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ABSTRACT

Many compilers rely on branch prediction to improve program
performance by identifying frequently executed regions and by
aiding in scheduling instructions. Profile-based predictors require
a time-consuming and inconvenient compile-profile-compile cycle
in order to make predictions. We present a program-based branch
predictor that performs well for a large and diverse set of programs
written in C and Fortran. In addition to using natural loop analysis
to predict branches that control the iteration of loops, we focus on
heuristics for predicting non-loop branches, which dominate the
dynamic branch count of many programs. The heuristics are sim-
ple and require little program analysis, yet they are effective in
terms of coverage and miss rate. Although program-based predic-
tion does not equal the accuracy of profile-based prediction, we
believe it reaches a sufficiently high level to be useful. Additional
type and semantic information available to a compiler would
enhance our heuristics.

1. INTRODUCTION

In this paper we study the behavior of branches in programs
and show that simple, static program-based heuristics can
predict branch directions with surprisingly high accuracy.
Our heuristics go beyond simply identifying loop branches,
because in many programs, non-loop branches execute
more frequently than loop branches. These heuristics are
inexpensive to employ and simple to implement, yet accu-
rately predict a high percentage of loop and non-loop
branches for a large and diverse set of programs, including
many programs with complex conditional control flow.

Our measurements show that a perfect static predictor
has the potential to predict dynamic loop and non-loop
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Authors’ address: 1210 W. Dayton St. Madison, WI 53706.
This work was supported by the National Science Foundation under grants
CCR-8958530 and CCR-9101035.

branches with a miss rate of approximately 10%. Naive
strategies that always predict the target or fall-thru succes-
sor of a non-loop branch have a miss rate of approximately
50%. Our heuristic has an average miss rate of 26% for
non-loop branches, with good performance on benchmarks
that appear, at first, difficult to predict. Taking into account
loop branches—for which we employ a more accurate
heuristic than the common technique of simply identifying
backwards branches—our heuristics have an average miss
rate of 20%.

Many compiler optimizations rely on branch prediction
to identify heavily-executed paths [6, 12, 14]. In addition,
recently introduced architectures, such as the DEC
Alpha [15] and MIPS R4000 [9], exact a heavy pipeline
penalty for mispredicting a branch (up to 10 cycles [15]).
To help alleviate this problem, some architectures predict
that forward conditional branches are not taken and back-
ward conditional branches are taken, thereby relying on a
compiler to arrange code to conform to these expectations.
Run-time profile information [2, 8] from a program execu-
tion typically is used to statically predict branch directions.
Fisher and Freudenberger observed that profiled-based
static branch prediction works well because most branches
take one direction with high probability and the highly
probable direction is the same across different program exe-
cutions [7].

Profile-based branch prediction can be quite accurate, but
it is inconvenient and time-consuming to use. First, a pro-
gram is compiled. To be profiled, a program must be
instrumented with counting code, which may be done by the
compiler or another tool. The instrumented program exe-
cutes, possibly several times, producing a profile. Finally,
the program can be recompiled with the aid of the profile.
This process requires two compilations and an execution.
Furthermore, when the program changes, the entire process
must be repeated. On the other hand, program-based pred-
iction can be employed during the original compilation to
make branch predictions. Although program-based predic-
tion is a factor of two worse, on the average, than profile-
based prediction, we believe it reaches a sufficiently high
level to be useful.

This paper is organized as follows. Section 2 contains
background material and describes the benchmark pro-
grams. Section 3 classifies loop and non-loop branches and
compares their behavior. Section 4 presents several simple
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heuristics for non-loop branches and measures their effec-
tiveness in isolation. Section 5 considers combining these
simple heuristics into a complete heuristic and contains the
results for this heuristic. Section 6 presents results on how
our heuristic performs at finding sequences of instructions
without a mispredicted branch. We compare profile-based
methods for measuring this quantity with trace-based
methods and show why trace-based methods are preferable.
Section 7 examines the performance of our heuristic on dif-
ferent datasets. Section 8 reviews related work and Section
9 concludes the paper.

2. BACKGROUND

We restrict our heuristics to predicting two-way conditional
branches with fixed targets. Throughout the paper, the
word branch refers to such branches. We do not consider
branches whose target is dynamically determined (by
lookup in a jump table, for example). Associated with each
conditional branch instruction is its target successor—the
instruction to which control passes if the branch condition
evaluates to true—and its fall-thru successor—the instruc-
tion to which control passes if the branch condition evalu-
ates to false.

We used our profiling and tracing tool QPT [2] both as a
platform for studying branch behavior and for making
branch predictions. QPT takes as input a MIPS executable
file and produces an instrumented program that generates an
edge profile (i.e., for each branch, a count of how many
times control passes to the target and fall-thru successor)
when run. QPT can also instrument a program to produce
an instruction and address trace. Since QPT operates on an
executable file, all program procedures are analyzed. The
numbers in this paper include DEC Ultrix 4.2 library pro-
cedures as well as application procedures.

In order to instrument an executable file, QPT builds a
control flow graph for each procedure in the executable file.
Each vertex in the control flow graph represents a basic
block of instructions. A basic block ending with a condi-
tional branch corresponds to a vertex in the control flow
graph with two outgoing edges. The root vertex of the con-
trol flow graph is the entry point of the procedure. A basic
block containing a return (procedure exit) has no successors
in the control flow graph.

Some of our heuristics make use of the control flow
graph’s domination and postdomination relations [1]. A
vertex v dominates w if every path from the entry point of
the procedure to w includes v. A vertex w postdominates v
if every path from v to any exit vertex includes w. If the
successor of a branch postdominates the branch, then no
matter which direction the branch takes, the successor even-
tually executes.

