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Assignment: Lecture Video (April 1)

= Why study computer architecture? Why is it important?
= Future Computing Platforms: Challenges & Opportunities

= Required Assighment
o Watch one of Prof. Mutlu’s lectures and analyze either (or both)
a https://www.youtube.com/watch?v=kgiZISOcGFM (May 2017)
o https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

= Optional Assignment — for 1% extra credit
o Write a 1-page summary of one of the lectures and email us
= What are your key takeaways?
= What did you learn?
= What did you like or dislike?
= Submit your summary to Moodle by April 1



https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=722981

Extra Assignment: Moore’s Law (I)

= Paper review
= G.E. Moore. "Cramming more components onto integrated

circuits,” Electronics magazine, 1965

= Optional Assignment — for 1% extra credit
o Write a 1-page review
o Upload PDF file to Moodle — Deadline: April 7

= I strongly recommend that you follow my guidelines for
(paper) review (see next slide)



https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (11)

= Guidelines on how to review papers critically

a Guideline slides: pdf ppt
a Video: https://www.youtube.com/watch?v=tOL6FANAJSC

o Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)

= Review 1
= Review 2

o Example review on "“Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
= Review 1



https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

Agenda for Today & Next Few Lectures

m Instruction Set Architectures (ISA): LC-3 and MIPS
s Assembly programming: LC-3 and MIPS
= Microarchitecture (principles & single-cycle uarch)

= Multi-cycle microarchitecture

= Pipelining

System Software

= Issues in Pipelining:
o Control & Data Dependence Handling
o State Maintenance and Recovery

SW/HW Interface

= Out-of-Order Execution




Readings

This week
o Introduction to microarchitecture and single-cycle
microarchitecture
H&H, Chapter 7.1-7.3
P&P, Appendices A and C
o Multi-cycle microarchitecture
H&H, Chapter 7.4
P&P, Appendices A and C

Next week
o Pipelining
H&H, Chapter 7.5
= Pipelining Issues
H&H, Chapter 7.7, 7.8.1-7.8.3



Recall: The von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...




Recall: LC-3: A von Neumann Machine
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Recall: The Instruction Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O O O 0O DO




Recall: The Instruction Set Architecture

The ISA is the interface between what the software commands
and what the hardware carries out

The ISA specifies Problem
o The memory organization :
Algorith
= Address space (LC-3: 216, MIPS: 232) =Sl
=« Addressability (LC-3: 16 bits, MIPS: 8 bits) Program
=  Word- or Byte-addressable ISA

o The register set
= 8 registers (RO to R7) in LC-3
= 32 registers in MIPS

o The instruction set
= Opcodes
= Data types
= Addressing modes
= Length and format of instructions

10




Microarchitecture

An implementation of the ISA

How do we implement the ISA?
o We will discuss this for many lectures

There can be many implementations of the same ISA
o MIPS R2000, R3000, R4000, R6000, R8000, R10000, ...

o x86: Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake,
Coffee Lake, Comet Lake, Ice Lake, Golden Cove, Sapphire Rapids,
..., AMD K5, K7, K9, Bulldozer, BobCat, Ryzen X, ...

POWER 4,5, 6, 7, 8,9, 10 (IBM), ..., PowerPC 604, 605, 620, ...
ARM Cortex-M*, ARM Cortex-A*, NVIDIA Denver, Apple A*, M1, ...
Alpha 21064, 21164, 21264, 21364, ...
RISC-V ...

o o O O O

11



(A Bit More on)
ISA Design and Tradeoffs




Many Ditterent ISAs Over Decades

X86

PDP-x: Programmed Data Processor (PDP-11)
VAX

IBM 360

CDC 6600

SIMD ISAs: CRAY-1, Connection Machine

VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)
PowerPC, POWER

RISC ISAs: Alpha, MIPS, SPARC, ARM, RISC-V, ...

What are the fundamental differences?

a E.g., how instructions are specified and what they do

o E.g., how complex are instructions, data types, addr. modes
13



Semantic Gap

= How close instructions & data types & addressing modes
are to high-level language (HLL)

HLL HLL
| Small Semantic Gap
ISA with

Complex Inst

& Data Types

& Addressing Modes ISA with
Simple Inst

& Data Types
& Addressing Modes

Large Semantic Gap

HW HW

Control Control

Signals Signals
Easier mapping of HLL to ISA Harder mapping of HLL to ISA
Less work for software designer More work for software designer
More work for hardware designer Less work for hardware designer

Optimization burden on HW Optimization burden on SW



How to Change the Semantic Gap Tradeotts

= Translate from one ISA into a different “implementation” ISA

HLL

Small Semantic Gap

X86-64 ISA with
Complex Inst
& Data Types
& Addressing Modes

Software or Hardware Translator

Implementation ISA with
Simple Inst

& Data Types

& Addressing Modes

ARM v8.4

HW
Control
Signals

15



An Example: Rosetta 2 Binary Translator

Rosetta 2 [edit]

In 2020, Apple announced Rosetta 2 would be bundled with macOS Big Mac transition to

Apple silicon

Sur, to aid in the Mac transition to Apple silicon. The software permits

In addition to the just-in-time (JIT) translation support, Rosetta 2 offers
ahead-of-time compilation (AOT), with the x86-64 code fully translated,
just once, when an application without a universal binary is installed on an
Apple silicon Mac.[®!

Rosetta 2's performance has been praised greatly.['%l"] |n some
benchmarks, x86-64-only programs performed better under Rosetta 2 on
a Mac with an Apple M1 SOC than natively on a Mac with an Intel x86-64 Apple silicon - ARM architecture
processor. One of the key reasons why Rosetta 2 provides such high level Universal 2 binary - Rosetta 2 -

Devel T ition Kit
of translation efficiency is the support of x86-64 memory ordering in Apple SRR

M1 soc.['2]

Although Rosetta 2 works for most software, some software doesn't work

at alll'3! or is reported to be "sluggish".l'#] A lot of software can be made compatible with the new Macs by the vendor
recompiling the software, often a simple task; while for some software (such as software that includes assembly
language code, or that generates machine code), the changes to make them work aren't simple and cannot be
automated.

Similar to the first version, Rosetta 2 does not normally require user intervention. When a user attempts to launch an
x86-64-only application for the first time, macOS prompts them to install Rosetta 2 if it is not already available.
Subsequent launches of x86-64 programs will execute via translation automatically. An option also exists to force a
universal binary to run as x86-64 code through Rosetta 2, even on an ARM-based machine.['5]

https://en.wikipedia.org/wiki/Rosetta (software)#Rosetta 2



https://en.wikipedia.org/wiki/Rosetta_(software)

An Example: Rosetta 2 Binary Translator
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https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Another Example: Intel and AMD Processors

HLL

Small Semantic Gap

X86-64 ISA with
Complex Inst
& Data Types
& Addressing Modes

Hardware Translator

Implementation ISA with
Simple Inst

& Data Types

& Addressing Modes

Secret
Micro-operations |,y

Control
Signals
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https://twitter.com/Locuza_/status/1454152714930331652

Another Example: Intel and AMD P
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Another Example: NVIDIA Denver

The Secret of Denver: Binary Translation & Code Optimization

As we alluded to earlier, NVIDIA's decision to forgo a traditional out-of-order design for Denver means that
much of Denver’s potential is contained in its software rather than its hardware. The underlying chip itself,
though by no means simple, is at its core a very large in-order processor. So it falls to the software stack to
make Denver sing.

Accomplishing this task is NVIDIA's dynamic code optimizer (DCO). The purpose of the DCO is to accomplish
two tasks: to translate ARM code to Denver’s native format, and to optimize this code to make it run better ¢
Denver. With no out-of-order hardware on Denver, it is the DCO'’s task to find instruction level parallelism
within a thread to fill Denver’s many execution units, and to reorder instructions around potential stalls,
something that is no simple task.

DYNAMIC CODE OPTIMIZATION
OPTIMIZE ONCE, USE MANY TIMES

3
2

* aman

Instructions

Dynamic
Profile

Decoder

Unrolls Lo
Execution

Units Imp o Optimization Cache
Denver Hardware cC it

https://www.anandtech.com/show/8701/the-google-nexus-9-review/4 2 1
https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1



Transmeta: x86 to VLIW Translation
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Figure 5. The Code Morphing software mediates between x86 software and the Crusoe processor.

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

https://www.wikiwand.com/en/Transmeta_Efficeon 22



here Is A Lot More to Cover on ISAs

A Note on ISA Evolutnon
e day

ISAs have evolved to reflect/satisfy the concerns of th

= Examples:
Limited on-chip and off-chip memory size

Limite« piler optimization tec hnology

Limited memory bandwidth
Need for specialization in important applications (e.g., MMX)

« Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA
, Concept of dynamic/static interface: translation/interpretation
, Contrast it with hardware/software interface

> Pl o) 1:43:52/1:5110

Lecture 3. ISA Tradeoffs - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

44,973 views * Jan 24, 2015

— . .
N> Carnegie Mellon Computer Architecture
22.8K subscribers

Lecture 3. ISA Tradeoffs
Lecturer: Prof. Onur Mutlu (http:/,
Date: Jan 16th, 2015

https:/ /www.youtube.com/onurmutlulectures



https://www.youtube.com/onurmutlulectures

There Is A Lot More to Cover on ISAs

< P >l o) 2529/13028 @ (= O

Lecture 4. ISA Tradeoffs & MIPS ISA - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

28,806 views * Jan 23, 2015 SHARE

e - .
N 1 Carnegie Mellon Computer Architecture
’ "
22.8K subscribers

L=

Lecture 4. ISA Tradeoffs (cont.) & MIPS ISA
Lecturer: Kevin Chang (
Date: Jan 21th, 2015

https:/ /www.youtube.com/onurmutlulectures



https://www.youtube.com/onurmutlulectures

Detailed Lectures on ISAs & ISA Tradeoffs

= Computer Architecture, Spring 2015, Lecture 3

o ISA Tradeoffs (CMU, Spring 2015)

o https://www.youtube.com/watch?v=0KdiZSfwg-
g&list=PL5PHM2jkkXmi5CxxI7b3JCL1TWybTDtKg&index=3

= Computer Architecture, Spring 2015, Lecture 4

o ISA Tradeoffs & MIPS ISA (CMU, Spring 2015)

o https://www.youtube.com/watch?v=RBgeCCW5Hjs&list=PL5PHmM2jkkXmi5CxxI7b3]
CL1ITWybTDtKq&index=4

= Computer Architecture, Spring 2015, Lecture 2

o Fundamental Concepts and ISA (CMU, Spring 2015)

o https://www.youtube.com/watch?v=NpC39uS4K4o&list=PL5PHmM2jkkXmi5CxxI7b3]
CL1TWybTDtKg&index=2

https:/ /www.youtube.com/onurmutlulectures 25



https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures

ISA Design and Tradeoffs:
More Critical Thinking




The Von Neumann Model/ Architecture

Stored program

Sequential instruction processing

27



The von Neumann Model/Architecture

Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

Stored program
o Instructions stored in a linear memory array
o Memory is unified between instructions and data

The interpretation of a stored value depends on the control signals
When is a value interpreted as an instruction?

Sequential instruction processing

28



Recall: The Instruction Cycle

a FETCH

a0 DECODE
0 EVALUATE ADDRESS

a FETCH OPERANDS

0 EXECUTE Interpret memory value as Data

Interpret memory value as Instruction

o STORE RESULT

Whether a value fetched from memory is interpreted as an instruction depends on
when that value is fetched in the instruction processing cycle.

29



The von Neumann Model/ Architecture

Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

Stored program
o Instructions stored in a linear memory array
o Memory is unified between instructions and data

The interpretation of a stored value depends on the control signals
When is a value interpreted as an instruction?

Sequential instruction processing
o One instruction processed (fetched, executed, completed) at a time
o Program counter (instruction pointer) identifies the current instruction

o Program counter is advanced sequentially except for control transfer
instructions

30



The von Neumann Model/ Architecture

Recommended reading

o Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Important reading

o Patt and Patel book, Chapter 4, “The von Neumann Model”

Stored program

Sequential instruction processing

31



The Von Neumann Model (of a Computer)

INPUT OUTPUT
Keyboard, Monitor,
Mouse, Printer,
Disk... Disk...

32



The Von Neumann Model (of a Computer)

Q: Is this the only way that a computer can process
computer programs?

