
Digital Design & Computer Arch.
Lecture 10b: Assembly Programming

Prof. Onur Mutlu

ETH Zürich
Spring 2022

25 March 2022

Agenda for Today & Next Few Lectures

n The von Neumann model
n LC-3: An example of von Neumann machine

n LC-3 and MIPS Instruction Set Architectures

n LC-3 and MIPS assembly and programming

n Introduction to microarchitecture and
single-cycle microarchitecture

n Multi-cycle microarchitecture

2

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Readings
n This week

q Von Neumann Model, ISA, LC-3, and MIPS
n P&P, Chapters 4, 5 (we will follow these today)
n H&H, Chapter 6 (until 6.5)
n P&P, Appendices A and C (ISA and microarchitecture of LC-3)
n H&H, Appendix B (MIPS instructions)

q Programming
n P&P, Chapter 6 (we will follow this today)

q Recommended: H&H Chapter 5, especially 5.1, 5.2, 5.4, 5.5

n Next week
q Introduction to microarchitecture and single-cycle microarchitecture

n H&H, Chapter 7.1-7.3
n P&P, Appendices A and C

q Multi-cycle microarchitecture
n H&H, Chapter 7.4
n P&P, Appendices A and C

3

What Will We Learn Today?
n Assembly Programming

q Programming constructs
q Debugging
q Conditional statements and loops in MIPS assembly
q Arrays in MIPS assembly
q Function calls

n The stack

4

Recall: The Von Neumann Model

5

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

Recall: LC-3: A von Neumann Machine

6

Scanned by CamScanner

Control signals

Data

ALU: 2 inputs, 1 output

Memory Data
Register

Memory Address
Register

16-bit
addressable

Keyboard
KBDR (data), KBSR (status)

Monitor
DDR (data), DSR (status)

8 General Purpose
Registers (GPR)

Finite State Machine
(for Generating Control Signals)

Instruction
Register

Program
Counter

ALU operation

GateALU

Clock

Recall: The Instruction Cycle

q FETCH
q DECODE
q EVALUATE ADDRESS

q FETCH OPERANDS
q EXECUTE
q STORE RESULT

7

Recall: The Instruction Set Architecture
n The ISA is the interface between what the software commands

and what the hardware carries out

n The ISA specifies
q The memory organization

n Address space (LC-3: 216, MIPS: 232)
n Addressability (LC-3: 16 bits, MIPS: 8 bits)

n Word- or Byte-addressable

q The register set
n 8 registers (R0 to R7) in LC-3
n 32 registers in MIPS

q The instruction set
n Opcodes
n Data types
n Addressing modes
n Length and format of instructions

8

Microarchitecture
ISA
Program
Algorithm
Problem

Circuits
Electrons

Our First LC-3 Program:
Use of Conditional Branches

for Looping

9

An Algorithm for Adding Integers
n We want to write a program that adds 12 integers

q They are stored in addresses 0x3100 to 0x310B
q Let us take a look at the flowchart of the algorithm

10

5.4 Control Instructions 133

R1 <– x3100�
R3 <– 0�
R2 <– 12

Yes
R2 ? = 0

No

R4 <– M[R1]�
R3 <– R3 + R4�
Increment R1�
Decrement R2

Figure 5.12 An algorithm for adding 12 integers

A flowchart for an algorithm to solve the problem is shown in Figure 5.12.
First, as in all algorithms, we must initialize our variables. That is, we must

set up the initial values of the variables that the computer will use in executing the
program that solves the problem. There are three such variables: the address of
the next integer to be added (assigned to R1), the running sum (assigned to R3),
and the number of integers left to be added (assigned to R2). The three variables
are initialized as follows: The address of the first integer to be added is put in R1.
R3, which will keep track of the running sum, is initialized to 0. R2, which will
keep track of the number of integers left to be added, is initialized to 12. Then
the process of adding begins.

The program repeats the process of loading into R4 one of the 12 integers,
and adding it to R3. Each time we perform the ADD, we increment R1 so it will
point to (i.e., contain the address of) the next number to be added and decrement
R2 so we will know howmany numbers still need to be added.When R2 becomes
zero, the Z condition code is set, and we can detect that we are done.

