
Family Name: SOLUTIONS First Name: Student ID:

Final Exam

Digital Design and Computer Architecture (252-0028-00L)

ETH Zürich, Spring 2021

Prof. Onur Mutlu

Problem 1 (20 Points): Boolean Logic Circuits

Problem 2 (60 Points): Verilog

Problem 3 (45 Points): Finite State Machines

Problem 4 (30 Points): ISA vs. Microarchitecture

Problem 5 (45 Points): Performance Evaluation

Problem 6 (65 Points): Pipelining

Problem 7 (60 Points): Tomasulo's Algorithm

Problem 8 (75 Points): GPUs and SIMD

Problem 9 (45 Points): Branch Prediction

Problem 10 (70 Points): Caches

Problem 11 (BONUS: 25 Points): Prefetching

Problem 12 (BONUS: 35 Points): Systolic Arrays

Total (575 (515 + 60 bonus) Points):

Examination Rules:

1. Written exam, 180 minutes in total.

2. No books, no calculators, no computers or communication devices. 3 double-sided (or 6 one-
sided) A4 sheets of handwritten notes are allowed.

3. Write all your answers on this document; space is reserved for your answers after each question.

4. You are provided with scratchpad sheets. Do not answer questions on them. We will not collect them.

5. Clearly indicate your �nal answer for each problem. Answers will only be evaluated if they are readable.

6. Put your Student ID card visible on the desk during the exam.

7. If you feel disturbed, immediately call an assistant.

8. Write with a black or blue pen (no pencil, no green, red or any other color).

9. Show all your work. For some questions, you may get partial credit even if the end result is wrong due
to a calculation mistake. If you make assumptions, state your assumptions clearly and precisely.

10. Please write your initials at the top of every page.

Tips:

• Be cognizant of time. Do not spend too much time on one question.

• Be concise. You may be penalized for verbosity.

• Show work when needed. You will receive partial credit at the instructors' discretion.

• Write legibly. Show your �nal answer.

i

Initials: Digital Design and Computer Architecture August 27th, 2021

This page intentionally left blank

Final Exam Page 1 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

1 Boolean Logic Circuits [20 points]

(a) [10 points] Using Boolean algebra, �nd the simplest Boolean algebra equation for the following
min-terms:∑

(1111, 1110, 1000, 1001, 1011, 1010, 0000). Show your work step-by-step.

F = (B.C.D) + (A.(C +B))

Explanation:
F = (A.B.C.D) + (A.B.C.D) + (A.B.C.D) + (A.B.C.D) + (A.B.C.D) + (A.B.C.D) +
(A.B.C.D)

F = (B.C.D).(A+A)+(A.C).(B.D+B.D+B.D+B.D)+(A.B).(C.D+C.D+C.D+C.D)

F = (B.C.D) + (A.C) + (A.B)

F = (B.C.D) + (A.(C +B))

(b) [10 points] Convert the following Boolean equation so that it only contains NOR operations. Show
your work step-by-step.

F = A+ (B.C +A.C)

F = ((A+A+ (B.C +A.C)) + ((A+A+ (B.C +A.C))

B.C = B +B + C + C

A.C = A+A+ C + C + C + C

Explanation:

F = ((A+ (B.C +A.C))

F = ((A+ (B.C +A.C)) + ((A+ (B.C +A.C))

F = ((A+A+ (B.C +A.C)) + ((A+A+ (B.C +A.C))

B.C = B +B + C + C

A.C = A+A+ C + C + C + C

Final Exam Page 2 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

2 Verilog [60 points]

2.1 Complete the Verilog code [30 points]

For each numbered blank 1 - 5 in the following Verilog code, mark the choice below (i.e., one of
options A, B, C, D) that makes the Verilog module operate as described in the comments. The resulting
code must have correct syntax.

1 module my_module (input clk, input rst,

2 input[15:0] idata, input[1:0] op, 1 [31:0] odata);
3

4 2 nval = 32’d0; // defining a 32-bit signal with an initial value of 0
5

6 always@* begin
7 case (op)
8 2’b00:
9 nval = odata + idata; // when ’op’ is decimal 0, add ’idata’ to
10 // ’odata’ and assign the result to ’nval’
11 2’b01:
12 nval = odata - idata; // when ’op’ is decimal 1, subtract ’idata’
13 // from ’odata’ and assign the result to ’nval’
14 2’b10:
15 nval = idata; // when ’op’ is decimal 2, assign ’idata’ to ’nval’

16 3 :

17 nval = 0; // when ’op’ is decimal 3, assign 0 to ’nval’
18 endcase
19 end
20

21 // executing the following always block on the rising edge of ’clk’
22 always@ (posedge clk) begin
23 if (rst)

24 4 // resetting ’odata’ to 0 for the next cycle
25 else

26 5 // assigning ’nval’ to ’odata’ for the next cycle

27 end
28 endmodule

Provide your choice for each blank 1 - 5 below:

1 : A. output B. output reg C. output wire D. input reg

2 : A. reg[31:0] B. input[31:0] C. wire[31:0] D. int[31:0]

3 : A. 2'b3 B. 3'b3 C. 2'h11 D. default

4 : A. assign odata <= 0; B. assign odata = 0; C. odata == 0; D. odata <= 0;

5 : A. assign odata <= nval; B. assign odata = nval; C. odata == nval; D. odata <= nval;

Final Exam Page 3 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

Explanation.

1 : odata must be declared as an output signal since values are assigned to it in the
second always block. It cannot be an input signal since inputs are read-only signals and no
assignments are allowed to them. odata must be also declared as reg since the assignments
are made inside an always block.