The von Neumann Model

= In order to build a computer, we need an execution model for
processing computer programs

= John von Neumann proposed a fundamental model in 1946

= The von Neumann Model consists of 5 components
o Memory (stores the program and data)
o Processing unit
o Input
o Output

@

o Control unit (controls the order in which instructions are carried out)

Throughout this lecture, we will examine two examples of the
von Neumann model
o LC-3 Burks, Goldstein, von Neumann,

“Preliminary discussion of the logical design
o MIPS of an electronic computing instrument,” 1946.
All general-purpose computers today use the von Neumann model 14

A: No.

Qualified Answer: No. But, it has been the dominant way
o i.e., the dominant paradigm for computing
o for N decades

Let’s examine a completely different model for processing computer programs 33



The Dataflow Execution Model
ot a Computer




The Datatlow Model (of a Computer)

Von Neumann model: An instruction is fetched and
executed in control flow order

o As specified by the program counter (instruction pointer)
o Sequential unless explicit control flow instruction

Dataflow model: An instruction is fetched and executed in
data flow order

o i.e., when its operands are ready
o i.e., there is no program counter (instruction pointer)

o Instruction ordering specified by data flow dependence

Each instruction specifies “who"” should receive the result
An instruction can “fire” whenever all operands are received

o Potentially many instructions can execute at the same time

Inherently more parallel
35



Von Neumann vs. Dataflow

Consider a Von Neumann program
o What is the significance of the program order?
o What is the significance of the storage locations?

a b

v=a-+b; I

w=D>b*2;

X=V-W

Y=V+W

ZzZ=Xx*y |

o

Sequential
a, b are the only inputs ::J Dataflow
z is the only output

YA

Which model is more natural to you as a programmer? 36



More on Dataflow

In a dataflow machine, a program consists of dataflow
nodes

o A dataflow node fires (fetched and executed) when all it
inputs are ready

i.e. when all inputs have tokens

Dataflow node and its ISA representation

/ ’ ‘ .
f | I

R, | * | R ARG1 R ARG2 |  Dest. Of Result

37



Example Datatlow Nodes

X |
* Conditional E
(s = ()
7T
10\.¥ 7
X Relational
=
TRUE

*Barrier Synch t t i

R t? e
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A Simple Example Datatlow Program

)

Nis a
non-negative
integer

What is the
value of OUT?

39



ISA-level Tradeotf: Program Counter

Do we want a Program Counter (PC or IP) in the ISA?

a Yes: Control-driven, sequential execution
An instruction is executed when the PC points to it

PC automatically changes sequentially (except for control flow
instructions) - sequential

a No: Data-driven, parallel execution

An instruction is executed when all its operand values are
available = dataflow

Tradeoffs: MANY high-level ones

o Ease of programming (for average programmers)?
o Ease of compilation?

o Performance: Extraction of parallelism?

o Hardware complexity?

40



ISA vs. Microarchitecture Level Tradeoff

A similar tradeoff (control vs. data-driven execution) can be
made at the microarchitecture level

ISA: Specifies how the programmer sees the instructions to
be executed

o Programmer sees a sequential, control-flow execution order vs.
o Programmer sees a dataflow execution order

Microarchitecture: How the underlying implementation
actually executes instructions

a Microarchitecture can execute instructions in any order as long
as it obeys the semantics specified by the ISA when making the
instruction results visible to software

Programmer should see the order specified by the ISA
41



I.et’s Get Back to the von Neumann Model

= But, if you want to learn more about dataflow...

= Dennis and Misunas, “A preliminary architecture for a basic
data-flow processor,” ISCA 1974.

= Gurd et al., "The Manchester prototype dataflow
computer,” CACM 1985.

= A later lecture

= If you are really impatient:
o http://www.youtube.com/watch?v=D2uue’izU2c

o http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi
a=onur-740-fall13-module5.2.1-dataflow-partl.ppt

42


http://www.youtube.com/watch?v=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt

Lecture Video on Dataflow Architectures

P> Ml o) 4227/1:2500 o @ & [« O 3

Carnegie Mellon - Parallel Computer Architecture 2012-Onur Mutlu - Lec 22 - Dataflow |

3,627 views * Apr 21,2013 ifp22 &lo ) SHARE =y SAVE ..

= 2 Carnegie Mellon Computer Architecture

1.79K subscribers SUBSCRIBED (1

http://www.youtube.com/watch?v=D2uue7izU2c
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http://www.youtube.com/watch?v=D2uue7izU2c

The von Neumann Model

All major instruction set architectures today use this model
o x86, ARM, MIPS, SPARC, Alpha, POWER, RISC-V, ...

Underneath (at the microarchitecture level), the execution
model of almost all /implementations (or, microarchitectures)
is very different

o Pipelined instruction execution: Intel 80486 uarch
o Multiple instructions at a time: Inte/ Pentium uarch
o Out-of-order execution: Intel Pentium Pro uarch

o Separate instruction and data caches

But, what happens underneath that is not consistent with
the von Neumann model is not exposed to software

o Difference between ISA and microarchitecture

44



What 1s Computer Architecturer

ISA+implementation definition: The science and art of
designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

Traditional (ISA-only) definition: “The term
architecture is used here to describe the attributes of a
system as seen by the programmer, i.e., the conceptual
structure and functional behavior as distinct from the
organization of the dataflow and controls, the logic design,
and the physical implementation.”

Gene Amdahl, IBM Journal of R&D, April 1964
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ISA vs. Microarchitecture

s ISA

o Agreed upon interface between software
and hardware
= SW/compiler assumes, HW promises

Problem

o What the software writer needs to know PR

to write and debug system/user programs  [5 502,
ISA

= Microarchitecture
o Specific implementation of an ISA
o Not visible to the software

= Microprocessor
a ISA, uarch, circuits
o “Architecture” = ISA + microarchitecture
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ISA vs. Microarchitecture

What is part of ISA vs. Uarch?

o Gas pedal: interface for “acceleration”
o Internals of the engine: implement “acceleration”

Implementation (uarch) can be various as long as it
satisfies the specification (ISA)

o Add instruction vs. Adder implementation

Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture (see H&H Chapter 5.2.1)

o X86 ISA has many implementations:

Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake, Coffee Lake, Comet Lake, Ice
Lake, Golden Cover, Sapphire Rapids, ..., AMD K5, K7, K9, Bulldozer, BobCat, Ryzen X, ...

Microarchitecture usually changes faster than ISA

o Few ISAs (x86, ARM, SPARC, MIPS, Alpha, RISC-V) but many uarchs
o Why?

https://www.vox.com/2015/7/1/8877583/two-foot-driving-pedal-error 47



ISA: What Does It Specity?

1 /4830 — 7% + E 9

= Instructions
o Opcodes, Addressing Modes, Data Types (i/ntel’)
o Instruction Types and Formats

o Registers, Condition Codes _
Intel® 64 and IA-32 Architectures

0 M emory Software Developer’s Manual
Combined Volumes:
o Address space, Addressability, Alignment 124, 26,26 20, 3R, 36,36 30 end 4

2 Virtual memory management
= Call, Interrupt/Exception Handling [ ———
= Access Control, Priority/Privilege
= I/O: memory-mapped vs. instructions
= Task/thread Management A Ak st S vt
= Power & Thermal Management
= Multithreading & Multiprocessor support




ISA Manuals: Some Good Bedtime Reading

Combined Volume Set of Intel® 64 and |A-32
Architectures Software Developer's Manuals

Document

Intel® 64 and IA-32 Architectures
Software Developer’s Manual
Combined Volumes: 1, 2A, 2B, 2C,
2D, 3A, 3B, 3C, 3D, and 4

Intel® 64 and IA-32 Architectures
Software Developer's Manual
Documentation Changes

Description

This document contains the following:

Volume 1: Describes the architecture and programming environment of processors supporting IA-32 and Intel®
64 architectures.

Volume 2: Includes the full instruction set reference, A-Z. Describes the format of the instruction and provides
reference pages for instructions.

Volume 3: Includes the full system programming guide, parts 1, 2, 3, and 4. Describes the operating-system
support environment of Intel® 64 and IA-32 architectures, including: memory management, protection, task
management, interrupt and exception handling, multi-processor support, thermal and power management
features, debugging, performance monitoring, system management mode, virtual machine extensions (VMX)
instructions, Intel® Virtualization Technology (Intel® VT), and Intel® Software Guard Extensions (Intel® SGX).
NOTE: Performance monitoring events can be found here: https://perfmon-events.intel.com/

Volume 4: Describes the model-specific registers of processors supporting IA-32 and Intel® 64 architectures.

Describes bug fixes made to the Intel® 64 and IA-32 architectures software developer's manual between
versions.

NOTE: This change document applies to all Intel® 64 and |A-32 architectures software developer’s manual sets
(combined volume set, 4 volume set, and 10 volume set).

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html 49
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ISA Manuals: Some Good Bedtime Reading

¥ @ riscv.org/technical/specifications/ M K L

Yy in o N o] N\ Languages Vv Tech Meetings Community Meetings  Working Groups Portal  Join

:?j RIS‘ -W® About RISC-V v Membership v RISC-V Exchange v Technical v News&Events v Community Vv Q

Specifications

The RISC-V instruction setarchltecture(ISA) and related specifications are developed, ratified and maintained by RISC-V Internatic ntributing members within the RISC-V International
Technical Working Gr¢ . Work on the specification is performed on GitHub, and the GitHub i nechanism can be used to prowde |nputmto the specification.

If you would like more information on becoming a member, please see the m

ISA Specification Debug Specification Trace Specification Compatibility Test Framework
The specifications shown below represent This is the currently ratified specification: The processor trace specification was The RISC-V Architectural Compatibility Test
the current, ratified releases. Work is being approved on March 20, 2020. Framework Version 2 is now available. This
done on GitHub e External Debug Support v. 0.13.2 [PDF] framework compares arbitrary models
[GitHub] e Trace Specification v. 1.0 [PDF] against a reference signature, and currently
e Volume 1, Unprivileged Specv. [GitHub] covers RV[32]64]IMC unprivileged
20191213 [PDF] o specifications only. Tests for the not-yet-
« Volume 2, Privileged Specv. 20211203 Thisis the current stable draft: ratified Crypto Scalar extension and
[PDF] RV32EMC extensions are also available.
e Recently ratified, but not yet e External Debug Supportv. 1.0.0-
integrated, exten specificatior STABLE [PDF] Work on Version 3.0 framework (RISCOF) is

https:/riscv.org/technical/specifications/ 50
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Microarchitecture

Implementation of the ISA under specific design constraints
and goals

Anything done in hardware without exposure to software
Pipelining

In-order versus out-of-order instruction execution

Memory access scheduling policy

Speculative execution

Superscalar processing (multiple instruction issue?)

Clock gating

Caching? Levels, size, associativity, replacement policy
Prefetching?

Voltage/frequency scaling?

Error correction?

o 0o 0o 0o 0o o o o o o
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Property ot ISA vs. Uarch?

ADD instruction’s opcode

Type of adder used in the ALU (Bit-serial vs. Ripple-carry)
Number of general purpose registers

Number of cycles to execute the MUL instruction

Number of ports to the register file

Whether or not the machine employs pipelined instruction
execution

Program counter

Remember

o Microarchitecture: Implementation of the ISA under specific
design constraints and goals
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Design Point

A set of design considerations and their importance
o leads to tradeoffs in both ISA and uarch

Example considerations: Problem
o Cost Algorithm

o Performance Program

o Maximum power consumption, thermal ISA

o Energy consumption (battery life) Microarchitecture
o Availability Circuits

o Reliability and Correctness Electrons

o Time to Market

o Security, safety, predictability, ...

Design point is determined by the “Problem” space
(application space), the intended users/ market



Application Space

Dream, and they will appear...

Other examples of the application space that continue to

drive the need for unique design points are the following:
Duch 2 those whose compt
tions control nuclear povwer plants, determine where to
Ja 1 LTE ﬁwl‘

y control, payro]]s IRS activity,
and various personnel record keeping, whether the per-
sonnel are em lo ees . students, or voters;

ch as high-speed routing of
ntemet packe ; enable the connection of your

antage of the Internet;
35) .a. real time) applications that

require the result of a computation by a certain critical
deadline:

4)

6)jembedded applications fwhere the processor 1s a com-
ponent of a farger sy: mthat 1s used to solve the (usu-
audlo ﬁles -

8) random software packages that desktop users would
like to run on their PCs.

