highly correlated with the values stored in the cells of
the immediately-adjacent wordlines, as we discussed in Section 4.3.
Due to this correlation, knowing the value programmed in the
immediately-adjacent cell (i.e., a neighbor cell) makes it easier to
correctly determine the value stored in the flash cell that is being
read [26]. We describe a recently proposed error correction met-
hod that takes advantage of this observation, called neighbor-cell-
assisted error correction (NAC). The key idea of NAC is to use the
data values stored in the cells of the immediately-adjacent wordline
to determine a better set of read reference voltages for the wordline
that is being read. Doing so leads to a more accurate identifica-
tion of the logical data value that is being read, as the data in the
immediately-adjacent wordline was partially responsible for shif-
ting the threshold voltage of the cells in the wordline that is being
read when the immediately-adjacent wordline was programmed.

Figure 21 shows an operational example of NAC that is applied
to eight bitlines (BL) of an MLC flash wordline. The SSD controller
first reads a flash page from a wordline using the standard read
reference voltages (step 1 in Figure 21). The bit values read from
the wordline are then buffered in the controller. If there are no
errors uncorrectable by ECC, the read was successful, and nothing
else is done. However, if there are errors that are uncorrectable by
ECC, we assume that the threshold voltage distribution of the page
shifted due to cell-to-cell program interference, triggering further
correction. In this case, NAC reads the LSB and MSB pages of the
wordline immediately above the requested page (i.e., the adjacent
wordline that was programmed after the requested page) to classify
the cells of the requested page (step 2). NAC then identifies the cells
adjacent to (i.e., connected to the same bitline as) the ER cells (i.e.,
cells in the immediately above wordline that are in the ER state),
such as the cells on BL1, BL3, and BL7 in Figure 21. NAC rereads
these cells using read reference voltages that compensate for the
threshold voltage shift caused by programming the adjacent cell
to the ER state (step 3). If ECC can correct the remaining errors,
the controller returns the corrected page to the host. If ECC fails
again, the process is repeated using a different set of read reference
voltages for cells that are adjacent to the P1 cells (step 4). If ECC
continues to fail, the process is repeated for cells that are adjacent
to P2 and P3 cells (steps 5 and 6, respectively, which are not shown
in the figure) until either ECC is able to correct the page or all
possible adjacent values are exhausted.

BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7
Originally-programmed value 11 00 01 10 11 00 01 00

1. Read (using Vopt) with errors 01 00 00 00 11 10 00 01

N
A
C

2. Read adjacent wordline P2 ER P2 ER P1 P3 P1 ER
3. Correct cells adjacent to ER 01 00 00 10 11 10 00 00
4. Correct cells adjacent to P1 01 00 00 10 11 10 01 00

Figure 21: Overview of neighbor-cell-assisted error cor-
rection (NAC).
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NAC extends the lifetime of an SSD by reducing the number of er-
rors that need to be corrected using the limited correction capability
of ECC. With the use of experimental data collected from real MLC
NAND flash memory chips, we show that NAC extends the NAND
flash memory lifetime by 33% [26]. Our previous work [26] provides
a detailed description of NAC, including a theoretical treatment of
why it works and a practical implementation that minimizes the
number of reads performed, even in the case when the neighboring
wordline itself has errors.

5.3 Refresh Mechanisms
As we see in Figure 12, during the time period after a flash page is
programmed, retention (Section 4.4) and read disturb (Section 4.5)
can cause an increasing number of raw bit errors to accumulate
over time. This is particularly problematic for a page that is not
updated frequently. Due to the limited error correction capability,
the accumulation of these errors can potentially lead to data loss
for a page with a high retention age (i.e., a page that has not been
programmed for a long time). To avoid data loss, refresh mecha-
nisms have been proposed, where the stored data is periodically
read, corrected, and reprogrammed, in order to eliminate the re-
tention and read disturb errors that have accumulated prior to this
periodic read/correction/reprogramming (i.e., refresh). The concept
of refresh in flash memory is thus conceptually similar to the re-
fresh mechanisms found in DRAM [30, 73, 112, 113]. By performing
refresh and limiting the number of retention and read disturb errors
that can accumulate, the lifetime of the SSD increases significantly.
In this section, we describe three types of refresh mechanisms used
in modern SSDs: remapping-based refresh, in-place refresh, and
read reclaim.

Remapping-Based Refresh. Flash cells must first be erased
before they can be reprogrammed, due to the fact the programming
a cell via ISPP can only increase the charge level of the cell but not
reduce it (Section 3.4). The key idea of remapping-based refresh is
to periodically read data from each valid flash block, correct any
data errors, and remap the data to a different physical location, in
order to prevent the data from accumulating too many retention
errors [10, 24, 25, 128, 147]. During each refresh interval, a block
with valid data that needs to be refreshed is selected. The valid
data in the selected block is read out page by page and moved to
the SSD controller. The ECC engine in the SSD controller corrects
the errors in the read data, including retention errors that have
accumulated since the last refresh. A new block is then selected
from the free list (see Section 2.3), the error-free data is programmed
to a page within the new block, and the logical address is remapped
to point to the newly-programmed physical page. By reducing the
accumulation of retention and read disturb errors, remapping-based
refresh increases SSD lifetime by an average of 9x for a variety of
disk workloads [24, 25].

Prior work proposes extensions to the basic remapping-based re-
fresh approach. One work, refresh SSDs, proposes a refresh schedul-
ing algorithm based on an earliest deadline first policy to guarantee
that all data is refreshed in time [128]. The quasi-nonvolatile SSD
proposes to use remapping-based refresh to choose between impro-
ving flash endurance and reducing the flash programming latency
(by using larger ISPP step-pulses) [147]. In the quasi-nonvolatile

SSD, refresh requests are deprioritized, scheduled at idle times, and
can be interrupted after refreshing any page within a block, to
minimize the delays that refresh can cause for the response time of
pending workload requests to the SSD. A refresh operation can also
be triggered proactively based on the data read latency observed
for a page, which is indicative of how many errors the page has
experienced [19]. Triggering refresh proactively based on the ob-
served read latency (as opposed to doing so periodically) improves
SSD latency and throughput [19]. Whenever the read latency for a
page within a block exceeds a fixed threshold, the valid data in the
block is refreshed, i.e., remapped to a new block [19].

In-Place Refresh. A major drawback of remapping-based re-
fresh is that it performs additional writes to the NANDflashmemory,
accelerating wearout. To reduce the wearout overhead of refresh,
we propose in-place refresh [10, 24, 25]. As data sits unmodified in
the SSD, data retention errors dominate [14, 25, 177], leading to
charge loss and causing the threshold voltage distribution to shift
to the left, as we showed in Section 4.4. The key idea of in-place
refresh is to incrementally replenish the lost charge of each page at
its current location, i.e., in place, without the need for remapping.

Figure 22 shows a high-level overview of in-place refresh for
a wordline. The SSD controller first reads all of the pages in the
wordline (❶ in Figure 22). The controller invokes the ECC decoder
to correct the errors within each page (❷), and sends the corrected
data back to the flash chips (❸). In-place refresh then invokes a
modified version of the ISPP mechanism (see Section 3.4), which
we call Verify-ISPP (V-ISPP), to compensate for retention errors by
restoring the charge that was lost. In V-ISPP, we first verify the
voltage currently programmed in a flash cell (❹). If the current
voltage of the cell is lower than the target threshold voltage of the
state that the cell should be in, V-ISPP pulses the programming
voltage in steps, gradually injecting charge into the cell until the cell
returns to the target threshold voltage (❺). If the current voltage of
the cell is higher than the target threshold voltage, V-ISPP inhibits
the programming pulses to the cell.

Flash Chip SSD Controller
Read MSB & LSB pages

ECC Decoder

Controller Processors

❷
Verify current Vth value
(filters out most cells) Correct all errors

❶

❹

❺ Pulse program voltage
(few pulses needed)

Figure 22: Overview of in-place refreshmechanism forMLC
NAND flash memory.

When the controller invokes in-place refresh, it is unable to use
shadow program sequencing (Section 5.1), as all of the pages within
the wordline have already been programmed. However, unlike
traditional ISPP, V-ISPP does not introduce a high amount of cell-
to-cell program interference (Section 4.3) for two reasons. First,
V-ISPP programs only those cells that have retention errors, which
typically account for less than 1% of the total number of cells in
a wordline selected for refresh [24]. Second, for the small number
of cells that are selected to be refreshed, their threshold voltage is
usually only slightly lower than the target threshold voltage, which
means that only a few programming pulses need to be applied. As
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cell-to-cell interference is linearly correlated with the threshold
voltage change to immediately-adjacent cells [18, 26], the small
voltage change on these in-place refreshed cells leads to only a
small interference effect.

One issue with in-place refresh is that it is unable to correct
retention errors for cells in lower-voltage states. Retention errors
cause the threshold voltage of a cell in a lower-voltage state to
increase (e.g., see Section 4.4, ER and P1 states in Figure 18), but
V-ISPP cannot decrease the threshold voltage of a cell. To achieve
a balance between the wearout overhead due to remapping-based
refresh and errors that increase the threshold voltage due to in-
place refresh, we propose hybrid in-place refresh [10, 24, 25]. The key
idea is to use in-place refresh when the number of program errors
(caused due to reprogramming) is within the correction capability of
ECC, but to use remapping-based refresh if the number of program
errors is too large to tolerate. To accomplish this, the controller
tracks the number of right-shift errors (i.e., errors that move a cell to
a higher-voltage state) [24, 25]. If the number of right-shift errors
remains under a certain threshold, the controller performs in-place
refresh; otherwise, it performs remapping-based refresh. Such a
hybrid in-place refresh mechanism increases SSD lifetime by an
average of 31x for a variety of disk workloads [24, 25].

Read Reclaim to Reduce Read Disturb Errors.We can also
mitigate read disturb errors using an idea similar to remapping-
based refresh, known as read reclaim. The key idea of read reclaim
is to remap the data in a block to a new flash block, if the block
has experienced a high number of reads [59, 60, 88]. To bound
the number of read disturb errors, some flash vendors specify a
maximum number of tolerable reads for a flash block, at which
point read reclaim rewrites the data to a new block (just as is done
for remapping- based refresh).

