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Assignment: Lecture Video (April 1)
n Why study computer architecture? Why is it important?
n Future Computing Platforms: Challenges & Opportunities

n Required Assignment
q Watch one of Prof. Mutlu’s lectures and analyze either (or both)
q https://www.youtube.com/watch?v=kgiZlSOcGFM (May 2017)
q https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

n Optional Assignment – for 1% extra credit
q Write a 1-page summary of one of the lectures and email us

n What are your key takeaways?
n What did you learn?
n What did you like or dislike?
n Submit your summary to Moodle by April 1
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https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=722981


Extra Assignment: Moore’s Law (I)
n Paper review
n G.E. Moore. "Cramming more components onto integrated 

circuits," Electronics magazine, 1965

n Optional Assignment – for 1% extra credit
q Write a 1-page review 
q Upload PDF file to Moodle – Deadline: April 7

n I strongly recommend that you follow my guidelines for 
(paper) review (see next slide)
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https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf


Extra Assignment 2: Moore’s Law (II)
n Guidelines on how to review papers critically

q Guideline slides: pdf ppt
q Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

q Example reviews on “Main Memory Scaling: Challenges and 
Solution Directions” (link to the paper)
n Review 1
n Review 2

q Example review on “Staged memory scheduling: Achieving 
high performance and scalability in heterogeneous 
systems” (link to the paper)
n Review 1
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https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf


Agenda for Today & Next Few Lectures

n Instruction Set Architectures (ISA): LC-3 and MIPS

n Assembly programming: LC-3 and MIPS

n Microarchitecture (principles & single-cycle uarch)

n Multi-cycle microarchitecture

n Pipelining

n Issues in Pipelining: 
q Control & Data Dependence Handling 
q State Maintenance and Recovery

n Out-of-Order Execution
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Readings
n This week

q Introduction to microarchitecture and single-cycle 
microarchitecture
n H&H, Chapter 7.1-7.3
n P&P, Appendices A and C

q Multi-cycle microarchitecture
n H&H, Chapter 7.4
n P&P, Appendices A and C

n Next week
q Pipelining

n H&H, Chapter 7.5
n Pipelining Issues

n H&H, Chapter 7.7, 7.8.1-7.8.3
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Recall: The von Neumann Model
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Recall: LC-3: A von Neumann Machine
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Recall: The Instruction Cycle

q FETCH
q DECODE
q EVALUATE ADDRESS

q FETCH OPERANDS
q EXECUTE
q STORE RESULT
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Recall: The Instruction Set Architecture
n The ISA is the interface between what the software commands 

and what the hardware carries out

n The ISA specifies
q The memory organization

n Address space (LC-3: 216, MIPS: 232)
n Addressability (LC-3: 16 bits, MIPS: 8 bits)

n Word- or Byte-addressable

q The register set
n 8 registers (R0 to R7) in LC-3
n 32 registers in MIPS

q The instruction set
n Opcodes
n Data types
n Addressing modes
n Length and format of instructions
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Microarchitecture
n An implementation of the ISA

n How do we implement the ISA?
q We will discuss this for many lectures 

n There can be many implementations of the same ISA
q MIPS R2000, R3000, R4000, R6000, R8000, R10000, …
q x86: Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake, 

Coffee Lake, Comet Lake, Ice Lake, Golden Cove, Sapphire Rapids, 
…, AMD K5, K7, K9, Bulldozer, BobCat, Ryzen X, …

q POWER 4, 5, 6, 7, 8, 9, 10 (IBM), …, PowerPC 604, 605, 620, …
q ARM Cortex-M*,  ARM Cortex-A*, NVIDIA Denver, Apple A*, M1, …
q Alpha 21064, 21164, 21264, 21364, …
q RISC-V …
q … 
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(A Bit More on)
ISA Design and Tradeoffs