Each of these application areas has a very different set of
charactenistics. Each application area demands a different set
of tradeoffs to be made m specifying the microprocessor to

T do the job.

Patt, “Requirements, bottlenecks,

and good fortune: agents for
microprocessor evolution,”
Proc. of the IEEE 2001.

Many other workloads:

Genome analysis
Machine learning
Robotics
Web search
Graph analytics
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Increasingly Demanding Applications

Dream

and, they will come

As applications push boundaries, computing platforms will become increasingly strained.

SAFARI >



Tradeotts: Soul of Computer Architecture

= [SA-level tradeoffs

= Microarchitecture-level tradeoffs

= System and Task-level tradeoffs
o How to divide the labor between hardware and software

= Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point

o Why art?
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Why Is It (Somewhat) Art?

New demands
from the top

(Look Up) New demands and

personalities of users
/ (Look Up)

Runtime System

ISA

New issues and
capabilities

at the bottom
(Look Down)

= We do not (fully) know the future (applications, users, market)
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Why Is It (Somewhat) Art?

Changing demands
at the top

(Look Up and Forward) Changing demands and

personalities of users
/ (Look Up and Forward)

Runtime System

ISA

Changing issues and
capabilities

at the bottom

(Look Down and Forward)

= And, the future is not constant (it changes)!
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Analogue from Macro-Architecture

Future is not constant in macro-architecture, either

Example: Can a mill be later used as a theater + restaurant
+ conference room?
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Muhle Tiefenbrunnen in Zurich

= Originally built as a brewery in 1889
o part of it was converted into a mill in 1913
o and the other part into a cold store

= Today is a center for a variety of activities: theater,
conferences, restaurants, shops, museum...

Brewery in 1900

http://www.muehle-tiefenbrunnen.ch/ 60



Another Example in Zurich (I)

Photo credit: Prof. Can Alkan



Another Example in Zurich (1I)

Photo credit: Prof. Can Alkan
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By Roland zh (Own work) [CC BY-SA 3.0
(https://creativecommons.org/licenses/by-sa/3.0)],
via Wikimedia Commons

03



https://creativecommons.org/licenses/by-sa/3.0)

Yet Another Example from Pittsburgh (1)

https://www.pghcitypaper.com/pittsburgh/a-list-of-pittsburgh-area-churches-born-again-with-new-purposes/Content?0id=20743835



Yet Another Example from Pittsburgh (II)
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Implementing the ISA:
Microarchitecture Basics




Now That We Know What an ISA Is...

How do we implement it?

i.e., how do we design a system that obeys the
hardware/software interface?

Aside: “"System” can be solely hardware or a combination of
hardware and software

o Recall the “Translation of ISAs”

o An ISA can be converted (by software or hardware) into an
implementation ISA

We will assume “completely hardware” implementation for
most lectures

67



How Does a Machine Process Instructions?

What does processing an instruction mean?
We will assume the von Neumann model (for now)

AS = Architectural (programmer visible) state before an
instruction is processed

Process instruction

AS’ = Architectural (programmer visible) state after an
instruction is processed

Processing an instruction: Transforming AS to AS’ according

to the ISA specification of the instruction
68



The Von Neumann Model/ Architecture

Stored program

Sequential instruction processing

09



Recall: The Von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...
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Recall: Programmer Visible (Architectural) State

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Memory [Program Counter |

array of storage locations memory address
indexed by an address of the current (or next) instruction

Instructions (and programs) specify how to transform
the values of programmer visible state
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The “Process Instruction” Step

ISA specifies abstractly what AS’ should be, given an
instruction and AS

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification

o From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution
One state transition per instruction

Microarchitecture implements how AS is transformed to AS’

o There are many choices in implementation

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction
Choice 1: AS > AS’ (transform AS to AS’ in a single clock cycle)

Choice 2: AS > AS+MS1 - AS+MS2 - AS+MS3 - AS’ (take multiple

clock cycles to transform AS to AS) >



A Very Basic Instruction Processing Engine

= Each instruction takes a single clock cycle to execute
= Only combinational logic is used to implement instruction

execution
o MNo intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state
at the beginninﬁf a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state
at the end of a clock cycle
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A Very Basic Instruction Processing Engine

= Single-cycle machine

AS’ AS

Sequential |
Logic
(State)

Combinational
Logic

= What is the clock cycle time determined by?

= What is the critical path (i.e., longest delay path) of the
combinational logic determined by?

AS: Architectural State 74



Single-cycle vs. Multi-cycle Machines

Single-cycle machines

Q

Q

Q

Each instruction takes a single clock cycle
All state updates made at the end of an instruction’s execution

Big disadvantage: The slowest instruction determines cycle time >
long clock cycle time

Multi-cycle machines

Q

Q

Q

Instruction processing broken into multiple cycles/stages
State updates can be made during an instruction’s execution

Architectural state updates made at the end of an instruction’s
execution

Advantage over single-cycle: The slowest “stage” determines cycle time

Both single-cycle and multi-cycle machines literally follow the
von Neumann model at the microarchitecture level
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Instruction Processing “Cycle”

Instructions are processed under the direction of a “control
unit” step by step.

Instruction cycle: Sequence of steps to process an instruction
Fundamentally, there are six steps:

Fetch

Decode

Evaluate Address
Fetch Operands
Execute

Store Result

Not all instructions require all six steps (see P&P Ch. 4)
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Recall: The Instruction Processing “Cycle”™

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O O O 0O DO
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Instruction Processing “Cycle” vs. Machine Clock Cycle

Single-cycle machine:

a All six phases of the instruction processing cycle take a sing/e
machine clock cycle to complete

Multi-cycle machine:

o All six phases of the instruction processing cycle can take
multiple machine clock cycles to complete

a In fact, each phase can take multiple clock cycles to complete
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Instruction Processing Viewed Another Way

Instructions transform Data (AS) to Data’ (AS’)

This transformation is done by functional units
o Units that “operate” on data

These units need to be told what to do to the data

An instruction processing engine consists of two components
o Datapath: Consists of hardware elements that deal with and
transform data signals
functional units that operate on data

hardware structures (e.g., wires, muxes, decoders, tri-state bufs)
that enable the flow of data into the functional units and registers

storage units that store data (e.g., registers)

o Control logic: Consists of hardware elements that determine
control signals, i.e., signals that specify what the datapath
elements should do to the data
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Recall: LC-3: A von Neumann Machine

Program PROCESSOR BUS GatePC Mo

Counter \

Control signals

N 8 General Purpose

3 REG Registers (GPR)

DR
Data FILE
_
a3, \| SR2 SR1 3
SR2 NOUT  OUT SR1

Finite State Machine Clock |

(for Generating Control Signals)
\

16 /18

Instruction R[> FINITE . U .
Register ﬁ@m e o ":ﬁ ALU: 2 inputs, 1 output
" Gontrdl ] | /2\K= j
:\

1° Unit | ° w %ALU
FSM
A, y, q
e ALU operation
CONTROL UNIT PROCESSING
UNIT
(GmALU J GateALU
Memory Data GmMDTS y » Keyboard
Register MEM.EN, RW KBDR (data), KBSR (status)
LD.MDR MDR 6 MAR LD.MAR
_ 1o | Monitor
'Q{"eer?;reyrAddreSS 16-bit - DDR (data), DSR (status)
9 addressablg
MEMORY INPUT OUTPUT 8 O

Figure 4.3  The LC-3 as an example of the von Neumann model



Single-cycle vs. Multi-cycle: Control & Data

Single-cycle machine:

o Control signals are generated in the same clock cycle as the
one during which data signals are operated on

a Everything related to an instruction happens in one clock cycle
(serialized processing)

Multi-cycle machine:
o Control signals needed in the next cycle can be generated in
the current cycle

o Latency of control processing can be overlapped with latency
of datapath operation (more parallelism)

See P&P Appendix C for more (microprogrammed multi-

cycle microarchitecture)
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Many Ways of Datapath and Control Design

There are many ways of designing the datapath and control
logic

Example ways
o Single-cycle, multi-cycle, pipelined datapath and control
o Single-bus vs. multi-bus datapaths

o Hardwired/combinational vs. microcoded/microprogrammed
control
Control signals generated by combinational logic versus
Control signals stored in @ memory structure

Control signals and structure depend on the datapath
design
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Flash-Forward: Performance Analysis

= Execution time of a single instruction
o {CPI} x {clock cycle time} CPI: Cycles Per Instruction

= Execution time of an entire program

a Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

= Single-cycle microarchitecture performance
o CPI =1
o Clock cycle time = long

= Multi-cycle microarchitecture performance

o CPI = different for each instruction In multi-cycle, we have
= Average CPI = hopefully small two degrees of freedom

o Clock cycle time = short to optimize independently
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A Single-Cycle Microarchitecture
From the Ground Up




Remember...

= Single-cycle machine

AS’ AS

Sequential |
Logic
(State)

Combinational
Logic

AS: Architectural State 85



Let’s Start with the State Elements (MIPS)

Data and control inputs

;5 | Read
register 1 Read
5 | Read data 1
N register 2
Registers
—{PC— S| write ?
register
Read
. data 2
Write
data
‘ RegWrite
‘ MemWrite
' Instruction
address
»| Address Read |__
data
Instruction e
. i Data
Instruction —| Write
memory data memory
MemRead

86
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MIPS State Elements

CLK CLK CLK
I I I I
PCR&'PC WE3 WE
1 [ - A RD |4 -1 A1 RD1 =
- A2 RD2 =
Instruction ° 32 A RDI7%
Memory Data
-+ A3 Redist Memory
egister
= WD3 File = WD

o Program counter:
32-bit register
o Instruction memory:

Takes input 32-bit address A and reads the 32-bit data (i.e., instruction)
from that address to the read data output RD

o Register file:
The 32-element, 32-bit register file has 2 read ports and 1 write port
o Data memory:

If the write enable, WE, is 1, it writes 32-bit data WD into memory location
at 32-bit address A on the rising edge of the clock.

If the write enable is 0, it reads 32-bit data from address A onto RD.
This notation is used in H&H single-cycle MIPS implementation (H&H Chapter 7.3)



For Now, We Will Assume

“Magic” memory and register file

Combinational read

o output of the read data port is a combinational function of the
register file contents and the corresponding read select port

Synchronous write
o the selected register is updated on the positive edge clock
transition when write enable is asserted
Cannot affect read output in between clock edges

Single-cycle, synchronous memory

o Contrast this with memory that tells when the data is ready

l.e., Ready signal: indicating the read or write is done
0 See P&P Appendix C (LC3-b) for multi-cycle memory
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Instruction Processing

= 5 generic steps (P&H book)
o Instruction fetch (IF)
Instruction decode and register operand fetch (ID/RF)
Execute/Evaluate memory address (EX/AG)
Memory operand fetch (MEM)
Store/writeback result (WB)

Q
Q
Q
Q

B | wB

—
Register #
PC ==»| Address Instruction Registers >ALU Address
Instruction ister #
memory Data
Register # memory

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



We Need to Provide the
Datapath+Control Logic

to Execute All ISA Instructions




What Is To Come: Single-Cycle MIPS Processor

PCSrc,=Jump
Instruction [25-0] \ { shift |y Jump address [31-0]
x\left2 [}
26 UZS 0 I_> 1
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ 0
Add
> PCSrc,=Br Taken
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 Read
address ) ea
Instruction [20— 16] Read data 1
. register 2 bcond
|nStI‘[l§Cthl’1 l—v 0 _ Registers Read 0 >ALU ALU Read
, M Write data 2 result Address eadl__,(4
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
e 1 LR
Write v
data
Instruction [15-0] 1\6 Sign %2

Y lextend [ ¥ ALU operation

Instruction [5— 0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omitted




Another Complete Single-Cycle Processor

A RD Instr

31:26

MemtoReg

Control
Unit

MemWrite

Branch

ALUControl,

5.0

Op

ALUSrc

Funct

25:21

RegDst

RegWrite

—
CI‘_K

A1

Instruction
Memory

20:16

A2
A3

WD3

~ + PCPlus4

20:16

WE3

Register

RD1

SrcA

Zero

RD2

—_

U/

ALUResult

PCSrc

CI‘_K

WE

'B SrcB
—

WriteData

Data
Memory

WD

File

15:11

[0
1

WriteReg, ,

150 Sign Extend

Signlmm

<<2

PCBranch
+

0
ReadData 1

Result

Single-cycle processor. Harris and Harris, Chapter 7.3.
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Single-Cycle Datapath tor
Avrithmetic and 1 ogical Instructions




R-Type ALU Instructions

= R-type: 3 register operands

MIPS assembly (e.q., register-register signed addition)

add S$s0, $sl, S$s2 #Ss0=rd, S$sl=rs, Ss2=rt
Machine Encoding
0 rs rt d 0 |add@32)| R-Type
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
= Semantics

if MEM[PC] == add rd rs rt

GPR[rd] <« GPR]rs] + GPR]rt]

PC <« PC+4
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(R-Type) ALU Datapath

>Add

4 —
Read Readt 1
| ey | €2 register ea
PC address Rond daRta 1d
Instruction \r:/gfterl-?zegisters >ALU ALU
Instruction reéligter Read result
memory | write data 2
data
IF |[iID ||ex [[mEM|wB
if MEM[PC] == ADD rd rs rt Combinational
GPR[rd] < GPR[rs] + GPR]rt] .
PC <« PC+4 state update logic
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We Covered Until This Point

in Lecture




Digital Desigh & Computer Arch.

