
Digital Design & Computer Arch.

Lecture 10a: Instruction Set

Architectures II

Prof. Onur Mutlu

ETH Zürich

Spring 2022

25 March 2022

Assignment: Lecture Video (April 1)

◼ Why study computer architecture? Why is it important?

◼ Future Computing Platforms: Challenges & Opportunities

◼ Required Assignment

❑ Watch one of Prof. Mutlu’s lectures and analyze either (or both)

❑ https://www.youtube.com/watch?v=kgiZlSOcGFM (May 2017)

❑ https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page summary of one of the lectures and email us

◼ What are your key takeaways?

◼ What did you learn?

◼ What did you like or dislike?

◼ Submit your summary to Moodle by April 1
2

https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=722981

Extra Assignment: Moore’s Law (I)

◼ Paper review

◼ G.E. Moore. "Cramming more components onto integrated
circuits," Electronics magazine, 1965

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page review

❑ Upload PDF file to Moodle – Deadline: April 7

◼ I strongly recommend that you follow my guidelines for
(paper) review (see next slide)

3

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (II)

◼ Guidelines on how to review papers critically

❑ Guideline slides: pdf ppt

❑ Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

❑ Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)

◼ Review 1

◼ Review 2

❑ Example review on “Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)

◼ Review 1

4

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

Agenda for Today & Next Few Lectures

◼ The von Neumann model

◼ LC-3: An example of von Neumann machine

◼ LC-3 and MIPS Instruction Set Architectures

◼ LC-3 and MIPS assembly and programming

◼ Introduction to microarchitecture and
single-cycle microarchitecture

◼ Multi-cycle microarchitecture

5

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

What Will We Learn Today?

◼ Basic elements of a computer & the von Neumann model

❑ LC-3: An example von Neumann machine

◼ Instruction Set Architectures: LC-3 and MIPS

❑ Operate instructions

❑ Data movement instructions

❑ Control instructions

◼ Instruction formats

◼ Addressing modes

6

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Readings

◼ This week
❑ Von Neumann Model, ISA, LC-3, and MIPS

◼ P&P, Chapters 4, 5 (we will follow these today & tomorrow)
◼ H&H, Chapter 6 (until 6.5)
◼ P&P, Appendices A and C (ISA and microarchitecture of LC-3)
◼ H&H, Appendix B (MIPS instructions)

❑ Programming
◼ P&P, Chapter 6 (we will follow this tomorrow)

❑ Recommended: H&H Chapter 5, especially 5.1, 5.2, 5.4, 5.5

◼ Next week
❑ Introduction to microarchitecture and single-cycle microarchitecture

◼ H&H, Chapter 7.1-7.3
◼ P&P, Appendices A and C

❑ Multi-cycle microarchitecture
◼ H&H, Chapter 7.4
◼ P&P, Appendices A and C

7

Quick Review of the

von Neumann Model

8

Recall: The von Neumann Model

9

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,

Disk…

OUTPUT

Monitor,

Printer,

Disk…

Recall: von Neumann Model: Two Key Properties

◼ Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

◼ Stored program

❑ Instructions stored in a linear memory array

❑ Memory is unified between instructions and data

◼ The interpretation of a stored value depends on the control signals

◼ Sequential instruction processing

❑ One instruction processed (fetched, executed, completed) at a time

❑ Program counter (instruction pointer) identifies the current instruction

❑ Program counter is advanced sequentially except for control transfer
instructions

10

Programmer Visible (Architectural) State

11

M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter

memory address
of the current (or next) instruction

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state

Recall: LC-3: A von Neumann Machine

12

Scanned by CamScanner

Control signals

Data

ALU: 2 inputs, 1 output

Memory Data

Register

Memory Address

Register
16-bit

addressable

Keyboard

KBDR (data), KBSR (status)

Monitor

DDR (data), DSR (status)

8 General Purpose

Registers (GPR)

Finite State Machine

(for Generating Control Signals)