Many Different ISAs Over Decades
n x86
n PDP-x: Programmed Data Processor (PDP-11)
n VAX
n IBM 360
n CDC 6600
n SIMD ISAs: CRAY-1, Connection Machine
n VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)
n PowerPC, POWER
n RISC ISAs: Alpha, MIPS, SPARC, ARM, RISC-V, …

n What are the fundamental differences?
q E.g., how instructions are specified and what they do 
q E.g., how complex are instructions, data types, addr. modes
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Harder mapping of HLL to ISA
More work for software designer
Less work for hardware designer
Optimization burden on SW

Semantic Gap
n How close instructions & data types & addressing modes 

are to high-level language (HLL)

HLL

HW
Control 
Signals

HLL

HW
Control 
Signals

ISA with
Complex Inst
& Data Types
& Addressing Modes ISA with

Simple Inst
& Data Types
& Addressing Modes

Small Semantic Gap

Large Semantic Gap

Easier mapping of HLL to ISA
Less work for software designer
More work for hardware designer
Optimization burden on HW



How to Change the Semantic Gap Tradeoffs
n Translate from one ISA into a different “implementation” ISA
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An Example: Rosetta 2 Binary Translator

16https://en.wikipedia.org/wiki/Rosetta_(software)#Rosetta_2

https://en.wikipedia.org/wiki/Rosetta_(software)


An Example: Rosetta 2 Binary Translator

17Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested


Another Example: Intel and AMD Processors
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Another Example: Intel and AMD Processors

19Source: https://twitter.com/Locuza_/status/1454152714930331652

Intel Alder Lake,
2021

https://twitter.com/Locuza_/status/1454152714930331652


Another Example: Intel and AMD Processors

20https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches: 
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared



Another Example: NVIDIA Denver

21https://www.anandtech.com/show/8701/the-google-nexus-9-review/4
https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1



Transmeta: x86 to VLIW Translation

22
Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

X86

Proprietary VLIW ISA

X86

https://www.wikiwand.com/en/Transmeta_Efficeon



There Is A Lot More to Cover on ISAs 

23https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures


There Is A Lot More to Cover on ISAs

24https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures


Detailed Lectures on ISAs & ISA Tradeoffs
n Computer Architecture, Spring 2015, Lecture 3

q ISA Tradeoffs (CMU, Spring 2015)
q https://www.youtube.com/watch?v=QKdiZSfwg-

g&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=3

n Computer Architecture, Spring 2015, Lecture 4
q ISA Tradeoffs & MIPS ISA (CMU, Spring 2015)
q https://www.youtube.com/watch?v=RBgeCCW5Hjs&list=PL5PHm2jkkXmi5CxxI7b3J

CL1TWybTDtKq&index=4

n Computer Architecture, Spring 2015, Lecture 2
q Fundamental Concepts and ISA (CMU, Spring 2015)
q https://www.youtube.com/watch?v=NpC39uS4K4o&list=PL5PHm2jkkXmi5CxxI7b3J

CL1TWybTDtKq&index=2 

25https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures


ISA Design and Tradeoffs:
More Critical Thinking



The Von Neumann Model/Architecture

Stored program

Sequential instruction processing
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The von Neumann Model/Architecture

n Von Neumann model is also called stored program computer 
(instructions in memory). It has two key properties:

n Stored program
q Instructions stored in a linear memory array
q Memory is unified between instructions and data

n The interpretation of a stored value depends on the control signals

n Sequential instruction processing

28

When is a value interpreted as an instruction?



Recall: The Instruction Cycle

q FETCH
q DECODE
q EVALUATE ADDRESS

q FETCH OPERANDS
q EXECUTE
q STORE RESULT

29

Whether a value fetched from memory is interpreted as an instruction depends on 
when that value is fetched in the instruction processing cycle.

Interpret memory value as Instruction

Interpret memory value as Data



The von Neumann Model/Architecture
n Von Neumann model is also called stored program computer 

(instructions in memory). It has two key properties:

n Stored program
q Instructions stored in a linear memory array
q Memory is unified between instructions and data

n The interpretation of a stored value depends on the control signals

n Sequential instruction processing
q One instruction processed (fetched, executed, completed) at a time
q Program counter (instruction pointer) identifies the current instruction
q Program counter is advanced sequentially except for control transfer 

instructions

30

When is a value interpreted as an instruction?