Lecture 11: Microarchitecture

Fundamentals

Prof. Onur Mutlu

ETH Zurich
Spring 2022
31 March 2022



Example: ALU Design

m ALU operation (F,.q) comes from the control logic

N§ : Function

2 F A|B
] 2
N
0
\
Cout {*’SJ/
[N-1]
N N N
\ %2‘ Fro 111 SLT
J(N
Y




[-Type ALU Instructions

= I-type: 2 register operands and 1 immediate

MIPS assembly (e.g., register-immediate signed addition)

addi $s0, S$sl, 5 #Ss0=rt, S$sl=rs

Machine Encoding

addi (0) | rs rt immediate I-TYPG
6bits  5bits 5 bits 16 bits
= Semantics
if MEM[PC] == addi rs rt immediate
PC <« PC+4

GPR[rt] « GPR]rs] + sign-extend(immediate)
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Datapath for R- and I-Type ALU Insts.

Read
address

Instruction
memory

> Add

Instruction

if MEM[PC] == ADDI rt rs immediate
GPR][rt] <~ GPR][rs] + sign-extend (immediate)

PC<« PC+4

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Read
register 1

Read
register 2

Write
register

_| Write
| data

Registers

Read

data 1

ID

EX

MEM|

WB

Combinational
state-updatelogic




Recall: ADD with one Literal in 1.C-3

= ADD assembly and machine code

LC-3 assembly

ADD R1, R4, #-2

Field Values

OP DR SR imm5
1 1 4 1 -2
Machine Code
OP DR SR imm5
0001 001 100 (1] 11110
15 12 11 9 8 6 5 4 0

Register file

RO
R1

Instruction register Re
ADD R1 R4

-2 R3

0001

001

100

1{11110 R4

i Sign- e
[sexT] extend

16

.

1111111111111110
I

R6

R7

0000000000000100 |DR

0000000000000110  |SR

Bit[5]

ADD
From
FSM
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Single-Cycle Datapath tor

Data Mowvement Instructions




I.oad

Instructions

= Load 4-byte word

MIPS assembly
lw $s3, 8($s0) #$s0=rs, S$s3=rt
Machine Encoding
op rs=base rt imm=offset
Iw (35) | base rt offset I-TYPG
= Semantics

if MEM[PC] == Iw rt offset,; (base)
PC « PC +4
EA = sign-extend(offset) + GPR(base)
GPR]rt] « MEM][ translate(EA) ]
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LW Datapath

4] —
,| Read
| pc aR(?(?rdess register 1 Read
| Read data 1
U ister 2 Add Read
Instruction “Hj’ \r;ilzerRegisters >ALU reétkj ress data [~
Instruction register .
memory Write d;‘;azd - \é\é?;e mz‘r’;tzry
data
16
\
N lextend
ya
~
if MEM[PC]==LW rt offset, (base) IF ID EX || MEM| wWB
EA = sign-extend(offset) + GPR[base] Combinational

GPR[rt] <~ MEM[ translate(EA) ] _
PC<« PC+4 state update logic



Store Instructions

= Store 4-byte word

MIPS assembly
SW $s3, 8($s0) #Ss0=rs, S$s3=rt
Machine Encoding
op rs=base rt imm=offset
sw (43) | base rt offset I—Type
31 26 25 21 20 16 15 0
= Semantics

if Mem[PC] == sw rt offset,; (base)

PC « PC +4
EA = sign-extend(offset) + GPR(base)

MEM[ translate(EA) | « GPR[rt]
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SW Datapath

4 ey
,| Read
| pc aR(?(?rdess register 1 d;gaf
— rReZ?sdteﬁ Address Read| __
Instruction “Hj’ Write Registers >ALU reéblfj data
Instruction register
memory Write d?ﬁZaZd \é\érti;e mz‘rztgry
data
16
A
N | extend
if MEM[PC]==SW rt offset,, (base) IF ID EX |v|E|V| WB
EA = sign-extend(offset) + GPR[base] Combinational

MEM][ translate(EA) ] «— GPR|[rt] _
PC<« PC+4 state update logic



Load-Store Datapath

Read
address

memory

Instruction

Instruction

**Based on original figure from [P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]

Read
register 1 Read
Read data 1
register 2
.. Registers Read
Write . Address g
register Read » ata
; data 2
Write
Data
dat
aa i memory
Write
| data
16 ) 32
\ | Sign
N | extend
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Datapath for Non-Control-Flow Insts.

4 —
Read Read
ey | €A register 1
—{PC address 9 thea1d
Read ata
register 2
Instruction Registers
Write 9 R Address Read
Instruction register Read » data
memor
y > Write data 2 Data
data | memory
_| Write
isltype | deta
16 32
\ | Sign
N | extend
e
108

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Single-Cycle Datapath tor

Control Flow Instructions




Jump Instruction

= Unconditional branch or jump

j target

j(2)

immediate

6 bits

o 2 = opcode

26 bits

o immediate (target) = target address

= Semantics

if MEM[PC]== j immediate,

target = { PC 1[31:28], immediate,¢, 2" b00 }

PC « target

J-Type

"This is the incremented PC
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Unconditional Jump Datapath

>ALU ALU

Do no harm
in datapath parts
not involved
with jump

3 ALU operation

result

>Add
4 —)
L) —,| Read
> PC-— Rgzgd register 1 Read
-> address data 1
Read
register 2
Instruction Registers
Write -~
Instruction register Read »
memor
@ y | write data 2
data
/"? RegWrite
/ 16 , 32
\ | Sign
N “lextend
**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

MemWrite
Read
Address data

Data

memo

Write i
| data

MemRead

if MEM[PC]==J immediate26
PC = { PC[31:28], immediate26, 2’ b0O }

What about JR, JAL, JALR?




Other Jumps 1n MIPS

Q jr: jump register
Semantics
if MEM[PC]== jr rs
PC <« GPR(rs)

o jal: jump and link (function calls)
Semantics
if MEM[PC]== jal immediate,¢
$ra <« PC+ 4
target = { PC T[31:28], immediate,s, 2" b00 }
PC « target

o jalr: jump and link register

Semantics
if MEM[PC]== jalr rs
$ra «— PC + 4

PC <« GPR(rs)

t This is the incremented PC 112



Aside: MIPS Cheat Sheet

= https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetc
h.php?media=mips_reference data.pdf

= On the course website

(0]

M I P SReference Data

ARITHMETIC CORE INSTRUCTION SET (@ OPCODE
/FMT /FT
FOR- /FUNCT

NAME, MNEMONIC ~ MAT OPERATION (Hex)

CORE INSTRUCTION SET OPCODE  BranchOnFPTrue belt FI if(FPeond)PC-PC+4+BranchAddr (4) 11/8/1/~
FOR- JFUNCT  BranchOnFPFalse boit  FI if{!IFPcond)PC=PC+4+BranchAddr(4) 11/8/0/
NAME, MNEMONIC ~ MAT OPERATION (in Verilog) (Hex) ~ Divide @iv R Lo=R(rs)/R[r]; Hi=R[rs]%R[rt] 0/--//1a
Add i R Rd] = Riss] + Rirt (1) 0/20p, Fnllﬁdlémgm dive R Lo=R[rs)/R[rt]; Hi=R[rs]%R[t] ~ (6)
ingle  add.s FR F[fd = F[fs] + F[f]
AddImmediate  addi [ R[rt]=R[s]+ Signfxtimm  (12)  Swex  ppagq i (FIGLEIRAD = (FISLRISAD +
Add Imm. Unsigned addiu 1 R(rf] = R[rs] + SignExtlmm @ %hex Double add.d (F(RLELRey A
Add Unsigned adds R R[rd] = R[rs] + R[rt] 0/21y,  FPCompare Single cx.s* F[fs] op F[ft]) 21 11/10/--1y
And and R R[d] = R[rs] & R[ri] 0/ 24y FD‘;&‘;:“’““ cxar ((FF[{;‘]]FF[{;:“]])) )",1]’1 I
AndImmediate  andi 1 R[rt] = R[rs] & ZeroExtimm G)  Chex *(xvis eq, 1¢, or Le) (opis ==, <, or <=) (y is 32, 3c, or 3¢)
iR {rs]==R[rt]) FPDivide Single  div.s FR F(fd] = F[fs] / F[f] 11/10/-13
Branch On Bqual  bea 1 "pe_pCig+BranchAddr @ = FPDivide divoa R (FIRLFIGHT) = (FISLEIS+T} /oo
‘R Ers)=R(x]) N Double . {FIRLFR+1]}
Branch OnNot Equalbne 1 "L pe fipr b addr @ b FP Multiply Single nul.s FR F[fd] = FIfs] * , -2
Jump 3 1 PC=JumpAddr ) 2Zne FD‘;:‘:I“C‘“P‘Y nul.d FR {F[f‘“'m’”‘”"F“s]]ﬂ[[;i‘]])) -2
Jump And Link jal ] R[31J=PC+8;PC=JumpAddr ) 3nex FP Subtract Single sub.s FR F[fd]=F[fs] - F[ft] 11/10/-/1
Jump Register 5: R PC-R[x] 0708y FP Subtract oba pr (FURLFIRTD = (FIBLECSHT) -y
Rir= (24 bo Mm,s] Double . {FIRLF(R+1]}
Load Byte Unsigned 1ou 1 Almm](7:0)) @ Y LoadFPSingle  lwer T M[R(rs]+SignExtimm] () 3Vl
d FP [M]-M[R[rs]+SignExtimm]; (2
Load Halfword RIri]= {16 bO | MIR[ss] a de1 I 35/levlm
Unsigned 1hu 1 +SignExtimm](15:0)} @ 25pex. ﬁfl‘l'emmu, o Flrt+1]=M[R[rs]+SignExtimm+4]
Load Linked 11 R -MREsHSigEximm] - Q7) 30y port T
Load Upper Imm. T R[rt] = {imm, 16’60} fhex Move From Control nfco
Load Word I R[] =M[Rlrs]+SignExtimm] ~ (2) 23 Multiply male
Nor nor R RId] =~ (RErs] | Rt 0120, (Y il e R RIrd] - Rfrt] >>> shamt ©
Or er R RIrd]=Rs] | R[] O0/2%hex  Store FP Single ~ swel 1 M[R[rs]+SignExtimm] @
Or Immediate ori I R[rt] = R[rs] | ZeroExtlmm () dnex Store FP. saer 1 MIR[rs]+SignExtimm] = F[t]; ()
Set Less Than sit R R[rd]=(R[rs] <R[rt])) ? 1:0 0/2ay,, ~ Double MIR[rs]+SignExtlmm+4] = F[rt+1]
SetLessThanImm. siti 1 R[] = (R[rs] <SignExtimm)?1:0(2) 8hex  FLG OINT FORMATS
SetLess Thanlmm. | R[] = (R[rs] < SignExtlmm) brex FR [ opcode | fmt | £t | f fd | fanet
Unsigned ?1:0 @6 5 %5 FED W15 10 o5
Set Less Than Unsig. s1tu R R[rd] = Rrs] <R[ 21:0  (6) 0/2bpee B [opooe | fmt | R mmediate
Shift Left Logical s11 R R[rd] = R[rt] << shamt 0/00pe 3 2625 w20 1615
Shift Right Logical szl R R[rd] = R[rt] >> shamt 0/02x  PSEUDOINSTRUCTION SET
M[R[rs]+Sig\Ex|lmm](7 0) MNEMONIC OPERATION
Store Byte = ! 7 @ Bnex Branch Less Than bt il [r1]) PC = Label
» M[N,s]+s,gn5x‘m] Rl Branch Greater Than bat []) PC = Label
Store Conditional ~ sc I Rirt) = (atomic) 210 (2,7 >ohex Branch Less Than or Equal ble
est Branch Greater Than or Equal  bge
Store Halfword ~ sn | M[N“]+S‘@Ex"’“;‘2%fi‘;):o) @ P Load Immediate LR
Store Word s I M[R[s}SignExtimm] =R[r] () 2bpex Move nove R
Sublract s R Rird]= Rirs]- R[) (1) 0/22,,, ~REGISTER NAME, NUMBER, USE, CALL CONVENTION —
Subiract Unsigned  subu R R[rd] = Rirs] - R[xt] 0/ 2y NAME NUMBER USE ACALL?
(1) May cause overflow exception Szero 0 The Constant Value 0 NA
(2) SignExtlmm = { 16{immediate[15]}, immediate } = T Asserbler Temporsi No
(3) ZeroExtimm = { 16{1b°0}, immediate } it o Faneron mestits
(4) BranchAddr = { 14{immediate[15]}, immediate, 2°b0 } Sw-sv 23 . No
- p . and Expression Evaluation
(5) JumpAddr = { PC+4[31:28], address, 2°b0 }
(6) Operands considered unsigned numbers (vs. 2's comp.) $a0$a3 47  Arguments No
(7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic $10-St7 815 Temporaries No
BASIC )N FORMATS 0557 1623 Saved Temporarics Yes
S8-S0 2425 Temporarics No
R[opeode [ 5 [ a [ wa [ shame [ fner | KOSk 2627 Reserved for OS Kernel No
i %5 I W15 i a5 T o0 35— Global Pointer o
———— 1 [ opeode | s E| immediate ] Sop 25— Stack Pomter Yos
3 26 25 EE) 615 8 Sip 30 Frame Pointer Yes
3 [ opeoe | address J St 31 Retum Address Yes