The 10-instruction program shown in Figure 5.13 accomplishes the task.
The details of the program execution are as follows: The program starts with

PC = x3000. The first instruction (at location x3000) loads R1 with the address
x3100. (The incremented PC is x3001; the sign-extended PCoffset is x00FF.)

The instruction at x3001 clears R3. R3 will keep track of the running sum, so
it must start off with the value 0. As we said previously, this is called initializing
the SUM to zero.

The instructions at x3002 and x3003 set the value of R2 to 12, the number of
integers to be added. R2 will keep track of how many numbers have already been
added. This will be done (by the instruction contained in x3008) by decrementing
R2 after each addition takes place.

The instruction at x3004 is a conditional branch instruction. Note that bit
[10] is a 1. That means that the Z condition code will be examined. If it is set, we

R1: initial address of integers
R3: final result of addition

R2: number of
integers left to be
added

Check if R2
becomes 0
(done with all
integers?)

Load integer in R4
Accumulate integer value in R3

Increment address R1
Decrement R2

n We use conditional branch instructions to create a loop

A Program for Adding Integers in LC-3

11

134 chapter 5 The LC-3

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x3000 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 R1<- 3100
x3001 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3 <- 0
x3002 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 <- 0
x3003 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 R2 <- 12
x3004 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 BRz x300A
x3005 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 R4 <- M[R1]
x3006 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 R3 <- R3+R4
x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 <- R1+1
x3008 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 R2 <- R2-1
x3009 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 BRnzp x3004

Figure 5.13 A program that implements the algorithm of Figure 5.12

know R2 must have just been decremented to 0. That means there are no more
numbers to be added and we are done. If it is clear, we know we still have work
to do and we continue.

The instruction at x3005 loads the contents of x3100 (i.e., the first integer)
into R4, and the instruction at x3006 adds it to R3.

The instructions at x3007 and x3008 perform the necessary bookkeeping.
The instruction at x3007 increments R1, so R1 will point to the next location in
memory containing an integer to be added (in this case, x3101). The instruction
at x3008 decrements R2, which is keeping track of the number of integers still to
be added, as we have already explained, and sets the N, Z, and P condition codes.

The instruction at x3009 is an unconditional branch, since bits [11:9] are all 1.
It loads the PC with x3004. It also does not affect the condition codes, so the next
instruction to be executed (the conditional branch at x3004) will be based on the
instruction executed at x3008.

This is worth saying again. The conditional branch instruction at x3004 fol-
lows the instruction at x3009, which does not affect condition codes, which in
turn follows the instruction at x3008. Thus, the conditional branch instruction at
x3004 will be based on the condition codes set by the instruction at x3008. The
instruction at x3008 sets the condition codes depending on the value produced
by decrementing R2. As long as there are still integers to be added, the ADD
instruction at x3008 will produce a value greater than zero and therefore clear
the Z condition code. The conditional branch instruction at x3004 examines the
Z condition code. As long as Z is clear, the PC will not be affected, and the next
instruction cycle will start with an instruction fetch from x3005.

The conditional branch instruction causes the execution sequence to follow:
x3000, x3001, x3002, x3003, x3004, x3005, x3006, x3007, x3008, x3009, x3004,
x3005, x3006, x3007, x3008, x3009, x3004, x3005, and so on until the value inR2
becomes 0. The next time the conditional branch instruction at x3004 is executed,
the PC is loaded with x300A, and the program continues at x300A with its next
activity.

Finally, it is worth noting that we could have written a program to add these
12 integerswithout any control instructions.We still would have needed the LEA

LEA
AND
AND
ADD
BR z
LDR
ADD
ADD
ADD
BR n z p

R1 = PC✝+ 0x00FF = 3100 // load address0x00FF

5
0

1
-1

-6

R3 = 0 // reset register
R2 = 0 // reset register
R2 = R2 + 12 // initialize counter
BRz (PC ✝ + 5) = BRz 0x300A // check condition
R4 = M[R1 + 0] // load value
R3 = R3 + R4 // accumulate
R1 = R1 + 1 // increment address
R2 = R2 – 1 // decrement counter
BRnzp (PC ✝ – 6) = BRnzp 0x3004 // jump

?