The von Neumann Model/Architecture
n Recommended reading

q Burks, Goldstein, von Neumann, “Preliminary discussion of the 
logical design of an electronic computing instrument,” 1946.

n Important reading
q Patt and Patel book, Chapter 4, “The von Neumann Model”

n Stored program

n Sequential instruction processing

31



The Von Neumann Model (of a Computer)
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n Q: Is this the only way that a computer can process 
computer programs?

n A: No.
n Qualified Answer: No. But, it has been the dominant way 

q i.e., the dominant paradigm for computing
q for N decades

The Von Neumann Model (of a Computer)

33Let’s examine a completely different model for processing computer programs



The Dataflow Execution Model
of a Computer



The Dataflow Model (of a Computer)
n Von Neumann model: An instruction is fetched and 

executed in control flow order 
q As specified by the program counter (instruction pointer)
q Sequential unless explicit control flow instruction

n Dataflow model: An instruction is fetched and executed in 
data flow order
q i.e., when its operands are ready
q i.e., there is no program counter (instruction pointer)
q Instruction ordering specified by data flow dependence

n Each instruction specifies “who” should receive the result
n An instruction can “fire” whenever all operands are received

q Potentially many instructions can execute at the same time
n Inherently more parallel

35



Von Neumann vs. Dataflow
n Consider a Von Neumann program 

q What is the significance of the program order?
q What is the significance of the storage locations?

36

v = a + b;   
w = b * 2;
x = v - w
y = v + w
z = x * y

+ *2

- +

*

a b

z

Sequential

Dataflow

Which model is more natural to you as a programmer?

a, b are the only inputs
z is the only output



More on Dataflow
n In a dataflow machine, a program consists of dataflow 

nodes
q A dataflow node fires (fetched and executed) when all it 

inputs are ready
n i.e. when all inputs have tokens

n Dataflow node and its ISA representation

37



Example Dataflow Nodes

38



A Simple Example Dataflow Program

39

OUT

N is a 
non-negative
integer

N1

What is the
value of OUT?



ISA-level Tradeoff: Program Counter

n Do we want a Program Counter (PC or IP) in the ISA?
q Yes: Control-driven, sequential execution

n An instruction is executed when the PC points to it
n PC automatically changes sequentially (except for control flow 

instructions) à sequential
q No: Data-driven, parallel execution

n An instruction is executed when all its operand values are 
available à dataflow

n Tradeoffs: MANY high-level ones
q Ease of programming (for average programmers)?
q Ease of compilation?
q Performance: Extraction of parallelism?
q Hardware complexity?

40



ISA vs. Microarchitecture Level Tradeoff
n A similar tradeoff (control vs. data-driven execution) can be 

made at the microarchitecture level

n ISA: Specifies how the programmer sees the instructions to 
be executed
q Programmer sees a sequential, control-flow execution order vs.
q Programmer sees a dataflow execution order

n Microarchitecture: How the underlying implementation 
actually executes instructions 
q Microarchitecture can execute instructions in any order as long 

as it obeys the semantics specified by the ISA when making the 
instruction results visible to software
n Programmer should see the order specified by the ISA

41



Let’s Get Back to the von Neumann Model

n But, if you want to learn more about dataflow…

n Dennis and Misunas, “A preliminary architecture for a basic 
data-flow processor,” ISCA 1974.

n Gurd et al., “The Manchester prototype dataflow 
computer,” CACM 1985.

n A later lecture

n If you are really impatient:
q http://www.youtube.com/watch?v=D2uue7izU2c
q http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi

a=onur-740-fall13-module5.2.1-dataflow-part1.ppt

42

http://www.youtube.com/watch?v=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt


Lecture Video on Dataflow Architectures

43http://www.youtube.com/watch?v=D2uue7izU2c

http://www.youtube.com/watch?v=D2uue7izU2c


The von Neumann Model
n All major instruction set architectures today use this model

q x86, ARM, MIPS, SPARC, Alpha, POWER, RISC-V, …

n Underneath (at the microarchitecture level), the execution 
model of almost all implementations (or, microarchitectures) 
is very different
q Pipelined instruction execution: Intel 80486 uarch
q Multiple instructions at a time: Intel Pentium uarch
q Out-of-order execution: Intel Pentium Pro uarch
q Separate instruction and data caches

n But, what happens underneath that is not consistent with 
the von Neumann model is not exposed to software
q Difference between ISA and microarchitecture

44



What is Computer Architecture?
n ISA+implementation definition: The science and art of 

designing, selecting, and interconnecting hardware 
components and designing the hardware/software interface 
to create a computing system that meets functional, 
performance, energy consumption, cost, and other specific 
goals. 

n Traditional (ISA-only) definition: “The term 
architecture is used here to describe the attributes of a 
system as seen by the programmer, i.e., the conceptual 
structure and functional behavior as distinct from the 
organization of the dataflow and controls, the logic design, 
and the physical implementation.”

Gene Amdahl, IBM Journal of R&D, April 1964
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ISA vs. Microarchitecture
n ISA

q Agreed upon interface between software 
and hardware
n SW/compiler assumes, HW promises

q What the software writer needs to know 
to write and debug system/user programs 

n Microarchitecture
q Specific implementation of an ISA
q Not visible to the software

n Microprocessor
q ISA, uarch, circuits
q “Architecture” = ISA + microarchitecture

46
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ISA vs. Microarchitecture
n What is part of ISA vs. Uarch?

q Gas pedal: interface for “acceleration”
q Internals of the engine: implement “acceleration”

n Implementation (uarch) can be various as long as it 
satisfies the specification (ISA)
q Add instruction vs. Adder implementation

n Bit serial, ripple carry, carry lookahead adders are all part of 
microarchitecture (see H&H Chapter 5.2.1)

q x86 ISA has many implementations: 
n Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake, Coffee Lake, Comet Lake, Ice 

Lake, Golden Cover, Sapphire Rapids, …, AMD K5, K7, K9, Bulldozer, BobCat, Ryzen X, …

n Microarchitecture usually changes faster than ISA
q Few ISAs (x86, ARM, SPARC, MIPS, Alpha, RISC-V) but many uarchs
q Why?

47https://www.vox.com/2015/7/1/8877583/two-foot-driving-pedal-error



ISA: What Does It Specify?
n Instructions

q Opcodes, Addressing Modes, Data Types
q Instruction Types and Formats
q Registers, Condition Codes

n Memory
q Address space, Addressability, Alignment
q Virtual memory management

n Call, Interrupt/Exception Handling
n Access Control, Priority/Privilege 
n I/O: memory-mapped vs. instructions
n Task/thread Management
n Power & Thermal Management
n Multithreading & Multiprocessor support
n …

48



ISA Manuals: Some Good Bedtime Reading

49https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html


ISA Manuals: Some Good Bedtime Reading

50https://riscv.org/technical/specifications/

https://riscv.org/technical/specifications/


Microarchitecture
n Implementation of the ISA under specific design constraints 

and goals
n Anything done in hardware without exposure to software

q Pipelining
q In-order versus out-of-order instruction execution
q Memory access scheduling policy
q Speculative execution
q Superscalar processing (multiple instruction issue?)
q Clock gating
q Caching? Levels, size, associativity, replacement policy
q Prefetching?
q Voltage/frequency scaling?
q Error correction?
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Property of ISA vs. Uarch?
n ADD instruction’s opcode
n Type of adder used in the ALU (Bit-serial vs. Ripple-carry)
n Number of general purpose registers
n Number of cycles to execute the MUL instruction
n Number of ports to the register file
n Whether or not the machine employs pipelined instruction 

execution
n Program counter

n Remember
q Microarchitecture: Implementation of the ISA under specific

design constraints and goals
52



Design Point
n A set of design considerations and their importance 

q leads to tradeoffs in both ISA and uarch
n Example considerations:

q Cost
q Performance
q Maximum power consumption, thermal
q Energy consumption (battery life)
q Availability
q Reliability and Correctness 
q Time to Market
q Security, safety, predictability, …

n Design point is determined by the “Problem” space 
(application space), the intended users/market

53
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Application Space
Dream, and they will appear…

54

Patt, “Requirements, bottlenecks, 
and good fortune: agents for 
microprocessor evolution,” 
Proc. of the IEEE 2001.

