Digital Design \& Computer Arch. Lab 1 Supplement:
 Drawing Basic Circuits

Prof. Onur Mutlu

ETH Zurich
Spring 2022
8 March 2022

What We Will Learn?

- In Lab 1, you will design simple combinatorial circuits
- We will cover a tutorial about:
- Boolean Equations
- Logic operations with binary numbers
- Logic Gates
- Basic blocks that are interconnected to form larger units that are needed to construct a computer

Boolean Equations and

 Logic Gates
Simple Equations: NOT / AND / OR

\bar{A} (reads "not A ") is 1 iff A is 0	A	\bar{A}
	0	1
	1	0

$\mathrm{A} \cdot \mathrm{B}\left(\right.$ reads " A and B ") is 1 iff A and B are both $1 \begin{array}{cc|c} & A & B \\ \hline & A \cdot B \\ \hline & 0 & 0 \\ \mathrm{~B} & 0 \\ 0 & 1 & 0 \\ & 1 & 0 \\ \hline\end{array}$

$A+B(r e a d s ~ " A$ or B ") is 1 iff either A or B is 1	A	B	$A+B$
	0	0	0
B	0	1	1
	1	0	1
	1	1	1

Boolean Algebra: Big Picture

- An algebra on 1's and 0's
- with AND, OR, NOT operations
- What you start with
- Axioms: basic stuff about objects and operations you just assume to be true at the start

- What you derive first
- Laws and theorems: allow you to manipulate Boolean expressions
- ...also allow us to do some simplification on Boolean expressions
- What you derive later
- More "sophisticated" properties useful for manipulating digital designs represented in the form of Boolean equations

Common Logic Gates

Boolean Algebra: Axioms

Formal version

1. B contains at least two elements, 0 and 1 , such that $0 \neq 1$
2. Closure $a, b \in B$,
(i) $a+b \in B$
(ii) $a \cdot b \in B$
3. Commutative Laws: $a, b \in B$,
(i) $a+b=b+a$
(ii) $a \cdot b=b \cdot a$
4. Identities: $0,1 \in B$
(i) $a+0=a$
(ii) $a \cdot 1=a$
5. Distributive Laws:
(i) $a+(b \cdot c)=(a+b) \cdot(a+c)$
(ii) $a \cdot(b+c)=a \cdot b+a \cdot c$
6. Complement:
(i) $a+a^{\prime}=1$
(ii) $a \cdot a^{\prime}=0$

English version
Math formality...

Result of AND, OR stays in set you start with

For primitive AND, OR of 2 inputs, order doesn't matter

There are identity elements for AND, OR, give you back what you started with

- distributes over + , just like algebra
...but + distributes over ${ }^{\bullet}$, also (!!)

There is a complement element, ANDing, ORing give you an identity

Boolean Algebra: Duality

- Interesting observation
- All the axioms come in "dual" form
- Anything true for an expression also true for its dual
- So any derivation you could make that is true, can be flipped into dual form, and it stays true
- Duality -- More formally
- A dual of a Boolean expression is derived by replacing
- Every AND operation with... an OR operation
- Every OR operation with... an AND
- Every constant 1 with... a constant 0
- Every constant 0 with... a constant 1
- But don't change any of the literals or play with the complements!

Example

$$
\begin{aligned}
& a \cdot(b+c)=(a \cdot b)+(a \cdot c) \\
\rightarrow & a+(b \cdot c)=(a+b) \cdot(a+c)
\end{aligned}
$$

Boolean Algebra: Useful Laws

Operations with 0 and 1:

1. $\mathrm{X}+0=\mathrm{X}$
1D. $\mathrm{X} \cdot 1=\mathrm{X}$
2. $X+1=1$
2D. $X \cdot 0=0$

AND, OR with identities gives you back the original variable or the identity

Idempotent Lawj:
3. $\mathbf{X}+\mathbf{X}=\mathbf{X}$
3D. $X \cdot X=X$

AND, OR with self $=$ self

Involution Law:

$$
\text { 4. } \overline{(\bar{X})}=\mathrm{X}
$$

double complement $=$ no complement

Laws of Complementarity:

$$
\text { 5. } \bar{X}+\overline{\mathrm{X}}=1 \quad \text { 5D. } \mathrm{X} \cdot \overline{\mathrm{X}}=0
$$

AND, OR with complement gives you an identity

Commutative Law:
6. $\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X} \quad$ 6D. $\mathrm{X} \cdot \mathrm{Y}=\mathrm{Y} \bullet \mathrm{X} \quad$ Just an axiom...