✝This is the incremented PCBit 5 to differentiate the two ADD instructions

5.4 Control Instructions 133

R1 <– x3100�
R3 <– 0�
R2 <– 12

Yes
R2 ? = 0

No

R4 <– M[R1]�
R3 <– R3 + R4�
Increment R1�
Decrement R2

Figure 5.12 An algorithm for adding 12 integers

A flowchart for an algorithm to solve the problem is shown in Figure 5.12.
First, as in all algorithms, we must initialize our variables. That is, we must

set up the initial values of the variables that the computer will use in executing the
program that solves the problem. There are three such variables: the address of
the next integer to be added (assigned to R1), the running sum (assigned to R3),
and the number of integers left to be added (assigned to R2). The three variables
are initialized as follows: The address of the first integer to be added is put in R1.
R3, which will keep track of the running sum, is initialized to 0. R2, which will
keep track of the number of integers left to be added, is initialized to 12. Then
the process of adding begins.

The program repeats the process of loading into R4 one of the 12 integers,
and adding it to R3. Each time we perform the ADD, we increment R1 so it will
point to (i.e., contain the address of) the next number to be added and decrement
R2 so we will know howmany numbers still need to be added.When R2 becomes
zero, the Z condition code is set, and we can detect that we are done.

The 10-instruction program shown in Figure 5.13 accomplishes the task.
The details of the program execution are as follows: The program starts with

PC = x3000. The first instruction (at location x3000) loads R1 with the address
x3100. (The incremented PC is x3001; the sign-extended PCoffset is x00FF.)

The instruction at x3001 clears R3. R3 will keep track of the running sum, so
it must start off with the value 0. As we said previously, this is called initializing
the SUM to zero.

The instructions at x3002 and x3003 set the value of R2 to 12, the number of
integers to be added. R2 will keep track of how many numbers have already been
added. This will be done (by the instruction contained in x3008) by decrementing
R2 after each addition takes place.

The instruction at x3004 is a conditional branch instruction. Note that bit
[10] is a 1. That means that the Z condition code will be examined. If it is set, we

The LC-3 Data Path Revisited

12

The LC-3 Data Path

13

142 chapter 5 The LC-3

MDR

MEMORY

MAR

INPUT OUTPUT

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

16

1616

16

16

1616

16

SR2MUX

16
LD.IR

16

16

PC

+

IR

ZEXT

SR2
OUT

SR1
OUT

FILE

[7:0]

2

PCMUX

GatePC

LD.PCMARMUX

ALUK

16 16

16
3

3 3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

ALU

AB

N Z P

LOGIC

LD.CC

R
STATE

LD.MDR

16

MEM.EN, R.W

FINITE

REG

LD.MAR

16
16 16

MACHINE

GateALU

CONTROL

GateMDR

Figure 5.18 The data path of the LC-3

Global bus

MAR
Multiplexer

Adder

Sign
extension
(Address)

Sign
extension
(Operand)

Condition
codes

We highlight some
data path
components used in
the execution of the
instructions in the
previous slides (not
shown in the
simplified data
path)

Processing
Unit

Control Unit

(Assembly) Programming

14

Programming Constructs
n Programming requires dividing a task, i.e., a unit of work

into smaller units of work

n The goal is to replace the units of work with programming
constructs that represent that part of the task

n There are three basic programming constructs

q Sequential construct

q Conditional construct

q Iterative construct
15

Scanned by CamScanner

Sequential Construct
n The sequential construct is used if the designated task can

be broken down into two subtasks, one following the other

16

Scanned by CamScanner

Scanned by CamScanner

Conditional Construct
n The conditional construct is used if the designated task

consists of doing one of two subtasks, but not both

q Either subtask may be ”do nothing”
q After the correct subtask is completed, the program moves

onward
n E.g., if-else statement, switch-case statement

17

Scanned by CamScanner

Scanned by CamScanner

Is the condition
“true” or “false”?