2 : nval must be declared as reg[31:0] since values are assigned to it inside the �rst
always block.
3 : default is a correct choice since all other cases for a 2-bit values (i.e., 2’b00, 2’b01,
and 2’b10) are de�ned in the case statement. The other choices are not correct since they
do not properly specify the value of 3. For example, in 2’b3, the problem is that 3 is not a
valid binary digit but 2’b must be followed by a 2-bit binary value.

4 : Choices with assign are not valid since the assign keyword cannot be used in an
always block. Choice C does not specify an assignment operator but an equality comparison,
hence it is not a valid choice either. The correct choice is D, which assigns 0 to odata using
non-blocking assignment operator.

5 : The correct choice is D due to the same reasons as in 4 .

Final Exam Page 4 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

2.2 What Does This Code Do? [30 points]

You are given a Verilog code that you are asked to analyze and �nd out what it does.

1 module my_module2 (input clk, output[1:0] out);
2

3 reg state = 1’b0;
4 reg[1:0] my_reg = 0;
5

6 always@(posedge clk) begin
7 state <= &out ? ~state : state;
8 end
9

10 always@(posedge clk) begin
11 case(state)
12 1’b0: begin
13 my_reg <= my_reg + 1;
14 end
15 1’b1: begin
16 my_reg <= my_reg - 1;
17 end
18 endcase
19 end
20

21 assign out = my_reg;
22 endmodule

Show the values (as unsigned decimal numbers) that the out signal takes, starting from the initial
state of the module, for 16 consecutive clock (i.e., clk) cycles. Explain your answer brie�y.

out is equal to 0, 1, 2, 3, 0, 3, 2, 3, 0, 3, 2, 3, 0, 3, 2, 3 in the �rst 16 clock cycles.

Explanation.
The module either increments or decrements my_reg depending on the state. When state
is equal to 0, my_reg is incremented by 1 and otherwise decremented by 1. The value of
my_reg is directly assigned to the out signal, and both signals are 2-bit wide.
my_reg and state are both initially 0. Therefore, in subsequent cycles, my_reg gets incre-
mented until it reaches 3. During the next cycle, a new value for state is being computed
(i.e., the inverse of state as ∼state). However, since the new value of the state is not
updated until the next positive edge of the clk, the second always block reads state as 0,
and thus my_reg gets incremented again to become 0 (the maximum value a 2-bit register
can represent is 3 and incrementing my_reg one more time makes it 0).
During the next cycle, state is 1 and my_reg is decremented back to 3. Since my_reg (and
thus out) being 3 inverts state, state becomes 0 in the subsequent cycle and my_reg
becomes 2 during the positive edge of clk when state is inverted. Then, my_reg gets
incremented to 3 and 0 in the next consecutive cycles. Because state remains as 0 or 1
for two consecutive cycles and then gets inverted, the values of my_reg forever repeat the
sequence of (0, 3, 2, 3, 0, 3, 2, 3, . . .).

Final Exam Page 5 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

3 Finite State Machines [45 points]

3.1 Simplifying an FSM [20 points]

You are given the Mealy state machine of a one input / one output digital circuit design. Answer the
following questions for the given state diagram.

0/0
1/11/0

1/1Reset

0/0

0/1

A B

C D

1/0
0/1

(a) [10 points] Is it possible to simplify this state diagram and reduce the number of states? If so,
simplify it to the minimum number of states. Explain each step of your simpli�cation. Draw the
simpli�ed state diagram. If not, explain why it is not possible to simplify the state diagram.

Yes, it is possible.

� There is no way the state goes to C, so it is a non-used state.
� After deleting C, there is no way the state goes to D, so D is also a useless state.
� We can simplify the state diagram as shown next:

1/1Reset

0/0

A B

1/0
0/1

(b) [10 points] Assume this state machine is used to process binary numbers from the least signi�cant
bit to the most signi�cant bit. You are given an input bit stream: "10110100". Please show the
output bit stream produced by this FSM.

"01001100"
When processing a bit stream from the least signi�cant bit to the most signi�cant bit,
this state machine keeps the bits unchanged until the �rst "1" comes. Then, all the bits
are �ipped (not include the �rst "1") after the �rst "1" comes. Therefore, the output is
"01001100".

Final Exam Page 6 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

3.2 Designing an FSM [25 points]

Design a Moore �nite state machine (FSM) with one input and one output. The input provides an
unsigned binary number in a bit-serial fashion from the most-signi�cant bit to the least-signi�cant bit.
The output should be logic-1 in a clock cycle if the provided input so far is divisible by 8 (i.e., [the input
number] mod 8 = 0). (Hint: Recall that the output depends only on the current state in a Moore FSM.)

Below are some example bit-streams that should output a logic-1 value.

� 1000

� 10000

� 11000

� 111000

� 101000

To start an input bit stream, the user should reset the FSM. Draw the state diagram and explain why
it works. Your state machine should use as few states as possible and each state should have a precise
de�nition and output.