Adaptive Refresh and Read Reclaim Mechanisms. For the
refresh and read reclaim mechanisms discussed above, the SSD
controller can (1) invoke the mechanisms at fixed regular intervals;
or (2) adapt the rate at which it invokes the mechanisms, based
on various conditions that impact the rate at which data retention
and read disturb errors occur. By adapting the mechanisms based
on the current conditions of the SSD, the controller can reduce the
overhead of performing refresh or read reclaim. The controller can
adaptively adjust the rate that the mechanisms are invoked based
on (1) the wearout (i.e., the current P/E cycle count) of the NAND
flash memory [24, 25]; or (2) the temperature of the SSD [14, 17].

As we discuss in Section 4.4, for data with a given retention age,
the number of retention errors grows as the P/E cycle count increa-
ses. Exploiting this P/E cycle dependent behavior of retention time,
the SSD controller can perform refresh less frequently (e.g., once
every year) when the P/E cycle count is low, and more frequently
(e.g., once every week) when the P/E cycle count is high, as propo-
sed and described in our prior works [24, 25]. Similarly, for data
with a given read disturb count, as the P/E cycle count increases,
the number of read disturb errors increases as well [16]. As a result,
the SSD controller can perform read reclaim less frequently (i.e., it
increases the maximum number of tolerable reads per block before
read reclaim is triggered) when the P/E cycle count is low, and more
frequently when the P/E cycle count is high.

Prior works demonstrate that for a given retention time, the num-
ber of data retention errors increases as the NAND flash memory’s
operating temperature increases [14, 17]. To compensate for the
increased number of retention errors at high temperature, a state-
of-the-art SSD controller adapts the rate at which it triggers refresh.
The SSD contains sensors that monitor the current environmental
temperature every few milliseconds [122, 187]. The controller then
uses the Arrhenius equation [3, 128, 199] to estimate the rate at
which retention errors accumulate at the current temperature of
the SSD. Based on the error rate estimate, the controller decides if
it needs to increase the rate at which it triggers refresh to ensure
that the data is not lost.

By employing adaptive refresh and/or read reclaim mechanisms,
the SSD controller can successfully reduce the mechanism overhe-
ads while effectively mitigating the larger number of data retention
errors that occur under various conditions.

5.4 Read-Retry
In earlier generations of NAND flash memory, the read reference
voltage values were fixed at design time [15, 126]. However, several
types of errors cause the threshold voltage distribution to shift, as
shown in Figure 13. To compensate for threshold voltage distribu-
tion shifts, a mechanism called read-retry has been implemented
in modern flash memories (typically those below 30 nm for planar
flash [15, 53, 166, 201]).

The read-retry mechanism allows the read reference voltages
to dynamically adjust to changes in distributions. During read-
retry, the SSD controller first reads the data out of NAND flash
memory with the default read reference voltage. It then sends the
data for error correction. If ECC successfully corrects the errors in
the data, the read operation succeeds. Otherwise, the SSD controller
reads the memory again with a different read reference voltage. The
controller repeats these steps until it either successfully reads the
data using a certain set of read reference voltages or is unable to
correctly read the data using all of the read reference voltages that
are available to the mechanism.

While read-retry is widely implemented today, it can signifi-
cantly increase the overall read operation latency due to the multi-
ple read attempts it causes [17]. Mechanisms have been proposed to
reduce the number of read-retry attempts while taking advantage
of the effective capability of read-retry for reducing read errors,
and read-retry has also been used to enable mitigation mechanisms
for various other types of errors, as we describe in Section 5.5. As
a result, read-retry is an essential mechanism in modern SSDs to
mitigate read errors (i.e., errors that manifest themselves during a
read operation).

5.5 Voltage Optimization
Many raw bit errors in NAND flash memory are affected by the va-
rious voltages used within the memory to enable reading of values.
We give two examples. First, a suboptimal read reference voltage
can lead to a large number of read errors (Section 4), especially
after the threshold voltage distribution shifts. Second, as we saw in
Section 4.5, the pass-through voltage can have a significant effect on
the number of read disturb errors that occur. As a result, optimizing
these voltages such that they minimize the total number of errors
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that are induced can greatly mitigate error counts. In this section,
we discuss mechanisms that can discover and employ the optimal2
read reference and pass-through voltages.

Optimizing Read Reference Voltages Using Disparity-
Based Approximation and Sampling. As we discussed in
Section 5.4, when the threshold voltage distribution shifts, it is
important to move the read reference voltage to the point where
the number of read errors is minimized. After the shift occurs and
the threshold voltage distribution of each state widens, the distri-
butions of different states may overlap with each other, causing
many of the cells within the overlapping regions to be misread. The
number of errors due to misread cells can be minimized by setting
the read reference voltage to be exactly at the point where the
distributions of two neighboring states intersect, which we call the
optimal read reference voltage (Vopt ) [17, 18, 26, 116, 148], illustrated
in Figure 23. Once the optimal read reference voltage is applied,
the raw bit error rate is minimized, improving the reliability of the
device.
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Figure 23: Finding the optimal read reference voltage after
the threshold voltage distributions overlap (left), and rawbit
error rate as a function of the selected read reference voltage
(right).

One approach to finding Vopt is to adaptively learn and apply
the optimal read reference voltage for each flash block through
sampling [17, 37, 42, 197]. The key idea is to periodically (1) use
disparity information (i.e., the ratio of 1s to 0s in the data) to attempt
to find a read reference voltage for which the error rate is lower
than the ECC correction capability; and to (2) use sampling to
efficiently tune the read reference voltage to its optimal value to
reduce the read operation latency. Prior characterization of real
NAND flash memory [17, 148] found that the value of Vopt does
not shift greatly over a short period of time (e.g., a day), and that
all pages within a block experience similar amounts of threshold
voltage shifts, as they have the same amount of wearout and are
programmed around the same time [17, 148]. Therefore, we can
invoke our Vopt learning mechanism periodically (e.g., daily) to
efficiently tune the initial read reference voltage (i.e., the first read
reference voltage used when the controller invokes the read-retry
mechanism, described in Section 5.4) for each flash block, ensuring
that the initial voltage used by read-retry stays close to Vopt even
as the threshold voltage distribution shifts.

The SSD controller searches forVopt by counting the number of
errors that need to be corrected by ECC during a read. However,
theremay be timeswhere the initial read reference voltage (Vinit ial )
2Or, more precisely, near-optimal, if the read-retry steps are too coarse grained to find
the optimal voltage.

is set to a value at which the number of errors during a read exceeds
the ECC correction capability, such as the raw bit error rate for
Vinit ial in Figure 23 (right). When the ECC correction capability is
exceeded, the SSD controller is unable to count how many errors
exist in the raw data. The SSD controller uses disparity-based read
reference voltage approximation [37, 42, 197] for each flash block to
try to bring Vinit ial to a region where the number of errors does
not exceed the ECC correction capability. Disparity-based read re-
ference voltage approximation takes advantage of data scrambling.
Recall from Section 2.3 that to minimize data value dependencies
for the error rate, the SSD controller scrambles the data written to
the SSD to probabilistically ensure that an equal number of 0s and
1s exist in the flash memory cells. The key idea of disparity-based
read reference voltage approximation is to find the read reference
voltages that result in approximately 50% of the cells reading out
bit value 0, and the other 50% of the cells reading out bit value 1. To
achieve this, the SSD controller employs a binary search algorithm,
which tracks the ratio of 0s to 1s for each read reference voltage it
tries. The binary search tests various read reference voltage values,
using the ratios of previously tested voltages to narrow down the
range where the read reference voltage can have an equal ratio of
0s to 1s. The binary search algorithm continues narrowing down
the range until it finds a read reference voltage that satisfies the
ratio.

The usage of the binary search algorithm depends on the type
of NAND flash memory used within the SSD. For SLC NAND flash,
the controller searches for only a single read reference voltage. For
MLC NAND flash, there are three read reference voltages: the LSB
is determined using Vb , and the MSB is determined using both Va
and Vc (see Section 3.3). Figure 24 illustrates the search procedure
for MLC NAND flash. First, the controller uses binary search to
find Vb , choosing a voltage that reads the LSB of 50% of the cells
as data value 0 (step 1 in Figure 24). For the MSB, the controller
uses the discovered Vb value to help search for Va and Vc . Due to
scrambling, cells should be equally distributed across each of the
four voltage states. The controller uses binary search to setVa such
that 25% of the cells are in the ER state, by ensuring that half of the
cells to the left of Vb are read with an MSB of 0 (step 2). Likewise,
the controller uses binary search to setVc such that 25% of the cells
are in the P3 state, by ensuring that half of the cells to the right of
Vb are read with an MSB of 0 (step 3). This procedure is extended
in a similar way to approximate the voltages for TLC NAND flash.

If disparity-based approximation finds a value forVinit ial where
the number of errors during a read can be counted by the SSD
controller, the controller invokes sampling-based adaptive Vopt dis-
covery [17] to minimize the error count, and thus reduce the read
latency. Sampling-based adaptiveVopt discovery learns and records
Vopt for the last-programmed page in each block. We sample only
the last-programmed page because it is the page with the lowest
data retention age in the flash block. As retention errors cause the
higher-voltage states to shift to the left (i.e., to lower voltages), the
last-programmed page usually provides an upper bound of Vopt for
the entire block.

During sampling-based adaptive Vopt discovery, the SSD con-
troller first reads the last-programmed page using Vinit ial , and
attempts to correct the errors in the raw data read from the page.
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Figure 24: Disparity-based read reference voltage approxi-
mation to find Vinit ial for MLC NAND flash memory. Each
circle represents a cell, where a dashed border indicates
that the LSB is undetermined, a solid border indicates that
the LSB is known, a hollow circle indicates that the MSB
is unknown, and a filled circle indicates that the MSB is
known.