Iterative Construct
n The iterative construct is used if the designated task

consists of doing a subtask a number of times, but only as
long as some condition is true

n E.g., for loop, while loop, do-while loop

18

Scanned by CamScanner

Scanned by CamScanner

Is the condition
still “true”?

Constructs in an Example Program
n Let us see how to use the programming constructs in an

example program

n The example program counts the number of occurrences of
a character in a text file

n It uses sequential, conditional, and iterative constructs

n We will see how to write conditional and iterative
constructs with conditional branches

19

Counting Occurrences of a Character
n We want to write a program

that counts the occurrences
of a character in a file
q Get character-to-search from

the keyboard (TRAP instr.)
q The file finishes with the

character EOT (End Of Text)
n That is called a sentinel
n In this example, EOT = 4

q Output result to the monitor
(TRAP instr.)

20

5.5 Another Example: Counting Occurrences of a Character 139

Initialize pointer�
(R3 <– M[x3012])

Count <– 0�
(R2 <– 0)

Input char from keyboard�
(TRAP x23)

Get char from file�
(R1 <– M[R3])

Yes

No

Done�
(R1 ? = EOT)

Match�
(R1 ? = R0)

Yes No

Get char from file�
(R3 <– R3 +1�
R1 <– M[R3])

Prepare output�
(R0 <– R2 + x30)

Output�
(TRAP x21)

Stop�
(TRAP x25)

Increment count�
(R2 <– R2 +1)

Figure 5.16 An algorithm to count occurrences of a character

R2: counter

R3: initial address

Input char

Read char from file

Increment address
Read char from file

Check if end of file

Is it the searched char?

Increment R2

Move output to R0

Output counter

Halt the program

Scanned by CamScanner

Programming constructs

TRAP Instruction
n TRAP invokes an OS service call

q OP = 1111

q trapvect8 = service call

n 0x23 = Input a character from the keyboard

n 0x21 = Output a character to the monitor

n 0x25 = Halt the program

21

OP 0 0 0 0 trapvect8
4 bits 8 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

TRAP 0x23;

LC-3 assembly Machine Code

n We use conditional branch instructions to create loops and
if statements

Counting Occurrences of a Char in LC-3

22

140 chapter 5 The LC-3

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x3000 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 <- 0
x3001 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 R3 <- M[x3012]
x3002 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 TRAP x23
x3003 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 <- M[R3]
x3004 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 R4 <- R1-4
x3005 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 BRz x300E
x3006 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R1 <- NOT R1
x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 <- R1 + 1
x3008 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 R1 <- R1 + R0
x3009 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 BRnp x300B
x300A 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2 <- R2 + 1
x300B 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 R3 <- R3 + 1
x300C 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 <- M[R3]
x300D 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 BRnzp x3004
x300E 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 R0 <- M[x3013]
x300F 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 R0 <- R0 + R2
x3010 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 TRAP x21
x3011 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 TRAP x25
x3012 Starting address of file
x3013 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 ASCII TEMPLATE

Figure 5.17 A machine language program that implements the algorithm of Figure 5.16

on the monitor, it is necessary to first convert it to an ASCII code. Since we
have assumed the count is less than 10, we can do this by putting a leading 0011
in front of the 4-bit binary representation of the count. Note in Figure E.2 the
relationship between the binary value of each decimal digit between 0 and 9 and
its corresponding ASCII code. Finally, the count is output to the monitor, and the
program terminates.

Figure 5.17 is a machine language program that implements the flowchart of
Figure 5.16.