3 XS O
Copyright 2009 by Elsevier, Inc., Al rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

®

IEEE 754 FLOATING-POINT

OPCODES, BASE CONVERSION, ASCII SYMBOLS IEEE 754 Symbols
MIFS (1) MIPS (2) MIP: Deci. Hexa- ASCIT - “Texa- ASCIT Exponent | Fraction| _ Object
opcode  funct  funct | Binary 0 dccl- Char- [ deci- Char- (18 % (1 + Fraction) x 2(Exponent-Bias) ) 30
G126 (50)  (5:0) acter mal _acter o —0 = Denor
M e 2adf (000000 O u @ where Single Precision Bias = 127,
subf (000001 1 1 SOH | 65 41 A Double Precision Bias = 1023, Tto MAX - 1 [anything £ F. Pt. Num.
3 sr1 malf 000010 2 2 STX | 66 42 B MAX 0 =
jal  sra aivf 00001 3 3 ETX| 67 43 C IEEE Single Precision and MAX #0 NaN
beq silv sarty [000100 4 4 EOT | 6§ D . ST MAX =255, D MAX = 2047
e 7 lool s s ENQ| @ 45 E Double Precision Formats: 3
blez sclv  mowf (00010 6 6 ACK| 70 46 F [ s [ Exponent | Fraction ]
batz srav  negf |0001l 7 7 BEL| 71 47 G o
§ BS |72 4@ H "
9 9 HT [ 73 49 1 [ s [ Exponent [ Fraction e
10 a LF |74 4 J st o
11 b VT |75 4 K MEMORY ALLOCATION STACK FRAME .
2 ¢ FF | 76 4 L Stack Higher
13 d CR |77 4 M $sp P 7T M g | Memory
4 e SO | 78 de N —A‘meem Addresses
loi sme  floormf{ODUN IS £ SL 7 4 O $fp—pr
mehi T0000 16 10 DLE | 80 350 P lsaved Regist
@ nthi 01 0001 17 11 DC1| 81 51 Q e Data aved Registers | giack
mflo  movaf (010010 18 12 DC2| 8 52 R $gp 1000 8000y, | Y Grows
melo  movnf 010011 19 13 DC3 | 8 53 S N
010100 20 14 DC4 | 84 54 T 1000 0000, Static Data [Local Variables L
010101 21 15 NAK| 85 55 U e $sp
010110 22 16 SYN | 86 56 V Text Lower
010111 23 17 ETB | 87 57 W pe —P0040 0000;e Mermo:
ot OTT000 24 18 CAN | 88 Addrenes
multu 011001 25 19 EM | 8 59 Y Opex | Reserved
div 011010 26 la SUB | 90 Sa Z
diva 011011 27 1b ESC | 91 Sb [ DATA ALIGNMENT
0100 28 Ic 9 Sc
011101 29 1d GS | 93 5d ] Double Word
011110 30 le RS | 94 Se A Word Word
oLl 31 If US | 95 s _
= — sy TO0000 3220 Spaee |90 Halfword | Halfword Halfword | Halfword
1h addu  ove.df [100001 33 21 ! | 97 6l a Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
w1 suwb 100010 34 22 " | 9% & b T B 5 T s g 7
1w suu 100011 35 23 # | 9 6 ¢ Value of three least significant bits of byte address (Big Endian)
Tou  and vt/ |T00100 36 24 S [100 64 d CONTROL CAUSE AND STATUS
1w or 100101 37 25 % [101 65 e oot et
lur  xor 100110 38 26 & [102 66 f mermup xeeption
nox 100111 390 27 ' |103 67 g Code
E3 101000 40 28 ( [104 68 h 5 0 B
sh 101001 41 29 ) [105 6 i Pending U E[T
sul sl 101010 42 22 * [106 6 Interrupt M LlE
sw  sitw 101011 43 2b + |107 6b k = 5 = T
TOTI00 44~ 2¢— ., [T08 6c T BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable
10101 45 24 ° [19 6 m
sur 10110 46 2 10 6 n EXCEPTION CODES
e 10111 47 2f 7 |11 6 o [Number Name _Cause of Exception _|Number Name _Cause of Exception
5 TTO000 48300 [TIZ 70 p 0 It Interrupt (hardware) | 9 Bp _ Breakpoint Exception
el tgeu 1noool 49 31 1 |13 71 g 4 AqpL, Address Error Exception| | |~ Reserved Instruction
lwe2 it 110010 50 32 2 |14 72 r (load or instruction fetch) Exception
pref tltu 10011 51 33 3 |15 73 s ‘Address Error Exception Coprocessor
tea 0100 52 34 4 |16 74 ¢ 5 AdES (store) noou
1de1 10101 53 35 5 117 75 u Pa— Bus Error on 2 oy Atthmetic Overflow
ldc2  tne 10110 54 3 6 (118 76 v Instruction Fetch Exception
1nour 5537 7 |19 7w Bus Error on
et A e maawe | 27 s
sue: y
el R A - 8 Sys _ Syscall Exception 15 FPE_Floating Point Exception]
:: :‘l’(‘](‘, 23 3 ;11238 b { SIZE (10% for Disk, 2% for Memory)
c < |14 T |
sdel 1ol 6 3d = |15 74} PRE- PRE- PRE- PRE-
sde2 1110 62 3 > [126 T~ SIZE__ FIX | SIZE_ FIX |SIZE FIX |SIZE FIX |
1111 63 3f 2 |127 7f DEL 10%,2'° Kilo- [10',2% Peta- | 10° milli- | 10" femto-
(1) opeode(31: i 105,2% Mega- [10'5,29 Exa- | 10° micro-| 1078 atto-
@) opeode(3 Lo 1)==161en (1056,) /= s (single); 100,20 Giga- 107,270 Zellu- 107 nano- | 102 zepto-
if fmt(25:21)=17,¢, (1) /= d (double) 10229 Tera. | 107, 29 107 0%

e symbol for cach prefix is just T

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

yocto-
v Tefer, Sxcept i 1 wsed or mier.
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Conditional Branch Instructions

= beq (Branch if Equal)

beg $s0, Ssl, offset

#Ss0=rs, S$Ssl=rt

beq (4) rs rt

immediate=offset

6 bits 5 bits 5 bits

16 bits

= Semantics (assuming no branch delay slot)

if MEM[PC] == beq rs rt immediate;q
target = PC™ + sign-extend(immediate) x 4
if GPR[rs]==GPR[rt] then PC « target

else PC < PC + 4

o Variations: beq, bne, blez, bgtz

I-Type

"This is the incremented PC
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Conditional Branch Datapath (for you to finish)

watch out
PC + 4 from instruction datapath =
>Add
> Add Sum pH==> Branch targef
4 —

-N\ —

> PC 4 Read

> address ALU operation

> Read
register 1

Instruction d;zaf
Read
Instruction register 2
memory Registers ALU bcond To branch_
A Write control logic
register Read R
Write data 2
data
RegWrite
16 . 32
\ Sign
N “lextend
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

How to uphold the delayed branch semantics?



Putting It All Together

PCSrc,=Jump
Instruction [25-0] \ { shift |y Jump address [31-0]
x\left2 [}
26 UZS 0 I_> 1
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ 0
Add
> PCSrc,=Br Taken
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 Read
address ) ea
Instruction [20— 16] Read data 1
. register 2 bcond
|nStI‘[l§Cthl’1 l—v 0 _ Registers Read 0 >ALU ALU Read
, M Write data 2 result Address eadl__,(4
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
e 1 LR
Write v
data
Instruction [15-0] 1\6 Sign %2

Y lextend [ ¥ ALU operation

Instruction [5— 0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



Single-Cycle Control Logic




Single-Cycle Hardwired Control

As combinational function of Inst=MEM[PC]

31 26

25 21

20 16

15 1" 10 6

0

0 rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
31 26 25 21 20 16 15 0
opcode rs rt immediate

6 bits 5 bits 5 bits 16 bits
31 2% 25 0
opcode immediate

6 bits 26 bits

Consider

o All R-type and I-type ALU instructions

o lw and sw
a beq, bne, blez, bgtz
a j, jr, jal, jalr

R-Type

I-Type

J-Type
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Generate Control Signals (in Orange Color)

Instruction [25-0] \ { shift |y Jump address [31-0]
\ \
o \left2 [0 5 I_» /
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ i\
> Add
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 R
address ) ead
Instruction [20— 16] Read data 1
. register 2 bcond
Instr[lé(%’tlog l—v 0 _ Registers Read 0 >ALU ALU Read
) M Write data 2 result Address cad (4
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
1 1 e |
Write v
data
Instruction [15—0] 1° [ gign |32

N Tlextend | N

Instruction [5— 0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omitted




Single-Bit Control Signals (I)

When De-asserted

When asserted

Equation

GPR write select

according to rt, i.e.,
inst[20:16]

GPR write select
according tord, i.e.,
inst[15:11]

opcode==0

2" ALU input from
2"d GPR read port

2" ALU input from
sign-extended 16-bit
immediate

(opcode!=0) &&
(opcode!=BEQ) &&
(opcode!=BNE)

Steer ALU result
to GPR write port

Steer memory output
to GPR write port

opcode==LW

GPR write disabled

GPR write enabled

(opcode!=SW) &&
(opcode!=Bxx) &&
(opcodel=)) &&
(opcode!=JR))

JAL and JALR require additional RegDest and MemtoReg options




Single-Bit Control Signals (11)

bit immediate jump
target

When De-asserted When asserted Equation
Memory read disabled | Memory read port opcode==LW
returns load value
Memory write disabled | Memory write enabled | opcode==SW
According to next PCis based on 26- | (opcode==J) ||

(opcode==JAL)

next P C=PC+4

next PC is based on
16-bit immediate
branch target

(opcode==Bxx) &&
“bcond is satisfied”

JR and JALR require additional PCSrc options




R-Type ALU

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
\ \
26 \eft2 /og |

PC+4 [31-28]

ALU
>Add result

\&/

>Add

PCSrc,=Br Taken

Jump
Instruction [31-26]
Control
Instruction [25—21] Read
I Read register 1 O
address ) Read
Instruction [20—-16] Read data 1
) register 2 beond
Instr[gﬁtlog N " Registers Read >ALU ALU
. Write data 2 result Address Read|
Instruction register data
memory Instruction [15—11] ‘ Write
data | R Data d
. memory
Write
data
Instruction [15-0] 1\6 Sign ?{2

N |extend

ALU operation O

unet

Instruction [5—- 0]

**Based on original figure from [P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]



[-Type ALU

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
\ \
26 \eft2 /og |

PC+4 [31-28]

ALU
>Add result

\&/

>Add

PCSrc,=Br Taken

Jump
Instruction [31—-26]
Control
Instruction [25—21] Read
—>|PC aRggr%ss register 1 Read O
Instruction [20—16] Read data 1
) register 2 bcond
IHStEgCtlon  Registers Read > ALU ALU
) Write data 2 0 result Address Read{
Instruction u register M data
memory Instruction [15—11] X Write p
1 data Data d
) memory
Write
data
Instruction [15-0] 1\6 Sign ?{2
N "lextend

?pcod éLU operation O

Instruction [5—- 0]

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]



LW

Instruction [25-0] \ [ Shift \\

Jump address [31-0]

PCSrci=Jump

\ \
2 @2&

PC+4 [31-28]

>Add

Read
address

Instruction
[3

Instruction
memory

./

ALU

L.

