
Millicode in an
IBM zSeries
processor

L. C. Heller
M. S. Farrell

Because of the complex architecture of the zSeries�

processors, an internal code, called millicode, is used to
implement many of the functions provided by these systems.
While the hardware can execute many of the logically less
complex and high-performance instructions, millicode is
required to implement the more complex instructions, as well
as to provide additional support functions related primarily
to the central processor. This paper is a review of millicode
on previous zSeries CMOS systems and also describes
enhancements made to the z990 system for processing of the
millicode. It specifically discusses the flexibility millicode
provides to the z990 system.

Introduction
As the instruction set for high-end processors has evolved
over the years, more and more complex instructions
and features have been added to the architecture.
Conceptually more straightforward instructions, such as
loads, stores, moves, branches, and logical and arithmetic
instructions, can be implemented directly by the hardware.
The more complex instructions and features, such as I/O
instructions, Start Interpretive Execution (SIE), cross-
memory instructions, interruption handlers, resets, and
certain RAS (reliability, availability, and serviceability)
features, must be implemented with some type of internal
code. Starting with the S/390* G4 [1] processor in 1997
and continuing through the G5 [2, 3], G6 [3], z900 [4],
and now the z990 [5] processors, the code internal to
the central processor (CP) is called millicode.

On many processors prior to G4, which were
implemented using multiple chips in bipolar technology,
the internal code was placed on separate chips of the
processor; this is known as horizontal microcode. With
the G4 system, the entire processor was implemented on
one chip. Because of the area constraints of the chip,
a redesign of the internal code of the processor was
required, since it would no longer fit on the chip, and,
with new requirements being architected and designed for
high-end systems, even more processor internal code
would be needed. This led to the design of vertical
millicode as the internal code of the processor. The
millicode is written in assembler language, primarily with

z/Architecture* [6] instructions, as well as with specialized
millicode-only instructions.

One of the main objectives in designing the hardware
to support millicode was to provide additional flexibility
to the machine. Various features in the hardware were
defined early in the design process with the intent of
providing more control to millicode for use later in
the test phase of the design process. Facilities are
implemented to allow millicode, in many instances, to
provide solutions for hardware problems which are found
during the debug cycle, without requiring new changes to
the hardware. The capabilities given to millicode also
allow for the introduction of new functions late in the
design cycle, after hardware changes are no longer
possible.

Millicode structure
Millicode resides in a protected area of storage called
the hardware system area, which is not accessible to the
normal operating system or application program. However,
in many ways, millicode is handled by the processor
hardware similarly to the way operating system code is
handled. The millicode is brought into the processor from
system area storage and is buffered in the instruction
cache. The instruction unit (I-unit) hardware fetches the
millicode instructions from the cache, decodes them,
calculates the operand addresses, fetches the operands,
and sends them to the execution unit (E-unit) for the
actual execution and the put-away of the results. Millicode

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 L. C. HELLER AND M. S. FARRELL

425

execution uses the same basic data flow as is used to
execute system instructions. The similarity in the execution
of millicode and system code resulted in a significant
decrease in the design complexity of the hardware needed
for the processor internal code, as well as a significant
savings in the chip area. Previous systems required a large
amount of unique hardware and a large hardware design
effort for a separate execution engine to support the
processor internal code.

The current implementations of millicode are written
in a form of z/Architecture assembler language. That is,
the millicode routines are written using the architected
mnemonics for the z/Architecture instruction set.
Within these routines, however, only those architected
instructions that are implemented directly by the hardware
are available for use by the millicode. There are several
hundred of these instructions, which contain most of the
basic operations (such as moves, stores, arithmetic and
logical operations, and branches) that are typically
needed for implementing a more complex function.
The z/Architecture instructions which are themselves
implemented by millicode cannot be used within millicode
routines, since this would lead to recursion, which cannot
be handled. In addition to the z/Architected instructions
executed by the hardware, there are approximately seventy
additional instructions, called milli-ops, which have been
implemented for use only by millicode. These milli-ops
deal primarily with setting and retrieving data that is
unique to the internal hardware implementation, where no
z/Architecture instruction is applicable. In other instances,
milli-ops have been added to improve the performance of
complex z/Architecture instructions that are implemented

in millicode. Some of these unique instructions are
discussed later.