Next, it records the number of raw bit errors as the current lowest
error countNERR , and sets the applied read reference voltage (Vr ef )
as Vinit ial . Since Vopt typically decreases over retention age, the
controller first attempts to lower the read reference voltage for the
last-programmed page, decreasing the voltage to Vr ef − ∆V and
reading the page. If the number of corrected errors in the new read
is less than or equal to the old NERR , the controller updates NERR
and Vr ef with the new values. The controller continues to lower
the read reference voltage until the number of corrected errors in
the data is greater than the old NERR or the lowest possible read
reference voltage is reached. Since the optimal threshold voltage
might increase in rare cases, the controller also tests increasing the
read reference voltage. It increases the voltage to Vr ef + ∆V and
reads the last-programmed page to see if NERR decreases. Again,
it repeats increasing Vr ef until the number of corrected errors in
the data is greater than the old NERR or the highest possible read
reference voltage is reached. The controller sets the initial read
reference voltage of the block as the value of Vr ef at the end of
this process so that the next time an uncorrectable error occurs,
read-retry starts at aVinit ial that is hopefully closer to the optimal
read reference voltage (Vopt ).

During the course of the day, as more retention errors (the domi-
nant source of errors on already-programmed blocks) accumulate,
the threshold voltage distribution shifts to the left (i.e., voltages de-
crease), and our initial read reference voltage (i.e., Vinit ial ) is now
an upper bound for the read-retry voltages. Therefore, whenever
read-retry is invoked, the controller now needs to only decrease
the read reference voltages (as opposed to traditional read-retry,
which tries both lower and higher voltages [17]). Sampling-based
adaptiveVopt discovery improves the endurance (i.e., the number of
P/E cycles before the ECC correction capability is exceeded) of the
NAND flash memory by 64% and reduces error correction latency
by 10% [17], and is employed in some modern SSDs today.

Other Approaches to Optimizing Read Reference Volta-
ges. One drawback of the sampling-based adaptive technique is
that it requires time and storage overhead to find and record the per-
block initial voltages. To avoid this, the SSD controller can employ
an accurate online threshold voltage distribution model [10, 15, 116],
which can efficiently track and predict the shift in the distribution
over time. The model represents the threshold voltage distribu-
tion of each state as a probability density function (PDF), and the
controller can use the model to calculate the intersection of the
different PDFs. The controller uses the PDF in place of the threshold
voltage sampling, determining Vopt by calculating the intersection
of the distribution of each state in the model. The endurance im-
provement from our state-of-the-art model-based Vopt estimation
technique [116] is within 2% of the improvement from an ideal
Vopt identification mechanism [116]. An online threshold voltage
distribution model can be used for a number of other purposes,
such as estimating the future growth in the raw bit error rate and
improving error correction [116].

Other prior work examines adapting read reference voltages
based on P/E cycle count, retention age, or read disturb. In one such
work, the controller periodically learns read reference voltages by
testing three read reference voltages on six pages per block, which
the work demonstrates to be sufficiently accurate [148]. Similarly,
error correction using LDPC soft decoding (see Section 6.2) requires
reading the same page using multiple sets of read reference voltages
to provide fine-grained information on the probability of each cell
representing a bit value 0 or a bit value 1. Another prior work
optimizes the read reference voltages to increase the ECC correction
capability without increasing the coding rate [184].

OptimizingPass-ThroughVoltage toReduceReadDisturb
Errors. As we discussed in Section 4.5, the vulnerability of a cell
to read disturb is directly correlated with the voltage difference
(Vpass − Vth ) through the cell oxide [16]. Traditionally, a single
Vpass value is used globally for the entire flash memory, and the
value of Vpass must be higher than all potential threshold voltages
within the chip to ensure that unread cells along a bitline are turned
on during a read operation (see Section 3.3). To reduce the impact
of read disturb, we can tune Vpass to reduce the size of the voltage
difference (Vpass − Vth ). However, it is difficult to reduce Vpass
globally, as any cell with a value ofVth > Vpass introduces an error
during a read operation (which we call a pass-through error).

We propose a mechanism that can dynamically lower Vpass
while ensuring that it can correct any new pass-through errors
introduced. The key idea of the mechanism is to lower Vpass only
for those blocks where ECC has enough leftover error correction
capability (see Section 2.3) to correct the newly introduced pass-
through errors. When the retention age of the data within a block
is low, we find that the raw bit error rate of the block is much lower
than the rate for the block when the retention age is high, as the
number of data retention and read disturb errors remains low at
low retention age [16, 60]. As a result, a block with a low retention
age has significant unused ECC correction capability, which we
can use to correct the pass-through errors we introduce when we
lower Vpass , as shown in Figure 25. Thus, when a block has a low
retention age, the controller lowers Vpass aggressively, making it
much less likely for read disturbs to induce an uncorrectable error.
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When a block has a high retention age, the controller also lowers
Vpass , but does not reduce the voltage aggressively, since the limited
ECC correction capability now needs to correct retention errors,
and might not have enough unused correction capability to correct
many new pass-through errors. By reducing Vpass aggressively
when a block has a low retention age, we can extend the time
before the ECC correction capability is exhausted, improving the
flash lifetime.
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Figure 25: Dynamic pass-through voltage tuning at different
retention ages.

Our read disturb mitigation mechanism [16] learns the minimum
pass-through voltage for each block, such that all data within the
block can be read correctly with ECC. Our learning mechanism
works online and is triggered periodically (e.g., daily). The mecha-
nism is implemented in the controller, and has two components. It
first finds the size of the ECC marginM (i.e., the unused correction
capability) that can be exploited to tolerate additional read errors
for each block. Once it knows the available marginM , our mecha-
nism calibrates Vpass on a per-block basis to find the lowest value
ofVpass that introduces no more thanM additional raw errors (i.e.,
there are no more than M cells where Vth > Vpass ). Our findings
on MLC NAND flash memory show that the mechanism can im-
prove flash endurance by an average of 21% for a variety of disk
workloads [16].

Programming and Erase Voltages. Prior work also examines
tuning the programming and erase voltages to extend flash en-
durance [75]. By decreasing the two voltages when the P/E cycle
count is low, the accumulated wearout for each program or erase
operation is reduced, which, in turn, increases the overall flash
endurance. Decreasing the programming voltage, however, comes
at the cost of increasing the time required to perform ISPP, which,
in turn, increases the overall SSD write latency [75].

5.6 Hot Data Management
The data stored in an SSD can be accessed by the host at different
rates. For example, we find that across a wide range of disk wor-
kloads, almost 100% of the write operations target less than 1% of
the pages within an SSD [115], exhibiting high temporal write loca-
lity. We call the frequently-written subset of pages write-hot pages.
Likewise, pages with a high amount of temporal read locality are
called read-hot pages. A number of issues can arise when an SSD
does not distinguish between write-hot pages and write-cold pages
(i.e., pages with low temporal write locality), or between read-hot
pages and read-cold pages (i.e., pages with low temporal read lo-
cality). For example, if write-hot pages and write-cold pages are

kept within the same block, intelligent refresh mechanisms cannot
avoid refreshes to pages that were overwritten recently, increasing
not only energy consumption but also write amplification due to
remapping-based refresh [115]. Likewise, if read-hot and read-cold
pages are kept within the same block, read-cold pages are unneces-
sarily exposed to a high number of read disturb errors [59, 60]. Hot
data management refers to a set of mechanisms that can identify
write-hot or read-hot pages in the SSD. The key idea is to apply
special SSD management policies by placing hot pages and cold
pages into separate flash blocks.

Write-hotness aware refresh management (WARM) [115] effi-
ciently identifies write-hot pages, and designates a small pool of
blocks in the SSD to exclusively store write-hot data. As write-hot
data is overwritten more frequently than the refresh interval, the
SSD controller can skip refresh operations to the write-hot blocks.
WARM reduces the write amplification overhead of refresh, which
translates to an average lifetime improvement of 21% over a state-of-
the-art refresh mechanism across a range of disk workloads [115].
Another work [183] proposes to reuse the correctly functioning
flash pages within bad blocks (see Section 2.3) to store write-cold
data. This technique increases the total number of usable blocks
available for overprovisioning, and extends flash lifetime by de-
laying the point at which each flash chip reaches the upper limit of
bad blocks it can tolerate.

RedFTL identifies and replicates read-hot pages across multiple
flash blocks, allowing the controller to evenly distribute read reque-
sts to these pages across the replicas [59]. Other works reduce the
number of read reclaims (see Section 5.3) that need to be performed
by mapping read-hot data to particular flash blocks and lowering
the maximum possible threshold voltage for such blocks [21, 60]. By
lowering the maximum possible threshold voltage for these blocks,
the SSD controller can use a lower Vpass value (see Section 5.5)
on the blocks without introducing any additional errors during a
read operation. To lower the maximum threshold voltage in these
blocks, the width of the voltage window for each voltage state
is decreased, and each voltage window shifts to the left [21, 60].
Another work applies stronger ECC encodings to only read-hot
blocks based on the total read count of the block, in order to in-
crease SSD endurance without significantly reducing the amount
of overprovisioning [20] (see Section 2.4 for a discussion on the
tradeoff between ECC strength and overprovisioning).

5.7 Adaptive Error Mitigation Mechanisms
Due to the many different factors that contribute to raw bit errors,
error rates in NAND flash memory can be highly variable. Adaptive
error mitigationmechanisms are capable of adapting error tolerance
capability to the error rate. They provide stronger error tolerance
capability when the error rate is higher, improving flash lifetime
significantly. When the error rate is low, adaptive error mitigation
techniques reduce error tolerance capability to lower the cost of
the error mitigation techniques. In this section, we examine two
types of adaptive techniques: (1) multi-rate ECC and (2) dynamic
cell levels.

Multi-Rate ECC. Some works propose to employ multiple ECC
algorithms in the SSD controller [23, 36, 62, 69, 193]. Recall from
Section 2.4 that there is a tradeoff between ECC strength (i.e., the
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coding rate; see Section 2.3) and overprovisioning, as a codeword
(which contains a data chunk and its corresponding ECC informa-
tion) uses more bits when stronger ECC is employed. The key idea
of multi-rate ECC is to employ a weaker codeword (i.e., one that
uses fewer bits for ECC) when the SSD is relatively new and has a
smaller number of raw bit errors, and to use the saved SSD space
to provide additional overprovisioning, as shown in Figure 26.
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ECC

. . .

User data ECCFixed ECC

Multi-Rate 
ECC

100%
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0% 84% 90%

User data OP space

OP space

User data OP space

Figure 26: Comparison of space used for user data, overpro-
visioning, and ECC between a fixed ECC and a multi-rate
ECC mechanism.