We analyzed the programs in the SPEC89 benchmark
suite [4], along with a number of other programs. These
benchmarks (23 of them) are listed in Table 1, along with a

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Size

Program Description Lng. (1Kb)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
congress Interp. for Prolog-like lang. C++ 856
ghostview X postscript previewer C 831
gcc * GNU C compiler C 688iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
lcc Fraser & Hanson’s C cmplr. C 254
rn Net news reader C 221
espresso * PLA minimization C 188iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
qpt Profiling and tracing tool C 143
awk Pattern scanner & processer C 102
xlisp * Lisp interpreter C 78iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
eqntott * Boolean eqns. to truth table C 45
addalg Integer program solver C 33
compress File compression utility C 25iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep Search file for regular expr. C 20
poly Polydominoes game C 16iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
spice2g6 * Circuit simulation F 385
doduc * Hydrocode simulation F 184
fpppp * Two-electron integral deriv. F 168iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
dnasa7 * Floating point kernels F 90
tomcatv * Vectorized mesh generation F 66
matrix300 * Matrix multiply F 61iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
costScale Solve minimum cost flow C 41
dcg Conjugate gradient C 41
sgefat Gaussian elimination C 33iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 1. Benchmarks, sorted by code size. SPEC benchmarks are
marked with *. Fortran benchmarks are marked with an F.
Benchmarks were optimized (-O or -O2).

description of their function. We have broken the bench-
marks into two major groups: programs that perform little
to no floating point computation and programs that perform
many floating point operations. Within each group, pro-
grams are sorted by the size of their object code. All of the
benchmarks were compiled and analyzed on a DECstation
(a MIPS R2000/R3000 processor) with -O optimization.

The results presented in Sections 3 to 6 are for a single
execution of each benchmark. Previous work has shown
that most branches behave similarly over different execu-
tions [7]. That is, if a branch takes one direction with high
probability during one execution of a program, it most
likely takes the same direction with high probability in
other executions. The goal of this work is to show that
static prediction can accurately determine these branch
directions, rather than confirm previous results. However,
we also tested our predictor on multiple datasets per bench-
mark and found similar results to those of [7]. Section 7
summarizes the results of these experiments.

We are concerned with static branch prediction. That is,
for each branch either the target or fall-thru successor is
predicted, and this prediction does not change during the
execution of the program. Predicting a branch corresponds
to choosing one of the two outgoing edges from the vertex
containing the branch in the control flow graph. For an exe-
cution, the standard for how well static branch prediction
can potentially perform is the perfect static predictor, which
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predicts the more frequently executed outgoing edge of
each branch in a program. If the perfect predictor has a low
miss rate, then most branches follow one direction with
high probability. If most branches take both directions with
approximately equal probability, a perfect static predictor
would do no better than a 50% miss rate.

The perfect predictor provides an upper bound on the
performance of any static predictor. Branches for which the
perfect predictor performs poorly will not be predicted well
by any static predictor. To measure how well a predictor P
performs (for a given set of branches) we use two percen-
tages (notated C/D), where C is the percentage of the
dynamic branches that are mispredicted by P (i.e., miss
rate), and D is the miss rate for the perfect predictor.

3. LOOP AND NON-LOOP BRANCHES

In this section we show that predicting non-loop branches is
key to good branch prediction for many programs. In addi-
tion, we show that a static predictor can potentially do very
well at predicting non-loop branches.

First, we precisely classify branches as loop or non-loop.
Backwards branches in code (a backwards branch passes
control to an address that is before the address of the branch
instruction) usually control the iteration of loops. However,
many non-backwards branches can also control the iteration
of loops either by exiting the loop or continuing the itera-
tion [13]. For many of the benchmarks, loop branches that
are not backwards branches account for a very high percen-
tage of loop branches (for example, 40% of dynamic loop
branches in xlisp were not backwards branches and 45% of
loop branches in doduc were not backwards branches).
Such branches can be easily identified by natural loop
analysis [1] of the control flow graph, as we now review.

Each vertex that is the target of one (or more) loop back-
edges (as identified by a depth-first search of the control
flow graph from the root vertex) is a loop head. Removing
the backedges from a control flow graph eliminates all
directed cycles. The natural loop of a loop head y is:

nat-loop(y) = {y} ∪ { w | there exists a backedge x →y
and a y-free path from w to x }

An edge v→w is an exit edge if there is a loop nat-loop(y)
such that v ∈ nat-loop(y) and w ∈/ nat-loop(y). It is clear
from the definition of natural loop that for any vertex v in
nat-loop(y), at least one of v’s successors must be in nat-
loop(y). Therefore, for any vertex, either none of its outgo-
ing edges are exit edges, or exactly one of its outgoing
edges is an exit edge. We classify branches as follows:

g a branch is a loop branch if either of its outgoing
edges is an exit edge or a loop backedge.

g a branch is a non-loop branch if neither of its outgo-
ing edges is an exit edge or a backedge.

Loop branches can be very accurately predicted, as follows:
if either of the outgoing edges is a backedge, it is

predicted.1 Otherwise, the non-exit edge is predicted. The
intuition is that loops iterate many times and only exit once.
The loop predictor chooses iterating over exiting. Figure 1
illustrates loop and non-loop branches. Edges D→B and
E→B are backedges. There is one natural loop (with loop
head B) which contains the vertices B, C, D, and E. The
exit edges are C →F and E →F. Vertices A and B are non-
loop branches, while C, D and E are loop branches. The
predictions for the three loop branches are C→D, D→B,
and E→B, respectively.

Table 2 shows the breakdown of dynamic branches in
each benchmark according to this loop classification
scheme. Within each group, programs are ordered by the
percentage of dynamic branches that are non-loop branches
(“% All”). Many programs’ executions are dominated by
non-loop branches. We first consider how the loop branch
predictor performs. Under “Loop”, the column “Prd/Prf”
contains the miss rates for the loop predictor and the perfect
predictor, applied to loop branches. The results are not too
surprising: the loop predictor does very well, and in some
cases approaches the perfect predictor (compress, addalg,
eqntott). The mean miss rate for the loop predictor is 12%
± 10%.