Registers
While an operating system or application program is
running, one of the key resources used for managing data
and addresses is the architected program general registers
(GRs). Similarly, a key resource used by millicode routines
is the millicode GRs (MGRs). These are 16 64-bit
registers which are used to handle intermediate results
within a millicode routine, as well as to hold addresses
needed to access customer storage, or to access data
within the machine hardware system area. These GR
register files are separate and distinct: The program GRs
are accessed while the system program is running and the
millicode GRs are accessed while the millicode is running.
For example, when the system program issues a Load
instruction, a program GR is updated; when a millicode
routine issues a Load instruction, a millicode GR is
updated. The instruction address in the program-status
word (PSW) tracks the address of the instruction that is
being executed for the program. This address is updated
at the completion of every z/Architecture instruction or
superscalar group of instructions, including being written
with a new address for a successful branch instruction. For
branch instructions, the instruction address is also kept in
the branch target buffer (BTB) to assist with branch
prediction for future branches that are decoded at the
same instruction address. Similarly, when executing
millicode routines, the hardware tracks the instruction
address that is being executed within the millicode routine
in a separate millicode instruction address register. For
branch instructions executed within the millicode routine,
the millicode instruction address is also kept in the BTB
to assist with branch prediction for subsequent branches
decoded at the same millicode instruction address.

R-unit registers
One of the more important features of current CMOS
processors, at least with regard to the millicode
implementation, is the concept of a recovery unit (R-unit).
This unit contains the entire architected state of the
processor [6] as well as the state of the internal controls
of the processor. The R-unit includes the program general
registers and access registers, millicode general registers
and access registers, floating-point registers, architected
control registers for multiple levels of SIE guests,
architected timing facilities for multiple levels of SIE
guests, information concerning the processor state, and
information on the system configuration. In addition, there
are registers which control the hardware execution, and
data buses for passing information from the processor to
the other chips within the processing complex. A
description of these registers is included in Table 1.

Table 1 z990 R-unit registers.

Address Mnemonic Description

00 – 0F GRs Program general registers
10 –1F MGRs Millicode general registers
20 –27 ARs Program access registers
28 –2F MARs Millicode access registers
30 –3F FPRs Floating-point registers
40 – 4F MCRs Millicode control registers
50 –5F G2CRs Guest-2 control registers
60 – 6F G1CRs Guest-1 control registers
70 –7F HCRs Host control registers
80 –9F MCRs Millicode control registers
A0 –AF IA Instruction address, PSW, exception
B0 –BF — Instrumentation counters
C0 –CF SYSR System registers
D0 –D3 TF Guest-2 timing facilities
D4 –DF SYSR System registers
E0 –E3 TF Guest-1 timing facilities
E8 –EB COP Coprocessor communications
F0 –F2 TF Host timing facilities
F8 –FF SYSR System registers

L. C. HELLER AND M. S. FARRELL IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

426

The R-unit registers provide the primary interface
between the millicode and the processor hardware, and
are used by millicode to control and monitor hardware
operations. These special registers in the R-unit are
accessible to the millicode, and there are several unique
milli-ops to access them, such as Read Special Register,
Write Special Register, AND Special Register, OR Special
Register, and logical immediate ANDs, ORs, and Inserts
to various 2-byte fields of some of the R-unit registers.
Through these instructions millicode can, whenever
current execution requires it, read or alter much of the
state information of the processor. This can take place
either during the execution of an instruction which has to
read or write specific state information, or during some
other type of function, such as during the resetting of the
processor or handling a recovery situation.

Millicode branching
The z/Architecture provides, as a result of many
instructions, a condition code that indicates which of a
number of results actually occurred during this execution
of the instruction. The instructions that modify the
condition code include compares, tests, adds and subtracts,
and logical operations, as well as many others. The
z/Architecture also provides branch instructions which
specify a mask that forces a branch of the instruction
stream to a new instruction address if a “1” in the
corresponding mask bit selects the current condition code.
Similarly, when a millicode routine issues an instruction
that changes the condition code, a unique millicode
condition code is modified instead of the program
condition code. When the millicode routine issues a
branch instruction that interrogates the condition code,
it is actually the millicode condition code that is being
examined. This leaves the system program condition code
intact, so that subsequent branches by the program are
examining the results of system instructions, not millicode
instructions. There are, however, milli-ops that allow
millicode to change the program condition code, either to
an explicit value or to the current value of the millicode
condition code, for use when the implemented function
architecturally requires a condition code update.