From the given examples, we can see that strings can be exactly divided by 8 are all ended
with "000" (i.e., three "0"s). Then, we de�ne S0, a state where the number is ended with
"000".
If "1" comes, then the number cannot be exactly divided by 8 and it lacks three "0"s at the
end. We de�ne this state as "E" state (S1), which means no zero at the end.
When there is a "0", then the number lacks two "0"s to be exactly divided by 8. Therefore,
we de�ne the state as "0" (S2).
When there are two "0"s, then the number lacks one more "0" to be exactly divided by 8.
Therefore, we de�ne the state as "00" (S3) .
Based on the analysis above, we can draw the �nite state machine whose output (i.e., O) is
"1" at S0 (is "0" at other states):

reset
S2: 0
O=0

1

S1: E
O=0

S0: 000
O=1

0

1

0

S3: 00
O=0

1

0
1

0

Final Exam Page 7 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

4 ISA vs. Microarchitecture [30 points]

A new CPU has two comprehensive user manuals available for purchase which describe the ISA and the
microarchitecture of the CPU, respectively.

Unfortunately, the manuals are extremely expensive, and you can only a�ord one of the two. If both
manuals might be useful, you would prefer the ISA manual since it is much cheaper than the microar-
chitecture manual.

For each of the following questions that you would like to answer, decide which manual is more likely
to help. Note: we will subtract 1 point for each incorrect answer and award 0 points for unanswered
questions (the minimum number of total points you can get for this question is 0).

1. [2 points] Number of uniquely identi�able memory locations.

1. ISA 2. Microarchitecture

2. [2 points] Number of instructions fetched per clock cycle.

1. ISA 2. Microarchitecture

3. [2 points] Support for branch prediction hints conveyed by the compiler.

1. ISA 2. Microarchitecture

4. [2 points] Number of general-purpose registers.

1. ISA 2. Microarchitecture

5. [2 points] Number of non-programmable registers.

1. ISA 2. Microarchitecture

6. [2 points] SIMD processing support.

1. ISA 2. Microarchitecture

7. [2 points] Number of integer arithmetic and logic units (ALUs).

1. ISA 2. Microarchitecture

8. [2 points] Number of read ports in the physical register �le.

1. ISA 2. Microarchitecture

9. [2 points] Endianness (big endian vs. small endian).

1. ISA 2. Microarchitecture

10. [2 points] Size of a virtual memory page.

1. ISA 2. Microarchitecture

11. [2 points] Cache coherence protocol.

1. ISA 2. Microarchitecture

12. [2 points] Number of cache blocks in the L3 cache.

1. ISA 2. Microarchitecture

13. [2 points] Ability to �ush (i.e., invalidate) a cache line using the operating system code.

1. ISA 2. Microarchitecture

14. [2 points] Number of pipeline stages.

1. ISA 2. Microarchitecture

15. [2 points] How many prefetches the hardware prefetcher generates in a clock cycle.

1. ISA 2. Microarchitecture

Final Exam Page 8 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

5 Performance Evaluation [45 points]

A multi-cycle processor P1 executes load instructions in 6 cycles, store instructions in 6 cycles, arith-
metic instructions in 2 cycles, and branch instructions in 2 cycles. Consider an application A where
40% of all instructions are load instructions, 20% of all instructions are store instructions, 30% of all
instructions are arithmetic instructions, and 10% of all instructions are branch instructions.

(a) [10 points] What is the CPI of application A when executing on processor P1? Show your work.

CPI = 0.4× 6 + 0.2× 6 + 0.3× 2 + 0.1× 2
CPI = 4.4

(b) [10 points] A new design of the processor doubles the clock frequency of P1. However, the latencies
of all instructions increase by 4 cycles. We call this new processor P2. The compiler used to gen-
erate instructions for P2 is the same as for P1. Thus, it produces the same number of instructions
for program A. What is the CPI of application A when executing on processor P2? Show your
work.

CPI = 0.4× 10 + 0.2× 10 + 0.3× 6 + 0.1× 6
CPI = 8.4

(c) [5 points] Which processor is faster (P1 or P2)? By how much (i.e., what is the speedup)? Show
your work.

P2 is 1.05× faster than P1.

Explanation.
Execution_Time_P1 = instructions× CPIP1 × clock_time

Execution_Time_P2 = instructions× CPIP2 × clock_time
2

clock_time = 1
clock_frequency

Assuming that Execution_Time_P2 < Execution_Time_P1 =⇒
Execution_Time_P1
Execution_Time_P2 > 1. Thus:

=⇒ instructions×CPIP1×clock_time

instructions×CPIP2×
clock_time

2

=⇒ 4.4×clock_time

8.4× clock_time

2

=⇒ 4.4
4.2

=⇒ 1.05

Final Exam Page 9 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

(d) [20 points] You want to improve the original P1 design by including one new optimization without
changing the clock frequency. You can choose only one of the following options:

(1) ALU: An optimized ALU, which halves the latency of both arithmetic and branch instruc-
tions.

(2) LSU: An asymmetric load-store unit, which halves the latency of load operations but doubles
the latency of store operations.

Which optimization do you add to P1 for application A? Show your work and justify your choice.

The ALU optimization.

Explanation.
Application A executes 40% load, 20% store, 30% arithmetic, and 10% branch instruc-
tions.
By Amdahl's Law, we have:

SpeedupALU = 1
(1−0.3−0.1)+ 0.3+0.1

2

= 1.25

SpeedupLSU = 1
(1−0.4−0.2)+ 0.4

2 +0.2×2
= 1.0

The ALU optimization provides 1.25× speedup, while the LSU provides no speedup at all.

Alternative Solution.
With the ALU, the new CPI of processor P1 will be:
CPIALU = 0.4× 6 + 0.2× 6 + 0.3× 2

2 + 0.1× 2
2

CPIALU = 4.0

With the LSU, the new CPI of processor P1 will be:
CPILSU = 0.4× 6

2 + 0.2× (6× 2) + 0.3× 2 + 0.1× 2
CPILSU = 4.4

Since CPIALU < CPILSU , integrating the ALU will improve the overall cycles-
per-instructions.