Useful Laws (cont.)

Associative Laws:

$$
\text { 7. } \begin{aligned}
(\mathbf{X}+\mathbf{Y})+\mathrm{Z} & =\mathbf{X}+(\mathrm{Y}+\mathrm{Z}) \\
& =\mathbf{X}+\mathbf{Y}+\mathbf{Z}
\end{aligned}
$$

7D. $(\mathbf{X} \cdot \mathrm{Y}) \cdot \mathrm{Z}=\mathrm{X} \cdot(\mathrm{Y} \cdot \mathrm{Z})$ $=\mathbf{X} \cdot \mathrm{Y} \cdot \mathrm{Z}$

Distributive Laws:

8. $\mathbf{X} \cdot(\mathrm{Y}+\mathrm{Z})=(\mathrm{X} \cdot \mathrm{Y})+(\mathbf{X} \cdot \mathrm{Z})$
8D. $\mathrm{X}+(\mathrm{Y} \cdot \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z})$ Axiom

Simplification Theorems:
9. $\mathrm{X} \cdot \mathrm{Y}+\mathrm{X} \cdot \overline{\mathrm{Y}}=\mathrm{X}$
10. $X+X \cdot Y=X$
11. $(\mathbf{X}+\bar{Y}) \cdot \mathrm{Y}=\mathrm{X} \cdot \mathrm{Y}$
9D. $(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\bar{Y})=\mathrm{X}$
10D. $X \cdot(X+Y)=X$

Useful for simplifying
expressions

Actually worth remembering - they show up a lot in real designs...

DeMorgan's Law

DeMorgan's Law:

$$
\begin{aligned}
& \text { 12. } \overline{(X+Y+Z+\cdots)}=\bar{X} \cdot \bar{Y} . \bar{Z} . \ldots \\
& \text { 12D. } \overline{(X, Y . Z \ldots)}=\bar{X}+\bar{Y}+\bar{Z}+\ldots
\end{aligned}
$$

Think of this as a transformation

- Let's say we have:

$$
\mathrm{F}=\mathrm{A}+\mathrm{B}+\mathrm{C}
$$

- Applying DeMorgan’s Law (12), gives us:

$$
F=\overline{\overline{(A+B+C)}}=\overline{(\bar{A} \cdot \bar{B} \cdot \bar{C})}
$$

DeMorgan's Law (cont.)

Interesting - these are conversions between different types of logic
That's useful given you don't always have every type of gate

$$
A=\overline{(X+Y)}=\bar{X} \bar{Y}
$$

NOR is equivalent to AND with inputs complemented

\mathbf{X}							
\mathbf{Y}	$-\sim-A$	X	Y	$\overline{X+Y}$	\bar{X}	\bar{Y}	$\bar{X} \bar{Y}$
$\mathbf{0}$	0	1	1	1	1		
\mathbf{X}	0	1	0	1	0	0	
\mathbf{Y}	$0-A$	1	0	0	0	1	0
	1	1	0	0	0	0	

$$
B=\overline{(X Y)}=\bar{X}+\bar{Y}
$$

NAND is equivalent to OR with inputs complemented

B

B

X	Y	$\overline{X Y}$	\bar{X}	\bar{Y}	$\bar{X}+\bar{Y}$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

Part 1: A Comparator Circuit

- Design a comparator that receives two 4-bit numbers A and B, and sets the output bit EQ to logic-1 if A and B are equal

- Hints:
- First compare A and B bit by bit
- Then combine the results of the previous steps to set $E Q$ to logic-1 if all A and B are equal

Part 2: A More General Comparator

- Design a circuit that receives two 1-bit inputs A and B, and:
- sets its first output (O1) to 1 if $A>B$,
- sets the second output (O2) to 1 if $A=B$,
- sets the third output (O3) to 1 if $A<B$.

Part 3: Circuits with Only NAND Gates

- Design the circuit of Part 2 using only NAND gates
- Logical Completeness:
- The set of gates \{AND, OR, NOT\} is logically complete because we can build a circuit to carry out the specification of any combinatorial logic we wish, without any other kind of gate
- NAND and NOR are also logically complete

Last Words

- In this lab, you will draw the schematics of some simple operations
- Part 1: A comparator circuit
- Part 2: A more general comparator circuit
- Part 3: Designing circuits using only NAND gates
- You will find more exercises in the lab report

Report Deadline

23:59, 25 March 2022

Digital Design \& Computer Arch. Lab 1 Supplement:
 Drawing Basic Circuits

Prof. Onur Mutlu

ETH Zurich
Spring 2022
8 March 2022