Instruction

Register

Program

Counter

ALU operation

GateALU

Clock

Recall: The Instruction (Processing) Cycle

❑ FETCH

❑ DECODE

❑ EVALUATE ADDRESS

❑ FETCH OPERANDS

❑ EXECUTE

❑ STORE RESULT

13

Recall: Control of the Instruction Cycle
◼ State 1

❑ The FSM asserts GatePC and
LD.MAR

❑ It selects input (+1) in PCMUX and
asserts LD.PC

◼ State 2
❑ MDR is loaded with the instruction

◼ State 3
❑ The FSM asserts GateMDR and

LD.IR

◼ State 4
❑ The FSM goes to next state

depending on opcode

◼ State 63
❑ JMP loads register into PC

◼ Full state diagram in Patt&Pattel,
Appendix C

14This is an FSM Controlling the LC-3 Processor

Full State Machine for LC-3b

15
https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetch.php?media=pp-appendixc.pdf

https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetch.php?media=pp-appendixc.pdf

Recall: LC-3: A von Neumann Machine

16

Scanned by CamScanner

Control signals

Data

ALU: 2 inputs, 1 output

Memory Data

Register

Memory Address

Register
16-bit

addressable

Keyboard

KBDR (data), KBSR (status)

Monitor

DDR (data), DSR (status)

8 General Purpose

Registers (GPR)

Finite State Machine

(for Generating Control Signals)

Instruction

Register

Program

Counter

ALU operation

GateALU

Clock

LC-3: A von Neumann Machine

17

Another von Neumann Machine

18Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,

2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Another von Neumann Machine

19Source: https://twitter.com/Locuza_/status/1454152714930331652

Intel Alder Lake,

2021

https://twitter.com/Locuza_/status/1454152714930331652

Another von Neumann Machine

20https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Cores:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared

Another von Neumann Machine

21
https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,

2020

Cores:
15-16 cores,

8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared

LC-3 and MIPS

Instruction Set Architectures

22

The Instruction Set

◼ It defines opcodes, data types, and addressing modes

◼ ADD and LDR have been our first examples

23

ADD

1 0 1 0 00 2

OP DR SR1 SR2

6 3 0 4

OP DR BaseR offset6

LDR

Register mode

Base+offset mode

The Instruction Set Architecture
◼ The ISA is the interface between what the software commands

and what the hardware carries out

◼ The ISA specifies
❑ The memory organization

◼ Address space (LC-3: 216, MIPS: 232)
◼ Addressability (LC-3: 16 bits, MIPS: 8 bits)

◼ Word- or Byte-addressable

❑ The register set
◼ 8 registers (R0 to R7) in LC-3
◼ 32 registers in MIPS

❑ The instruction set
◼ Opcodes
◼ Data types
◼ Addressing modes
◼ Length and format of instructions

24

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Instructions (Opcodes)

25

Opcodes

◼ A large or small set of opcodes could be defined

❑ E.g, HP Precision Architecture: an instruction for A*B+C

❑ E.g, x86 ISA: multimedia extensions (MMX), later SSE and AVX

❑ E.g, VAX ISA: opcode to save all information of one program
prior to switching to another program

◼ Tradeoffs are involved. Examples:

❑ Hardware complexity vs. software complexity

❑ Latency of simple vs. complex instructions

◼ In LC-3 and in MIPS there are three types of opcodes

❑ Operate

❑ Data movement

❑ Control
26

Opcodes in LC-3

27

Opcodes in LC-3b

28

MIPS Instruction Types

29

opcode
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

R-type0
6-bit

rs
5-bit

rt
5-bit

rd
5-bit

shamt
5-bit

funct
6-bit

opcode
6-bit

immediate
26-bit

J-type

Funct in MIPS R-Type Instructions (I)

30Harris and Harris, Appendix B: MIPS Instructions

Opcode is 0
in MIPS
R-Type

instructions.