Final Exam Page 10 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

6 Pipelining [65 points]

Consider two pipelined machines implementing the MIPS ISA, Machine A and Machine B. Both machines
have one ALU and the following �ve pipeline stages, very similar to the basic 5-stage pipelined MIPS
processor we discussed in lectures:

1. Fetch (one clock cycle)

2. Decode (one clock cycle)

3. Execute (one clock cycle)

4. Memory (one clock cycle)

5. Write-back (one clock cycle).

Machines A and B have the following speci�cations:

Machine A Machine B

Data
Forward-
ing/Inter-
locking

Does NOT implement interlocking in hard-
ware. Relies on the compiler to order in-
structions or insert nop instructions such
that dependent instructions are correctly
executed.

Implements data dependence detection and
data forwarding in hardware. On detection
of instruction dependence, it forwards an
operand from the memory stage or from the
write-back stage to the execute stage. The
result of a load instruction (lw) can only be
forwarded from the write-back stage.

Internal
register �le
forwarding

Implemented (i.e., an instruction writes into
a register in the �rst half of a cycle and
another instruction can correctly access the
same register in the second half of the cycle).

Same as Machine A

Branch
Prediction

Predicts all branches as always-taken, and
the next program counter is available after
the decode stage.

Same as Machine A

Consider the following code segment:

Loop: lw $1, 0($4)
lw $2, 400($4)
add $3, $1, $2
sw $3, 0($4)
sub $4, $4, #4
bnez $4, Loop

Initially, $1 = 0, $2 = 0, $3 = 0, and $4 = 400.

Final Exam Page 11 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

(a) [15 points] Re-write the code segment above with minimal changes so that it gets correctly executed
in Machine A with minimal latency. You can either insert nop instructions or reorder instructions
as needed.

Loop: lw $1, 0($4)
lw $2, 400($4)
nop
nop
add $3, $1, $2
nop
nop
sw $3, 0($4)
sub $4, $4, #4
nop
nop
bnez $4, Loop

(b) [15 points] Fill the table below with the timeline of the �rst loop iteration of the code segment in
Machine A.

Instruction
Clock cycle number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

lw $1, 0($4) F D E M W
lw $2, 400($4) F D E M W
nop F D E M W
nop F D E M W
add $3, $1, $2 F D E M W
nop F D E M W
nop F D E M W
sw $3, 0($4) F D E M W
sub $4, $4, #4 F D E M W
nop F D E M W
nop F D E M W
bnez $4, Loop F D E M W

Final Exam Page 12 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

(c) [10 points] Calculate the number of cycles it takes to execute the code segment on Machine A.
Show your work in the box.

Total number of cycles: 1303.

Explanation:
The compiler reorders instructions and places six nop-s.
This is the execution timeline of the �rst iteration:

Each iteration consists of 12 instructions. Since the next program counter is available
after the decode stage of bnez, the next iteration starts with an additional delay of 1
cycle.
The last iteration takes 16 cycles, to drain the pipeline.
Thus the entire program runs for 99 * 13 + 16 = 1303 cycles.

(d) [15 points] Fill the table below with the timeline of the �rst loop iteration of the code segment in
Machine B.

Instruction
Clock cycle number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

lw $1, 0($4) F D E M W
lw $2, 400($4) F D E M W
add $3, $1, $2 F D * E M W
sw $3, 0($4) F * D E M W
sub $4, $4, #4 F D E M W
bnez $4, Loop F D E M W
lw $1, 0($4) * F D E M W

(e) [10 points] Calculate the number of cycles it takes to execute the code segment on Machine B.
Show your work in the box.

Total number of cycles: 803.

Explanation:
1 - Foward $2 from W to E in cycle 6.
2 - Foward $3 from M to E in cycle 7.
3 - Foward $4 from M to E in cycle 9.

Each iteration takes 8 cycles, including one cycle delay after bnez, because to the next
program counter is available only after the decode stage of bnez.
The last iteration takes 11 cycles, to drain the pipeline.
Thus total number of cycles is 99*8 + 11 = 803 cycles.

Final Exam Page 13 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

7 Tomasulo's Algorithm [60 points]

Consider an in-order fetch, out-of-order dispatch, and in-order retirement execution engine that employs
Tomasulo's algorithm. This engine has the following characteristics:

� The engine has four main pipeline stages: Fetch (F), Decode (D), Execute (E), and Write-back
(W).

� The engine can fetch one instruction per cycle, decode one instruction per cycle, and write back
the result of one instruction per cycle.

� The engine has two execution units: 1) an adder to execute ADD instructions and 2) a multiplier
to execute MUL instructions.

� The execution units are fully pipelined. The adder has two stages (E1-E2), and the multiplier has
four stages (E1-E2-E3-E4). Execution of each stage takes one cycle.

� The adder has a two-entry reservation station, and the multiplier has a three-entry reservation
station.

� An instruction always allocates the �rst available entry of the reservation station (in top-to-bottom
order) of the corresponding execution unit.

� Full data forwarding is available, i.e., during the last cycle of the E stage, the tags and data are
broadcast to the reservation station and the Register Alias Table (RAT). For example, an ADD
instruction updates the reservation station entries of the dependent instructions in the E2 stage.
So, the updated value can be read from the reservation station entry in the next cycle. Therefore,
a dependent instruction can potentially begin its execution in the next cycle (after E2).

� The multiplier and adder have separate output data buses, which allow both the adder and the
multiplier to update the reservation station and the RAT in the same cycle.