First the initialization steps. The instruction at x3000 clears R2 by ANDing it
with x0000; the instruction at x3001 loads the value stored in x3012 into R3. This
is the address of the first character in the file that is to be examined for occurrences
of our character. Again, we note that this file can be anywhere in memory. Prior to
starting execution at x3000, some sequence of instructions must have stored the
first address of this file in x3012. Location x3002 contains the TRAP instruction,
which requests the operating system to perform a service call on behalf of this
program. The function requested, as identified by the 8-bit trapvector 00100011
(or, x23), is to input a character from the keyboard and load it into R0. Table A.2
lists trapvectors for all operating system service calls that can be performed on
behalf of a user program. Note (from Table A.2) that x23 directs the operating
system to perform the service call that reads the next character struck and loads
it into R0. The instruction at x3003 loads the character pointed to by R3 into R1.

Then the process of examining characters begins. We start (x3004) by sub-
tracting 4 (the ASCII code for EOT) from R1, and storing it in R4. If the result

R2 = 0 // initialize counter
R3 = M[0x3012] // initial address
TRAP 0x23 // input char to R0
R1 = M[R3] // char from file
R4 = R1 – 4 // char – EOT
BRz 0x300E // check if end of file
R1 = NOT(R1)
R1 = R1 + 1
R1 = R1 + R0

// subtract char from
file from input char
for comparison

BRnp 0x300B
R2 = R2 + 1 // increment the counter
R3 = R3 + 1 // increment address
R1 = M[R3] // char from file
BRnzp 0x3004
R0 = M[0x3013]
R0 = R0 + R2
TRAP 0x21
TRAP 0x25

// output counter
to monitor with
TRAP

ASCII TEMPLATE

?

?

AND
LD
TRAP
LDR
ADD
BR
NOT
ADD
ADD
BR
ADD
ADD
LDR
BR
LD
ADD
TRAP
AND

z

n p

n z p

n Let us do some reverse engineering to identify conditional
constructs and iterative constructs

Programming Constructs in LC-3

23

140 chapter 5 The LC-3

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x3000 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 <- 0
x3001 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 R3 <- M[x3012]
x3002 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 TRAP x23
x3003 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 <- M[R3]
x3004 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 R4 <- R1-4
x3005 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 BRz x300E
x3006 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R1 <- NOT R1
x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 <- R1 + 1
x3008 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 R1 <- R1 + R0
x3009 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 BRnp x300B
x300A 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2 <- R2 + 1
x300B 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 R3 <- R3 + 1
x300C 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 <- M[R3]
x300D 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 BRnzp x3004
x300E 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 R0 <- M[x3013]
x300F 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 R0 <- R0 + R2
x3010 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 TRAP x21
x3011 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 TRAP x25
x3012 Starting address of file
x3013 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 ASCII TEMPLATE

Figure 5.17 A machine language program that implements the algorithm of Figure 5.16

on the monitor, it is necessary to first convert it to an ASCII code. Since we
have assumed the count is less than 10, we can do this by putting a leading 0011
in front of the 4-bit binary representation of the count. Note in Figure E.2 the
relationship between the binary value of each decimal digit between 0 and 9 and
its corresponding ASCII code. Finally, the count is output to the monitor, and the
program terminates.

Figure 5.17 is a machine language program that implements the flowchart of
Figure 5.16.

First the initialization steps. The instruction at x3000 clears R2 by ANDing it
with x0000; the instruction at x3001 loads the value stored in x3012 into R3. This
is the address of the first character in the file that is to be examined for occurrences
of our character. Again, we note that this file can be anywhere in memory. Prior to
starting execution at x3000, some sequence of instructions must have stored the
first address of this file in x3012. Location x3002 contains the TRAP instruction,
which requests the operating system to perform a service call on behalf of this
program. The function requested, as identified by the 8-bit trapvector 00100011
(or, x23), is to input a character from the keyboard and load it into R0. Table A.2
lists trapvectors for all operating system service calls that can be performed on
behalf of a user program. Note (from Table A.2) that x23 directs the operating
system to perform the service call that reads the next character struck and loads
it into R0. The instruction at x3003 loads the character pointed to by R3 into R1.