In addition to the basic branch instructions provided by
the z/Architecture, such as Branch on Condition, Branch
on Count, and Branch and Save Register, which are
available for millicode use, there are additional branch
instructions provided for use only by millicode. One of
these instructions is called Branch Relative Special (BRS).
This instruction interrogates a particular bit or condition
in the processor, as specified within the instruction, and
then branches to a relative address within the millicode
routine based on whether the bit or condition is true or
false. Some of the more common conditions that can be
interrogated are bits in the PSW, bits in control registers,

SIE emulation modes, state of pending interruption
conditions, or state of the asynchronous coprocessor.
Using this BRS instruction, the millicode routine can
easily and quickly check the state of the specified
condition.

Another branch instruction available to millicode is
Branch on Flags (BRFLG). This instruction allows the
millicode routine to check one or more flag bits, and
then branch based on the state of the flag or flags.
These flags are merely local indicator bits which are used
independently by different millicode routines. That is, a
particular flag bit might be used to indicate a certain
condition in one routine, but could indicate a totally
different condition in another millicode routine. The flags
may be set by hardware during millicode setup or by
special instructions available to millicode. Once a flag is
set up early in a routine to indicate a particular condition
or path through the routine, the BRFLG instruction can
be used later in the routine to interrogate the state of this
flag and thus have a quick way of discerning the earlier
condition.

There are 16 flags, divided into four groups of four flags
each. With a single BRFLG instruction, one to four of the
flags within a particular group can be interrogated. A
branch can then be taken on the basis of whether

● All of the selected flags are 1s.
● All of the selected flags are 0s.
● Any of the selected flags are 1s.
● Any of the selected flags are 0s.

Operand access control registers (OACRs) and
millicode addressing
While executing within a millicode routine, storage
requests can be made to program storage on the basis
of either the current addressing mode of the executing
system program or a specific architected addressing mode,
or to the hardware system area. Each storage request
made by millicode must be tagged with the appropriate
addressing controls so that hardware can address storage
correctly. For this reason, hardware determines the
addressing mode on the basis of which millicode base
register is used to make the storage request. When the
request specifies a millicode base register of 1 through 7,
the storage access is made using the same addressing
mode that is currently indicated by the system program.
The current addressing mode is determined by using bits
in the current PSW, specifically the dynamic address
translation (DAT) bit, the address-space control bits, and
the addressing mode bits. When a millicode base register
of 12 through 15 is used for a storage request, the
corresponding address is treated as a hardware system
area address.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 L. C. HELLER AND M. S. FARRELL

427

When millicode specifies a base register of 8 through
11, special hardware designates the address mode used for
the storage access. Four OACRs exist in the R-unit, each
corresponding one-to-one to millicode base registers 8
through 11. These registers include a storage access key,
an address-space control (primary, secondary, home, or
access register), an addressing mode (24-bit, 31-bit, or 64-
bit addressing), and an addressing type (real, virtual, host
real, absolute, or hardware system area), in addition to
special controls which can block program event recording
(PER) storage alteration detection or protection
exceptions, and can pretest for store-type access
exceptions. Millicode can set each of these four registers
independently and, for subsequent storage requests,
hardware will use the appropriate OACR to determine
how to interpret the address presented by the millicode
routine. By this definition, millicode routines can use any
of the millicode GRs as base registers when accessing
storage. This allows data to be moved between different
address types simply by using different base registers for
the operands.

GRs and ARs
For many of the functions that are implemented by
millicode, the initial operands specified by the system
program are located in the program GRs. However, for
the millicode routine to work easily with this operand
data, the data must be transferred to the millicode GRs.
To assist with transferring the data, four 4-bit register
indirect tags are defined, with each pointing to the GR
specified as an operand by the system program instruction.
The indirect tag can correspond to an R1, R2, R1�1,
R2�1, R3, B1, B2, etc. field—whatever is required for
a specific instruction. The register indirect tags are
initialized by hardware to correspond to the same
operands for any given instruction, but they could be set
to indicate different operands for a different instruction.
The millicode routine for an instruction can then use a
specific register indirect tag as a pointer to a specific
operand.

Two milli-ops make use of these register indirect tags
to access program GRs: Extract Program GR Indirect
(EXGRI) and Set Program GR Indirect (SPGRI), which
are used respectively to read and write a program GR.
These instructions take as their operands a register
indirect tag (which points to a program GR) and a
millicode GR. Millicode uses EXGRI to copy the data
from the program GR specified by the register indirect tag
operand to the millicode GR, where it can operate on the
data. When the millicode routine returns the resultant
data to a program GR, it uses SPGRI. The routine does
not identify the specific system program GRs that are
affected, only which operands of the instruction (R1, R2,
etc.) are being used.