� An instruction continues to occupy a reservation station slot until it �nishes the Write-back (W)
stage. The reservation station entry is deallocated after the Write-back (W) stage.

7.1 Problem De�nition

The processor is about to fetch and execute �ve instructions. Assume the reservation stations (RS) are
all initially empty, and the initial state of the register alias table (RAT) is given below in Figure (a).
Instructions are fetched, decoded, and executed as discussed in class. At some point during the execution
of the �ve instructions, a snapshot of the state of the RS and the RAT is taken. Figures (b) and (c)
show the state of the RS and the RAT at the snapshot time. A dash (�) indicates that a value has been
cleared. A question mark (?) indicates that a value is unknown to you.

Reg Valid Tag Value

R0 1 � 1900
R1 1 � 82
R2 1 � 1
R3 1 � 3
R4 1 � 10
R5 1 � 5
R6 1 � 23
R7 1 � 35
R8 1 � 61
R9 1 � 4

(a) Initial state of the RAT

Reg Valid Tag Value

R0 1 ? 1900
R1 1 ? 82
R2 1 ? 1
R3 1 ? 45
R4 0 A ?
R5 0 F ?
R6 1 ? 23
R7 1 ? 35
R8 0 L ?
R9 0 B ?

(b) State of the RAT at the snap-
shot time

ID V Tag Value V Tag Value
- - - - - - -
L 1 ? 82 1 ? 1

ID

+

V Tag Value V Tag Value

D 0 T – 0 H –
K 0 D – 0 Z –

ID

×

V Tag Value V Tag Value

H 1 – 35 1 – 35

Z 1 – 82 0 – H

E 1 – 7 1 – 35

T 1 – 14 1 – 35

ID V Tag Value V Tag Value
F 1 ? 45 1 ? 1
A 0 F ? 1 ? 10
B 1 ? 23 1 ? 45

ID

+

V Tag Value V Tag Value

D 0 T – 0 H –
K 0 D – 0 Z –

ID

×

V Tag Value V Tag Value

H 1 – 35 1 – 35

Z 1 – 82 0 – H

E 1 – 7 1 – 35

T 1 – 14 1 – 35

(c) State of the RS at the snapshot time

Final Exam Page 14 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

7.2 Questions

7.2.1 Data�ow Graph [40 points]

Based on the information provided above, identify the instructions and provide the data�ow graph
below for the instructions that have been fetched. Please appropriately connect the nodes using edges
and specify the direction of each edge. Label each edge with the destination architectural register and
the corresponding Tag.

R4 R7 R2 R1 R6

+

×

×

E/R3

F/R5

A/R4

+

L/R8

×

B/R9

Register IDs:

7.2.2 Program Instructions [20 points]

Fill in the blanks below with the �ve-instruction sequence in program order. There can be more than
one correct ordering. Please provide only one correct ordering. When referring to registers, please use
their architectural names (R0 through R9). Place the register with the smaller architectural name on
the left source register box.
For example, ADD R8 ⇐ R1, R5.

ADD R3 ⇐ R4 , R7

MUL R5 ⇐ R3 , R2

MUL R4 ⇐ R5 , R4

ADD R8 ⇐ R1 , R2

MUL R9 ⇐ R6 , R3

Final Exam Page 15 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

8 GPUs and SIMD [75 points]

We de�ne the SIMD utilization of a program that runs on a GPU as the fraction of SIMD lanes that are
kept busy with active threads during the run of a program.

The following code segments are run on a GPU. We assume that (1) A resides in memory and is shared
by all threads, (2) s resides in a register and is private to each thread, and (3) the code segments are
correct (i.e., do not think about any correctness issues when answering this question).

A warp in the GPU consists of 32 threads, and there are 32 SIMD lanes in the GPU. Each thread
executes a single iteration of the outermost loop (with index i). Assume that the data values of the
array A are already in vector registers so there are no memory loads and stores in this program. (Hint:
Notice that there are 4 instructions in each iteration of the outermost loop of both code segments.)

s = 1;
for (i = 0; i < 1024; i++) {

for (j = 0; j < 10; j++) { // Inst. 1
if (i % (2 * s) == 0) // Inst. 2

A[i] += A[i + 1]; // Inst. 3
s = s << 1; // Inst. 4

}
}

Code Segment 1

s = 512;
for (i = 0; i < 1024; i++) {

for (j = 0; j < 10; j++) { // Inst. 1
if (i < s) // Inst. 2

A[i] += A[i + s]; // Inst. 3
s = s >> 1; // Inst. 4

}
}

Code Segment 2

Please answer the following questions.

(a) [5 points] How many warps does it take to execute these code segments?

32 warps.

Explanation:
The number of warps is calculated as:
#Warps = d#Total_threads

#Warp_size e,

where
#Total_threads = 1024 = 210 (i.e., one thread per loop iteration),
and
#Warp_size = 32 = 25 (given).

Thus, the number of warps needed to run this program is:

#Warps = d 2
10

25 e = 25 = 32.

Final Exam Page 16 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

(b) [10 points] What is the SIMD utilization of the �rst iteration of the inner loop (j = 0) for Code
Segment 1? Show your work. (Hint: The warp scheduler does not issue instructions when no
thread is active).

The utilization of the �rst iteration (j = 0) of Code Segment 1 is 7
8 .

Explanation:
Instructions 1, 2, and 4 are executed by all threads in Code Segment 1.