>Add result

\d

PCSrc,=Br Taken

Jump
Instruction [31—-26]
Control
Instruction [25—-21] Read
register 1 Read
Instruction [20— 16] Read data 1
register 2 beond
~ Registers Read > ALU ALU
Write data 2 0 result
u register M
Instruction [15—11] X Write 4
1 data
Instruction [15-0] 1\6 Sign ?{
N Tlextend| M

Instruction [5—- 0]

Read
Address data
Data
memo
Write v
data

Add ALU operation 1
I_,

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]




SW

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
\ \
26 \eft2 /og |

PC+4 [31-28]

ALU
>Add result

\&/

>Add

PCSrc,=Br Taken

Jump
Instruction [31—-26]
Control
Instruction [25—-21] Read
I Read register 1 1
address . Read
Instruction [20— 16] Read data 1
. register 2 bcond
Instr[gti‘tlog l—; 0 Registers Read " >A|—U ALU Read
M Write data 2 Add cadl .,
nstruction ! register ata M result ress data
memory Instruction [15—11] Write 4
! data o /\
memory Q'
Write
data
Instruction [15-0] 1\6 Sign ?{2

N lextend [V I"Add ALU operation O

Instruction [5—- 0]

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]



Branch (Not Taken)

Some control signals are dependent
on the processing of data

ALU L
>Add result 1 @

Instruction [25-0] \ [ Shift \\
\ \
2% left 2 28

PC+4 [31-28]

Jump address [31-0]

./

>Add

Jump

\d

Instruction [31—-26]

Control

0

Instruction [15-0]

Instruction [5—- 0]

| @

cond

Instruction [25—21] Read
—(PC aRggr%ss register 1 Read O
Instruction [20—-16] Read data 1
reqi bcond
: I gister 2
Instlil:;ctlon 0  Registers Read > ALU ALU
) M Write data 2 result Address Read
Instruction u register data
memory Instruction [15—11] Write
data Data
. memory
Write
data
16 ) 32
\ Sign |\
N

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]




Branch (Taken)

Some control signals are dependent
on the processing of data

Instruction [25-0] \ { Shift \\ Jump address [31- 0]

\ AY
26 left 2 28 5 |
PC+4 [31-28] I\JI
\ ;
i ALU
>Add result

>Add

./

\d

Jump
Instruction [31-26]
Control
Instruction [25—21] Read
I Read register 1 O
address ] Read
Instruction [20—-16] Read data 1
) register 2 beond
Instr[gﬁtlog Nz " Registers Read >ALU ALU
. M Write data 2 result Address Read{
Instruction QU register data
memory Instruction [15—11] Write
data — mlg;tgry }Q'
Write
data
Instruction [15-0] 1\6 Sign %2

()] fpcond 0

Instruction [5—- 0]

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]



Jump

PCSrci=Jump

Jump address [31-0]

Instruction [25-0] \ [ Shift \\

Instruction [5—- 0]

\ AY
26 left 2 28 5 |
PC+4 [31-28] M M
\ \7 "
" ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31—-26]
Control
Instruction [25—21] Read
—(PC aRggr%ss register 1 Read O
Instruction [20—16] Read data 1
reqi bcond
: I gister 2
IHStEgCtlon 0  Registers Read >ALU ALU
) M Write data 2 0 result Address Read{
Instruction Lu register M data
memory Instruction [15—11] Write
o | N
Write Q'
data
Instruction [15-0] 1\6 Sign ?{2
N lextend [V ALU operation O

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]




What is in That Control Box?

Combinational Logic - Hardwired Control

o Idea: Control signals generated combinationally based on bits
in instruction encoding

Sequential Logic = Sequential Control

o Idea: A memory structure contains the control signals
associated with an instruction

Called Control Store

Both types of control structure can be used in single-cycle
processors

o Choice depends on latency of each structure + how much on
the critical path control signal generation is, etc.
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Review: Complete Single-Cycle Processor

Instruction [5— 0]

Instruction [25-0] \ { shift |y Jump address [31-0]
\ \
o8 \eft2 [og 5 |_> /
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ i\
> Add
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 R
address ) ead
Instruction [20— 16] Read data 1
i bcond
Instructi register 2
ns r[%?llog l—v 0 _ Registers Read 0 >ALU ALU Read
, M Write data 2 result Address ea 1
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
e 1 LR
Write v
data
Instruction [15—0] 1° [ gign |3
N lextend [ M

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.]

JAL, JR, JALR omitted




Another Single-Cycle
MIPS Processor (from H&H)

See backup slides to reinforce the concepts we have covered.
They are to complement your reading:
H&H, Chapter 7.1-7.3, 7.6



Another Complete Single-Cycle Processor

'r0 PC' PC A RD
1

Instruction
Memory

Instr

31:26

MemtoReg

Control

MemWrite

Unit

Branch

ALUControl,

5.0

Op

ALUSrc

Funct

25:21

RegDst

RegWrite

—
CI‘_K

A1

= +

PCPlus4

20:16

A2

A3

20:16

WD3

WE3

Register

RD1

SrcA

Zero

RD2

—_

'B SrcB
—

ALUResult

PCSrc

CI‘_K

WE

v
ALU

WriteData

Data
Memory

File

15:11

[0
- 1
WriteReg, ,

Signlmm
150 Sign Extend

<<2

PCBranch
+

WD

0
ReadData 1

Result

Single-cycle processor. Harris and Harris, Chapter 7.3.
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Example: Single-Cycle Datapath: 1w fetch

m STEP 1: Fetch instruction

1w $S§i 1&%9) # read memory word 1 into $s3

T TType

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w register read

m STEP 2: Read source operands from register file

lw $s3, 1($0) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w immediate

m STEP 3: Sign-extend the immediate

15:0 Signimm ,
Sign Extend

lw $s3, 1($9) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w address

m STEP 4: Compute the memory address

ALUControIzz0
010

SrcA Zero
ALUResult

oy

ALU

SrcB

Signimm

lw $s3, 1($0) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w memory read

m STEP 5: Read from memory and write back to register file

RegWrite
1
CLK
|

ReadData

lw $s3, 1($0) # read memory word 1 into $s3
I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w PC increment

m STEP 6: Determine address of next instruction

CI‘_K
PCy "V pc

)
PCPlus4
4

lw $s3, 1($9) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Similarly, We Need to Design the Control Unit

= Control signals are generated by the decoder in control unit

R-type 000000

w 100011 1 0 1 0 0 1 00 0
sw 101011 0 X 1 0 1 X 00 0
beq 000100 0 X 0 1 0 X 01 0
addi 001000 1 0 1 0 0 0 00 0
j 000010 0 X X X 0 X XX 1

Single-cycle processor. Harris and Harris, Chapter 7.3. 139



Another Complete Single-Cycle Processor (H&H)

MemtoReg
MemWrite

Control
Unit

Branch

ALUControl,., D PCSre

Op  |ALUSrc
Funct |RegDst

RegWrite

31:26

5.0

—
CI‘_K CI‘_K

) WE3 [~ Zero WE

-r0 PCl 7 |PC Instr P22 A1 RD1 S 0
1 A RD >3 ALUResult ReadData )
Instruction 20:16 N <C
A2 RD2 |0 ISch Dat
Memory ata
A3 - Memory

i WriteData
WD3 Relgillzter [ WD

20:16 B
15:11 1
o WriteReg,

PCPlus4

= +
4 _l/ Signlmm <<?
= 150 Sign Extend .\ PCBranch

—_

Result

140



Your Reading Assignment

= Please read the Lecture Slides & the Backup Slides

= Please do your readings from the H&H Book
o H&H, Chapter 7.1-7.3, 7.6
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Single-Cycle Uarch I (We Developed in Lectures)

PCSrc,=Jump
Instruction [25-0] \ { shift |y Jump address [31-0]
\ \
o8 \eft2 [og 5 |_> ;
PC+4 [31-28] M M
u u
\ X X
ALU
>Add result '\1/ i\
Add
> PCSrc,=Br Taken
Jump
4 m—
Instruction [31—26]
> Control
Instruction [25—-21] Read
L |pc .| Read register 1 R
address ) ead
Instruction [20— 16] Read data 1
. register 2 bcond
Instr[lé(%’tlog l—v 0 _ Registers Read 0 >ALU ALU Read
) M Write data 2 result Address eadl__,(4
Instruction u register M data M
memory Instruction [15-11] | X - o u
Write X
e 1 e |
Write v
data
Instruction [15-0] 1\6 Sign %2

Y lextend [ ¥ ALU operation

Instruction [5— 0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omitted




Single-Cycle Uarch II (In Your Readings)

MemtoReg
MemWrite

Control
Unit

Branch

ALUControl,., D PCSre

Op  |ALUSrc
Funct |RegDst

RegWrite

31:26

5.0

—
CI‘_K CI‘_K

_ WE3 SrcA [T
-rO pc|™|ec IS s Y RD1
1

Zero WE
0
ALUResult ReadData 1

Instruction 20:16 0 <
A2 RD2 0 ]srcB Dat
Memory e
A3 -| ] M
Register — WriteData emory

WD3 File WD

20:16 B
15:11 1
o WriteReg,

PCPlus4

= +
4 _l/ S|qn|mm <<2
= 150 Sign Extend N PCBranch

A RD

U/

—_

Result

Single-cycle processor. Harris and Harris, Chapter 7.3. 143



Evaluating the Single-Cycle
Microarchitecture




A Single-Cycle Microarchitecture

Is this a good idea/design?
When is this a good design?
When is this a bad design?

How can we design a better microarchitecture?
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Pertormance Analysis Basics




Recall: Performance Analysis Basics

= Execution time of a single instruction

a {CPI} x {clock cycle time}
= CPI: Number of cycles it takes to execute an instruction

= Execution time of an entire program
a Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}
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Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed



Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed

m How fast are my instructions?
" |nstructions are realized on the hardware
= Each instruction can take one or more clock cycles to complete
= Cycles per Instruction = CPI



Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed

m How fast are my instructions?
" |nstructions are realized on the hardware
= Each instruction can take one or more clock cycles to complete
= Cycles per Instruction = CPI

m How long is one clock cycle?

" The critical path determines how much time one cycle requires =
clock period

= 1/clock period = clock frequency = how many cycles can be done
each second



Processor Performance

m As ageneral formula
= Qur program consists of executing N instructions
= Qur processor needs CPI cycles (on average) for each instruction
"= The clock frequency of the processor is f
- the clock period is therefore T=1/f



Processor Performance

m As ageneral formula
= Qur program consists of executing N instructions
= Qur processor needs CPI cycles (on average) for each instruction
"= The clock frequency of the processor is f
- the clock period is therefore T=1/f

= Our program executes in
N x CPI x (1/f) =

N x CPI x T seconds



Performance Analysis of

Our Single-Cycle Design




A Single-Cycle Microarchitecture: Analysis

Every instruction takes 1 cycle to execute
a CPI (Cycles per instruction) is strictly 1

How long each instruction takes is determined by how long
the slowest instruction takes to execute

o Even though many instructions do not need that long to
execute

Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction

o Critical path of the design is determined by the processing
time of the slowest instruction
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What is the Slowest Instruction to Process?