Then the process of examining characters begins. We start (x3004) by sub-
tracting 4 (the ASCII code for EOT) from R1, and storing it in R4. If the result

R4 = R1 – 4 // char – EOT
BRz 0x300E // check if end of file
R1 = NOT(R1)
R1 = R1 + 1
R1 = R1 + R0

// subtract char from
file from input char
for comparison

BRnp 0x300B
R2 = R2 + 1 // increment the counter

BRnzp 0x3004

?

?

while (R1 != EOT) {
...
}

if (R1 == R0) {
… // increment the counter
}

AND
LD
TRAP
LDR
ADD
BR
NOT
ADD
ADD
BR
ADD
ADD
LDR
BR
LD
ADD
TRAP
AND

z

n p

n z p

Debugging

24

Debugging
n Debugging is the process of removing errors in programs

n It consists of tracing the program, i.e., keeping track of the
sequence of instructions that have been executed and the
results produced by each instruction

n A useful technique is to partition the program into parts,
often referred to as modules, and examine the results
computed in each module

n High-level language (e.g., C programming language)
debuggers: dbx, gdb, Visual Studio debugger

n Machine code debugging: Elementary interactive debugging
operations

25

Interactive Debugging
n When debugging interactively, it is important to be able to

q 1. Deposit values in memory and in registers, in order to test
the execution of a part of a program in isolation

q 2. Execute instruction sequences in a program by using
n RUN command: execute until HALT instruction or a breakpoint
n STEP N command: execute a fixed number (N) of instructions

q 3. Stop execution when desired
n SET BREAKPOINT command: stop execution at a specific

instruction in a program

q 4. Examine what is in memory and registers at any point in
the program

26

Example: Multiplying in LC-3 (Buggy)
n A program is necessary to multiply, since LC-3 does not

have multiply instruction
q The following program multiplies R4 and R5
q Initially, R4 = 10 and R5 = 3
q The program produces 40. What went wrong?
q It is useful to annotate each instruction

27

Scanned by CamScanner

R2 = 0 // initialize register
R2 = R2 + R4
R5 = R5 – 1
BRzp 0x3201
HALT // end program

?

AND
ADD
ADD
BR
HALT

z p

Debugging the Multiply Program

n We examine the contents of all registers after the execution
of each instruction

28

Scanned by CamScanner

R2 = 0 // initialize register
R2 = R2 + R4
R5 = R5 – 1
BRzp 0x3201
HALT // end program

Scanned by CamScanner

← Correct result
← BR should not be taken if R5 = 0

The branch condition
codes were set wrong.
The conditional branch

should only be taken if R5
is positive

?

Correct instruction:
BRp #-3 // BRp 0x3201

AND
ADD
ADD
BR
HALT

z p

Easier Debugging with Breakpoints

n We could use a breakpoint to save some work
n Setting a breakpoint in 0x3203 (BR) allows us to examine

the results of each iteration of the loop

29

Scanned by CamScanner

One last question:
Does this program work if
the initial value of R5 is 0?

Scanned by CamScanner

← BR should not be taken if R5 = 0

A good test should also consider the corner cases,
i.e., unusual values that the programmer might fail to consider

R2 = 0 // initialize register
R2 = R2 + R4
R5 = R5 – 1
BRzp 0x3201
HALT // end program

?

AND
ADD
ADD
BR
HALT

z p

Conditional Statements
and Loops in MIPS Assembly

30

n In MIPS, we create conditional constructs with conditional
branches (e.g., beq, bne…)

If Statement

31

if (i == j)
f = g + h;

f = f – i;

$s0 = f, $s1 = g
$s2 = h
$s3 = i, $s4 = j

bne $s3, $s4, L1
add $s0, $s1, $s2

L1: sub $s0, $s0, $s3

High-level code MIPS assembly

Branch not equal
Compares two values ($s3=i, $s4=j) and
jumps if they are different

n We use the unconditional branch (i.e., j) to skip the ”else”
subtask if the ”if” subtask is the correct one

If-Else Statement

32

if (i == j)
f = g + h;

else
f = f – i;