We now consider non-loop branches. The perfect predic-
tor (“Prf”) performs very well for all benchmarks, implying
that most non-loop branches take one direction with high
probability. For some benchmarks, non-loop branches are
“better behaved” than loop branches! For instance, for gcc
and xlisp, the perfect static predictor does better on non-
loop branches than on loop branches. “Tgt” shows the

A

F

E

C

D

B

Figure 1. Control flow graph with loop. Bold edges are back-
edges and dashed edges are exit edges. Vertices C, D, and E are
loop branches.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1Although it is theoretically possible for both the outgoing edges from a
branch to be loop backedges, this never occurred in our analysis of the
benchmarks. If it did occur, one could predict the edge that leads to the in-
nermost loop.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Loop Non-Loopiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Program Prd/Prf % Tgt/Prf Rnd/Prf Big
(%/%) All (%/%) (%/%) (x %)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

gcc 22/15 73 46/11 50/11 0 0
lcc 18/14 71 47/12 52/12 1 13
qpt 19/14 70 56/9 52/9 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress 12/12 66 72/18 66/18 6 69
xlisp 28/19 62 67/7 50/7 0 0
addalg 7/7 52 43/30 43/30 7 67iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ghostview 8/6 52 45/4 47/4 4 53
eqntott 3/2 49 73/25 50/25 2 92
rn 7/3 48 51/1 51/1 3 25iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep 26/2 44 34/0 3/0 3 96
congress 21/12 40 37/3 57/3 2 10
espresso 18/12 37 59/13 42/13 3 24iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
awk 4/3 29 51/3 57/3 4 29
poly 11/10 20 50/3 31/3 3 54iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
fpppp 34/34 86 41/9 41/9 0 0
costScale 7/6 71 48/21 49/21 6 52
doduc 8/7 52 62/3 49/3 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tomcatv 1/1 38 2/0 50/0 2 98
dcg 2/2 21 40/4 46/4 4 51
spice2g6 9/8 21 53/8 52/8 2 27iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
sgefat 2/2 18 28/8 61/8 8 73
dnasa7 1/1 10 68/4 55/4 4 58
matrix300 1/1 4 99/0 66/0 3 99iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MEAN 12/8 45 51/10 49/10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Std.Dev. 10/8 23 19/8 13/8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 2. Dynamic breakdown of loop branches vs. non-loop
branches. “Prd” shows the miss rate for the loop predictor on
loop branches. For each class of branch, “Prf” is the miss rate for
the perfect predictor. “% All” is the percentage of all branches
that are non-loop branches. “Tgt” shows the results for predicting
the target successor of each non-loop branch and “Rnd” shows the
results for predicting each non-loop branch randomly. Finally,
“Big” shows how many non-loop branches in the program contri-
buted more than 5 percent of all dynamic non-loop branches, and
what percentage is accounted for by these “big” branches.

performance of a simple strategy that always predicts the
target successor. Not surprisingly, this heuristic does not
fare well. Sometimes it pays to choose the target (grep),
sometimes the fall-thru (compress), and sometimes neither
does well (qpt, rn). The mean miss rate is 51% ± 19%. In
fact, for many benchmarks, random prediction (“Rnd”) per-
forms as well as or better than predicting the target (mean
of 49% ± 13%). These numbers show that simply predict-
ing the target or fall-thru produces results of varying quality
with mediocre overall performance. For a compiler to
predict non-loop branches well for an architecture such as
the DEC Alpha, a more sophisticated strategy is necessary.

Correctly predicting a frequently executed branch has a
high payoff. The column “Big” shows how many distinct
non-loop branches in each program generate more than 5
percent of the dynamic non-loop branch executions and the
percentage of dynamic non-loop branches accounted for by
these branches. For some benchmarks (eqntott, grep,

tomcatv, matrix300) a handful of non-loop branches in the
program produce most of the dynamic non-loop branches.
For such programs, the performance of a predictor depends
crucially on predicting these branches correctly. Other pro-
grams (gcc, lcc, qpt, xlisp, congress, doduc) execute many
different branches, each of which contributes a small per-
centage of the dynamic non-loop branches.

To summarize the main points of this section:

g Branches that control the iteration of loops can be
identified and predicted accurately with natural loop
analysis. Any branch not identified as a loop branch
by natural loop analysis cannot directly control the
iteration of a loop.

g For many programs, non-loop branches dominate the
loop branches and must be predicted accurately to get
good overall branch prediction. Naively predicting
the target or fall-thru successor for non-loop branches
produces middling results.

g Static prediction has the potential to accurately
predict non-loop branches since most non-loop
branches choose one direction with high probability.

4. HEURISTICS FOR NON-LOOP BRANCHES

This section examines a number of simple heuristics for
predicting non-loop branches. The heuristics are com-
pletely automatic and only make use of information avail-
able from an executable file. Some heuristics could clearly
be refined and made more accurate with source-level infor-
mation available to a compiler. This section examines the
performance of each heuristic in isolation. The next section
discusses how we combined these heuristics.

Table 3 summarizes the results for each benchmark and
heuristic. Each entry in the table presents the percentage of
(dynamic) non-loop branches to which the heuristic applies
(bold number) and the miss rates (for the heuristic and per-
fect predictors). A table entry is left blank if the percentage
of branches covered is less than one percent. For reference,
the second column of the table (“NL”) repeats the percen-
tage of all branches that are non-loop branches. It is useful
to keep this percentage in mind when examining the effec-
tiveness of these heuristics.

4.1. Opcode Heuristic

We predict some branches based on the branch instruction
opcode. The MIPS R2000 has integer branch instructions
that branch if an operand register is less than, less than or
equal, greater than, or greater than or equal to zero (bltz,
blez, bgtz, bgez). Because many programs use
negative integers to denote error values, the heuristic
predicts that bltz and blez are not taken and that
bgtz and bgez are taken. The heuristic also identifies
floating point comparisons that check if two floating point
numbers are equal, predicting that such tests usually evalu-
ate false. As Table 3 shows, the Opcode heuristic performs
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very well for most benchmarks, although its coverage varies
widely. The heuristic performs poorly on spice2g6 because
of a high number of integer branches that compare against a
negative value.

4.2. Loop, Call, Return, Guard, and Store Heuristics

The following heuristics are based on properties of the basic
block successors of a branch. Each heuristic consists of two
pieces of fixed information, a selection property and a pred-
ictor. If neither successor to the block containing the condi-
tional branch has the selection property or both have the
property, no prediction is made. If exactly one successor
has the property, the predictor chooses either the successor
with the property, or the successor without the property,
depending on the heuristic.

Loop Heuristic

The successor does not postdominate the branch and
is either a loop head or a loop preheader (i.e., passes
control unconditionally to a loop head which it dom-
inates). If the heuristic applies, predict the successor
with the property.