Funct defines
the operation

Funct in MIPS R-Type Instructions (II)

31Harris and Harris, Appendix B: MIPS Instructions

◼ More complete list of instructions are in H&H Appendix B

Data Types

32

Data Types

◼ An ISA supports one or several data types

◼ LC-3 only supports 2’s complement integers

❑ Negative of a 2’s complement binary value X = NOT(X) + 1

◼ MIPS supports

❑ 2’s complement integers

❑ Unsigned integers

❑ Floating point

◼ Tradeoffs are involved. Examples:

❑ Hardware complexity vs. software complexity

❑ Latency of operations on supported vs. unsupported data types

33

Why Have Different Data Types in ISA?

◼ An example of programmer vs. microarchitect tradeoff

◼ Advantage of more data types:

❑ Enables better mapping of high-level programming constructs to
hardware

◼ Hardware can directly operate on data types present in programming
languages → small number of instructions and code size

❑ Matrix operations vs. individual multiply/add/load/store instructions

❑ Graph operations vs. individual load/store/add/… instructions

◼ Disadvantage:

❑ More work for the microarchitect

◼ who needs to implement the data types and instructions that operate
on data types

34

Data Types and Instruction Complexity

◼ Data types are coupled tightly to the semantic level, or
complexity of instructions

◼ Concept of semantic gap

❑ how close instructions & data types are to high-level language

◼ Complex instructions + data types → small semantic gap

❑ E.g., insert into a doubly linked list, multiply two matrices

❑ VAX ISA: doubly-linked list, multi-dimensional arrays

◼ Simple instructions + data types → large semantic gap

❑ E.g., primitive operations: load, store, multiply, add, nor

❑ Early RISC machines: Only integer data type, simple operations

35

Semantic Gap

◼ How close instructions & data types are to high-level
language (HLL)

36

HLL

HW

Control

Signals

HLL

HW

Control

Signals

ISA with

Complex Inst

& Data Types

ISA with

Simple Inst

& Data Types

Small Semantic Gap

Large Semantic Gap

Complex vs. Simple Instructions+Data Types

◼ Complex instruction: An instruction does a lot of work, e.g.
many operations

❑ Insert in a doubly linked list

❑ Compute FFT

❑ String copy

❑ Matrix multiply

❑ …

◼ Simple instruction: An instruction does little work -- it is a
primitive using which complex operations can be built

❑ Add

❑ XOR

❑ Multiply

❑ …
37

Complex vs. Simple Instructions+Data Types

◼ Advantages of Complex Instructions + Data Types

+ Denser encoding → smaller code size → better memory

utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

◼ Disadvantages of Complex Instructions + Data Types

- Larger chunks of work → compiler has less opportunity to

optimize (limited in fine-grained optimizations it can do)

- More complex hardware → translation from a high level to

control signals and optimization needs to be done by hardware

38

Aside: An Example: BinaryCodedDecimal

◼ Each decimal digit is encoded with a fixed number of bits

39

"Binary clock" by Alexander Jones & Eric Pierce - Own work, based on Wapcaplet's Binary clock.png on the English

Wikipedia. Licensed under CC BY-SA 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Binary_clock.svg#mediaviewer/File:Binary_clock.svg

"Digital-BCD-clock" by Julo - Own work. Licensed under Public Domain via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Digital-BCD-clock.jpg#mediaviewer/File:Digital-BCD-clock.jpg

Aside: An Example: BinaryCodedDecimal

◼ Each decimal digit is encoded with a fixed number of bits

40

"Binary clock" by Alexander Jones & Eric Pierce - Own work, based on Wapcaplet's Binary clock.png on the English

Wikipedia. Licensed under CC BY-SA 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Binary_clock.svg#mediaviewer/File:Binary_clock.svg

"Digital-BCD-clock" by Julo - Own work. Licensed under Public Domain via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Digital-BCD-clock.jpg#mediaviewer/File:Digital-BCD-clock.jpg