$s0 = f, $s1 = g,
$s2 = h
$s3 = i, $s4 = j

bne $s3, $s4, L1
add $s0, $s1, $s2
j done

L1: sub $s0, $s0, $s3
done:

High-level code MIPS assembly

1. Compare two values ($s3=i, $s4=j)
and, if they are different, jump to L1, to
execute the “else” subtask

2. Jump to done, after
executing the “if” subtask

n As in LC-3, the conditional branch (i.e., beq) checks the condition
and the unconditional branch (i.e., j) jumps to the beginning of
the loop

While Loop

33

// determines the power
// of 2 equal to 128
int pow = 1;
int x = 0;

while (pow != 128) {
pow = pow * 2;
x = x + 1;

}

$s0 = pow, $s1 = x

addi $s0, $0, 1
add $s1, $0, $0
addi $t0, $0, 128

while: beq $s0, $t0, done
sll $s0, $s0, 1
addi $s1, $s1, 1
j while

done:

High-level code MIPS assembly

1. Conditional branch to check if the
condition still holds

2. Unconditional branch to the
beginning of the loop

n The implementation of the ”for” loop is similar to the
”while” loop

For Loop

34

// add the numbers from 0 to 9

int sum = 0;
int i;
for (i = 0; i != 10; i = i+1)
{

sum = sum + i;
}

$s0 = i, $s1 = sum

addi $s1, $0, 0
add $s0, $0, $0
addi $t0, $0, 10

for: beq $s0, $t0, done
add $s1, $s1, $s0
addi $s0, $s0, 1
j for

done:

High-level code MIPS assembly

1. Conditional branch to check if the
condition still holds

2. Unconditional branch to the
beginning of the loop

n We use slt (i.e., set less than) for the ”less than” comparison

For Loop Using SLT

35

// add the powers of 2 from 1

// to 100
int sum = 0;
int i;

for (i = 1; i < 101; i = i*2)
{

sum = sum + i;
}

$s0 = i, $s1 = sum

addi $s1, $0, 0
addi $s0, $0, 1
addi $t0, $0, 101

loop: slt $t1, $s0, $t0
beq $t1, $0, done
add $s1, $s1, $s0
sll $s0, $s0, 1
j loop

done:

High-level code MIPS assembly

Set less than
$t1 = $s0 < $t0 ? 1:0 Shift left logical

Initialize sum
and i

Arrays in MIPS

36

Arrays
n Accessing an array requires loading the base address into a

register

n In MIPS, this is something we cannot do with one single
immediate operation

n Load upper immediate + OR immediate

37

array[4]
array[3]
array[2]
array[1]
array[0]0x12348000

0x12348004
0x12348008
0x1234800C
0x12340010

lui $s0, 0x1234
ori $s0, $s0, 0x8000

n We first load the base address of the array into a register
(e.g., $s0) using lui and ori

Arrays: Code Example

38

int array[5];

array[0] = array[0] * 2;

array[1] = array[1] * 2;

array base address = $s0

Initialize $s0 to 0x12348000
lui $s0, 0x1234
ori $s0, $s0, 0x8000

lw $t1, 0($s0)
sll $t1, $t1, 1
sw $t1, 0($s0)
lw $t1, 4($s0)
sll $t1, $t1, 1
sw $t1, 4($s0)

High-level code MIPS assembly

Function Calls

39

Function Calls
n Why functions (i.e., procedures)?

q Frequently accessed code
q Make a program more modular and readable

n Functions have arguments and return value

n Caller: calling function
q main()

n Callee: called function
q sum()

40

void main()

{
int y;
y = sum(42, 7);
...