Many other workloads:
Genome analysis
Machine learning

Robotics
Web search

Graph analytics
…



Increasingly Demanding Applications

Dream

and, they will come

55

As applications push boundaries, computing platforms will become increasingly strained.



Tradeoffs: Soul of Computer Architecture

n ISA-level tradeoffs

n Microarchitecture-level tradeoffs

n System and Task-level tradeoffs
q How to divide the labor between hardware and software

n Computer architecture is the science and art of making the 
appropriate trade-offs to meet a design point
q Why art?
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Why Is It (Somewhat) Art?
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Why Is It (Somewhat) Art?
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Analogue from Macro-Architecture
n Future is not constant in macro-architecture, either

n Example: Can a mill be later used as a theater + restaurant 
+ conference room?

59



Mühle Tiefenbrunnen in Zurich

60

n Originally built as a brewery in 1889
q part of it was converted into a mill in 1913
q and the other part into a cold store

n Today is a center for a variety of activities: theater, 
conferences, restaurants, shops, museum…

Brewery in 1900

http://www.muehle-tiefenbrunnen.ch/



Another Example in Zurich (I)

61Photo credit: Prof. Can Alkan



Another Example in Zurich (II)

62Photo credit: Prof. Can Alkan



63

By Roland zh (Own work) [CC BY-SA 3.0 
(https://creativecommons.org/licenses/by-sa/3.0)],
via Wikimedia Commons

https://creativecommons.org/licenses/by-sa/3.0)


Yet Another Example from Pittsburgh (I)

64https://www.pghcitypaper.com/pittsburgh/a-list-of-pittsburgh-area-churches-born-again-with-new-purposes/Content?oid=20743835



Yet Another Example from Pittsburgh (II)

65https://en.wikipedia.org/wiki/The_Church_Brew_Works#/media/File:The_Church_Brew_Works.jpg



Implementing the ISA: 
Microarchitecture Basics



Now That We Know What an ISA Is…
n How do we implement it?

n i.e., how do we design a system that obeys the 
hardware/software interface?

n Aside: “System” can be solely hardware or a combination of 
hardware and software
q Recall the “Translation of ISAs” 
q An ISA can be converted (by software or hardware) into an 

implementation ISA

n We will assume “completely hardware” implementation for 
most lectures

67



How Does a Machine Process Instructions? 
n What does processing an instruction mean?
n We will assume the von Neumann model (for now)

AS = Architectural (programmer visible) state before an 
instruction is processed

Process instruction

AS’ = Architectural (programmer visible) state after an 
instruction is processed

n Processing an instruction: Transforming AS to AS’ according 
to the ISA specification of the instruction

68



The Von Neumann Model/Architecture

Stored program

Sequential instruction processing

69



Recall: The Von Neumann Model
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Recall: Programmer Visible (Architectural) State

71

M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]
Memory
array of storage locations
indexed by an address

Program Counter
memory address
of the current (or next) instruction

Registers
- given special names in the ISA

(as opposed to addresses)
- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state



The “Process Instruction” Step
n ISA specifies abstractly what AS’ should be, given an 

instruction and AS
q It defines an abstract finite state machine where

n State = programmer-visible state 
n Next-state logic = instruction execution specification

q From ISA point of view, there are no “intermediate states” 
between AS and AS’ during instruction execution
n One state transition per instruction

n Microarchitecture implements how AS is transformed to AS’
q There are many choices in implementation 
q We can have programmer-invisible state to optimize the speed of 

instruction execution: multiple state transitions per instruction
n Choice 1: AS à AS’ (transform AS to AS’ in a single clock cycle)
n Choice 2: AS à AS+MS1 à AS+MS2 à AS+MS3 à AS’ (take multiple 

clock cycles to transform AS to AS’)
72



A Very Basic Instruction Processing Engine
n Each instruction takes a single clock cycle to execute
n Only combinational logic is used to implement instruction 

execution 
q No intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state 
at the beginning of a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state 
at the end of a clock cycle