For some z/Architecture instructions, one or more
of the GRs used as operands are not specified by the
instruction, but are implied as a specific GR (such as GR
0 or 1). For these cases, the register indirect tags are not
needed, and two other milli-ops can be used instead. The
Extract Program GR instruction takes as its operands a
program GR and a millicode GR. The execution of this
instruction copies the data from the specified program
GR to the millicode GR. Similarly, the Set Program GR
instruction has as its operands a program GR number and
a millicode GR number, and the data is copied from the
millicode GR to the program GR.

When the data in the program GR is an address and
the system program is operating in the access register
mode, the millicode routine must obtain the program
access register contents prior to making any storage
accesses. For this purpose, there are instructions to move
the data between a program AR and a millicode AR:
the Extract Program AR Indirect and Set Program AR
Indirect instructions, which specify the program AR using
a Register Indirect Tag, and the Extract Program AR and
Set Program AR instructions, which explicitly reference
the specific program AR.

Perform Translator Operation (PXLO) and
internal translator functions
For most storage references the translator hardware in
the processor performs the dynamic address translation
(DAT), with the resultant DAT mapping stored in the
translation-lookaside buffer (TLB). Once the requested
data is returned from storage, it is buffered in either the
instruction cache or the data cache. This process is the
same for references made by the system program and for
references made by the millicode. This is a process
normally performed directly by the hardware and is
transparent to the millicode.

There are some occasions, however, when the millicode
must become involved in some aspect of a translation
process or involved in the manipulation of data in the
TLB. Two examples of this are the z/Architecture
instructions Load Real Address (LRA), for which the
translation process must stop earlier and return the real
address, which corresponds to the initial virtual address,
and Purge TLB (PTLB), which causes the TLB to be
purged of relevant entries. To assist in these functions, the
PXLO milli-op was developed for use by millicode. The
PXLO instruction also provides millicode with the ability
to block exceptions and have them reported via condition
codes or additional bits in specific R-unit registers. This
allows millicode to manually process exception conditions,
which is often useful in circumventing hardware problems.

There are a variety of subfunctions provided by the
PXLO instruction that allow millicode to perform many
different types of translator and TLB functions. When

L. C. HELLER AND M. S. FARRELL IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

428

issuing the PXLO, millicode specifies a function code
in the appropriate R-unit register, and if an address is
required for the PXLO instruction, it is supplied as an
operand of PXLO. Examples of PXLO commands for the
z990 system are shown in Table 2.

The majority of these subcommands are provided to
give millicode routines the capability to handle the
instructions and internal functions (such as LRA and
PTLB) required by the z/Architecture, while others are
provided to assist with debugging and potential fixes for
hardware problems.

System communication
There are many instances in which one processor has
to communicate with the other chips in the system for
signaling purposes, to set controls in the storage controller
chip for memory scrubbing, to initiate an I/O operation
at the I/O chips, or to communicate with the service
processor through the clock chip. (These are only a few
examples. There are many other reasons why millicode
might have to send commands to any of the other chips in
the system.) The method used by millicode to send these
commands to a remote chip is called a system operation,
or SYSOP.

There are multiple registers in the R-unit to handle
the SYSOP execution: a control register, an output data
register and an output address register, and a pair of input
registers for data returned from the system. Each of the
SYSOP commands may use a different subset of these
registers. As appropriate for the command, the millicode
sets up the control information and the output data and
address register and then launches the SYSOP. The
command is sent out of the processor and into the system,
where all of the chips in the system receive the command.
Only the target chip (or chips) take any action on the

command; all other chips simply discard the command
without making any response.

The processing of the SYSOP command at the remote
chip occurs asynchronously with respect to any processing
that is done on the initiating processor. The remote chip
returns a response when it has received the command
and/or completed its processing of the command. The
millicode routine which initiated the SYSOP must monitor
the SYSOP control register to determine when the SYSOP
has completed, as well as whether the SYSOP completed
successfully or an error was encountered. Then, depending
on the particular SYSOP that was issued and the returned
result, the input data registers can be read for any data
returned from the SYSOP operation. If any errors are
encountered during the processing of the SYSOP
operation, the millicode routine must retry the operation,
force an error condition to be indicated to the system,
or take some other action. This action depends on the
command being executed and the type of error that has
been returned.