The loop heuristic determines if a branch chooses between
executing or avoiding a loop and predicts that loops are

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Program NL Opcode Loop Call Return Guard Store Pointiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
gcc 73 12 26/5 8 34/8 18 28/8 10 32/10 41 36/12 27 33/7 9 46/16
lcc 71 2 33/2 10 36/12 23 14/5 9 33/6 48 29/14 47 47/13 32 37/19
qpt 70 7 31/14 10 30/10 31 18/6 22 28/5 46 16/5 24 39/8 10 15/10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress 66 56 29/13 4 87/12 32 6/6 53 41/26 58 78/9
xlisp 62 3 1/1 20 12/2 44 25/7 35 20/1 41 13/3 29 65/16 20 14/0
addalg 52 19 19/15 8 16/5 8 42/35 2 43/1 57 58/29 30 39/21 64 51/38iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ghostview 52 47 1/1 17 73/11 22 18/1 7 64/5 51 60/5 29 64/1 18 19/10
eqntott 49 2 2/1 3 10/1 2 0/0 1 63/13 2 88/12
rn 48 37 8/1 6 11/6 45 9/1 6 36/0 35 33/1 47 55/1 6 77/1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep 44 68 0/0 33 2/1
congress 40 3 12/4 4 16/5 46 29/3 31 47/3 42 38/4 26 42/6 34 15/6
espresso 37 21 22/3 3 27/4 5 33/28 27 69/16 16 34/21iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
awk 29 11 0/0 9 4/1 53 4/1 16 17/5 38 9/2 25 58/1 21 10/2
poly 20 25 0/0 34 0/0 32 36/4 46 36/3 2 100/0 31 29/6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
fpppp 86 22 20/6 5 9/0 11 54/30 15 29/4 52 27/8 25 47/6 13 91/2
costScale 71 8 2/0 3 13/3 5 9/2 2 8/0 39 45/26 39 40/17 1 23/16
doduc 52 42 31/6 7 4/0 10 58/2 17 27/1 44 25/3 27 30/4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tomcatv 38 99 99/0 99 1/0
dcg 21 13 7/3 6 14/5 7 5/1 51 4/1 28 9/3 9 68/4 1 51/2
spice2g6 21 40 81/2 3 36/1 23 9/4 15 20/5 33 29/9 29 15/3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
sgefat 18 8 12/4 10 1/1 5 26/1 3 42/1 49 34/5 44 16/9
dnasa7 10 23 11/2 7 1/1 15 32/7 78 33/4 2 73/9
matrix300 4 67 0/0 33 100/0 66 0/0 99 33/0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MEAN 16/4 25/4 22/6 28/4 38/8 45/8 41/10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Std.Dev. 19/5 28/4 17/10 16/6 26/9 20/6 29/11iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 3. The effectiveness of each heuristic for predicting non-loop branches, applied individually. For each heuristic, the table shows the
percentage of dynamic non-loop branches to which the heuristic applies (in bold) and the miss rates for those branches. A table entry is left
blank if the coverage is less than one percent of all non-loop branches. Blank entries are not counted in the mean and standard deviation.

executed rather than avoided. Many compilers generate
code for while loops and for loops by generating an if-then
around a do-until loop, replicating the loop test in the if-
then condition (this strategy avoids generating an extra
unconditional branch). The heuristic catches these cases as
well as branches around loops explicitly specified in the
program. The performance of this heuristic is quite good
except on compress, ghostview, and matrix300. It has
excellent coverage and/or performance on xlisp and
espresso and doduc.

Call Heuristic

The successor block contains a call or unconditional-
ly passes control to a block with a call that it dom-
inates, and the successor block does not postdom-
inate the branch. If the heuristic applies, predict the
successor without the property.

This heuristic surprised us. Initially, we had believed that a
branch that decided between executing or avoiding a call
would execute the call, as programs typically make calls to
perform useful work. However, the numbers strongly show
the exact opposite, especially for the first set of programs.
In examining the programs we found that many conditional
calls are to handle exceptional situations. Just one example
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of this is printing. For many programs, printing is an
exceptional occurrence. Even in applications that print to
standard output or to a file, most printing is done uncondi-
tionally rather than conditionally.

Return Heuristic

The successor block contains a return or uncondi-
tionally passes control to a block that contains a re-
turn. If the heuristic applies, predict the successor
without the property.

There are several justifications for this predictor, the most
compelling of which is recursion. Because programs must
loop or recurse to do useful work, we expect that loops
iterate and that recursive procedures recurse. A return is the
base case, which is the exception in recursion, just as a loop
exit is the exception in iteration. In addition, many returns
from procedures handle cases which occur infrequently
(i.e., error and boundary conditions). The performance of
the return heuristic is good over most of the benchmarks.

Guard Heuristic

Register r is an operand of the branch instruction, re-
gister r is used in the successor block before it is
defined,2 and the successor block does not postdom-
inate the branch. If the heuristic applies, predict the
successor with the property.

This heuristic analyzes both integer and floating point
branches. It attempts to find instances in which a branch on
a value guards a later use of that value. The intuition is that
the function of many guards is to catch exceptional condi-
tions and that the common case is for a guard to allow the
value to flow to its use.

The coverage for this heuristic is quite high over most of
the benchmarks (we remind that reader that the heuristic
applies only if exactly one of the successors has the pro-
perty). The performance is fairly good over most of the
benchmarks, with stronger performance on the second set
of programs. The heuristic performs well on most of the
pointer-chasing programs (gcc, lcc, qpt, xlisp, congress)
because the common case for a null pointer test guarding
the use of the same pointer is that the pointer is not null.
The heuristic performs very poorly on tomcatv, mispredict-
ing the two branches that account for 99% of all non-loop
branches. These branches are inside a loop that determines
the maximum value in an array of values (i.e., if (a[i,j] >
max) then max := a[i,j] fi). In this program the common
case is to avoid updating the maximum, but the guard
heuristic predicts the opposite.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2The heuristic does not analyze past calls since no interprocedural register
use or definition information is computed.

We note that global register allocation can greatly affect
the coverage of this heuristic. Without performing global
register allocation on the benchmarks, the coverage for this
heuristic would be much lower due to reloads of values,
which the heuristic does not detect.

Store Heuristic

The successor block contains a store instruction and
does not postdominate the branch. If the heuristic
applies, predict the successor without the property.