Addressing Modes

41

Addressing Modes

◼ An addressing mode is a mechanism for specifying where
an operand is located

◼ There are five addressing modes in LC-3

❑ Immediate or literal (constant)

◼ The operand is in some bits of the instruction

❑ Register

◼ The operand is in one of R0 to R7 registers

❑ Three memory addressing modes

◼ PC-relative

◼ Indirect

◼ Base+offset

◼ MIPS has pseudo-direct addressing (for j and jal),
additionally, but does not have indirect addressing

42

Why Have Different Addressing Modes?

◼ Another example of programmer vs. microarchitect tradeoff

◼ Advantage of more addressing modes:

❑ Enables better mapping of high-level programming constructs to
hardware

◼ some accesses are better expressed with a different mode →

reduced number of instructions and code size

❑ Array indexing

❑ Pointer-based accesses (indirection)

❑ Sparse matrix accesses

◼ Disadvantages:

❑ More work for the microarchitect

❑ More options for the compiler to decide what to use

43

Semantic Gap Applies to Addressing Modes

◼ How close instructions & data types & addressing modes
are to high-level language (HLL)

44

HLL

HW

Control

Signals

HLL

HW

Control

Signals

ISA with

Complex Inst

& Data Types

& Addressing Modes ISA with

Simple Inst

& Data Types

& Addressing Modes

Small Semantic Gap

Large Semantic Gap

Many Tradeoffs in ISA Design...

◼ Execution model – sequencing model and processing style

◼ Instruction length

◼ Instruction format

◼ Instruction types

◼ Instruction complexity vs. simplicity

◼ Data types

◼ Number of registers

◼ Addressing mode types

◼ Memory organization (address space, addressability, endianness, …)

◼ Memory access restrictions and permissions

◼ Support for multiple instructions to execute in parallel?

◼ …

45

Operate Instructions

46

Operate Instructions

◼ In LC-3, there are three operate instructions

❑ NOT is a unary operation (one source operand)

◼ It executes bitwise NOT

❑ ADD and AND are binary operations (two source operands)

◼ ADD is 2’s complement addition

◼ AND is bitwise SR1 & SR2

◼ In MIPS, there are many more

❑ Most of R-type instructions (they are binary operations)

◼ E.g., add, and, nor, xor…

❑ I-type versions (i.e., with one immediate operand) of the R-
type operate instructions

❑ F-type operations, i.e., floating-point operations

47

◼ NOT assembly and machine code

NOT in LC-3

48

NOT R3, R5

LC-3 assembly

Field Values

Machine Code

9 3 5 1 1 1 1 1 1

OP DR SR

1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1

OP DR SR

15 12 11 9 8 6 05

Register file

SR

DR

From
FSM

There is no NOT in MIPS. How is it implemented?

Operate Instructions

◼ We are already familiar with LC-3’s ADD and AND with
register mode (R-type in MIPS)

◼ Now let us see the versions with one literal (i.e., immediate)
operand

◼ We will use Subtraction as an example

❑ How is it implemented in LC-3 and MIPS?

49

Recall: LC-3 Operate Instruction Format

◼ LC-3 Operate Instruction Format (Register OP Register)

❑ OP = opcode (what the instruction does)

◼ E.g., ADD = 0001

❑ Semantics: DR ← SR1 + SR2

◼ E.g., AND = 0101

❑ Semantics: DR ← SR1 AND SR2

❑ SR1, SR2 = source registers

❑ DR = destination register
50

OP DR SR1 0 00 SR2

4 bits 3 bits 3 bits 3 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

Operate Instr. with one Literal in LC-3
◼ ADD and AND

❑ OP = operation
◼ E.g., ADD = 0001 (same OP as the register-mode ADD)

❑ DR ← SR1 + sign-extend(imm5)

◼ E.g., AND = 0101 (same OP as the register-mode AND)
❑ DR ← SR1 AND sign-extend(imm5)