73



A Very Basic Instruction Processing Engine
n Single-cycle machine

n What is the clock cycle time determined by?
n What is the critical path (i.e., longest delay path) of the 

combinational logic determined by?

74
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Single-cycle vs. Multi-cycle Machines
n Single-cycle machines

q Each instruction takes a single clock cycle
q All state updates made at the end of an instruction’s execution
q Big disadvantage: The slowest instruction determines cycle time à

long clock cycle time

n Multi-cycle machines 
q Instruction processing broken into multiple cycles/stages
q State updates can be made during an instruction’s execution
q Architectural state updates made at the end of an instruction’s 

execution
q Advantage over single-cycle: The slowest “stage” determines cycle time

n Both single-cycle and multi-cycle machines literally follow the 
von Neumann model at the microarchitecture level
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Instruction Processing “Cycle”
n Instructions are processed under the direction of a “control 

unit” step by step. 
n Instruction cycle: Sequence of steps to process an instruction
n Fundamentally, there are six steps:

n Fetch
n Decode
n Evaluate Address
n Fetch Operands
n Execute
n Store Result

n Not all instructions require all six steps (see P&P Ch. 4)
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Recall: The Instruction Processing “Cycle”

q FETCH
q DECODE
q EVALUATE ADDRESS

q FETCH OPERANDS
q EXECUTE
q STORE RESULT
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Instruction Processing “Cycle” vs. Machine Clock Cycle

n Single-cycle machine: 
q All six phases of the instruction processing cycle take a single 

machine clock cycle to complete

n Multi-cycle machine: 
q All six phases of the instruction processing cycle can take 

multiple machine clock cycles to complete
q In fact, each phase can take multiple clock cycles to complete
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Instruction Processing Viewed Another Way
n Instructions transform Data (AS) to Data’ (AS’)
n This transformation is done by functional units 

q Units that “operate” on data

n These units need to be told what to do to the data

n An instruction processing engine consists of two components
q Datapath: Consists of hardware elements that deal with and 

transform data signals
n functional units that operate on data
n hardware structures (e.g., wires, muxes, decoders, tri-state bufs) 

that enable the flow of data into the functional units and registers
n storage units that store data (e.g., registers)

q Control logic: Consists of hardware elements that determine 
control signals, i.e., signals that specify what the datapath
elements should do to the data
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Recall: LC-3: A von Neumann Machine
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Single-cycle vs. Multi-cycle: Control & Data
n Single-cycle machine:

q Control signals are generated in the same clock cycle as the 
one during which data signals are operated on

q Everything related to an instruction happens in one clock cycle 
(serialized processing)

n Multi-cycle machine:
q Control signals needed in the next cycle can be generated in 

the current cycle
q Latency of control processing can be overlapped with latency 

of datapath operation (more parallelism)

n See P&P Appendix C for more (microprogrammed multi-
cycle microarchitecture)
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Many Ways of Datapath and Control Design

n There are many ways of designing the datapath and control 
logic

n Example ways
q Single-cycle, multi-cycle, pipelined datapath and control
q Single-bus vs. multi-bus datapaths
q Hardwired/combinational vs. microcoded/microprogrammed 

control
n Control signals generated by combinational logic versus
n Control signals stored in a memory structure

n Control signals and structure depend on the datapath
design
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Flash-Forward: Performance Analysis
n Execution time of a single instruction

q {CPI}  x  {clock cycle time} 

n Execution time of an entire program
q Sum over all instructions [{CPI}  x  {clock cycle time}]
q {# of instructions}  x  {Average CPI}  x  {clock cycle time}

n Single-cycle microarchitecture performance 
q CPI = 1
q Clock cycle time = long

n Multi-cycle microarchitecture performance
q CPI = different for each instruction

n Average CPI à hopefully small
q Clock cycle time = short
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In multi-cycle, we have 
two degrees of freedom
to optimize independently