Millicode entry and exit
As the system program continues to issue instructions that
do not require execution by millicode, the hardware can
continuously fetch instructions from storage, decode them,
and execute them. However, when an instruction is
encountered that must be executed by millicode, the
normal processing of the system program instruction
stream stops, and the instruction addresses of both the
current system program instruction and the next
sequential instruction are saved.

Using the opcode of the instruction (in a modified
format) as an index into the millicode section of the hardware
system area, the appropriate millicode routine is fetched
into the instruction cache. Each routine is given 128 bytes
of contiguous storage before the next routine begins. If

Table 2 Sample PXLO commands for the z990 system.

PXLO command Description

Load Address Space Control Element Determines the ASCE used for a translation
Load Absolute Address Obtains an Absolute Address of a translation
Load Real Address Obtains the Real Address of a translation
Load Host Real Address Used while in emulation mode to obtain the Host Real

Address, when translating a Host Virtual Address
Load Page Table Entry Obtains the Page Table Entry address for a translation
Load Host Page Table Entry Used while in emulation mode to obtain the address of

the Host Page Table Entry, when translating a Host
Virtual Address

Purge TLB Purges previous translations from the TLB
Invalidate Page Table Entry (IPTE) Invalidates selected entries from the TLB
Read TLB Reads an entry from the TLB
Write TLB Writes an entry into the TLB
Purge Data Cache Purges all entries from the Data Cache
Purge Instruction Cache Purges all entries from the Instruction Cache

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 L. C. HELLER AND M. S. FARRELL

429

additional storage is required to complete the routine, the
millicode will later branch to a unique location in system
area storage that is defined for general use for millicode
routines and has no size constraints.

Prior to execution of the first instruction of the
millicode routine, setup is performed by the hardware to
prepare for millicode execution. The actual instruction
text is saved in a register for use by the millicode, if
needed. If an address calculation is required for the
operand of the system program instruction, the calculated
address is placed in a millicode GR, and the associated
program AR is copied into the corresponding millicode
AR. Some of the OACRs are initialized with the access
key and addressing mode of the current program PSW,
and some are set to the real addressing mode with an
access key of zero. The register numbers of the relevant
program GRs, based on the format of the system program
instruction, are placed in the register indirect tags. For
some instructions, flags are set to indicate particular facts
about the instruction operands, such as page crossings,
equal operand values, or operand values of zero. For a

limited number of instructions, the actual operand
contents are set directly into millicode GRs during this
millicode entry process. In the z990 processor, this
typically takes only two or three cycles and is done in an
effort to simplify the work required by millicode and
therefore improve the overall performance of the
instruction. A few examples of the hardware setup
provided for millicode entry are given in Table 3.

Once all of the appropriate hardware facilities have
been set up, the millicode routine has enough information
about the specific details of the instruction and its
operands to start execution of the instruction. For many
instructions, the hardware also checks some of the
program interruption conditions that may be possible for
the instruction (privileged operation exception,
specification exception, etc.). The millicode routine is
responsible for checking for any possible program
interruption conditions that are not checked by the
hardware, in the appropriate architectural order.

If no interruption conditions are detected, the millicode
routine continues its processing, working on the data that

Table 3 Sample hardware setup for millicoded instructions on the z990 system.

OpCode Mnemonic
(format)

Hardware setup

B207 STCKC (S) 1. Machine Check if Millicode Mode � 1
2. Privileged Op Exception if PSW.15 � 1
3. Specification Exception if Operand 2 is not doubleword aligned

1. IAREGA7.0:31 � Instruction Text
2. MGR9 � Effective Addr. Operand 2
3. MAR9 � B2 ALET
4. RI2 � B2 GR (for AR Number)

DA MVCP (SS) 1. Machine Check if Millicode Mode � 1
2. Special Op Exception if PSW.5 � 0 PSW.17 � 1 CR0.37 {CR0.5} � 0

1. IAREGA7.0:47 � Instruction Text
2. MGR9 � Effective Addr. Operand 1
3. MGR11 � Effective Addr. Operand 2
4. MAR9 � B1 ALET
5. MAR11 � B2 ALET
6. RI0 � R1 GR
7. RI1 � R3 GR
8. RI2 � B1 GR (for AR Number)
9. RI3 � B2 GR (for AR Number)

10. Flag D � 1 if Operand 1 crosses a 2K/4K boundary
11. Flag E � 1 if Operand 2 crosses a 2K/4K boundary

OACRs 8 and 10 initialized to Logical, Block-Per, Test Modifier

B257 CUSE (RRE) 1. Machine Check if Millicode Mode � 1
2. Specification Exception if R1 R2 are Odd GRs