❑ SR1 = source register

❑ DR = destination register

❑ imm5 = Literal or immediate (sign-extend to 16 bits)

51

OP DR SR1 1 imm5

4 bits 3 bits 3 bits 5 bits

◼ ADD assembly and machine code

ADD with one Literal in LC-3

52

ADD R1, R4, #-2

LC-3 assembly

Field Values

Machine Code

1 1 4 1 -2

OP DR SR imm5

0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0

OP DR SR imm5

15 12 11 9 8 6 05 4

Register file

SR

DR

From
FSM

Instruction register

Sign-
extend

ADD with one Literal in LC-3 Data Path

53

Sign

extension

(Operand)

Processing

Unit

Control Unit

Select

Immediate

or Register

(as the 2nd

input to

instruction)

Instructions with one Literal in MIPS

◼ I-type MIPS Instructions

❑ 2 register operands and immediate

◼ Some operate and data movement instructions

❑ opcode = operation

❑ rs = source register

❑ rt =
◼ destination register in some instructions (e.g., addi, lw)

◼ source register in others (e.g., sw)

❑ imm = Literal or immediate

54

opcode rs rt imm

6 bits 5 bits 5 bits 16 bits

◼ Add immediate

ADD with one Literal in MIPS

55

8 17 16 5

op rs rt imm

addi $s0, $s1, 5

MIPS assembly

Field Values

001000 10001 10010 0000 0000 0000 0101

op rs rt imm

Machine Code

0x22300005

rt ← rs + sign-extend(imm)

Subtraction in MIPS vs. LC-3

◼ MIPS assembly

◼ LC-3 assembly

◼ Tradeoff in LC-3

❑ More instructions

❑ But, simpler control logic

56

a = b + c - d; add $t0, $s0, $s1

sub $s3, $t0, $s2

High-level code MIPS assembly

a = b + c - d; ADD R2, R0, R1

NOT R4, R3

ADD R5, R4, #1

ADD R6, R2, R5

High-level code LC-3 assembly

2’s

complement

of R3

Subtract Immediate

◼ MIPS assembly

◼ LC-3

57

a = b - 3; subi $s1, $s0, 3

High-level code MIPS assembly

Is subi necessary in MIPS?

addi $s1, $s0, -3

MIPS assembly

a = b - 3; ADD R1, R0, #-3

High-level code LC-3 assembly

Data Movement Instructions

and Addressing Modes

58

Data Movement Instructions

◼ In LC-3, there are seven data movement instructions

❑ LD, LDR, LDI, LEA, ST, STR, STI

◼ Format of load and store instructions

❑ Opcode (bits [15:12])

❑ DR or SR (bits [11:9])

❑ Address generation bits (bits [8:0])

❑ Four ways to interpret bits, called addressing modes

◼ PC-Relative Mode

◼ Indirect Mode

◼ Base+Offset Mode

◼ Immediate Mode

◼ In MIPS, there are only Base+offset and Immediate modes
for load and store instructions

59

PC-Relative Addressing Mode

◼ LD (Load) and ST (Store)

❑ OP = opcode

◼ E.g., LD = 0010

◼ E.g., ST = 0011

❑ DR = destination register in LD

❑ SR = source register in ST

❑ LD: DR ← Memory[PC✝ + sign-extend(PCoffset9)]

❑ ST: Memory[PC✝ + sign-extend(PCoffset9)] ← SR

60

OP DR/SR PCoffset9

4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

◼ LD assembly and machine code

LD in LC-3

61

LD R2, 0x1AF

LC-3 assembly

Field Values

Machine Code

2 2 0x1AF

OP DR PCoffset9

0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1

OP DR PCoffset9

15 12 11 9 8 0

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address
calculation

2. Memory
read

3. DR is
loaded

The memory address is only +255 to -256
locations away of the LD or ST instruction