In Code Segment 1, s = 1 during the �rst iteration. Thus, only even numbered threads
ful�ll the predicate of the if statement, and only half of the threads of each warp execute
Instruction 3.
Code Segment 1, j = 0: SIMD_utilization = 1024+1024+512+1024

1024+1024+1024+1024 = 7
8 .

(c) [10 points] What is the SIMD utilization of the �rst iteration of the inner loop (j = 0) for Code
Segment 2? Show your work. (Hint: The warp scheduler does not issue instructions when no
thread is active).

The utilization of the �rst iteration (j = 0) of Code Segment 2 is 100%.

Explanation:
Instructions 1, 2, and 4 are executed by all threads in Code Segment 2.

In Code Segment 2, s = 512 during the �rst iteration. Thus, only threads with i <
512 ful�ll the predicate of the if statement, and all threads of only half of the warps
execute Instruction 3.
Code Segment 2, j = 0: SIMD_utilization = 1024+1024+512+1024

1024+1024+512+1024 = 7
7 = 100%.

Final Exam Page 17 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

(d) [15 points] What is the SIMD utilization of any iteration of the inner loop (0 <= j < 10) for Code
Segment 1? Show your work. (Hint: Derive an analytical expression, which may be piecewise).

As mentioned in part (b), Instructions 1, 2, and 4 are executed by all threads.

In Code Segment 1, with 0 <= j < 5, all 32 warps are active, but the number of
active threads per warp divides by half in each iteration. With 5 <= j < 10, only
one thread per warp is active, and the number of active warps divides by half in each
iteration. As a result:

Code Segment 1, iteration j:

SIMD_utilization =

{
3072+2(9−j)

4096 , if 0 ≤ j < 5
3072+2(9−j)

3072+32∗2(9−j) , if 5 ≤ j < 10
(1)

(e) [15 points] What is the SIMD utilization of any iteration of the inner loop (0 <= j < 10) for Code
Segment 2? Show your work. (Hint: Derive an analytical expression, which may be piecewise).

As mentioned in part (b), Instructions 1, 2, and 4 are executed by all threads.

In Code Segment 2, with 0 <= j < 5, all 32 threads per warp are active, but the
number of active warps divides by half in each iteration. With 5 <= j < 10, only one
warp is active, and the number of active threads divides by half in each iteration. As a
result:

Code Segment 2, iteration j:

SIMD_utilization =

{
3072+32∗2(4−j)

3072+32∗2(4−j) = 100%, if 0 ≤ j < 5
3072+2(9−j)

3072+32 , if 5 ≤ j < 10
(2)

Final Exam Page 18 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

(f) [10 points] Is there any iteration (0 <= j < 10) where both code segments have the same uti-
lization? Explain your reasoning.

Yes, with j = 9 only one thread of only one warp is active, since only one thread (out
of 1024) is needed to perform the last addition.

(g) [10 points] Which code is expected to run faster on a GPU? Explain your reasoning.

Code Segment 2 is faster because it has less intra-warp divergence, and thus higher
SIMD utilization. In each iteration (except the last one), the number of warps that Code
Segment 2 schedules is smaller than the number of warps that Code Segment 1 schedules.
This results in fewer execution cycles.

Final Exam Page 19 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

9 Branch Prediction [45 points]

You are given the following piece of code that iterates through two large arrays, j and k, each populated
with completely (i.e., truly) random positive integers. The code has �ve branches (labeled B1, B2,
B3, B4, and B5). When we say that a branch is taken, we mean that the code inside the curly brackets
is executed. Assume that the code is run to completion without any errors or interruptions (i.e., there
are no exceptions). For the following questions, assume that this is the only block of code that will ever
be run on the machines, and that the loop condition branch is resolved �rst in the iteration (i.e., the if
statements execute only after resolving the loop condition branch).

1 for (int i = 0 ; i < 1000 ; i++) { //B1
2 //TAKEN PATH for B1
3 i f (i % 2 == 0) { //B2
4 j [i] = k [i] * i ; //TAKEN PATH for B2
5 }
6 i f (i < 250) { //B3
7 j [i] = k [i] − i ; //TAKEN PATH for B3
8 }
9 i f (i < 500) { //B4

10 j [i] = k [i] + i ; //TAKEN PATH for B4
11 }
12 i f (i >= 500) { //B5
13 j [i] = k [i] / i ; //TAKEN PATH for B5
14 }
15 }

Listing 1: Application to evaluate.

You are given three machines whose components are identical in every way, except for their branch
predictors.

� Machine A uses an always-taken branch predictor.

� Machine B uses one single-level global two-bit saturating counter branch predictor shared by all
branches, which starts at Weakly Taken (2'b10).

� Machine C uses a per-branch two-bit saturating counter as its branch predictor. All counters start
at Weakly Not Taken (2'b01).

The saturating counter values are as follows:

� 2'b00 - Strongly Not Taken

� 2'b01 - Weakly Not Taken

� 2'b10 - Weakly Taken

� 2'b11 - Strongly Taken

Final Exam Page 20 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

Answer the following questions:

1. [15 points] What is the branch misprediction rate when the above piece of code runs on Machine
A? Show your work.

45.01% =
2251

5001
.

Explanation:
B1 will generate 1 misprediction out of 1001 iterations (B1 is not taken in the 1001th
iteration and the loop body does not execute). B2 will generate 500 mispredictions out
of 1000 iterations, B3 will generate 750 mispredictions out of 1000 iterations, and both
B4 and B5 will generate 500 mispredictions out of 1000 iterations.

2. [15 points] What is the branch misprediction rate when the above piece of code runs on Machine
B? Show your work.