1. IAREGA7.0:31 � Instruction Text
2. RI0 � R1 GR
3. RI1 � R2 GR
4. RI2 � R1�1 GR
5. RI3 � R2�1 GR

L. C. HELLER AND M. S. FARRELL IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

430

was set up during millicode entry, fetching program GRs
into its own GRs, reading data from the R-unit, and
requesting data from storage. The millicode routines can
use almost all of the hardware-implemented z/Architecture
instructions, as well as the special instructions available
only for millicode execution. An instruction address
register (other than the one that holds the saved operating
system instruction address) is used to maintain the
instruction address as the millicode routine executes.
The routines can branch to other places within the same
routine, branch to a different routine, or call a different
routine as a subroutine, with the millicode instruction
address register keeping track of which address to fetch
and decode next.

As the millicode routine executes, architected facilities
are updated with the calculated results. These facilities
could be the program GRs, storage locations, or registers
in the R-unit that control future execution. When all of
the operations for the instruction of the system program
have been performed, and any condition code has been
set, the millicode routine can stop processing. A milli-op,
Millicode End (MCEND), is issued which alerts the
hardware that this is the last instruction in this millicode
routine. When this MCEND is decoded, the hardware
stops fetching instructions from the millicode instruction
address register and resumes fetching instructions from
the “next sequential instruction address” register of the
system program, which was saved on entry into the
millicode routine. The hardware then begins decoding
an instruction from the system program instruction
stream, and either has the instruction directly executed
by hardware, or returns to another millicode routine
for its execution.

Interruptions
During the normal course of processing by the system
program, pending interruption conditions which have to
be presented to the system program are detected. These
could be program interruptions, I/O interruptions, external
interruptions, etc., all of which must be routed to
millicode for proper execution. When the interruption
condition is detected, the hardware stops execution of the
system program instruction stream and prepares to enter
millicode. On the basis of the type of interruption
condition to be presented, an offset into the millicode
area in the system area is formed, and the appropriate
millicode interruption routine is fetched.

There is no setup of millicode facilities (OACRs,
register indirect tags, millicode GRs, flags, etc.) for an
interruption, as is done for an instruction. Therefore, the
millicode cannot make any assumptions about the contents
of these registers when entering the routine. There is a
milli-op, Extract Interrupt (EXINT), which passes to
the millicode the exact interruption class within the

interruption type. (For example, if the type is an external
interruption, the EXINT returns a code to distinguish
a Clock Comparator Interruption from a CPU Timer
Interruption, or any other external interruption condition.)
Once the specific class of interruption has been
determined, the millicode routine can process the
interruption according to the architecture. This would
normally involve placing interruption codes and
parameters in storage, as well as swapping the current
PSW with the appropriate new PSW to point to a system
program routine which can handle the interruption
condition. In addition, with most interruption conditions,
there are also hardware facilities within the R-unit that
are updated. Prior to leaving the millicode routine, the
Reset Interruption (RIRPT) milli-op must be issued. This
instruction clears the specified interruption condition from
the hardware and enables it to detect any new or lower-
priority interruption condition that might exist. Once
all of the architected and internal requirements of
the interruption have been completed, the MCEND
instruction is issued. The hardware then begins fetching
system program instructions from the current instruction
address in the “next sequential address” register, which
could have been (and probably was) modified by the
millicode during the interruption routine. This allows
the processor to fetch the appropriate system program
instructions and handle the interruption condition that
was just presented.

Millicode flexibility
Various features were added to the hardware during the
design phase with the goal of providing flexibility to help
millicode resolve problems, including hardware problems,
which might arise later. The majority of these hardware
workarounds are needed during the early stages of testing
on a prototype machine. Implementing the fixes in
millicode helps to reduce the number of hardware releases
required and allows testing to continue while waiting for
the hardware fixes. At times, the millicode solution can
be used as the permanent solution if the performance
degradation is negligible.