Limitation: The PC-relative addressing mode
cannot address far away from the

instruction

Indirect Addressing Mode

◼ LDI (Load Indirect) and STI (Store Indirect)

❑ OP = opcode

◼ E.g., LDI = 1010

◼ E.g., STI = 1011

❑ DR = destination register in LDI

❑ SR = source register in STI

❑ LDI: DR ← Memory[Memory[PC✝ + sign-extend(PCoffset9)]]

❑ STI: Memory[Memory[PC✝ + sign-extend(PCoffset9)]] ← SR

62

OP DR/SR PCoffset9

4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

◼ LDI assembly and machine code

LDI in LC-3

63

LDI R3, 0x1CC

LC-3 assembly

Field Values

Machine Code

A 3 0x1CC

OP DR PCoffset9

1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0

OP DR PCoffset9

15 12 11 9 8 0

Now the address of the operand can be anywhere in the memory

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address
calculation

2. Memory
read

5. DR is
loaded

4. Memory
read

3. Loaded
address
from MDR
to MAR

Base+Offset Addressing Mode

◼ LDR (Load Register) and STR (Store Register)

❑ OP = opcode

◼ E.g., LDR = 0110

◼ E.g., STR = 0111

❑ DR = destination register in LDR

❑ SR = source register in STR

❑ LDR: DR ← Memory[BaseR + sign-extend(offset6)]

❑ STR: Memory[BaseR + sign-extend(offset6)] ← SR

64

OP DR/SR offset6

4 bits 3 bits 6 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

BaseR

3 bits

◼ LDR assembly and machine code

LDR in LC-3

65

LDR R1, R2, 0x1D

LC-3 assembly

Again, the address of the operand can be anywhere in the memory

1. Address
calculation

2. Memory
read

3. DR is
loaded

Field Values

6 1 0x1D

OP DR offset6

2

BaseR

Machine Code

0 1 1 0 0 0 1 0 1 1 1 0 1

OP DR offset6

15 12 11 9 8 0

0 1 0

BaseR

6 5

Register file

DR

Instruction register

Sign-
extend

BaseR

001 0100110

Address Calculation in LC-3 Data Path

66

Global bus

MAR

Multiplexer

Adder

Sign

extension

(Address)
Processing

Unit

Base+Offset Addressing Mode in MIPS

◼ In MIPS, lw and sw use base+offset mode (or base
addressing mode)

◼ imm is the 16-bit offset, which is sign-extended to 32 bits

67

A[2] = a; sw $s3, 8($s0)

High-level code MIPS assembly

Memory[$s0 + 8] ← $s3

43 16 19 8

op rs rt imm

Field Values

An Example Program in MIPS and LC-3

68

a = A[0];

c = a + b - 5;

B[0] = c;

A = $s0

b = $s2

B = $s1

High-level code MIPS registers

LDR R5, R0, #0

ADD R6, R5, R2

ADD R7, R6, #-5

STR R7, R1, #0

LC-3 assembly

lw $t0, 0($s0)

add $t1, $t0, $s2

addi $t2, $t1, -5

sw $t2, 0($s1)

MIPS assembly

A = R0

b = R2

B = R1

LC-3 registers

Immediate Addressing Mode (in LC-3)

◼ LEA (Load Effective Address)

❑ OP = 1110

❑ DR = destination register

❑ LEA: DR ← PC✝ + sign-extend(PCoffset9)

69

OP DR PCoffset9

4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

What is the difference from PC-Relative addressing mode?