Let us assume that the controller contains a configurable ECC en-
gine that can support n different types of ECC codewords, which we
call ECCi . Figure 26 shows an example of multi-rate ECC that uses
four ECC engines, where ECC1 provides the weakest protection
but has the smallest codeword, while ECC4 provides the strongest
protection with the largest codeword. We need to ensure that the
NAND flash memory has enough space to fit the largest codewords,
e.g., those for ECC4 in Figure 26. Initially, when the raw bit error
rate (RBER) is low, the controller employs ECC1, as shown in Fi-
gure 27. The smaller codeword size for ECC1 provides additional
space for overprovisioning, as shown in Figure 26, and thus redu-
ces the effects of write amplification. Multi-rate ECC works on an
interval-by-interval basis. Every interval (in this case, a predefined
number of P/E cycles), the controller measures the RBER. When
the RBER exceeds the threshold set for transitioning from a weaker
ECC to a stronger ECC, the controller switches to the stronger ECC.
For example, when the SSD exceeds the first RBER threshold for
switching (T1 in Figure 27), the controller starts switching from
ECC1 to ECC2. When switching between ECC engines, the con-
troller uses the ECC1 engine to decode data the next time the data
is read out, and stores a new codeword using the ECC2 engine.
This process is repeated during the lifetime of flash memory for
each stronger engine ECCi , where each engine has a corresponding
threshold that triggers switching [23, 36, 62], as shown in Figure 27.
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Figure 27: Illustration of howmulti-rate ECC switches to dif-
ferent ECC codewords (i.e., ECCi ) as the RBER grows. OPi is
the overprovisioning factor used for engine ECCi , and WAi
is the resulting write amplification value.

Multi-rate ECC allows the same maximum P/E cycle count for
each block as if ECCn was used throughout the lifetime of the
SSD, but reduces write amplification and improves performance
during the periods where the lower strength engines are employed,
by providing additional overprovisioning (see Section 2.4) during
those times. As the lower-strength engines use smaller codewords
(e.g., ECC1 versus ECC4 in Figure 26), the resulting free space can
instead be employed to further increase the amount of overprovisi-
oning within the NAND flash memory, which in turn increases the
total lifetime of the SSD. We compute the lifetime improvement by
modifying Equation 4 (Section 2.4) to account for each engine, as
follows:

Lifetime =
n∑
i=1

PECi × (1 + OPi )
365 × DWPD ×WAi × Rcompress

(9)

In Equation 9, WAi and OPi are the write amplification and over-
provisioning factor for ECCi , and PECi is the number of P/E cycles
that ECCi is used for. Manufacturers can set parameters to maxi-
mize SSD lifetime in Equation 9, by optimizing the values of WAi
and OPi .

Figure 28 shows the lifetime improvements for a four-engine
multi-rate ECC, with the coding rates for the four ECC engines
(ECC1–ECC4) set to 0.90, 0.88, 0.86, and 0.84 (recall that a lower
coding rate provides stronger protection; see Section 2.4), over a
fixed ECC engine that employs a coding rate of 0.84. We see that the
lifetime improvements of using multi-rate ECC are: (1) significant,
with a 31.2% increase if the baseline NAND flash memory has
15% overprovisioning; and (2) greater when the SSD initially has a
smaller amount of overprovisioning.
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Figure 28: Lifetime improvements of using multi-rate ECC
over using a fixed ECC coding rate.

Dynamic Cell Levels. A major reason that errors occur in
NAND flash memory is because the threshold voltage distribu-
tion of each state overlaps more with those of neighboring states
as the distributions widen over time. Distribution overlaps are a
greater problem when more states are encoded within the same
voltage range. Hence, TLC flash has a much lower endurance than
MLC, and MLC has a much lower endurance than SLC (assuming
the same process technology node). If we can increase the margins
between the states’ threshold voltage distributions, the amount of
overlap can be reduced significantly, which in turn reduces the
number of errors.

Prior work proposes to increase margins by dynamically redu-
cing the number of bits stored within a cell, e.g., by going from
three bits that encode eight states (TLC) to two bits that encode four
states (equivalent to MLC), or to one bit that encodes two states
(equivalent to SLC) [21, 190]. Recall that TLC uses the ER state and

22



states P1–P7, which are spaced out approximately equally. When
we downgrade a flash block (i.e., reduce the number of states its
cells can represent) from eight states to four, the cells in the block
now employ only the ER state and states P3, P5, and P7. As we
can see from Figure 29, this provides large margins between states
P3, P5, and P7, and provides an even larger margin between ER
and P3. The SSD controller maintains a list of all of the blocks that
have been downgraded. For each read operation, the SSD controller
checks if the target block is in the downgraded block list, and uses
this information to interpret the data that it reads out from the
wordline of the block.
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Figure 29: States used when a TLC cell (with 8 states) is do-
wngraded to an MLC cell (with 4 states).

A cell can be downgraded to reduce various types of errors
(e.g., wearout, read disturb). To reduce wearout, a cell is downgra-
ded when it has high wearout. To reduce read disturb, a cell can
be downgraded if it stores read-hot data (i.e., the most frequently
read data in the SSD). By using fewer states for a block that holds
read-hot data, we can reduce the impact of read disturb because
it becomes harder for the read disturb mechanism to affect the
distributions enough for them to overlap. As an optimization, the
SSD controller can employ various hot-cold data partitioning me-
chanisms (e.g., [20, 21, 59, 115]) to keep read-hot data in specially
designated blocks [20, 21, 59, 60], allowing the controller to reduce
the size of the downgraded block list and isolate the impact of read
disturb from read-cold (i.e., infrequently read) data.

Another approach to dynamically increasing the distribution
margins is to perform program and erase operations more slowly
when the SSD write request throughput is low [21, 75]. Slower
program/erase operations allow the final voltage of a cell to be
programmed more precisely, and reduce the amount of oxide degra-
dation that occurs during programming. As a result, the distribution
of each state is initially much narrower, and subsequent widening of
the distributions results in much lower overlap for a given P/E cycle
count. This technique improves the SSD lifetime by an average of
61.2% for a variety of disk workloads [75]. Unfortunately, the slower
program/erase operations come at the cost of higher SSD latency,
and are thus not applied during periods of high write traffic. One
way to mitigate the impact of the higher write latency is to perform
slower program/erase operations only during garbage collection,
which ensures that the higher latency occurs only when the SSD is
idle [21]. As a result, read and write requests from the host do not
experience any additional delays.

6 ERROR CORRECTION AND DATA
RECOVERY TECHNIQUES

Now that we have described a variety of error mitigation mecha-
nisms that can target various types of error sources, we turn our
attention to the error correction flow that is employed in modern
SSDs as well as data recovery techniques that can be employed when
the error correction flow fails to produce correct data.

Modern SSDs typically employ one of two types of ECC. Bose–
Chaudhuri–Hocquenghem (BCH) codes allow for the correction of
multiple bit errors [6, 66, 109, 168], and are used to correct the errors
observed during a single read from the NAND flash memory [109].
Low-density parity-check (LDPC) codes employ information accu-
mulated over multiple read operations to determine the likelihood
of each cell containing a bit value 1 or a bit value 0 [55, 119, 168],
providing stronger protection at the cost of greater decoding latency
and storage overhead [184, 207].

In this section, we briefly overview how an SSD performs error
correction when reading data. We first go through an example error
correction flow for an SSD that uses either BCH codes (Section 6.1)
or LDPC codes (Section 6.2). Next, we compare the error correction
strength (i.e., the number of errors that ECC can correct) when we
employ BCH codes or LDPC codes in an SSD (Section 6.3). Then,
we discuss techniques that can rescue data from an SSD when the
BCH/LDPC decoding fails to correct all errors (Section 6.4).

6.1 Error Correction Flow With BCH Codes
The SSD starts a read operation by using the initial read reference
voltages (Vinit ial ; see Section 5.5) to read the raw data stored within
a page of NANDflashmemory into the controller. Once the raw data
is read, the controller starts error correction. We first look at the
error correction flow using BCH codes [6, 66, 109, 168]. An example
flow of the stages for BCH decoding is listed in Algorithm 1, and is
shown on the left-hand side of Figure 30a. In the first stage, the ECC
engine performs BCH decoding on the raw data, which reports the
total number of bit errors in the data. If the data cannot be corrected
by the implemented BCH codes, many controllers invoke read-retry
(Section 5.4) or read reference voltage optimization (Section 5.5) to
find a new set of read reference voltages (Vr ef ) that lower the raw
bit error rate of the data from the error rate when using Vinit ial .
The controller uses the newVr ef values to read the data again, and
then repeats the BCH decoding. BCH decoding is hard decoding,
where the ECC engine can only use the hard bit value information
(i.e., either a 1 or a 0) read for a cell using a single set of read
reference voltages.

If the controller exhausts the maximum number of read attempts
(specified as a parameter in the controller), it employs correction
techniques such as neighbor-cell-assisted correction (NAC; see
Section 5.2) to further reduce the error rate, as shown in the second
BCH stage of Algorithm 1. If NAC cannot successfully read the
data, the controller then tries to correct the errors using the more
expensive superpage-level parity recovery (Section 2.3). The steps
for superpage-level parity recovery are shown in the third stage
of Algorithm 1. If the data can be extracted successfully from the
other pages in the superpage, the data from the target page can
be recovered. Whenever data is successfully decoded or recovered,
the data is sent to the host (and it is also reprogrammed into a
new physical page to ensure that the corrected data values are
stored for the logical page). Otherwise, the SSD controller reports
an uncorrectable error to the host.

6.2 Error Correction Flow With LDPC Codes
Figure 30 compares the error correction flow with BCH codes (dis-
cussed in Section 6.1) to the flow with LDPC codes. LDPC decoding
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Algorithm 1 Example BCH/LDPC Error Correction Procedure
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Now that we have described a variety of error mitigation 
mechanisms that can target various types of error sources, 
we turn our attention to the error correction flow that is 
employed in modern SSDs as well as data recovery tech-
niques that can be employed when the error correction flow 
fails to produce correct data.

Modern SSDs typically employ one of two types of 
ECC. Bose–Chaudhuri–Hocquenghem (BCH) codes 
allow for the correction of multiple bit errors [9], [10], 
[92], [93], and are used to correct the errors observed dur-
ing a single read from the NAND flash memory [10]. Low-
density parity-check (LDPC) codes employ information 
accumulated over multiple read operations to determine 
the likelihood of each cell containing a bit value 1 or a bit 
value 0 [9], [94], [95], providing stronger protection at 
the cost of greater decoding latency and storage overhead 
[11], [73].