59.97% =
2999

5001
.

Explanation:
From (0-249): 375 mispredictions (125 for B2 and 250 for B5) for 1250 branches.
From (250-499): 874 mispredictions (2 for iteration 250, 4 for every odd iteration, 3 for
every even iteration except for iteration 250) for 1250 branches.
From (500-1000): 1750 mispredictions (3 for odd iterations, 4 for even iterations, 0 for
i = 1000) for 2501 branches.

3. [15 points] What is the branch misprediction rate when the above piece of code runs on Machine
C? Show your work.

20.20% =
1010

5001
.

Explanation:
You can split this up by branch.
B1: mispredicts at i = 0, and i = 1000 (2 mispredictions out of 1001).
B2: mispredicts every time since it oscillates between Weakly Not Taken and Weakly
Taken (1000 mispredictions out of 1000).
B3: mispredicts at i = 0, i = 250, and i = 251 (3 mispredictions out of 1000).
B4: mispredicts at i = 0, i = 500, and i = 501 (3 mispredictions out of 1000).
B5: mispredicts at i = 500, and i = 501 (2 mispredictions out of 1000).

Final Exam Page 21 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

10 Caches [70 points]

You are trying to reverse-engineer the characteristics of a cache in a system, so that you can design
a more e�cient, machine-speci�c implementation of an algorithm you are working on. To do so, you
have come up with three sequences of memory accesses to various bytes in the system in an attempt to
determine the following four cache characteristics:

� Cache block size (8, 16, 32, 64, or 128B).

� Cache associativity (2-, 4-, or 8-way).

� Cache replacement policy (LRU or FIFO).

� Cache size (4 or 8KiB).

The only statistic that you can collect on this system is cache hit rate after performing each sequence of
memory accesses. Here is what you observe:

Sequence Addresses Accessed (Oldest → Youngest) Hit Rate

1. 0 16 24 25 1024 255 1100 305 2/8
2. 31 65536 65537 131072 262144 8 305 1060 3/8
3. 262145 65536 4 2/3

Assume that the cache is initially empty at the beginning of the �rst sequence, but not at the beginning
of the second and third sequence. The sequences are executed back-to-back, i.e., no other accesses take
place in between sequences. Thus, at the beginning of the second sequence, the contents are
the same as at the end of the �rst sequence. At the beginning of the third sequence, the
contents are the same as at the end of the second sequence.

Based on what you observe, what are the following characteristics of the cache? Explain to get points.

(a) [20 points] Cache block size (8, 16, 32, 64, or 128B)?

16 B.

Explanation:
Cache hit rate is 2/8 in sequence 1. This means that there are 2 hits. Depending on the
cache block size, we can group addresses that belong to the same cache block as follows:

� 8B: {0}, {16}, {24,25}, {255}, {305}, {1024}, {1100}. ∴ Number of possible hits
= 1.

� 16B: {0}, {16,24,25}, {255}, {305}, {1024}, {1100}. ∴ Number of possible hits = 2.
� 32B: {0,16,24,25}, {255}, {305}, {1024}, {1100}. ∴ Number of possible hits = 3.
� 64B: {0,16,24,25}, {255,305}, {1024}, {1100}. ∴ Number of possible hits = 4.
� 128B: {0,16,24,25}, {255,305}, {1024,1100}. ∴ Number of possible hits = 5.

Therefore, we can know that the cache block size is 16B.

Final Exam Page 22 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

(b) [20 points] Cache associativity (2-, 4-, or 8-way)?

2-way.

Explanation:

Cache hit rate is 3/8 in sequence 2, which means that there are 3 hits.
We already know that the cache block size is 16B. Thus, there are 4 o�set bits.

The access to address 31 in sequence 2 would hit because the cache block would not be
replaced.
The access to address 305 in sequence 2 would hit because the cache block would not be
replaced.
The access to address 65537 in sequence 2 would hit because the cache block would not
be replaced.

Therefore, all the other accesses should miss.
The access to address 65536, 131072 and 262144 in sequence 2 would miss because ad-
dresses 65536, 131072 and 262144 do not belong to any cache block previously accessed.
Addresses 65536, 131072 and 262144 would be placed in set 0 if the cache associativity
is 2-way, 4-way, or 8-way, independently of the cache size.
Address 8 must be a miss, so its cache block must be replaced by cache blocks that map
to set 0 (addresses 65536, 131072 and 262144). For this to happen, the associativity must
be 2-way.
Therefore, the cache is 2-way associative.

Final Exam Page 23 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

(c) [20 points] Cache replacement policy (LRU or FIFO)?

FIFO.

Explanation:
From questions (a) and (b), we already know the following facts:

� The cache block size is 16 B.
� The cache is 2-way.

Cache hit rate is 2/3 in sequence 3, which means that there are 2 hits.
With the LRU policy only the access to address 262145 in sequence 3 would hit. With
the FIFO policy, accesses to addresses 262145 and 4 in sequence 3 would hit.
Therefore, the cache adopts the FIFO policy.

(d) [10 points] To identify the cache size (4 or 8KiB), you can access two addresses right after sequence
3 (i.e., the contents are the same as at the end of the third sequence) and measure the cache hit
rate. Which two addresses would you choose? Explain your answer (there may be several correct
answers).