We tried this heuristic more out of curiosity than intuition
about how it might perform. On the first set of benchmarks,
the store heuristic has very poor performance and coverage
is very high. However, the performance improves on the
floating-point intensive benchmarks. On tomcatv, the
heuristic performs perfectly, correctly predicting the two
branches that the guard heuristic mispredicted.

4.3. Pointer comparisons

Pointer comparisons either compare a pointer to null or
compare two pointers. As mentioned before, in pointer-
manipulating programs, most pointers are non-null. Furth-
ermore, we expect equality comparison of two pointers to
rarely be true. To distinguish pointer comparisons from
other comparisons requires type information that we did not
have. But because the MIPS is a RISC architecture, there
are very few possible code sequences for pointer comparis-
ons. Two of the code sequences are shown below:

load rM, ...
...
beq r0, rM, ...

load rM, ...
load rN, ...
...
beq rM,rN, ...

The pointer heuristic looks for these two cases in the basic
block containing the branch and predicts that the fall-thru is
taken. It also looks for the same patterns with a bne

branch and predicts that the branch is taken.3 Of course,
similar code sequences may be generated for comparisons
that do not involve pointers. Our heuristic does not distin-
guish these cases from those involving pointers. However,
a compiler could easily make the distinction. We made one
small optimization to the heuristics, noting that many
pointers are either local variables and addressed off the SP
register (stack pointer), or are in the heap and addressed off
a register other than SP or GP (pointer to global storage).
If either load instruction loads off GP, the branch is not
considered. If a local pointer variable is allocated a regis-
ter, then the heuristic will miss comparisons involving that
pointer.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3In both cases, the heuristic does not apply if there is a call instruction
between the load and the branch.
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The results for some pointer-chasing programs such as
lcc, xlisp, qpt, and congress are fairly good. For some other
pointer-manipulating programs, such as gcc, the heuristic
does not perform as well. This is because the heuristic
picks up comparisons of variables that are not pointer types.
The heuristic could certainly be improved by incorporating
type information. As expected, the pointer heuristics per-
forms poorly on the floating point benchmarks, which con-
tain little to no pointer manipulation.

4.4. Discussion

Unsuccessful Heuristics

We tried many heuristics that were unsuccessful. These
included heuristics that were based on the number of
instructions between a branch and its target, and the domi-
nation and postdomination relations between a branch and
its successors.

Generalizations

All of the heuristics discussed above are very local in
nature. Excluding the information made available from
natural loop, domination, and postdomination analysis, they
examine only information from the basic block containing
the conditional branch or in successors of the block (at most
two steps away). Some of the heuristics could clearly be
generalized to consider more basic blocks. For example,
the guard heuristic could look farther away from the branch
to see if the branch value is reused by an instruction whose
execution is controlled by the branch. Other heuristics
could be similarly generalized. It remains to be seen how
such generalizations affect the coverage and performance of
the heuristics.

5. COMBINING THE HEURISTICS

This section describes how we combined the heuristics
from the previous section into a single heuristic procedure
for predicting non-loop branches. It is clear that more than
one heuristic can apply to a branch. We chose to combine
the heuristics by totally ordering them. To predict a branch,
the combined heuristic simply marches through the heuris-
tics until one applies and uses it to predict the branch. We
will discuss later what to do for branches for which no
heuristic applies. Many other approaches for combining the
heuristics are possible, such as a voting protocol with
weightings. However, for any such approach there is the
central problem of prioritizing the heuristics.

As Graph 1 shows (see the Appendix for graphs), the
ordering of the heuristics can have quite an impact on miss
rate. The graph shows the average miss rate (for all bench-
marks except matrix300) for non-loop branches for every
possible order (there are 7! = 5040 possible orderings),
where the orders have been sorted by miss rate.

How does one choose an order for the heuristics? The
best one can do is to analyze available benchmarks to select

a good order and hope that the order works well in the
future when additional benchmarks are encountered. We
performed the following experiment to see if it is reason-
able to expect that orders picked for a subset of the bench-
marks will perform well over all benchmarks. To get an
even number of benchmarks we eliminated matrix300, the
least interesting of the benchmarks in terms of non-loop
branch prediction. For each subset of cardinality 11 of the
remaining 22 benchmarks, we computed the order that
minimized the average miss rate (for non-loop branches) for
the benchmarks in the subset.4 These 11 benchmarks
represent the “known” benchmarks. Using the chosen
order, we computed the average miss rate for all 22 bench-

marks. The experiment consisted of ((11
22) = 705,432) trials,

one for each subset. Of the possible 5040 orders, only 622
appeared in the trials. Graph 2 shows the 101 most fre-
quently occurring orders (ordered by frequency) versus the
cumulative percentage of all trials that these orders
appeared in. As can be seen, almost 90% of the trials are
accounted for by the 40 most frequently occurring orders.
Graph 3 shows the average miss rate (for all 22 bench-
marks) for each of the 101 most frequently occurring ord-
ers.

The results of our analysis are encouraging. The 40 most
common orders account for approximately 90% of all trials
and the average miss rate for most of these orders is below
27%. The order that occurred third most frequently was
also the order that minimized the average miss rate for all
benchmarks. Table 4 shows the 10 most common orders
from the experiment and the percentage of the trials that
each one accounts for. The Opcode, Call, and Return
heuristics are consistently among the top 3 heuristics in
these orders.

Computing the order that minimizes the miss rate for a
set of benchmarks is not an inexpensive proposition, espe-
cially as the number of heuristics grows. A less expensive
approach that we explored was pair-wise analysis: we
examined pairs of heuristics and for the set of branches in
the intersection, compared the performance of the two
heuristics to determine a pair-wise ordering. The orders we
found with this analysis were generally inferior to those
found by the previous experiment, but were in the top quar-
ter of performers.