In this section, we briefly overview how an SSD performs 
error correction when reading data. We first go through an 
example error correction flow for an SSD that uses either 
BCH codes (Section VI-A) or LDPC codes (Section VI-B). 
Next, we compare the error correction strength (i.e., the 
number of errors that ECC can correct) when we employ 
BCH codes or LDPC codes in an SSD (Section VI-C). Then, 
we discuss techniques that can rescue data from an SSD 
when the BCH/LDPC decoding fails to correct all errors 
(Section VI-D).

A. Error Correction Flow With BCH Codes

The SSD starts a read operation by using the initial read 
reference voltages (  V initial   ; see Section V-E) to read the raw 
data stored within a page of NAND flash memory into the 
controller. Once the raw data is read, the controller starts 
error correction. We first look at the error correction flow 
using BCH codes [9], [10], [92], [93]. An example flow of 
the stages for BCH decoding is listed in Algorithm 1, and is 
shown on the left-hand side of Fig. 30(a). In the first stage, 
the ECC engine performs BCH decoding on the raw data, 
which reports the total number of bit errors in the data. 
If the data cannot be corrected by the implemented BCH 
codes, many controllers invoke read-retry (Section V-D) or 
read reference voltage optimization (Section V-E) to find a 
new set of read reference voltages (  V ref   ) that lower the raw 
bit error rate of the data from the error rate when using   
V initial   . The controller uses the new   V ref    values to read the 
data again, and then repeats the BCH decoding. BCH decod-
ing is hard decoding, where the ECC engine can only use the 
hard bit value information (i.e., either a 1 or a 0) read for a 
cell using a single set of read reference voltages.

Algorithm 1: Example BCH/LDPC Error Correction 
Procedure

First Stage: BCH/LDPC Hard Decoding

Controller gets stored Vinitial values to use as Vref
Flash chips read page using Vref
ECC decoder decodes BCH/LDPC
if ECC succeeds then
Controller sends data to host; exit algorithm
else if number of stage iterations not exceeded then
Controller invokes Vref optimization to new Vref;

repeats stage

end

Second Stage (BCH only): NAC

Controller reads immediately-adjacent wordline W
while ECC fails and all possible voltage states for

adjacent wordline not yet tried do
Controller goes to next neighbor voltage state V
Controller sets Vref based on neighbor voltage state V
Flash chips read page using Vref
Controller corrects cells adjacent to W’s cells that

were programmed to V
ECC decoder decodes BCH
if ECC succeeds then

Controller sends data to host; exit algorithm
end

end

Second Stage (LDPC only): Level X LDPC Soft Decoding

while ECC fails and X < maximum level N do
Controller selects optimal value of Vref

X

Flash chips do read-retry using Vref
X

Controller recomputes LLRXR0 to LLRX
RX

ECC decoder decodes LDPC
if ECC succeeds then
Controller sends data to host; exit algorithm

else
Controller goes to soft decoding level X + 1
end

end

Third Stage: Superpage-Level Parity Recovery

Flash chips read all other pages in the superpage
Controller XORs all other pages in the superpage
if data extraction succeeds then

Controller sends data to host
else

Controller reports uncorrectable error
end

If the controller exhausts the maximum number of read 
attempts (specified as a parameter in the controller), it 
employs correction techniques such as neighbor-cell-assisted 
correction (NAC; see Section V-B) to further reduce the error 
rate, as shown in the second BCH stage of Algorithm 1. If NAC 

consists of three major steps. First, the SSD controller performs
LDPC hard decoding, where the controller reads the data using
the optimal read reference voltages. The process for LDPC hard
decoding is similar to that of BCH hard decoding (as shown in the
first stage of Algorithm 1), but does not typically invoke read-retry

if the first read attempt fails. Second, if LDPC hard decoding cannot
correct all of the errors, the controller uses LDPC soft decoding to
decode the data (which we describe in detail below). Third, if LDPC
soft decoding also cannot correct all of the errors, the controller
invokes superpage-level parity.
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Figure 30: (a) Example error correction flow using BCH co-
des and LDPC codes. (b) The corresponding average latency
and codeword failure rate for each LDPC stage.

Soft Decoding. Unlike BCH codes, which require the invoca-
tion of expensive superpage-level parity recovery immediately if
the hard decoding attempts (BCH hard decoding with read-retry
or NAC) fail to return correct data, LDPC decoding fails more gra-
cefully: it can perform multiple levels of soft decoding (the second
stage in Algorithm 1) after hard decoding fails before invoking
superpage-level parity recovery [184, 207]. The key idea of soft de-
coding is use soft information for each cell (i.e., the probability that
the cell contains a 1 or a 0) obtained from multiple reads of the cell
via the use of different sets of read reference voltages [55, 119, 168].
Soft information is typically represented by the log likelihood ratio
(LLR), i.e., the probability of a certain bit being 0, i.e., P(x = 0|Vth ),
over the probability of the bit being 1, i.e., P(x = 1|Vth ), given a
certain threshold voltage range (Vth ) bounded by two threshold
voltage values (i.e., the maximum and the minimum voltage of the
threshold voltage range) [184, 207]:

LLR = log P(x = 0|Vth )
P(x = 1|Vth )

(10)

Every additional level of soft decoding (i.e., the use of a new set of
read reference voltages, whichwe callVX

ref for levelX ) increases the
strength of the error correction, as the level adds new information
about the cell (as opposed to hard decoding, where a new decoding
step simply replaces prior information about the cell). The new
read reference voltages, unlike the ones used for hard decoding, are
optimized such that the amount of useful information (or mutual
information) provided to the LDPC decoder is maximized [184].
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Thus, the use of soft decoding reduces the frequency at which
superpage-level parity needs to be invoked.

Figure 31 illustrates the read reference voltages used during the
first three levels of LDPC soft decoding. At each level, a new read
reference voltage is applied, which divides an existing threshold
voltage range into two ranges. Based on the bit values read using
the various read reference voltages, the SSD controller bins each cell
into a certain Vth range, and sends the bin categorization of all the
cells to the LDPC decoder. For each cell, the decoder applies an LLR
value, precomputed by the SSD manufacturer, which corresponds
to the cell’s bin and decodes the data. For example, as shown in the
bottom of Figure 31, the three read reference voltages in Level 3
soft decoding form four threshold voltage ranges (i.e., R0–R3). Each
of these ranges corresponds to a different LLR value (i.e., LLRR03
to LLRR33 , where LLRRji is the LLR value for range Rj in level i).
Comparedwith Level 1 soft decoding (shown at the top of Figure 31),
which only has two LLR values, Level 3 soft decoding provides more
accurate information to the decoder, and thus has stronger error
correction capability.
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Figure 31: First three levels of LDPC soft decoding, showing
the Vr ef value added at each level, and the resulting thres-
hold voltage ranges (R0–R3) used for flash cell categoriza-
tion.

Computing LLRValues. There are several alternatives for how
to compute the LLR values. A common approach for LLR compu-
tation is to treat a flash cell as a communication channel, where
the channel takes an input program signal (i.e., the target threshold
voltage for the cell) and outputs an observed signal (i.e., the current
threshold voltage of the cell) [15]. The observed signal differs from
the input signal due to the various types of NAND flash memory
errors. The communication channel model allows us to break down
the threshold voltage of a cell into two components: (1) the expected
signal; and (2) the additive signal noise due to errors. By enabling
the modeling of these two components separately, the communi-
cation channel model allows us to estimate the current threshold
voltage distribution of each state [15]. The threshold voltage dis-
tributions can be used to predict how likely a cell within a certain
voltage region is to belong to a particular voltage state.

One popular variant of the communication channel model as-
sumes that the threshold voltage distribution of each state can be
modeled as a Gaussian distribution [15]. If we use the mean obser-
ved threshold voltage of each state (denoted as µ) to represent the
signal, we find that the P/E cycling noise (i.e., the shift in the distri-
bution of threshold voltages due to the accumulation of charge from
repeated programming operations; see Section 4.1) can be modeled
as additive white Gaussian noise (AWGN) [15], which is represented
by the standard deviation of the distribution (denoted as σ ). The
closed-form AWGN-based model can be used to determine the LLR
value for a cell with threshold voltage y, as follows:

LLR(y) =
µ21 − µ20
2σ 2 +

y(µ0 − µ1)
σ 2 (11)

where µ0 and µ1 are the mean threshold voltages for the distributi-
ons of the threshold voltage states for bit value 0 and bit value 1,
respectively, and σ is the standard deviation of both distributions
(assuming that the standard deviation of each threshold voltage
state distribution is equal). Since LDPC soft decoding uses threshold
voltage ranges to categorize a flash cell, we can substitute µRj , the
mean threshold voltage of the threshold voltage range Rj , in place
of y in Equation 11.

The AWGN-based LLR model in Equation 11 provides only an
estimate of the LLR, because (1) the actual threshold voltage distri-
butions observed in NAND flashmemory are not perfectly Gaussian
in nature [15, 116]; (2) the controller uses the mean voltage of the
threshold voltage range to approximate the actual threshold voltage
of a cell; and (3) the standard deviations of each threshold voltage
state distribution are not perfectly equal (see Tables 4–6 in the
Appendix). A number of methods have been proposed to improve
upon the AWGN-based LLR estimate by: (1) using nonlinear trans-
formations to convert the AWGN-based LLR into a more accurate
LLR value [195]; (2) scaling and rounding the AWGN-based LLR
to compensate for the estimation error [194]; (3) initially using
the AWGN-based LLR to read the data, and, if the read fails, using
the ECC information from the failed read attempt to optimize the
LLR and to perform the read again with the optimized LLR [43];
and (4) using online and offline training to empirically determine
the LLR values under a wide range of conditions (e.g., P/E cycle
count, retention time, read disturb count) [196]. The SSD controller
can either compute the LLR values at runtime, or statically store
precomputed LLR values in a table.