Answer: Instructions with PC-Relative mode load from memory,
but LEA does not → Hence the name Load Effective Address

◼ LEA assembly and machine code

LEA in LC-3

70

LEA R5, #-3

LC-3 assembly

Field Values

Machine Code

E 5 0x1FD

OP DR PCoffset9

1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1

OP DR PCoffset9

15 12 11 9 8 0

Register file

DR

Instruction register

Sign-
extend

Incremented PC

Address Calculation in LC-3 Data Path

71

Global bus

MAR

Multiplexer

Adder

Sign

extension

(Address)
Processing

Unit

Immediate Addressing Mode in MIPS

◼ In MIPS, lui (load upper immediate) loads a 16-bit
immediate into the upper half of a register and sets the
lower half to 0

◼ It is used to assign 32-bit constants to a register

72

a = 0x6d5e4f3c; # $s0 = a

lui $s0, 0x6d5e

ori $s0, 0x4f3c

High-level code MIPS assembly

Addressing Example in LC-3

◼ What is the final value of R3?

73

x30F4

P&P, Chapter 5.3.5

◼ What is the final value of R3?

◼ The final value of R3 is 5

x30F4

Addressing Example in LC-3

74

LEA

ADD

ST

AND

ADD

STR

LDI

-3

14

-5

5

14

-9

0

R3 = M[M[PC – 9]] = M[M[0x30FD – 9]] =

R1 = PC – 3 = 0x30F7 – 3 = 0x30F4

R2 = R1 + 14 = 0x30F4 + 14 = 0x3102

M[PC - 5] = M[0x030F4] = 0x3102

R2 = 0

R2 = R2 + 5 = 5

M[R1 + 14] = M[0x30F4 + 14] = M[0x3102] = 5

M[M[0x30F4]] = M[0x3102] = 5

P&P, Chapter 5.3.5

Control Flow Instructions

75

Control Flow Instructions

◼ Allow a program to execute out of sequence

◼ Conditional branches and unconditional jumps

❑ Conditional branches are used to make decisions

◼ E.g., if-else statement

❑ In LC-3, three condition codes are used

❑ Jumps are used to implement

◼ Loops

◼ Function calls

❑ JMP in LC-3 and j in MIPS

◼ We have already seen these

76

Conditional Control Flow

(Conditional Branching)

77

Condition Codes in LC-3

◼ Each time one GPR (R0-R7) is written, three single-bit registers
are updated

◼ Each of these condition codes are either set (set to 1) or cleared
(set to 0)

❑ If the written value is negative

◼ N is set, Z and P are cleared

❑ If the written value is zero

◼ Z is set, N and P are cleared

❑ If the written value is positive

◼ P is set, N and Z are cleared

◼ x86 and SPARC are examples of ISAs that use condition codes

78

Conditional Branches in LC-3
◼ BRz (Branch if Zero)

❑ n, z, p = which condition code is tested (N, Z, and/or P)
◼ n, z, p: instruction bits to identify the condition codes to be tested
◼ N, Z, P: values of the corresponding condition codes

❑ PCoffset9 = immediate or constant value

❑ if ((n AND N) OR (p AND P) OR (z AND Z))
◼ then PC ← PC✝ + sign-extend(PCoffset9)

❑ Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp

79

BRz PCoffset9

0000 n PCoffset9

4 bits 9 bits

z p

✝This is the incremented PC

Conditional Branches in LC-3

◼ BRz

80

BRz 0x0D9

What if n = z = p = 1?*
(i.e., BRnzp)

And what if n = z = p = 0?

Instruction
register

Program
Counter

Condition
registers

n z p

*n, z, p are the instruction bits to identify the condition codes to be tested

Conditional Branches in MIPS
◼ beq (Branch if Equal)

❑ 4 = opcode

❑ rs, rt = source registers

❑ offset = immediate or constant value

❑ if rs == rt
◼ then PC ← PC✝ + sign-extend(offset) * 4

❑ Variations: beq, bne, blez, bgtz

81

4 rs rt offset

6 bits 5 bits 5 bits 16 bits

beq $s0, $s1, offset

✝This is the incremented PC

◼ This is an example of tradeoff in the instruction set

❑ The same functionality requires more instructions in LC-3

❑ But, the control logic requires more complexity in MIPS

beq $s0, $s1, offset

Branch If Equal in MIPS and LC-3

82

LC-3 assemblyMIPS assembly

NOT R2, R1

ADD R3, R2, #1

ADD R4, R3, R0

BRz offset

Subtract

(R0 - R1)