Table 5 presents the results for the simple heuristics
applied in the order Point → Call → Opcode → Return →
Store → Loop → Guard. Recall that as soon as a heuristic
applies, the prediction is made and the next branch is con-
sidered. If no heuristic applies to a branch, then a Default
prediction is made, which is simply a random prediction.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4Each benchmark gets equal weight in this average. It would also be in-
teresting to use a weighted average that accounts for the percentage of
dynamic non-loop branches in and number of predictions made for each
benchmark.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
% of Trials Miss Rate Orderiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

8.92 26.00 Opcode Call Return Store Point Loop Guardiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
8.50 25.52 Call Opcode Return Store Point Loop Guardiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
7.52 25.50 Point Call Opcode Return Store Loop Guardiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5.82 25.59 Point Loop Call Opcode Return Store Guardiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5.22 27.12 Opcode Call Return Store Point Guard Loopiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
4.99 25.99 Point Opcode Call Return Store Loop Guardiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
4.86 26.64 Call Opcode Return Store Point Guard Loopiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
4.82 26.04 Loop Call Opcode Return Store Point Guardiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
4.58 25.55 Call Opcode Return Point Store Loop Guardiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
4.40 26.02 Opcode Call Return Point Store Loop Guardiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 4. The 10 most common orders from the (11
22) experiment. Shown with each order are the percent of all trials in which the order ap-

peared and the average miss rate (all 22 benchmarks) for that order.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Program Point Call Opcode Return Store Loop Guard Defaultiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
gcc 9 46/16 17 28/7 10 28/5 6 30/10 15 28/8 3 32/5 19 33/14 21 56/14
lcc 32 37/19 21 12/3 2 29/1 4 45/7 7 31/7 2 65/20 11 32/11 20 41/11
qpt 10 15/10 26 14/6 6 30/14 13 15/6 5 47/7 3 13/12 11 10/3 24 55/14iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress 32 6/6 24 60/22 18 62/19 16 51/49 10 43/0
xlisp 20 14/0 37 23/9 15 18/2 11 71/21 7 7/1 10 59/12
addalg 64 51/38 1 36/5 19 19/15 4 14/1 2 35/9 10 60/27iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ghostview 18 19/10 21 15/1 33 1/1 2 33/9 9 8/1 4 40/13 12 45/7
eqntott 2 88/12 2 1/1 95 50/26
rn 6 77/1 42 10/1 6 1/1 5 31/0 13 50/3 5 83/0 21 57/1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep 68 0/0 32 0/0
congress 34 15/6 32 22/3 2 23/7 13 50/1 1 25/2 3 1/0 4 20/8 11 68/1
espresso 2 26/4 4 31/30 14 35/22 16 6/3 6 48/26 56 26/12iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
awk 21 10/2 38 3/2 8 11/5 3 33/0 1 29/3 4 17/2 24 34/7
poly 32 36/4 21 0/0 24 69/6 12 65/4 11 39/0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
fpppp 13 91/2 11 54/30 18 14/1 12 28/5 16 54/6 12 8/3 18 50/19
costScale 1 23/16 5 8/1 4 4/0 2 3/0 33 32/19 25 38/36 29 26/18
doduc 10 58/2 39 33/6 14 25/0 14 14/3 15 31/1 8 55/1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tomcatv 99 1/0
dcg 1 51/2 7 3/0 8 11/4 48 3/2 4 82/4 1 38/11 3 32/5 27 24/8
spice2g6 23 9/4 20 76/1 14 20/5 5 12/3 1 97/0 11 27/16 25 43/19iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
sgefat 5 27/1 5 19/5 2 46/1 40 11/10 9 1/0 35 46/6 4 53/29
dnasa7 22 11/1 13 22/7 3 0/0 56 40/4 5 70/3
matrix300 67 0/0 33 100/0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MEAN 41/10 21/5 20/5 28/6 36/7 35/5 33/12 45/11iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Std.Dev. 29/11 17/7 21/6 17/7 23/7 36/6 19/14 17/9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 5. The performance of the simple heuristics, when applied in a prioritized ordering (left to right). If no heuristic applies to a branch,
it is covered by the “Default” heuristic, which predicts randomly (the same prediction is made as in Table 2). A table entry is left blank if
the coverage is less than one percent of all non-loop branches. Blank entries are not counted in the mean and standard deviation.

For these branches, the same prediction is made as the ran-
dom prediction for Table 2.

Table 6 presents the results of the combined heuristic for
non-loop branches. The column “Heuristics” shows the
percentage of dynamic non-loop branches covered by the
heuristics excluding the default, and the miss rates for those
branches. As this column shows, the combined heuristic is
effective in terms of coverage and miss rate, even for pro-
grams with much conditional control flow such as gcc,
xlisp, and doduc. The column “+Default” adds in predic-
tions for branches covered by the default prediction. “All”

adds in predictions for loop branches, as discussed in Sec-
tion 3. For comparison, the column “Loop+Rand” shows
the miss rate for loop prediction on loop-branches and ran-
dom prediction on non-loop branches.

Table 7 contains the means and standard deviations of the
above results for all benchmarks and for the set of bench-
marks excluding eqntott, grep, tomcatv, and matrix300 (the
programs for which over 90% of the non-loop branches are
accounted for by a few branch instructions). We also
include the results for target and random prediction of non-
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Loop

Program Heuristics +Default All +Randiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
gcc 79 32/10 37/11 33/12 43/12
lcc 80 30/12 32/12 28/12 42/12
qpt 76 17/7 26/9 24/10 42/10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress 90 39/20 40/18 30/16 48/16
xlisp 90 25/7 28/7 28/12 42/12
addalg 90 42/30 43/30 26/19 26/19iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ghostview 88 12/4 16/4 12/5 28/5
eqntott 5 37/5 50/25 26/13 26/13
rn 79 27/1 34/1 20/2 28/2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep 68 1/1 1/0 15/1 16/1
congress 89 23/4 28/3 24/9 35/9
espresso 44 25/15 26/13 21/13 27/13iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
awk 76 8/2 14/3 7/3 19/3
poly 89 40/4 40/3 17/9 15/9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
fpppp 82 40/7 42/9 41/13 40/13
costScale 71 30/22 29/21 22/17 37/17
doduc 92 31/3 33/3 21/5 30/5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tomcatv 100 1/0 2/0 1/1 20/1
dcg 73 11/2 15/4 5/2 12/2
spice2g6 75 33/5 36/8 14/8 18/8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
sgefat 96 25/7 26/8 7/3 13/3
dnasa7 95 29/4 32/4 4/1 6/1
matrix300 100 33/0 33/0 3/1 4/1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 6. Final results. “Heuristics” shows the percent of non-
loop branches covered by the heuristics (bold) and the miss rates.
“+Default” adds in the predictions for non-loop branches not
covered, and “All” adds in predictions for loop branches. For
comparison, “Loop+Rand” is the miss rate for loop prediction on
loop branches and random prediction on non-loop branches.

loop branches (from Table 2) for comparison. On average,
our heuristics provide a miss rate of 26% on non-loop
branches.