}

int sum(int a, int b)
{

return (a + b);
}

Function Calls: Conventions
n Conventions

q Caller
n passes arguments
n jumps to callee

q Callee
n performs the procedure
n returns the result to caller
n returns to the point of call
n must not overwrite registers or memory needed by the caller

41

Function Calls in MIPS and LC-3
n Conventions in MIPS and LC-3

q Call procedure
n MIPS: Jump and link (jal)
n LC-3: Jump to Subroutine (JSR, JSRR)

q Return from procedure
n MIPS: Jump register (jr)
n LC-3: Return from Subroutine (RET)

q Argument values
n MIPS: $a0 - $a3

q Return value
n MIPS: $v0

42

n jal jumps to simple() and saves PC+4 in the return address
register ($ra)
q $ra = 0x00400204

q In LC-3, JSR(R) put the return address in R7

n jr $ra jumps to address in $ra (LC-3 uses RET instruction)

Function Calls: Simple Example

43

int main() {

simple();
a = b + c;

}

void simple() {
return;

}

0x00400200 main: jal simple

0x00400204 add $s0,$s1,$s2

...
0x00401020 simple: jr $ra

High-level code MIPS assembly

Function Calls: Code Example

44

$s0 = y
main:
...
addi $a0, $0, 2 # argument 0 = 2
addi $a1, $0, 3 # argument 1 = 3
addi $a2, $0, 4 # argument 2 = 4

addi $a3, $0, 5 # argument 3 = 5
jal diffofsums # call procedure
add $s0, $v0, $0 # y = returned value
...

$s0 = result

diffofsums:
add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result=(f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0
jr $ra # return to caller

int main()
{
int y;
...
// 4 arguments
y = diffofsums(2, 3, 4, 5);
...

}

int diffofsums(int f, int g,
int h, int i)

{
int result;
result = (f + g) - (h + i);
// return value
return result;

}

High-level code MIPS assembly Argument values

Return value

Return address

n What if the main function was using some of those
registers?
q $t0, $t1, $s0

n They could be overwritten by the function
n We can use the stack to temporarily store registers

Function Calls: Need for the Stack

45

diffofsums:
add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result=(f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0
jr $ra # return to caller

MIPS assembly

The Stack
n The stack is a memory area used to save local variables

n It is a Last-In-First-Out (LIFO) queue

n The stack pointer ($sp) points to the top of the stack
q It grows down in MIPS

46

Data

7FFFFFFC 12345678
7FFFFFF8
7FFFFFF4
7FFFFFF0

Address

$sp 7FFFFFFC
7FFFFFF8
7FFFFFF4
7FFFFFF0

Address Data

12345678

$sp
AABBCCDD
11223344

Two words
pushed on
the stack

n Saving and restoring all registers requires a lot of effort
n In MIPS, there is a convention about temporary registers (i.e.,

$t0-$t9): There is no need to save them
q Programmers can use them for temporary/partial results

The Stack: Code Example

47

diffofsums:
addi $sp, $sp, -12 # allocate space on stack to store 3 registers
sw $s0, 8($sp) # save $s0 on stack
sw $t0, 4($sp) # save $t0 on stack
sw $t1, 0($sp) # save $t1 on stack
add $t0, $a0, $a1 # $t0 = f + g

add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result=(f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0
lw $t1, 0($sp) # restore $t1 from stack
lw $t0, 4($sp) # restore $t0 from stack
lw $s0, 8($sp) # restore $s0 from stack

addi $sp, $sp, 12 # deallocate stack space
jr $ra # return to caller

MIPS assembly

n Temporary registers $t0-$t9 are nonpreserved registers. They
are not saved, thus, they can be overwritten by the function

n Registers $s0-$s7 are preserved (saved; callee-saved) registers

MIPS Stack: Register Saving Convention

48

diffofsums:
addi $sp, $sp, -4 # allocate space on stack to store 1 register
sw $s0, 0($sp) # save $s0 on stack

add $t0, $a0, $a1 # $t0 = f + g

add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result=(f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0

lw $s0, 0($sp) # restore $s0 from stack

addi $sp, $sp, 4 # deallocate stack space
jr $ra # return to caller

MIPS assembly

Lecture Summary
n Assembly Programming

q Programming constructs
q Debugging
q Conditional statements and loops in MIPS assembly
q Arrays in MIPS assembly
q Function calls

n The stack

49

Digital Design & Computer Arch.
Lecture 10b: Assembly Programming

Prof. Onur Mutlu

ETH Zürich
Spring 2022

25 March 2022