What We Learned

◼ Basic elements of a computer & the von Neumann model

❑ LC-3: An example von Neumann machine

◼ Instruction Set Architectures: LC-3 and MIPS

❑ Operate instructions

❑ Data movement instructions

❑ Control instructions

◼ Instruction formats

◼ Addressing modes

83

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

There Is A Lot More to Cover on ISAs

84https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Many Different ISAs Over Decades

◼ x86

◼ PDP-x: Programmed Data Processor (PDP-11)

◼ VAX

◼ IBM 360

◼ CDC 6600

◼ SIMD ISAs: CRAY-1, Connection Machine

◼ VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)

◼ PowerPC, POWER

◼ RISC ISAs: Alpha, MIPS, SPARC, ARM, RISC-V, …

◼ What are the fundamental differences?

❑ E.g., how instructions are specified and what they do

❑ E.g., how complex are instructions, data types, addr. modes
85

Complex vs. Simple Instructions+Data Types

◼ Complex instruction: An instruction does a lot of work, e.g.
many operations

❑ Insert in a doubly linked list

❑ Compute FFT

❑ String copy

❑ Matrix multiply

❑ …

◼ Simple instruction: An instruction does little work -- it is a
primitive using which complex operations can be built

❑ Add

❑ XOR

❑ Multiply

❑ …
86

Complex vs. Simple Instructions+Data Types

◼ Advantages of Complex Instructions + Data Types

+ Denser encoding → smaller code size → better memory

utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

◼ Disadvantages of Complex Instructions + Data Types

- Larger chunks of work → compiler has less opportunity to

optimize (limited in fine-grained optimizations it can do)

- More complex hardware → translation from a high level to

control signals and optimization needs to be done by hardware

87

Semantic Gap

◼ How close instructions & data types are to high-level
language (HLL)

88

HLL

HW

Control

Signals

HLL

HW

Control

Signals

ISA with

Complex Inst

& Data Types

ISA with

Simple Inst

& Data Types

Small Semantic Gap

Large Semantic Gap

How to Change the Semantic Gap Tradeoffs

◼ Translate into a different intermediate ISA

89

HLL

HW

Control

Signals

ISA with

Complex Inst

& Data Types

Small Semantic Gap

Implementation ISA with

Simple Inst

& Data Types

Software or Hardware Translator

ISA-level Tradeoffs: Number of Registers

◼ Affects:

❑ Number of bits used for encoding register address

❑ Number of values kept in fast storage (register file)

❑ (uarch) Size, access time, power consumption of register file

◼ Large number of registers:

+ Enables better register allocation (and optimizations) by
compiler → fewer saves/restores

-- Larger instruction size

-- Larger register file size

90

There Is A Lot More to Cover on ISAs

91https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

There Is A Lot More to Cover on ISAs

92https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Detailed Lectures on ISAs & ISA Tradeoffs

◼ Computer Architecture, Spring 2015, Lecture 3

❑ ISA Tradeoffs (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=QKdiZSfwg-
g&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=3

◼ Computer Architecture, Spring 2015, Lecture 4

❑ ISA Tradeoffs & MIPS ISA (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=RBgeCCW5Hjs&list=PL5PHm2jkkXmi5CxxI7b3J
CL1TWybTDtKq&index=4

◼ Computer Architecture, Spring 2015, Lecture 2

❑ Fundamental Concepts and ISA (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=NpC39uS4K4o&list=PL5PHm2jkkXmi5CxxI7b3J
CL1TWybTDtKq&index=2

93https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures

Digital Design & Computer Arch.

Lecture 10a: Instruction Set

Architectures II

Prof. Onur Mutlu

ETH Zürich

Spring 2022

25 March 2022