= Let's go back to the basics

= All six phases of the instruction processing cycle take a single
machine clock cycle to complete

Fetch 1. Instruction fetch (IF)
Decode 2. Instruction decode and
Evaluate Address register operand fetch (ID/RF)

3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

Fetch Operands
Execute
Store Result

o o 0O o 0O O

= Do each of the above phases take the same time (latency)
for all instructions?
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Let’s Find the Critical Path

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
X\left 2 /)
26 UZB 0 I_> 1
PC+4 [31-28] M M
u u
\ X X
" ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31—-26]
Control
Read Instruction [25—21] Read
ister 1
—>|PC address register Read
Instruction [20—16] Read data 1
reqi bcond
: gister 2
Instr[uctlon l—» 0 ~ Registers Read >ALU ALU
) M Write data 2 0 result Address Read|__
Instruction u register M data M
memory Instruction [15— 11 X ; Y u
[ ] 1 \éVnte X Data X
ata ! memory 0
Write
data
Instruction [15-0] 1\6 Sign ?{2

N lextend [V ALU operation

Instruction [5—- 0] r

[Based on original figure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]




Example Single-Cycle Datapath Analysis

Assume (for the design in the previous slide)
o memory units (read or write): 200 ps

o ALU and adders: 100 ps

o register file (read or write): 50 ps

a

other combinational logic: 0 ps

steps IF ID EX MEM WB
Delay

resources mem RF ALU mem RF
R-type 400
I-type 400
LW 600
SW 550
Branch 350
Jump 200




Let’s Find the Critical Path

PCSrci=Jump
Instruction [25-0] \ { Shift \\ Jump address [31- 0]
X\left 2 /)
26 UZB 0 I_> 1
PC+4 [31-28] M M
u u
\ X X
" ALU
>Add result \1/ 0
Add
> PCSrc,=Br Taken
Jump
4 —
Instruction [31—-26]
Control
Read Instruction [25—21] Read
ister 1
—>|PC address register Read
Instruction [20—16] Read data 1
reqi bcond
: gister 2
Instr[uctlon l—» 0 ~ Registers Read >ALU ALU
) M Write data 2 0 result Address Read|__
Instruction u register M data M
memory Instruction [15— 11 X ; Y u
[ ] 1 \éVnte X Data X
ata ! memory 0
Write
data
Instruction [15-0] 1\6 Sign ?{2

N lextend [V ALU operation

Instruction [5—- 0] r

[Based on original figure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]




R-Type and I-Type ALU

PCSrc,=Jum
Instruction [25-0] \ { Shift \\ Jump address [31-0]
\ \
26 left 2 08 | -
PC+4 [31-28] M M
u u
X
ALU
d result 1
Add PCSrc,=Br Taken
Jump
4 —
Instruction [31—-26]
Control
Instruction [25—-21] Read
Read register 1 Read
2() J Igstruction [20—16 data 1 2 ot
‘ bcond
In [ 4 0 ~ Registers S ALU ALU
M Write data 2 Address Read 1
Instruction u ] data
memory Instruction [15—11] X Write 400 p 5 "
1 dat C Data X
ata 1 p .)W X memory 0
rite
data
Instruction [15-0] 1\6 Sign ?{2

N lextend [ ¥ ALU operati

Instruction [5— 0] r

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]



LW

100ps

Add

Read

Instruction
memory

PC+4 [31-28]

ALU
d result

bcond

ALU ALU
[t

35

PCSrc,=Jum
Instruction [25-0] \ { Shift \\ Jump address [31-0]
\ \
26 \eft2 /g | 1

M
u

xcZ

PCSrc,=Br Taken

P

Jump

Instruction [31—-26]

Control
Instruction [25—-21] Read

register 1 Read

Igstruction [20—16 data 1 2 o

0 ~ Registers

M Write data 2

u
Instruction [15—11] 1X i

) 16 )
Instruction [15-0] \ Sign
N Tlextend| M

Instruction [5— 0]

Addres:
; Data
memo
Write v
data

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]




SW

100ps

Add

Read

Instruction
memory

PC+4 [31-28]

ALU
d result

PCSrc,=Jum
Instruction [25-0] \ { Shift \\ Jump address [31-0]
\ \
26 \eft2 /g | 1

M M
u

PCSrc,=Br Taken

Addrass Read
; ata
Writ5 5 IS
data

Jump
Instruction [31—-26]
Control
Instruction [25—-21] Read
register 1 Read
Igstruction [20—16 data 1 o
2 bcond
0  Registers ALU ALU
M Write data 2
u register
Instruction [15—11] X Write
1 data 3 5 p \
-
Instruction [15-0] 1\6 Sign ?{
N lextend [ ¥ ALU operation

Instruction [5— 0]

Oxec=z—

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]




Branch Taken

Instruction [25-0] \ [ Shift \\

PCSrc,=Ju

Jump address [31-0]
\ AY
26 left 2 28
PC+4 [31-28]
Add
Jump
4 m—
Instruction [31—-26]
Control
Instruction [25—-21] Read
Read register 1 Read
2() J Igstruction [20—16 data 1
In [ ol 0 Registers
M Write data 2
Instruction u register
memory Instruction [15—11] X Write
1 data
Instruction [15-0] 1\6 Sign ?{2

Shift
left 2

2 S u I\ljl

25

0 |—>1

X

>
>

PCSrc,=Br Taken

350ps

Instruction [5— 0]

N Tlextend| M

bcond
ALU ALU
Address %Z?ad (1
M
u
Data X
memo
Write i 0
data

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]




200ps

L B

Instruction
memory

Instructio

PC+4 [31-28]

{

./

ALU

=)

>Add result

\d

Instruction [25—21] Read
register 1 Read
B/ ruction [20—-16] Read data 1
» l—» register 2
0 ~ Registers Read
M Write data 2
u register
Instruction [15—11] X Write
! data
Instruction [15-0] 1\6 Sign

“,xcZ©

bcond
ALU ALU

N

0

PCSrc,=Br Taken

esult

\ﬂ

N |extend

Instruction [5—- 0]

Address

Write
data

Read
data

Data
memory

Oxec=z—

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]




What About Control Logic?

How does that affect the critical path?

Food for thought for you:
o Can control logic be on the critical path?

o Historical example:
CDC 5600: control store access too long...
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What is the Slowest Instruction to Process?

Real world: Memory is slow (not magic)
What if memory sometimes takes 100ms to access?

Does it make sense to have a simple register to register
add or jump to take {100ms+all else to do a memory
operation}?

And, what if you need to access memory more than once to
process an instruction?

o Which instructions need this?
o Do you provide multiple ports to memory?
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Single Cycle uArch: Complexity

Contrived
o All instructions run as slow as the slowest instruction

Inefficient
o All instructions run as slow as the slowest instruction

o Must provide worst-case combinational resources in parallel as required
by any instruction

o Need to replicate a resource if it is needed more than once by an
instruction during different parts of the instruction processing cycle

Not necessarily the simplest way to implement an ISA
o Single-cycle implementation of REP MOVS (x86) or INDEX (VAX)?

Not easy to optimize/improve performance

o Optimizing the common case (frequent instructions) does not work

o Need to optimize the worst case all the time
166



(Micro)architecture Design Principles

Critical path design
o Find and decrease the maximum combinational logic delay
o Break a path into multiple cycles if it takes too long

Bread and butter (common case) design

a Spend time and resources on where it matters most
i.e., improve what the machine is really designed to do
o Common case vs. uncommon case

Balanced design

o Balance instruction/data flow through hardware components

o Design to eliminate bottlenecks: balance the hardware for the
work
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Single-Cycle Design vs. Design Principles

= Critical path design

= Bread and butter (common case) design

= Balanced design

How does a single-cycle microarchitecture fare
with respect to these principles?
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Aside: System Design Principles

When designing computer systems/architectures, it is
important to follow good principles

o Actually, this is true for *any* system design
Real architectures, buildings, bridges, ...
Good consumer products
Mechanisms for security/safety-critical systems

Remember: “principled design” from our second lecture

o Frank Lloyd Wright: “architecture [...] based upon principle,
and not upon precedent”
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Aside: From Lecture 2

= architecture [...] based upon principle, and not upon
precedent”




This
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Recall: Takeaways

It all starts from the basic building blocks and design
principles

And, knowledge of how to use, apply, enhance them

Underlying technology might change (e.g., steel vs. wood)
o but methods of taking advantage of technology bear resemblance
o methods used for design depend on the principles employed
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Aside: System Design Principles

We will continue to cover key principles in this course
Here are some references where you can learn more

Yale Patt, "Requirements, Bottlenecks, and Good Fortune: Agents for
Microprocessor Evolution,” Proc. of IEEE, 2001. (Levels of
transformation, design point, etc)

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966. (Flynn's Bottleneck - Balanced design)

Gene M. Amdahl, "Validity of the single processor approach to achieving
large scale computing capabilities," AFIPS Conference, April 1967.
(Amdahl’s Law - Common-case design)

Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.
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A Key System Design Principle

= Keep it simple

= "Everything should be made as simple as possible,
but no simpler.”

o Albert Einstein

= And, keep it low cost: “An engineer is a person who can
do for a dime what any fool can do for a dollar.”

= For more, see:

o Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.

a http://research.microsoft.com/pubs/68221/acrobat.pdf
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Can We Do Better?
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Multi-Cycle Microarchitectures
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Backup Slides on Single-Cycle
Uarch for Your Own Study

Please study these to reinforce the concepts
we covered in lectures.

Please do the readings together with these slides:
H&H, Chapter 7.1-7.3, 7.6



Another Single-Cycle
MIPS Processor (from H&H)

These are slides for your own study.
They are to complement your reading
H&H, Chapter 7.1-7.3, 7.6




What to do with the Program Counter?

m The PC needs to be incremented by 4 during each cycle
(for the time being).

m Initial PC value (after reset) is 9x00400000

reg [31:0] PC_p, PC n; // Present and next state of PC
7 |l
assign PC n <= PC p + 4; // Increment by 4;

always @ (posedge clk, negedge rst)

begin
if (rst == 0°) PC_p <= 32°h00400000; // default
else PC_p <= PC_n; // when clk

end




We Need a Register File

m Store 32 registers, each 32-bit
= 2> ==132, we need 5 bits to address each

m Every R-type instruction uses 3 register

= Two for reading (RS, RT)
® One for writing (RD)

m We need a special memory with:

= 2 read ports (address x2, data out x2)
= 1 write port (address, data in)



Register File

input [4:0] ars, art, ard;
input [31:0] di_rd;

input we_rd;

output [31:0] do_rs, do rt;

reg [31:0] R_arr [31:0]; // Array that stores regs
// Circuit description
assign do rs = R_arr[a_rs]; // Read RS

assign do rt = R_arr[a_rt]; // Read RT

always @ (posedge clk)
if (we_rd) R_arr[a_rd] <= di_rd; // write RD




Register File

input [4:0] ars, art, ard;
input [31:0] di_rd;

input we_rd;

output [31:0] do_rs, do rt;

reg [31:0] R_arr [31:0]; // Array that stores regs

// Circuit description; add the trick with $0

assign do rs = (a_rs != 5°b00000)? // is address
R_arr[a_rs] : 0; // Read RS or

assign do rt = (a_rt != 5°b00000)? // is address
R_arr[a_rt] : 0; // Read RT or

always @ (posedge clk)
if (we_rd) R_arr[a_rd] <= di_rd; // write RD




Data Memory Example

m Will be used to store the bulk of data

input [15:0] addr; // Only 16 bits in this example
input [31:0] di;
input we;
output [31:0] do;

reg [31:0] M _arr [0©:65535]; // Array for Memory

// Circuit description
assign do = M _arr[addr]; // Read memory

always @ (posedge clk)
if (we) M_arr[addr] <= di; // write memory




Single-Cycle Datapath: 1w fetch

m STEP 1: Fetch instruction

1w $S§i 1&%9) # read memory word 1 into $s3

\IQ.FWPE\,

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w register read

m STEP 2: Read source operands from register file

lw $s3, 1($0) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w immediate

m STEP 3: Sign-extend the immediate

15:0 Signimm ,
Sign Extend

lw $s3, 1($9) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w address

m STEP 4: Compute the memory address

ALUControIzz0
010

SrcA Zero
ALUResult

oy

ALU

SrcB

Signimm

lw $s3, 1($0) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w memory read

m STEP 5: Read from memory and write back to register file

RegWrite
1
CLK
|

ReadData

lw $s3, 1($0) # read memory word 1 into $s3
I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: 1w PC increment

m STEP 6: Determine address of next instruction

CI‘_K
PCy "V pc

)
PCPlus4
4

lw $s3, 1($9) # read memory word 1 into $s3

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: sw

m Write data in rt to memory

MemWrite

1
CLK i
l

N

20:16

WriteData

>

sw $t7, 44($0) # write t7 into memory address 44

I-Type

op rs rt imm
6 bits 5 bits 5 bits 16 bits




Single-Cycle Datapath: R-type Instructions

m Read from rs and rt, write ALUResult to register file

RegDst ALUSrc MemtoReg
1 0 0

0
ALUResult

— 01SrcB
——) 1

20:16 0
15:11
WriteReg .y

Result

add t, b, ¢ #t =b +
R-Type

op rs rt rd [shamt| funct
6 bits 5bits 5bits 5bits 5 bits 6 bits




Single-Cycle Datapath: beq

PCSrc

Branch
1

Zero

0 PC'
1

= = PCBranch

beq $s0, $s1, target # branch is taken

m Determine whether values in rs and rt are equal
Calculate BTA = (sign-extended immediate << 2) + (PC+4)