Determining the Number of Soft Decoding Levels. If the
final level of soft decoding, i.e., level N in Figure 30a, fails, the
controller attempts to read the data using superpage-level parity
(Section 2.3). The number of levels used for soft decoding depends
on the improved reliability that each additional level provides, ta-
king into account the latency of performing additional decoding.
Figure 30b shows a rough estimation of the average latency and
the codeword failure rate for each stage. There is a tradeoff be-
tween the number of levels employed for soft decoding and the
expected read latency. For a smaller number of levels, the additional
reliability can be worth the latency penalty. For example, while
a five-level soft decoding step requires up to 480 µs, it effectively
reduces the codeword failure rate by five orders of magnitude. This
not only improves overall reliability, but also reduces the frequency
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of triggering expensive superpage-level parity recovery, which can
take around 10ms [62]. However, manufacturers limit the number
of levels, as the benefit of employing an additional soft decoding
level (which requires more read operations) becomes smaller due to
diminishing returns in the number of additional errors corrected.

6.3 BCH and LDPC Error Correction Strength
BCH and LDPC codes provide different strengths of error correction.
While LDPC codes can offer a stronger error correction capability,
soft LDPC decoding can lead to a greater latency for error correction.
Figure 32 compares the error correction strength of BCH codes,
hard LDPC codes, and soft LDPC codes [61]. The x-axis shows the
raw bit error rate (RBER) of the data being corrected, and the y-axis
shows the uncorrectable bit error rate (UBER), or the error rate after
correction, once the error correction code has been applied. The
UBER is defined as the ECC codeword (see Section 2.3) failure rate
divided by the codeword length [72]. To ensure a fair comparison,
we choose a similar codeword length for both BCH and LDPC
codes, and use a similar coding rate (0.935 for BCH, and 0.936 for
LDPC) [61]. We make two observations from Figure 32.
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Figure 32: Raw bit error rate versus uncorrectable bit error
rate for BCH codes, hard LDPC codes, and soft LDPC codes.

First, we observe that the error correction strength of the hard
LDPC code is similar to that of the BCH codes. Thus, on its own,
hard LDPC does not provide a significant advantage over BCH
codes, as it provides an equivalent degree of error correction with
similar latency (i.e., one read operation). Second, we observe that
soft LDPC decoding provides a significant advantage in error cor-
rection capability. Contemporary SSDmanufacturers target a UBER
of 10−16 [72]. The example BCH code with a coding rate of 0.935
can successfully correct data with an RBER of 1.0 × 10−3 while
remaining within the target UBER. The example LDPC code with a
coding rate of 0.936 is more successful with soft decoding, and can
correct data with an RBER as high as 5.0 × 10−3 while remaining
within the target UBER, based on the error rate extrapolation shown
in Figure 32. While soft LDPC can tolerate up to five times the raw
bit errors as BCH, this comes at a cost of latency (not shown on
the graph), as soft LDPC can require several additional read opera-
tions after hard LDPC decoding fails, while BCH requires only the
original read.

To understand the benefit of LDPC codes over BCH codes, we
need to consider the combined effect of hard LDPC decoding and

soft LDPC decoding. As discussed in Section 6.2, soft LDPC deco-
ding is invoked only when hard LDPC decoding fails. To balance
error correction strength with read performance, SSD manufactu-
rers can require that the hard LDPC failure rate cannot exceed a
certain threshold, and that the overall read latency (which includes
the error correction time) cannot exceed a certain target [61, 62].
For example, to limit the impact of error correction on read perfor-
mance, a manufacturer can require 99.99% of the error correction
operations to be completed after a single read. To meet our example
requirement, the hard LDPC failure rate should not be greater than
10−4 (i.e., 99.99%), which corresponds to an RBER of 2.0 × 10−3 and
a UBER of 10−8 (shown as Soft LDPC Trigger Point in Figure 32). For
only the data that contains one or more failed codewords, soft LDPC
is invoked (i.e., soft LDPC is invoked only 0.01% of the time). For
our example LDPC code with a coding rate of 0.936, soft LDPC de-
coding is able to correct these codewords: for an RBER of 2.0×10−3,
using soft LDPC results in a UBER well below 10−16, as shown in
Figure 32.

To gauge the combined effectiveness of hard and soft LDPC codes,
we calculate the overhead of using the combined LDPC decoding
over using BCH decoding. If 0.01% of the codeword corrections fail,
we can assume that in the worst case, each failed codeword resides
in a different flash page. As the failure of a single codeword in a flash
page causes soft LDPC to be invoked for the entire flash page, our
assumption maximizes the number of flash pages that require soft
LDPC decoding. For an SSDwith four codewords per flash page, our
assumption results in up to 0.04% of the data reads requiring soft
LDPC decoding. Assuming that the example soft LDPC decoding
requires seven additional reads, this corresponds to 0.28% more
reads when using combined hard and soft LDPC over BCH codes.
Thus, with a 0.28% overhead in the number of reads performed, the
combined hard and soft LDPC decoding provides twice the error
correction strength of BCH codes (shown as Improvement in RBER
in Figure 32).

In our example, the lifetime of an SSD is limited by both the
UBER and whether more than 0.01% of the codeword corrections
invoke soft LDPC, to ensure that the overhead of error correction
does not significantly increase the read latency [61]. In this case,
when the lifetime of the SSD ends, we can still read out the data
correctly from the SSD, albeit at an increased read latency. This
is because even though we capped the SSD lifetime to an RBER
of 2.0 × 10−3 in our example shown in Figure 32, soft LDPC is
able to correct data with an RBER as high as 5.0 × 10−3 while still
maintaining an acceptable UBER (10−16) based on the error rate
extrapolation shown. Thus, LDPC codes have a margin, which we
call the reliability margin and show in Figure 32. This reliability
margin enables us to trade off lifetime with read latency.

We conclude that with a combination of hard and soft LDPC
decoding, an SSD can offer a significant improvement in error
correction strength over using BCH codes.

6.4 SSD Data Recovery
When the number of errors in data exceeds the ECC correction
capability and the error correction techniques in Sections 6.1 and
6.2 are unable to correct the read data, then data loss can occur.
At this point, the SSD is considered to have reached the end of its
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lifetime. In order to avoid such data loss and recover (or, rescue)
the data from the SSD, we can harness our understanding of data
retention and read disturb behavior. The SSD controller can employ
two conceptually similar mechanisms, Retention Failure Recovery
(RFR) [17] and Read Disturb Recovery (RDR) [16], to undo errors
that were introduced into the data as a result of data retention
and read disturb, respectively. The key idea of both of these me-
chanisms is to exploit the wide variation of different flash cells
in their susceptibility to data retention loss and read disturbance
effects, respectively, in order to correct some of the errors without
the assistance of ECC so that the remaining error count falls within
the ECC error correction capability.

When a flash page read fails (i.e., uncorrectable errors exist), RFR
and RDR record the current threshold voltages of each cell in the
page using the read-retry mechanism (see Section 5.4), and identify
the cells that are susceptible to generating errors due to retention
and read disturb (i.e., cells that lie at the tails of the threshold
voltage distributions of each state, where the distributions overlap
with each other), respectively. We observe that some flash cells are
more likely to be affected by retention leakage and read disturb
than others, as a result of process variation [16, 17]. We call these
cells retention/read disturb prone, while cells that are less likely
to be affected are called retention/read disturb resistant. RFR and
RDR classify the susceptible cells as retention/read disturb prone or
resistant by inducing even more retention and read disturb on the
failed flash page, and then recording the new threshold voltages of
the susceptible cells. We classify the susceptible cells by observing
the magnitude of the threshold voltage shift due to the additional
retention/read disturb induction.

Figure 33 shows how the threshold voltage of a retention-prone
cell (i.e., a fast-leaking cell, labeled P in the figure) decreases over
time (i.e., the cell shifts to the left) due to retention leakage, while the
threshold voltage of a retention- resistant cell (i.e., a slow-leaking
cell, labeled R in the figure) does not change significantly over
time. Retention Failure Recovery (RFR) uses this classification of
retention- prone versus retention-resistant cells to correct the data
from the failed page without the assistance of ECC. Without loss
of generality, let us assume that we are studying susceptible cells
near the intersection of two threshold voltage distributions X and Y,
where Y contains higher voltages than X. Figure 33 highlights the
region of cells considered susceptible by RFR using a box, labeled
Susceptible. A susceptible cell within the box that is retention prone
likely belongs to distribution Y, as a retention-prone cell shifts
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Figure 33: Some retention-prone (P) and retention-resistant
(R) cells are incorrectly read after charge leakage due to
retention time. RFR identifies and corrects the incorrectly
read cells based on their leakage behavior.

rapidly to a lower voltage (see the circled cell labeled P within the
susceptible region in the figure). A retention-resistant cell in the
same susceptible region likely belongs to distribution X (see the
boxed cell labeled R within the susceptible region in the figure).

Similarly, Read Disturb Recovery (RDR) uses the classification
of read disturb prone versus read disturb resistant cells to correct
data. For RDR, disturb-prone cells shift more rapidly to higher
voltages, and are thus likely to belong to distribution X, while
disturb-resistant cells shift little and are thus likely to belong to
distribution Y. Both RFR and RDR correct the bit errors for the
susceptible cells based on such expected behavior, reducing the
number of errors that ECC needs to correct.

RFR and RDR are highly effective at reducing the error rate
of failed pages, reducing the raw bit error rate by 50% and 36%,
respectively, as shown in our prior works [16, 17], where more
detailed information and analyses can be found.

7 EMERGING RELIABILITY ISSUES FOR 3D
NAND FLASH

Recently, manufacturers have begun to produce SSDs that contain
three-dimensional (3D) NAND flash memory, where multiple layers
are vertically stacked to increase the density and to improve the
scalability of the memory [205]. Instead of using floating gate tran-
sistors, which store charge on a conductor, most 3D NAND flash
memories currently use charge trap transistors, which use insulating
material to store charge. While the high-level behavior of charge
trap transistors is similar to FG transistors, charge trap transistors
do introduce some differences in terms of reliability for 3D NAND
flash (as opposed to 2D planar NAND flash, which we have exa-
mined throughout this article so far). For example, the tunneling
oxide in charge trap transistors is less susceptible to breakdown
than the oxide in floating gate transistors during high-voltage ope-
ration, increasing the endurance of the transistor [205]. Charge trap
transistors are, however, more susceptible to data retention leakage.
Due to the possibility that charge can now escape (i.e., migrate)
across the z-dimension in addition to through the tunnel oxide, 3D
NAND flash cells tend to leak more rapidly, especially soon after
being programmed [205].