6. INSTRUCTIONS PER BREAK IN CONTROL

The previous sections measured the performance of branch
prediction by miss rate. Such a metric is useful because
most modern architectures exact a performance penalty for
mispredicting a branch. However, such a metric does not
identify the performance benefit that can be realized when
the percent of mispredicted branches decreases. For exam-
ple, with good branch prediction instruction-level parallel

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Heuristics +Default Target Random All Loop+Randiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

MEAN (all) 79 26/8 29/10 51/10 49/10 19/8 27/8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Std.Dev. (all) 20 12/8 12/8 19/8 13/8 11/6 13/6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MEAN (most) 82 27/9 30/9 51/9 50/9 20/9 29/9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Std.Dev. (most) 12 10/8 9/7 11/7 8/7 10/5 12/5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 7. Means and standard deviations of results from Table 6, for two sets of programs. (all) is for all the benchmarks. (most) excludes
the programs eqntott, grep, tomcatv, and matrix300. Results for target and random prediction of non-loop branches are included for com-
parison.

architectures can find more data-independent threads to
execute in parallel [5] and compilers can globally schedule
code to improve program performance [14].

This section measures the performance of branch predic-
tion based on its ability to find sequences of instructions
without a mispredicted branch. Fisher and Freudenberger
have proposed a metric [7]: instructions executed per break
in control (a break in control is a mispredicted branch
instruction, an indirect jump other than procedure return, or
an indirect call; correctly predicted branch instructions are
not breaks in control). As they argue, the ability of branch
prediction to find long sequences of instructions without a
break in control depends not just on the branch predictor’s
miss rate, but also on the density of mispredicted branches
in the program’s instruction stream.

Fisher and Freudenberger computed instructions per
break in control (IPBC) based on execution profiles (i.e.,
total number of instructions executed / number of breaks in
control in the execution). We used instruction traces of pro-
gram executions to collect more detailed data on IPBC than
is available from an execution profile. With instruction
traces, we were able to measure the number of instructions
executed between each pair of consecutive breaks in con-
trol. This information is simply not available from an exe-
cution profile. Our data shows that the profile-based IPBC
average underestimates the length of available sequences
and fails to accurately distinguish different branch predic-
tion strategies.

We collected instruction traces for the following bench-
marks: gcc, lcc, qpt, xlisp, doduc, fpppp and spice2g6. For
the most part, we chose benchmarks that contain complex
control flow and are hard to predict. The instruction traces
were generated by the same datasets as in the previous sec-
tions. We used three branch predictors in this experiment:

g the perfect predictor (Perfect);

g loop prediction on loop branches and the ordering
Point → Call → Opcode → Return → Store → Loop
→ Guard on non-loop branches (Heuristic).

g loop prediction on loop branches and random predic-
tion on non-loop branches (Loop+Rand).

Each branch predictor defines a set of breaks in control in
a program’s execution. Each break in control B defines a
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sequence of instructions from (but not including) the break
in control preceding B up to and including B. These
sequences partition the instruction trace of an execution.
For each predictor, we recorded the following information:
∀ j, 0 ≤ j ≤ 999, the number of sequences whose length is
in the interval (10j, 10j +9). The last bucket ( j = 999)
records all sequences of length greater than or equal to
9990. For each bucket, we also recorded the sum of the
length of the sequences associated with that bucket.

We graph the distribution of sequence lengths by plotting
sequence length (x) versus the percentage of the executed
instructions accounted for by sequences of length less than
x. The graphs (4-11) can be found in the Appendix. Each
branch predictor contributes a plot to each graph. The
slower the growth rate of a plot, the better. For each predic-
tor, the graph also shows the miss rate (for all branches) and
the IPBC average. In many cases, the Heuristic plot is
closer to Loop+Rand than to Perfect because very high
accuracy is necessary to obtain long sequences, especially
in programs in which there is conditional control flow in
most loops and the basic block size is small (i.e., gcc, lcc,
qpt, xlisp and doduc). In these programs non-loop branches
are distributed fairly regularly over the entire execution, so
the miss rate (on non-loop branches) must be very low to
get long sequences. A very simple model captures this
behavior. The model assumes that every basic block is of
unit length and ends with a conditional branch, branches are
independent, and every branch has a miss rate of m. If s is a
sequence length (s ≥1) then the function

f (m,s) = m
i = 0
Σ
s-1

(1−m)i = 1 − (1−m)s

represents the percentage of the executed instructions
accounted for by sequences of length less than or equal to s.
Graph 12 shows plots of this function for miss rates
between 2.5% and 30% by increments of 2.5%. The payoff
in sequence length comes not from moving from 30% to
15%, but from reducing the miss rate to less than 15%.
Similar behavior can be found in gcc (Graph 6), lcc (Graph
7), and qpt (Graph 8). While the growth rates of the plots
and accompanying absolute miss rates are different than the
model (due to the simplifying assumptions of the model),
the relationship between miss rate and plot roughly follows
that of the model.

We now turn our attention to the IPBC average, the
profile-based metric defined previously. Because the IPBC
average evenly distributes mispredicted branches over the
entire execution, it tends to underestimate the available
sequence length. This can lead to underestimation or
overestimation of the difference between predictors,
depending on the control flow complexity of the program.

We use the benchmark spice2g6 to illustrate some of
these points. As Graph 4 shows, the IPBC average for the
perfect predictor is 183 (instructions per break in control).
However, for the perfect predictor, sequences of length less

than 183 account for approximately 30% of the executed
instructions. If we examine Graph 5, the reason for this
disparity becomes clear. This graph shows sequence length
(x) versus the percentage of breaks in control accounted for
by sequences of length less than x. Sequences of length less
than 183 account for approximately 80% of the breaks in
control. Because the profile-based IPBC average distributes
the breaks in control evenly over the entire execution, the
highly skewed distribution of sequence lengths causes the
average to underestimate the available sequence length.
This skew occurred to varying degrees in all the bench-
marks. For many of the benchmarks we examined, it was
more informative to look at the sequence length at which
50% of the executed instructions were accounted for (we
refer to this length as the dividing length). For the perfect
predictor for spice2g6, the dividing length is approximately
800 instructions.