Address 2048 and address 0 (there are other correct answers as well)

Explanation:
From questions (a), (b) and (c), we already know the following facts:

� The cache block size is 16 B.
� The cache is 2-way.
� FIFO replacement policy

We know that there are 4 bits for indexing the byte in a block, and there are 7 bits (if the
cache size is 4KiB) or 8 bits (if the cache size is 8 KiB). Therefore, address 2048 would
be in set 0 only if the cache size is 4KiB: we can access address 2048, and then check if
a block in set 0 was replaced by address 2048 by accessing address 0. If it is a miss, the
cache size is 4KiB, and if it is a hit, the cache size is 8KiB.

Final Exam Page 24 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

11 BONUS: Prefetching [25 points]

A runahead execution processor is designed with an unintended hardware bug: every other instruction
in runahead mode is dropped by the processor after the fetch stage. Recall that the runahead mode
is the speculative processing mode where the processor executes instructions solely to generate prefetch
requests. All other behavior of the runahead mode is exactly as we described in lectures. When a
program is executed, which of the following scenarios could happen compared to a runahead processor
without the hardware bug and why? Circle YES if there is a possibility to observe the described behavior
and explain in the box (either if you answer YES or NO). Assume that the program has no bug in it and
executes correctly on the processor without the hardware bug.

(a) [8 points] The buggy runahead processor �nishes the program correctly and faster than the non-
buggy runahead processor.

Y ES NO

Why?

Dropping instructions enables the discovery of more cache misses than not dropping the
instructions.

(b) [8 points] The buggy runahead processor �nishes the program correctly and slower than the non-
buggy runahead processor.

Y ES NO

Why?

The buggy runahead processor is not able to generate cache misses that are dependent
on dropped instructions.

(c) [9 points] The buggy runahead processor executes the program incorrectly.

Y ES NO

Why?

Not possible as all executions in runahead mode is purely speculative and do not commit.
Hence it cannot a�ect the correctness of the program.

Final Exam Page 25 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

12 BONUS: Systolic Arrays [35 points]

A systolic array consists of 4x4 Processing Elements (PEs), interconnected as shown in Figure 1. The
inputs of the systolic array are labeled as H0, H1, H2, H3 and V0, V1, V2, V3. Figure 2 shows the PE logic,
which performs a multiply and accumulate MAC operation and saves the result to an internal register
(reg). Figure 2 also shows how each PE propagates its inputs. We make the following assumptions:

� The latency of each MAC operation is one cycle.

� The propagation of the values from i0 to o0, and from i1 to o1, takes one cycle.

� The initial values of all internal registers is zero.

PE00 PE01

PE10 PE11

PE02

PE12

PE20 PE21 PE22

H0

H1

H2

V0 V1 V2

PE03

PE13

PE23

V3

PE30 PE31 PE32H3 PE33

Figure 1: PE array

o0 = i0
o0

o1

i0

i1

o1 = i1
reg = i0*i1+ reg

Processing Element (PE)

reg

Figure 2: Processing Element (PE)

Your goal is to use the example systolic array shown in Figure 1 to perform the convolution (~) of a
3x3 image (matrix I3x3) with four 2x2 �lters (matrices A2x2, B2x2, C2x2, and D2x2), to obtain four 2x2
outputs (matrices W2x2, X2x2, Y2x2, and Z2x2):

I00 I01 I02
I10 I11 I12
I20 I21 I22

(~)
A00 A01

A10 A11
=

W00 W01

W10 W11

I00 I01 I02
I10 I11 I12
I20 I21 I22

(~)
B00 B01

B10 B11
=

X00 X01

X10 X11

I00 I01 I02
I10 I11 I12
I20 I21 I22

(~)
C00 C01

C10 C11
=

Y00 Y01

Y10 Y11

I00 I01 I02
I10 I11 I12
I20 I21 I22

(~)
D00 D01

D10 D11
=

Z00 Z01

Z10 Z11

As an example, the convolution of the matrix I3x3 with the �lter A2x2 is computed as follows:

� W00 = I00 ∗A00 + I01 ∗A01 + I10 ∗A10 + I11 ∗A11

� W01 = I01 ∗A00 + I02 ∗A01 + I11 ∗A10 + I12 ∗A11

� W10 = I10 ∗A00 + I11 ∗A01 + I20 ∗A10 + I21 ∗A11

� W11 = I11 ∗A00 + I12 ∗A01 + I21 ∗A10 + I22 ∗A11

Final Exam Page 26 of 27

Initials: Digital Design and Computer Architecture August 27th, 2021

You should compute the four convolutions in the minimum possible number of cycles. Fill the following
table with:

1. The input elements (from matrices I3x3, A2x2, B2x2, C2x2, and D2x2) in the correct input ports of
the systolic array (H0, H1, H2, H3 and V0, V1, V2, V3). (Hint: If necessary, an input element can
be concurrently streamed into several input ports of the array.)

2. The output values and the corresponding PE where the output elements (of matrices W2x2, X2x2,
Y2x2, and Z2x2) are generated.

Fill the blanks only with relevant information.

cycle H0 H1 H2 H3 V0 V1 V2 V3 PE00 PE01 PE02 PE03 PE10 PE11 PE12 PE13 PE20 PE21 PE22 PE23 PE30 PE31 PE32 PE33

0 A00 I00
1 A01 B00 I01 I01
2 A10 B01 C00 I10 I02 I10
3 A11 B10 C01 D00 I11 I11 I11 I11 W00

4 B11 C10 D01 I12 I20 I12 W01 X00

5 C11 D10 I21 I21 W10 X01 Y00

6 D11 I22 W11 X10 Y01 Z00

7 X11 Y10 Z01

8 Y11 Z10

9 Z11

10
11
12
13
14
15

Final Exam Page 27 of 27