Another, albeit short-term, change with 3D NAND flash is the in-
crease in process technology feature size. Contemporary 3D NAND
flash can contain 48–64 layers, allowing manufacturers to use lar-
ger feature sizes (e.g., 50–54 nm) than commonly used feature sizes
in planar flash (e.g., 15–19 nm while still increasing memory den-
sity [205]. As discussed in Section 4, many of the errors observed
in 2D planar NAND flash are exacerbated as a result of significant
process scaling. For example, while read disturb is a prominent
source of errors at small feature sizes (e.g., 20–24 nm), its effects
are small at larger feature sizes [16]. Likewise, cell-to-cell program
interference is not a significant issue at larger process technolo-
gies, leading manufacturers to revert to one-shot programming
(see Section 3.4) for 3D NAND flash [152]. As the transistors are
larger in the current 3D NAND flash generations, the endurance
(i.e., the maximum P/E cycle count) of the flash cells has increased
as well, by over an order of magnitude [152]. However, rigorous
studies that examine error characteristics of and error mitigation
techniques for 3D NAND flash memories are yet to be published.
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While these changes with 3D NAND flash are likely to reduce re-
liability issues due to program interference and read disturb as com-
pared to planar NAND flash, the other errors outlined in Section 4
are likely to remain prevalent in 3D NAND flash. In fact, reten-
tion errors are likely to become exacerbated. As such, all described
techniques covered in this paper still apply to 3D NAND flash,
though their relative benefits are yet to be evaluated. With its in-
creased susceptibility to data retention leakage, advanced retention
mitigation and recovery techniques, such as those described in
Sections 5.3 and 5.5, should be even more actively developed and
investigated for 3D NAND flash memory. Furthermore, 3D NAND
flash memory is expected to scale down to smaller process techno-
logies in the coming years, reaching the feature sizes of modern
planar flash memory, and to make use of FG transistors [205], just
like modern planar flash memory. As such, with technology scaling
of 3D NAND flash memory, we can expect that all of the reliability
issues highlighted in this paper will be exhibited in SSDs that utilize
3D NAND flash memory.

8 SIMILAR ERRORS IN OTHER MEMORY
TECHNOLOGIES

As we discussed in Section 4, there are five major sources of errors
in flash-memory-based SSDs. Many of these error sources can also
be found in other types of memory and storage technologies. In
this section, we take a brief look at the major reliability issues
that exist within DRAM and in emerging nonvolatile memories. In
particular, we focus on DRAM in our discussion, as modern SSD
controllers have access to dedicated DRAM of considerable capacity
(e.g., 1GB for every 1 TB of SSD capacity), which exists within the
SSD package (see Section 2). Major sources of errors in DRAM
include data retention, cell-to-cell interference, and read disturb.
There is a wide body of work on mitigation mechanisms for the
errors we describe in this section, but we explicitly discuss only a
select number of them here.

Data Retention Errors in DRAM. DRAM uses the charge
within a capacitor to represent one bit of data. Much like the floa-
ting gate within NAND flash memory, charge leaks from the DRAM
capacitor over time, leading to data retention issues. Charge leakage
in DRAM, if left unmitigated, can lead to much more rapid data
loss than the leakage observed in a NAND flash cell. While leakage
from a NAND flash cell typically leads to data loss after several
days to years of retention time (see Section 4.4), leakage from a
DRAM cell leads to data loss after a retention time on the order
of milliseconds to seconds [112]. Due to the rapid charge leakage
from DRAM cells, a DRAM controller periodically refreshes all
DRAM cells in place [30, 73, 80, 112, 113, 154, 158] (similar to the
techniques discussed in Section 5.3, but at a much smaller time
scale). DRAM standards require a DRAM cell to be refreshed once
every 64ms [73]. As the density of DRAM continues to increase
over successive product generations (e.g., by 128x between 1999
and 2017 [29, 32]), the performance and energy overheads required
to refresh an entire DRAM module have grown significantly [113].

To combat the growing performance and energy overheads of re-
fresh, two classes of techniques have been developed. The first
class of techniques reduce the frequency of refresh operations
without sacrificing the reliability of data stored in DRAM (e.g.,

[71, 80, 82, 113, 154, 158, 182]). To reduce the frequency of refresh
operations, a number of works take advantage of the fact that the
vast majority of DRAM cells can retain data without loss for much
longer than 64ms, as various experimental studies of real DRAM
chips (e.g., [80, 87, 106, 113, 154, 158]) demonstrate. The second
class of techniques reduce the interference caused by refresh re-
quests on demand requests (e.g., [30, 133, 172]). These works either
change the scheduling order of refresh requests [30, 133, 172] or
slightly modify the DRAM architecture to enable the servicing of
refresh and demand requests in parallel [30]. More findings on the
nature of DRAM data retention and associated errors, as well as
relevant experimental data frommodern DRAM chips, can be found
in our prior works [29, 30, 63, 80, 81, 83, 106, 112, 113, 154, 158].

Cell-to-Cell Interference Errors in DRAM. Another simila-
rity between the capacitive DRAM cell and the floating gate cell in
NAND flash memory is that they are both vulnerable to cell-to-cell
interference. In DRAM, one important way in which cell-to-cell
interference exhibits itself is the data-dependent retention beha-
vior, where the retention time of a DRAM cell is dependent on
the values written to nearby DRAM cells [80–82, 112, 154]. This
phenomenon is called data pattern dependence (DPD) [112]. Data
pattern dependence in DRAM is similar to the data-dependent na-
ture of program interference that exists in NAND flash memory
(see Section 4.3). Within DRAM, data dependence occurs as a result
of parasitic capacitance coupling (between DRAM cells). Due to
this coupling, the amount of charge stored in one cell’s capacitor
can inadvertently affect the amount of charge stored in an adjacent
cell’s capacitor [80–82, 112, 154]. As DRAM cells become smaller
with technology scaling, cell-to-cell interference worsens because
parasitic capacitance coupling between cells increases [80, 112].
More findings on cell-to-cell interference and the data-dependent
nature of cell retention times in DRAM, along with experimental
data obtained from modern DRAM chips, can be found in our prior
works [29, 80–83, 112, 154, 158].

Read Disturb Errors in DRAM. Commodity DRAM chips that
are sold and used in the field today exhibit read disturb errors [94],
also called RowHammer-induced errors [136], which are conceptu-
ally similar to the read disturb errors found in NAND flash memory
(see Section 4.5). Repeatedly accessing the same row in DRAM
can cause bit flips in data stored in adjacent DRAM rows. In or-
der to access data within DRAM, the row of cells corresponding
to the requested address must be activated (i.e., opened for read
and write operations). This row must be precharged (i.e., closed)
when another row in the same DRAM bank needs to be activated.
Through experimental studies on a large number of real DRAM
chips, we show that when a DRAM row is activated and precharged
repeatedly (i.e., hammered) enough times within a DRAM refresh
interval, one or more bits in physically-adjacent DRAM rows can
be flipped to the wrong value [94]. This DRAM failure mode affects
more than 80% of the DRAM chips we tested [94]. As indicated
above, this read disturb error mechanism in DRAM is popularly
called RowHammer [136].

Various recent works show that RowHammer can be maliciously
exploited by user-level software programs to (1) induce errors in
existing DRAM modules [94, 136] and (2) launch attacks to com-
promise the security of various systems [7, 9, 57, 136, 160, 164, 165,
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181, 198]. For example, by exploiting the RowHammer read disturb
mechanism, a user-level program can gain kernel-level privileges
on real laptop systems [164, 165], take over a server vulnerable to
RowHammer [57], take over a victim virtual machine running on
the same system [7], and take over a mobile device [181]. Thus, the
RowHammer read disturb mechanism is a prime (and perhaps the
first) example of how a circuit-level failure mechanism in DRAM
can cause a practical and widespread system security vulnerability.3
We believe similar (yet more difficult to exploit) vulnerabilities exist
in MLC NAND flash memory as well, as described in our recent
work [12].

The RowHammer effect in DRAMworsens as the manufacturing
process scales down to smaller node sizes [94, 136]. More findings
on RowHammer, along with extensive experimental data from real
DRAM devices, can be found in our prior works [89, 94, 136].

Large-Scale DRAM Error Studies. Like flash memory, DRAM
is employed in a wide range of computing systems, at scale. Thus,
there is a similar need to study the aggregate behavior of errors ob-
served in a large number of DRAM chips deployed in the field. Akin
to the large-scale flash memory SSD reliability studies discussed in
Section 4.6, a number of experimental studies characterize the relia-
bility of DRAMat large scale in the field (e.g., [70, 123, 163, 169, 170]).
Two notable results from these studies are that (1) unlike SSDs,
DRAM does not show any clearly discernable trend where higher
utilization and age lead to a greater raw bit error rate [123]; and
(2) the increase in the density of DRAM chips with technology
scaling leads to higher error rates [123].

Latency-Related Errors in DRAM. Other experimental stu-
dies examine the tradeoff between DRAM reliability and latency [28,
29, 32, 33, 63, 101, 103, 106]. These works perform extensive ex-
perimental studies on real DRAM chips to identify the effect of
(1) temperature, (2) supply voltage, and (3) manufacturing process
variation that exists in DRAM on the latency and reliability charac-
teristics of different DRAM cells and chips. The temperature, supply
voltage, and manufacturing process variation all dictate the amount
of time that each cell needs to safely complete its operations. Our
works examine how one can reliably exploit (1) latency variation
across different operating temperatures and across different DRAM
modules to reduce the access latency of each module [106]; (2) the
relation between supply voltage and latency variation to reduce the
amount of system energy consumed [33]; and (3) manufacturing
process induced latency variation [32] and design-induced latency
variation [103] across the cells within a single DRAM chip to reduce
access latency to different parts of the chip. One can further reduce
latency by sacrificing some amount of reliability and performing
error correction to fix the resulting errors [103]. More information
about the errors caused by reduced latency operation in DRAM
chips and the tradeoff between reliability and latency can be found
in our prior works [29, 32, 33, 63, 101, 103, 106, 118].