Millicode often uses control bits in the R-unit registers
to circumvent problems. For example, these control bits
can be set during initialization to completely disable a
function that is working incorrectly. Since millicode can
also write these controls during execution, a routine can
also, following the same example, disable a function when
a specific condition exists and re-enable it when the
condition no longer exists. This still allows the function
to be generally available and can significantly reduce
the performance impact of a millicode change which
circumvents a hardware problem. This is especially useful
when the function only has to be disabled in a situation in
which performance is not an issue.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 L. C. HELLER AND M. S. FARRELL

431

A number of R-unit registers were defined to provide
this flexibility. There is an R-unit register which controls
the disablement of certain hardware functions, particularly
new or complex functions. This significantly reduces the
risk of introducing these functions into the machine.
Hardware also provides programmable controls that can
be set to cause a limited number of specified hardware
instructions to be executed by millicode. Millicode also
has the capability to override the hardware configuration
(central processors, system assist processors, etc.), which
in general is determined using a defined algorithm, on the
basis of data contained within an R-unit register. This
allows for testing of unique configurations and, in some
instances, stresses certain aspects of the system design.

Through the PXLO commands, millicode has
specialized access to the translator and TLB, including the
ability to block exceptions and have them reported either
via the condition code or via additional bits in specific
R-unit registers. Although the majority of these functions
were provided to implement z/Architecture instructions,
the capabilities were enhanced to allow millicode to
manually process the exception conditions and handle
them differently if required. The Read TLB and Write
TLB commands, on the other hand, were provided solely
for the purpose of debugging and circumventions. Through
the SYSOP commands, millicode has access to status and
controls representing operations performed outside the
local processor. This allows millicode, for instance, to
query the status of an MBA operation or quiesce request,
particularly when a failure was indicated for the SYSOP
command and recovery is involved.

There are a number of instructions, including Purge
TLB, Set Storage Key Extended, Invalidate Page Table
Entry, and Start Interpretive Execution (SIE), which may
invalidate all or part of the TLB. These invalidations are
made using either a PXLO, for local requests, or SYSOP,
for broadcast requests. Ideally, for performance reasons,
these commands should invalidate the minimum number
of entries required by the architecture. An R-unit register
was defined that allows millicode to specify a subset of
entries to be purged from the TLB1, giving additional
flexibility which could be used to circumvent a potential
problem or provide additional function. The register is
divided into four-bit fields, each of which is used to
control a specific command; the definition of the four bits
is determined by the type of command. Each field in this
register is initialized to the value required to handle the
typical case so that the register has to be written only if a
special situation exists. For the TLB2, the flexibility is
provided by the programmable picocode [1] engine in the
translator. In addition, an extra PXLO command for the
TLB2 was added to allow the possibility of defining a
new command later and implementing it in picocode.

Millicode load and concurrent patch
The millicode is assembled into a single file for use by the
machine. The translator picocode is also assembled and
inserted into the millicode file. This file resides at a fixed
location in the hardware system area and is loaded into
storage during initialization; a pointer in the R-unit is
then loaded with the starting address of the millicode. It
is used by hardware as the base address when calculating
the starting location of a particular millicode routine in
storage. Another R-unit pointer to the picocode is
initialized, and a picocode load, which loads the code
from storage into the picoengine, is performed.

Whenever a problem is fixed in millicode, a patch can
be made that includes the code correction. When the
millicode patch is produced, the entire millicode file,
which includes the latest picocode, is provided. In most
cases, this code can be applied concurrently, while the
machine is still running. To do this, millicode loads the
new millicode patch data into an alternate location in
system area storage, adjusts both the pointer to millicode
and the pointer to picocode, requests a picocode load, and
then begins running millicode and executing from the new
location.

Concluding remarks
The concept of having an internal code in the system,
rather than an implementation consisting completely
of hardware, provides a means to implement complex
functions, and the flexibility to make changes to the
system without changing hardware. With the development
of millicode as the internal code of the processors, the
hardware design was simplified, since millicode has an
instruction execution similar to that of the system
program, and thus has many of the same dataflow
requirements as the system program code. Also, with the
entire processor state and control capabilities mapped into
R-unit registers, and a few milli-ops to read and modify
these registers, millicode has access to most facilities and
states in the processor. This provides a greater ability to
change processor states or controls when a problem
dictates it or when a new functional requirement is
defined.

As both millicode and hardware have evolved since
the G4 processor, enhancements continue to be added
to increase performance and flexibility and to provide new
function. Experience gained from previous systems is used
to more accurately predict the areas that would benefit
from functional enhancements and hardware disables. For
instance, hardware interlocks on writes and reads to the
R-unit were first introduced to prevent sequencing
problems that had been seen on the G4 processor.
Similarly, the SYSOP strategy has been changed to allow
the millicode more flexibility for launching SYSOPs and

L. C. HELLER AND M. S. FARRELL IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

432

recovering from errors encountered throughout the
system.