Complete Single-Cycle Processor

MemtoReg
MemWrite

Control
Unit

Branch
ALUControl,., D PCSre

Op ALUSrc
Funct |RegDst

RegWrite

31:26

5.0

—
CI‘_K CI‘_K

_ WE3 SrcA [T
-rO pc|™|ec IS s Y RD1
1

Zero WE

A RD

U/

0
ALUResult ReadData 1

Instruction 20:16 0 <
A2 RD2 0 ]srcB Dat
Memory e
A3 -| ] M
Register — WriteData emory

WD3 File WD

20:16 B
1511 1
o WriteReg,

PCPlus4

= +
4 _I/ Signlmm <<?
= 150 Sign Extend N PCBranch

—_

Result




Our MIPS Datapath has Several Options

m ALU inputs
= Either RT or Immediate (MUX)

m Write Address of Register File
= Either RD or RT (MUX)

m Write Data In of Register File
= Either ALU out or Data Memory Out (MUX)

m Write enable of Register File
= Not always a register write (MUX)

m Write enable of Memory
®= Only when writing to memory (sw) (MUX)

All these options are our control signals



Control Unit

---------------------------------------------------

Decoder

5' Control ‘5

i Unit ' }— MemtoReg i

— MemWrite |

— Branch '

EOPCOdGS:U Main | ALUS '

E Decoder re ' ALUOp Meaning
5 — RegDst ' 4

. - RegWrite ! 00 a

i ' 01 subtract
E ALUOp1,0 '

E E 10 look at funct field
i 11 n/

v Functs.g ALU ALUControly, } a



ALU Does the Real Work in a Processor

000 A&B
A B

N AN

\/ 010 A+B
ALU 3 F 011 not used

001 AlB

)(N 100 A& ~B
Y 101 A|~B
110 A-B

111 SLT



ALU Internals

L Fao  Function
N N
000 A&B
N
L o0 AlB
- © 010 A+B
RLJ tj 011 not used
Cout {YJ/ 100 A&~B
N-1]]|S
: 101 A|~B
STl IO VR N 110 A-B
w N - (@)
\ /LZLFm 111 SLT
J(N



Control Unit: ALU Decoder

---------------------------------------------------

§' Control

i Unit ' — MemtoReg
— MemWrite

: ~ |—Branch

EOPCOde&O— Dx:ilger — ALUSrc
— RegDst
—— RegWrite

ALUOp1

ALU

Functso Decoder

----------------------------------------------------

ALUControls.g f

ALUOp, ., Meaning

00 Add

01 Subtract

10 Look at Funct

11 Not Used

ALUOp,., |Funct ALUControl,.,
00 X 010 (Add)

X1 X 110 (Subtract)
1X 100000 (add) 010 (Add)

1X 100010 (sub) 110 (Subtract)
1X 100100 (and) 000 (And)

1X 100101 (or) 001 (Or)

1X 101010 (s1t) 111 (SLT)




Let us Develop our Control Table

Instruction Ops.o RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

= RegWrite:  Write enable for the register file

" RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

"= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do



Let us Develop our Control Table

Instruction Ops.o RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

= RegWrite:  Write enable for the register file

" RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

"= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do



Let us Develop our Control Table

Instruction Ops.o RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp
R-type 000000 1 1 0 0 0 funct
lw 100011 1 0 1 0 1 add

= RegWrite:  Write enable for the register file

" RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

"= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do



Let us Develop our Control Table

Instruction Ops.o RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp
R-type 000000 1 1 0 0 0 funct
lw 100011 1 0 1 0 1 add
sw 101011 0 X 1 1 X add

= RegWrite:  Write enable for the register file

" RegDst: Write to register RD or RT

= AluSrc: ALU input RT or immediate

= MemWrite: Write Enable

"= MemtoReg: Register datain from Memory or ALU
= ALUOp: What operation does ALU do



More Control Signals

Instruction Ops.o RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 %) ) 0 funct
lw 100011 1 0 1 0 0 1 add
sw 101011 ¢ X 1 0 1 X add

beq 000100 ¢ X ) 1 0 X sub

m New Control Signal

= Branch: Are we jumping or not ?



Control Unit: Main Decoder

Instruction 0p:., RegWrite  RegDst AluSrc Branch  MemWrite MemtoReg ALUOp,,
R-type 000000 1 1 %) %) %) 10
lw 160011 1 0 1 0 5 1 00
SW 101011 @ X 1 0 1 X 00
beg 000100 @ X 0 1 0 X 01

—\MemtoReg
irul MemWrite

Branch
IALUControl, .,

31:26
—Op  |ALUSrc
2 Funct |RegDst

egWrite
—
CI‘.K

y WE3
B A1 RD1




Single-Cycle Datapath Example: or

Ay = =R

Instruction
Memory

PCPlus4

Instr

31:26

MemtoReg

)
Control

Unit MemWrite

Branch

ALUControl

2:0

5.0

Op ALUSrc

Funct [RegDst

RegWrite
—
CLK

l 1

I25'.21

WE3
'\t = R

2016

Afs = = mRE?

001

1 )»—'pcsrc

Zero ]

-

P A3

Register

WD3 File

ALUResult

WriteData

20:16

15:11

WriteReg,

150 Sign Extend

Signimm

<<2

Data
Memory

WD

PCBranch
+

0

ReadData

Result




Extended Functionality: addi

——\MemtoReg

Control .
Unit MemWrite

Branch

ALUControl,,, Dﬁ PCSre

Op  |ALUSrc
Funct |RegDst

RegWrite

31:26

5:.0

—
CLK CLK
| |

CLK

. WE3 A T~ Zero WE
0]pc PC Instr 2211 A1 RD1 Sre
D 0
1 A R ALUResult ReadData 1

Instruction 20:16 ' <C
A2 RD2 SrcB Dat.
Memory | I_ ata
A3 1 Memo
— WriteData 24

WD3 Reg_lster WD
File

20:16 )
15:11 1
o WriteReg, ,

PCPlus4

= + Sianl
ignlmm
4 = 150 Sign Extend <<2
g + PCBranch

()

Result

m No change to datapath



Control Unit: add1i

Instruction Op.,, RegWrite RegDst AluSrc Branch MemWrite MemtoReg  ALUOp,,

R-type 000000 1 1 (%] %] %) %) 10

1w 100011 1 %) 1 %) %) 1 00
sw 101011 0O X 1 %) 1 X 00
beq 000100 O X %) 1 %) X 01
addi 001000 1 (%) 1 (%) (%) (%) (5]



Extended Functionality: j

Jump

PCJump




Control Unit: Main Decoder

Instruction ~~~ Op,  RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp,, Jump
R-type 000000 1 1 © o0 %) %) 10 ©
1w 100011 1 O 1 o© %) 1 ko 0O
sw 101011 © X 1 © 1 X ko 0O
beg 000100 O X 0 1 %) X 1 ©
Jj 000100 O X X X (%) X XX 1



Review: Complete Single-Cycle Processor (H&H)

MemtoReg
MemWrite

Control
Unit

Branch

ALUControl,., D PCSrc

Op  |ALUSrc
Funct |RegDst

RegWrite

31:26

5.0

—
CI‘_K CI‘_K

) WE3 [~ Zero WE

-r0 PCl 7 |PC Instr P22 A1 RD1 S 0
1 A RD >3 ALUResult ReadData )
Instruction 20:16 N <C
A2 RD2 |0 ISch Dat
Memory ata
A3 - Memory

i WriteData
WD3 Relgillzter [ WD

20:16 B
15:11 1
o WriteReg, ,

PCPlus4

= +
4 _l/ S|qn|mm <<2
. 150 Slgn Extend N PCBranch

—_

Result

211



A Bit More on
Pertormance Analysis




Processor Performance

m How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed.
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" |nstructions are realized on the hardware
" They can take one or more clock cycles to complete
= Cycles per Instruction = CPI



Processor Performance

m How fast is my program?

= Every program consists of a series of instructions
= Each instruction needs to be executed.

m So how fast are my instructions ?
" |nstructions are realized on the hardware
" They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

m How much time is one clock cycle?

® The critical path determines how much time one cycle requires =
clock period.

= 1/clock period = clock frequency = how many cycles can be done
each second.



Performance Analysis

= Execution time of an instruction
o {CPI} x {clock cycle time}

= Execution time of a program

a Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

216



Processor Performance

m Now as a general formula
® Qur program consists of executing N instructions.
® Qur processor needs CPI cycles for each instruction.

" The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f



Processor Performance

m Now as a general formula
® Qur program consists of executing N instructions.
® Qur processor needs CPI cycles for each instruction.

" The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

m Our program will execute in

N x CPI x (1/f) = N x CPI x T seconds



How can | Make the Program Run Faster?

N x CPI x (1/f)
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How can | Make the Program Run Faster?

N x CPI x (1/f)

m Reduce the number of instructions

= Make instructions that ‘do’” more (CISC)
= Use better compilers

m Use less cycles to perform the instruction
= Simpler instructions (RISC)
= Use multiple units/ALUs/cores in parallel

m Increase the clock frequency

"= Find a ‘newer’ technology to manufacture
= Redesign time critical components
= Adopt pipelining



Single-Cycle Performance

m T.is limited by the critical path (1w)

A== =RB

Instruction
Memory

Instr

31:26

——\MemtoReg

Control

MemWrite

Unit

Branch

ALUControl,

5:0

Op

ALUSrc

Funct

RegDst

RegWrite

= +

PCPlus4

20:16

A3

>

WD3

Register

010
SrcA [T

Zero

RD2

File

20:16

ALUResult

PCSrc

CLK
|

WriteData

15:11

WriteReg,

150 Sign Extend

Signimm

<<2

PCBranch
+

WE

=h = =RDB 1
Data
Memory

WD

0
ReadData | .

Result




Single-Cycle Performance

m Single-cycle critical path:

" Tc = tpcq_PC + tmem + max(tRFreadl tsext + tmux) + tALU + tmem + tmux + tRFsetup

m In most implementations, limiting paths are:
= memory, ALU, register file.

" Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

MemtoReg
MemWrite
Branch 0 0

Control
Unit

IALUControl o PCSre

——Op  JALUSrc
=—{ Funct [RegDst
RegWrite

CI‘_K

0
01OZero WE 1
e o R Jinstr_ [EH A = === - RDB- . o
BN 1 ~J| ALUResult A - -RD ReadData| .
Instruction ! — A==

2016f A2 RD2 Mses [ < Data

Memory
1 Memory

A3
i WriteData
»| wD3 Reg_lster | WD
File 0

20:16 0
15:11 1
WriteReg,
Signimm
: <<2
—|15'° Sign Extend PCBranch

+

PCPlus4

Result




Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tocq Pc 30
Register setup Ut 20
Multiplexer trux 25

ALU tau 200
Memory read tiem 250
Register file read taFread 150
Register file setup tREsetup 20

T =

C



Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tocq Pc 30
Register setup Ut 20
Multiplexer trux 25

ALU tau 200
Memory read tiem 250
Register file read taFread 150
Register file setup tREsetup 20

7-c = pcq PC + 2tmem + tRFread + tmux + tALU + tRFsetup
= [30 + 2(250) + 150 + 25 + 200 + 20] ps

=925 ps



Single-Cycle Performance Example

m Example:

For a program with 100 billion instructions executing on a single-cycle
MIPS processor:



Single-Cycle Performance Example

m Example:

For a program with 100 billion instructions executing on a single-cycle
MIPS processor:

Execution Time = # instructions x CPI x TC
= (100 x 10°)(1)(925 x 1012 5s)
= 92.5 seconds