Error Correction in DRAM. In order to protect the data stored
within DRAM from various types of errors, some (but not all) DRAM
modules employ ECC [118]. The ECC employed within DRAM is
much weaker than the ECC employed in SSDs (see Section 6) for

3Note that various solutions to RowHammer exist [89, 94, 136], but we do not discuss
them here.

various reasons. First, DRAM has a much lower access latency, and
error correction mechanisms should be designed to ensure that
DRAM access latency does not increase significantly. Second, the
error rate of a DRAM chip tends to be lower than that of a flash
memory chip. Third, the granularity of access is much smaller in a
DRAM chip than in a flash memory chip, and hence sophisticated
error correction can come at a high cost. The most common ECC
algorithm used in commodity DRAM modules is SECDED (single
error correction, double error detection) [118]. Another ECC algo-
rithm available for some commodity DRAM modules is Chipkill,
which can tolerate the failure of an entire DRAM chip within a
module [47]. For both SECDED and Chipkill, the ECC information
is stored on one or more extra chips within the DRAM module,
and, on a read request, this information is sent alongside the data
to the memory controller, which performs the error detection and
correction algorithm.

As DRAM scales to smaller technology nodes, its error rate
continues to increase [94, 123, 135, 136, 139] and effects like read
disturb [94], cell-to-cell interference [80–83, 112, 154], and variable
retention time [80, 112, 154, 158] become more severe [94, 135, 136,
139]. As a result, there is an increasing need for (1) employing ECC
algorithms in all DRAM chips/modules; (2) developing more sophi-
sticated and efficient ECC algorithms for DRAM chips/modules;
and (3) developing error-specific mechanisms for error correction.
To this end, recent work follows various directions. First, in-DRAM
ECC, where correction is performed within the DRAMmodule itself
(as opposed to in the controller), is proposed [79]. One work shows
how exposing this in-DRAM ECC information to the memory con-
troller can provide Chipkill-like error protection at much lower
overhead than the traditional Chipkill mechanism [141]. Second,
various works explore and develop stronger ECC algorithms for
DRAM (e.g., [85, 86, 188]), and explore how to make ECC more effi-
cient based on the current DRAM error rate (e.g., [2, 38, 47, 180]).
Third, recent work shows how the cost of ECC protection can be
reduced by (1) exploiting heterogeneous reliability memory [118],
where different portions of DRAM use different strengths of error
protection based on the error tolerance of different applications and
different types of data [114, 118], and (2) using the additional DRAM
capacity that is otherwise used for ECC to improve system perfor-
mance when reliability is not as important for the given application
and/or data [117].

Many of these works that propose error mitigation mechanisms
do not distinguish between the characteristics of different types
of errors. We believe that in addition to providing sophisticated
and efficient ECC mechanisms in DRAM, there is also significant
value in and opportunity for exploring specialized error mitigation
mechanisms that are customized for different error types, again, just
as it is done for flash memory (as we discussed in Section 5). One
such example of a specialized error mitigation mechanism is targe-
ted to fix the RowHammer read disturb mechanism, and is called
Probabilistic Adjacent Row Activation (PARA) [94, 136]. The key idea
of PARA is to refresh the rows that are physically adjacent to an
activated row, with a very low probability. PARA is shown to be
very effective in fixing the RowHammer problem at no storage cost
and at very low performance overhead [94].
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Errors in Emerging Nonvolatile Memory Technologies.
DRAM operations are several orders of magnitude faster than SSD
operations, but DRAM has two major disadvantages. First, DRAM
offers orders of magnitude less storage density than NAND-flash-
memory-based SSDs. Second, DRAM is volatile (i.e., the stored data
is lost on a power outage). Emerging nonvolatile memories, such
as phase-change memory (PCM) [97–99, 159, 192, 204, 208], spin-
transfer torque magnetic RAM (STT-RAM or STT-MRAM) [96, 140],
metal-oxide resistive RAM (RRAM) [191], and memristors [39, 171],
are expected to bridge the gap between DRAM and SSDs, providing
DRAM-like access latency and energy, and at the same time SSD-
like large capacity and nonvolatility (and hence SSD-like data per-
sistence). PCM-based devices are expected to have a limited lifetime,
as PCM can only endure a certain number of writes [97, 159, 192],
similar to the P/E cycling errors in NAND-flash-memory-based
SSDs (though PCM’s write endurance is higher than that of SSDs).
PCM suffers from resistance drift [192], where the resistance used
to represent the value shifts higher over time (and eventually in-
troduces a bit error), similar to how charge leakage in NAND flash
memory and DRAM lead to retention errors over time. STT-RAM
predominantly suffers from retention failures, where the magnetic
value stored for a single bit can flip over time, and read disturb
(different from the read disturb in DRAM and flash memory), where
reading a bit in STT-RAM can inadvertently induce a write to that
same bit [140]. Due to the nascent nature of emerging nonvolatile
memory technologies and the lack of availability of large-capacity
devices built with them, extensive and dependable experimental
studies have yet to be conducted on the reliability of real PCM,
STT-RAM, RRAM, and memristor chips. However, we believe that
similar error mechanisms to those we discussed in this paper for
flash memory and DRAM are likely to be prevalent in emerging
technologies as well, albeit with different underlying mechanisms
and error rates.

9 CONCLUSION
We provide a survey of the fundamentals of and recent research
in NAND-flash-memory-based SSD reliability. As the underlying
NAND flash memory within SSDs scales to increase storage density,
we find that the rate at which raw bit errors occur in the memory
increases significantly, which in turn reduces the lifetime of the
SSD. We describe the prevalent error mechanisms that affect NAND
flash memory, and examine how they behave in modern NAND
flash memory chips. To compensate for the increased raw bit error
rate with technology scaling, a wide range of error mitigation and
data recovery mechanisms have been proposed. These techniques
effectively undo some of the SSD lifetime reductions that occur due
to flashmemory scaling.We describe the state-of-the-art techniques
for error mitigation and data recovery, and discuss their benefits.
Even though our focus is on MLC and TLC NAND flash memories,
for which we provide data from real flash chips, we believe that
these techniques will be applicable to emerging 3D NAND flash
memory technology as well, especially when the process techno-
logy scales to smaller nodes. Thus, we hope the tutorial presented
in this work on fundamentals and recent research not only ena-
bles practitioners to get acquainted with flash memory errors and
how they are mitigated, but also helps inform future directions

in NAND flash memory and SSD development as well as system
design using flash memory. We believe future is bright for system-
level approaches that codesign system and memory [135, 136, 139]
to enhance overall scaling of platforms, and we hope that the exam-
ples of this approach presented in this tutorial inspire researchers
and developers to enhance future computing platforms via such
system-memory codesign.
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APPENDIX: TLC THRESHOLD VOLTAGE
DISTRIBUTION DATA

Table 4: Normalized mean (top) and standard deviation
(bottom) values for threshold voltage distribution of each
voltage state at various P/E cycle counts (Section 4.1).

P/E
Cycles ER P1 P2 P3 P4 P5 P6 P7

0 -110.0 65.9 127.4 191.6 254.9 318.4 384.8 448.3
200 -110.4 66.6 128.3 192.8 255.5 319.3 385.0 448.6
400 -105.0 66.0 127.3 191.7 254.5 318.2 383.9 447.7

1,000 -99.9 66.5 127.1 191.7 254.8 318.1 384.4 447.8
2,000 -92.7 66.6 128.1 191.9 254.9 318.3 384.3 448.1
3,000 -84.1 68.3 128.2 193.1 255.7 319.2 385.4 449.1

P/E
Cycles ER P1 P2 P3 P4 P5 P6 P7

0 45.9 9.0 9.4 8.9 8.8 8.9 9.3 8.5
200 46.2 9.2 9.8 9.0 8.8 9.0 9.1 8.5
400 46.4 9.2 9.5 9.1 8.8 8.8 9.0 8.6

1,000 47.3 9.5 9.4 9.1 9.3 8.9 9.4 8.8
2,000 48.2 9.7 9.7 9.4 9.3 9.1 9.5 9.1
3,000 49.4 10.2 10.2 9.6 9.7 9.5 9.8 9.4

Table 5: Normalized mean (top) and standard deviation
(bottom) values for threshold voltage distribution of each
voltage state at various data retention times (Section 4.4).

Time ER P1 P2 P3 P4 P5 P6 P7
1 day -92.7 66.6 128.1 191.9 254.9 318.3 384.3 448.1
1 week -86.7 67.5 128.1 191.4 253.8 316.5 381.8 444.9
1 month -84.4 68.6 128.7 191.6 253.5 315.8 380.9 443.6
3 months -75.6 72.8 131.6 193.3 254.3 315.7 380.2 442.2
1 year -69.4 76.6 134.2 195.2 255.3 316.0 379.6 440.8

Time ER P1 P2 P3 P4 P5 P6 P7
1 day 48.2 9.7 9.7 9.4 9.3 9.1 9.5 9.1
1 week 46.4 10.7 10.8 10.5 10.6 10.3 10.6 10.6
1 month 46.8 11.3 11.2 11.0 10.9 10.8 11.2 11.1
3 months 45.9 12.0 11.8 11.5 11.4 11.4 11.7 11.7
1 year 45.9 12.8 12.4 12.0 12.0 11.9 12.3 12.4

Table 6: Normalized mean (top) and standard deviation
(bottom) values for threshold voltage distribution of each
voltage state at various read disturb counts (Section 4.5).

Read
Disturbs ER P1 P2 P3 P4 P5 P6 P7

1 -84.2 66.2 126.3 191.5 253.7 316.8 384.3 448.0
1,000 -76.1 66.7 126.6 191.5 253.6 316.4 383.8 447.5

10,000 -57.0 67.9 127.0 191.5 253.3 315.7 382.9 445.7
50,000 -33.4 69.9 128.0 191.9 253.3 315.4 382.0 444.1

100,000 -20.4 71.6 128.8 192.1 253.3 315.0 381.1 443.0

Read
Disturbs ER P1 P2 P3 P4 P5 P6 P7

1 48.2 9.7 9.7 9.4 9.3 9.1 9.5 9.1
1,000 47.4 10.7 10.8 10.5 10.6 10.3 10.6 10.6

10,000 46.3 12.0 11.7 11.4 11.4 11.4 11.7 11.7
50,000 46.1 12.3 12.1 11.7 11.6 11.7 12.0 12.4

100,000 45.9 12.8 12.4 12.0 12.0 11.9 12.3 12.4
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