CPI: Cycles Per Instruction



A Single-Cycle Microarchitecture
From the Ground Up



Remember…
n Single-cycle machine
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Let’s Start with the State Elements (MIPS)
n Data and control inputs
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Data
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



MIPS State Elements
CLK

A RD
Instruction
Memory

A1

A3
WD3

RD2
RD1

WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WEPCPC'

CLK

32 32
32 32

32

32

32 32

32

32

5

5

5

q Program counter: 
32-bit register 

q Instruction memory: 
Takes input 32-bit address A and reads the 32-bit data (i.e., instruction) 
from that address to the read data output RD

q Register file: 
The 32-element, 32-bit register file has 2 read ports and 1 write port

q Data memory: 
If the write enable, WE, is 1, it writes 32-bit data WD into memory location 
at 32-bit address A on the rising edge of the clock. 
If the write enable is 0, it reads 32-bit data from address A onto RD.

This notation is used in H&H single-cycle MIPS implementation (H&H Chapter 7.3)



For Now, We Will Assume
n “Magic” memory and register file

n Combinational read
q output of the read data port is a combinational function of the 

register file contents and the corresponding read select port

n Synchronous write
q the selected register is updated on the positive edge clock 

transition when write enable is asserted
n Cannot affect read output in between clock edges

n Single-cycle, synchronous memory
q Contrast this with memory that tells when the data is ready

n i.e., Ready signal: indicating the read or write is done
q See P&P Appendix C (LC3-b) for multi-cycle memory
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Instruction Processing
n 5 generic steps (P&H book)

q Instruction fetch (IF)
q Instruction decode and register operand fetch (ID/RF)
q Execute/Evaluate memory address (EX/AG)
q Memory operand fetch (MEM)
q Store/writeback result (WB) 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



We Need to Provide the 
Datapath+Control Logic 

to Execute All ISA Instructions



What Is To Come: Single-Cycle MIPS Processor
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



Another Complete Single-Cycle Processor
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92Single-cycle processor. Harris and Harris, Chapter 7.3.



Single-Cycle Datapath for
Arithmetic and Logical Instructions



n R-type: 3 register operands

n Semantics

R-Type ALU Instructions

94

add $s0, $s1, $s2       #$s0=rd, $s1=rs, $s2=rt

MIPS assembly (e.g., register-register signed addition)

Machine Encoding

if MEM[PC] == add rd rs rt
GPR[rd] ¬ GPR[rs] + GPR[rt] 
PC ¬ PC + 4

0 rs rt rd 0 add (32)
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type



(R-Type) ALU Datapath

95

PC
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Read 
address

Instruction
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Registers
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register
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data 1

Read 
data 2

Read 
register 1

Read 
register 2

Write 
data

ALU 
result

ALU
Zero

RegWrite

ALU operation3

1

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADD rd rs rt
GPR[rd] ¬ GPR[rs] + GPR[rt] 
PC ¬ PC + 4

Combinational
state update logic

IF ID EX MEM WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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n ALU operation (F2:0) comes from the control logic

Example: ALU Design
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n I-type: 2 register operands and 1 immediate

n Semantics

I-Type ALU Instructions
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addi (0) rs rt immediate

addi $s0, $s1, 5           #$s0=rt, $s1=rs

MIPS assembly (e.g., register-immediate signed addition)

Machine Encoding

if MEM[PC] == addi rs rt immediate
PC ¬ PC + 4
GPR[rt] ¬ GPR[rs] + sign-extend(immediate) 

I-Type
5 bits 5 bits6 bits 16 bits



Datapath for R- and I-Type ALU Insts.
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Instruction 
memory

Read 
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Instruction
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Instruction