For the z990 processor, improvements over previous
processor designs were made to conform both to new
system architecture and to a new internal processor
design. The zone-based quiesce and TLB purging design
[1], which allows fewer entries to be purged from the TLB
on any given purge operation, relied on the versatility
provided by R-unit control bits and PXLO and SYSOP
commands, as well as the flexibility provided by picocode.
All of these pieces were required to design, debug, and
deliver this function. Other changes were made to the
z990 processor to improve recoverability, enhance
instrumentation, and provide hardware disables for new
features such as the superscalar processor design. These
are just a few examples of how hardware, relying on the
flexibility that millicode provides, is able to implement
performance enhancements and new functions.

Acknowledgments
During the evolution of systems that have used millicode
as their internal processor code, there have been
constant improvements to the hardware to increase the
performance of the routines written in millicode, as well
as improvements in the capabilities that are available
to the millicode designers. We would especially like to
acknowledge Timothy Slegel and Charles Webb for their
design efforts in the creation and continued development
of hardware to support the execution of millicode,
Jennifer Navarro for the design of the programmable
TLB, and the entire logic design team of the processor.
We would like to acknowledge the entire global millicode
team, including Steve Fellenz, Christopher Conklin, Janet
Easton, Judy Johnson, Randall Philley, Dennis Weston,
Brenton Belmar, Ambrose Verdibello, Pamela Dewey,
Scott Davies, Andrew Piechowski, Harald Boehm,
Eberhard Engler, Bernd Nerz, Hans-Georg Zipperer,
Christopher Oelsner, and Klaus Meissner, for all of their
contributions.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. C. F. Webb and J. S. Liptay, “A High-Frequency Custom

CMOS S/390 Microprocessor,” IBM J. Res. & Dev. 41, No.
4/5, 463– 473 (July/September 1997).

2. T. J. Slegel, R. Averill, M. Check, B. Giamei, B. Krumm,
C. Krygowski, W. Li, J. Liptay, J. MacDougall, T.
McPherson, J. Navarro, E. Schwarz, K. Shum, and C.
Webb, “IBM�s S/390 G5 Microprocessor Design,” IEEE
Micro 19, No. 2, 12–23 (March/April 1999).

3. M. A. Check and T. J. Slegel, “Custom S/390 G5 and G6
Microprocessors,” IBM J. Res. & Dev. 43, No. 5/6, 671– 680
(September/November 1999).

4. E. M. Schwarz, M. A. Check, C.-L. K. Shum, T. Koehler,
S. B. Swaney, J. D. MacDougall, and C. A. Krygowski,

“The Microarchitecture of the IBM eServer z900
Processor,” IBM J. Res. & Dev. 46, No. 4/5, 381–395 (July/
September 2002).

5. T. J. Slegel, E. Pfeffer, and J. A. Magee, “The IBM
eServer z990 Microprocessor,” IBM J. Res. & Dev. 48,
No. 3/4, 295–309 (May/July 2004, this issue).

6. IBM Corporation, z/Architecture Principles of Operation
(SA22-7832); see http://www.elink.ibmlink.ibm.com/public/
applications/publications/cgibin/pbi.cgi/.

Received September 24, 2003; accepted for publication

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 L. C. HELLER AND M. S. FARRELL

433

January 20, 2004; Internet publication April 6, 2004

Lisa Cranton Heller IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(cranton@us.ibm.com). Ms. Heller received a B.S.E.E. degree
from the Massachusetts Institute of Technology in 1984,
joining IBM that same year. She is a Senior Technical Staff
Member and was the millicode team leader for the z990
processor. During her career, she has worked in the areas of
processor virtualization (SIE), quiesce design, and TLB. Ms.
Heller is currently working on future IBM zSeries processors.

Mark S. Farrell IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(msf@us.ibm.com). Mr. Farrell received a B.S.E.E. degree
from the University of Pittsburgh in 1977. He joined IBM
that same year to work in the processor microcode area.
He worked on the architecture and design of many microcode
projects for S/390* systems, and was the leader in the switch
to millicode implementations for the CMOS processors.
He is a Senior Technical Staff Member, and has been the
millicode team leader for many of the recent CMOS
processors. Mr. Farrell is an author of 27 U.S. patents;
he has received two IBM Outstanding Technical Achievement
Awards, three IBM Outstanding Innovation Awards, and
two IBM Corporate Awards. He currently works on the
development of future IBM server processors and systems.

L. C. HELLER AND M. S. FARRELL IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

434