When a high percentage of the sequences (i.e., breaks in
control) account for a low percentage of the execution, sub-
stantial differences in the IPBC average may not accurately
reflect the differences between predictors. In the case of
spice2g6, the IPBC average overestimates the difference
between the perfect predictor and other predictors. As
Graph 4 shows, the IPBC averages are 87, 108, and 183
while the dividing lengths are approximately 550, 650, and
800 instructions for the Loop+Rand, Heuristic and Perfect
predictors, respectively. The reason for this disparity has to
do with the control flow complexity of the benchmark. In
spice2g6 predicting loop branches gives a big payoff.
Correctly predicting non-loop branches is not crucial to
finding sequences of long length. However, differences in
miss rates for non-loop branches can have a large impact on
the IPBC average because the average distributes
mispredicted branches evenly over the entire execution.

The IPBC average can also underestimate the difference
between predictors. This is especially true for benchmarks
in which there is conditional control flow inside most loops.
In these cases, the non-loop branches are truly more evenly
distributed in the execution and the IPBC average tends to
underestimate the dividing length for the perfect predictor.
For example, in the lcc benchmark, the perfect predictor has
an IPBC average of 58 and a dividing length of 100, while
the Heuristic predictor has an IPBC average of 28 and a
dividing length of 40.

To summarize the results of this section:

g High accuracy on non-loop branches is crucial to get-
ting long sequences for programs with conditional
control flow in loops.

g Instruction traces provide a much more accurate view
than execution profiles of the impact of branch pred-
iction on instructions executed per mispredicted
branch. The skewed distribution of sequence lengths
causes the profile-based IPBC average to underesti-
mate the length of available sequences. Depending
on the control flow complexity of a program, this may
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cause the IPBC average to overestimate or underesti-
mate the difference between predictors.

7. OTHER DATASETS

If a program-based predictor is to be useful it must have
good performance over different executions of the same
program, as well as over executions of different programs.
We ran a number of the benchmarks on different datasets to
examine how well the Heuristic predictor performs. Graph
13 presents the results. The first plot for each benchmark is
for the dataset used in the previous sections. For each
benchmark and dataset, the graph shows the miss rate for
the perfect predictor and for the Heuristic predictor. We
emphasize that the heuristic predictor makes the same pred-
ictions no matter which dataset is used, while the perfect
predictor is dataset dependent, making the best possible
static prediction per dataset.

For many of the benchmarks, such as gcc, lcc, qpt,
compress, xlisp, ghostview, grep, espresso, costScale, and
doduc, the miss rates do not vary too widely. The con-
sistent results for benchmarks with large amounts of condi-
tional control flow is encouraging. It is often the case that a
difference in miss rates for the heuristic predictor is accom-
panied by a similar difference in the miss rates for the per-
fect predictor. For example, in the first two datasets for
spice2g6 the miss rate for both the heuristic and perfect
predictor approximately double.

8. RELATED WORK

Related work on static branch prediction falls into two
categories: profile-based and program-based. McFarling
and Hennessy reported that profile-based static prediction
yields results comparable to dynamic hardware-based
methods [11]. As mentioned before, Fisher and Freuden-
berger examined profile-based static prediction in detail,
showing that most branches behave similarly over different
executions of the same program and that profiles can be
used to effectively predict branch directions in other execu-
tions [7].

J. E. Smith discusses several static prediction strategies
based on instruction opcodes, applied to six FORTRAN
programs with success [16]. Program-based static predic-
tion was used by Bandyopadhyay, et al. in a C compiler for
the CRISP microprocessor [3]. They identified loop tests as
those in the boolean expression associated with a loop con-
struct. Branch prediction for tests associated with if state-
ments was accomplished by a table lookup based on the
comparison operator and operand types. The authors
reported an extremely high success rate but gave no
numbers or details on this table lookup strategy. Wall used
program-based heuristics to estimate various program
profiles (the number of times a particular program com-
ponent executes) rather than to predict individual
branches [17]. He reported poor results for his estimator,
compared to a randomly generated profile.

Lee and A. J. Smith’s paper on branch prediction stra-
tegies reported that for the workloads they considered (IBM
370, DEC PDP-11, and CDC 6400) branches were taken
twice as often as they fell through [10]. Lee and Smith con-
sidered branch prediction based on instruction opcodes and
dynamic branch history. They found that the miss rates for
opcode prediction ranged from 20.2% to 44.8% with an
average of 30.1%.

9. CONCLUSIONS

We have presented a simple set of program-based heuristics
for statically predicting branches and combined these into a
single branch prediction heuristic that performs well for a
large and diverse set of programs. In addition to using
natural loop analysis to predict branches that control the
iteration of loops, we focus on heuristics for predicting
non-loop branches, which dominate the dynamic branch
count in many programs. These heuristics are local in
nature, requiring little program analysis, yet are effective in
terms of coverage and miss rate. We believe that many of
these heuristics could be generalized and refined with infor-
mation available in a compiler to produce even better
results.
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APPENDIX - GRAPHS
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Graph 1. Average miss rates for each of the 7! = 5040 possible
orderings, sorted by miss rate.
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Graph 2. The most common 101 orders from the (11
22) experi-

ment and their cumulative distribution in the trials.
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Graph 3. Average miss rates (all 22 benchmarks) for the most

common 101 orders from the (11
22) experiment.
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Graph 4. spice2g6: cumulative distribution of sequence lengths.
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Graph 5. spice2g6: cumulative distribution of breaks.
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Graph 6. gcc: cumulative distribution of sequence lengths.
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Graph 7. lcc: cumulative distribution of sequence lengths.
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Graph 8. qpt: cumulative distribution of sequence lengths.
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Graph 9. xlisp: cumulative distribution of sequence lengths.
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Graph 11. fpppp: cumulative distribution of sequence lengths.

gcc lcc qpt

compress
xlisp

ghostview
eqntott

grep

espresso

costScale
doduc

spice2g6
0

10

20

30

40

50

Mi
ss

 R
ate

Perfect

Heuristic

Graph 13. Miss rates for different runs of various benchmarks. Miss rate is for all branches, loop and non-loop.
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