16 32

Registers
Write 
register

Read 
data 1
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data 2
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MemRead
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RegDest
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15:11
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADDI rt rs immediate
GPR[rt] ¬ GPR[rs] + sign-extend (immediate) 
PC ¬ PC + 4

Combinational
state update logic

IF ID EX MEM WB

n



n ADD assembly and machine code 

Recall: ADD with one Literal in LC-3
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ADD R1, R4, #-2

LC-3 assembly

Field Values

Machine Code

1 1 4 1 -2

OP DR SR imm5

0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0

OP DR SR imm5

15 12 11 9 8 6 05 4

122 chapter 5 The LC-3

For example, if R4 contains the value 6 and R5 contains the value−18, then
after the following instruction is executed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1

ADD R1 R4 R5

R1 will contain the value −12.
If bit [5] is 1, the second source operand is contained within the instruction.

In fact, the second source operand is obtained by sign-extending bits [4:0] to 16
bits before performing the ADD or AND. Figure 5.5 shows the key parts of the
data path that are used to perform the instruction ADD R1, R4, #−2.

Since the immediate operand in an ADD or AND instruction must fit in
bits [4:0] of the instruction, not all 2’s complement integers can be imme-
diate operands. Which integers are OK (i.e., which integers can be used as
immediate operands)?

16

1 0

0001 001 100 1  11110

ADD R1 R4  –2

16

5

0000000000000100

AB

ALU

Bit[5]

ADD

IR

1111111111111110

SEXT

R0

R1

R2

R3

R4

R5

R6

R7

0000000000000110

Figure 5.5 Data path relevant to the execution of ADD R1, R4, #-2

Register file

SR

DR

From 
FSM

Instruction register

Sign-
extend



Single-Cycle Datapath for
Data Movement Instructions



n Load 4-byte word

n Semantics

Load Instructions
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lw (35) base rt offset

op rs=base rt imm=offset

lw $s3, 8($s0)             #$s0=rs, $s3=rt

MIPS assembly

Machine Encoding

I-Type
15 0162021252631

if MEM[PC] == lw rt offset16 (base)
PC ¬ PC + 4
EA = sign-extend(offset) + GPR(base)
GPR[rt] ¬ MEM[ translate(EA) ] 



LW Datapath
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PC ¬ PC + 4
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16 32
Sign 

extend

b. Sign-extension unit

MemRead

MemWrite

Data 
memory

Write 
data

Read 
data

a. Data memory unit

Address

1

add

isItype

RegDest
isItype

1

0
n



Store Instructions
n Store 4-byte word

n Semantics
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sw $s3, 8($s0)             #$s0=rs, $s3=rt

MIPS assembly

sw (43) base rt offset

op rs=base rt imm=offset
Machine Encoding

if Mem[PC] == sw rt offset16 (base)
PC ¬ PC + 4
EA = sign-extend(offset) + GPR(base)
MEM[ translate(EA) ] ¬ GPR[rt]

I-Type
15 0162021252631



SW Datapath
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Load-Store Datapath
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]



Datapath for Non-Control-Flow Insts.
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Single-Cycle Datapath for
Control Flow Instructions



Jump Instruction
n Unconditional branch or jump

q 2 = opcode
q immediate (target) = target address

n Semantics
if MEM[PC]== j immediate26

target = { PC ✝[31:28], immediate26, 2’b00 }
PC ¬ target
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j (2) immediate
6 bits 26 bits

j target

J-Type

✝This is the incremented PC



Unconditional Jump Datapath
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]
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X 0

0

X

if MEM[PC]==J immediate26
PC = { PC[31:28], immediate26, 2’b00 }

Do no harm
in datapath parts 

not  involved
with jump



Other Jumps in MIPS
q jr: jump register

Semantics
if MEM[PC]== jr rs

PC ¬ GPR(rs)

q jal: jump and link (function calls)
Semantics
if MEM[PC]== jal immediate26

$ra ¬ PC + 4
target = { PC ✝[31:28], immediate26, 2’b00 }
PC ¬ target

q jalr: jump and link register
Semantics
if MEM[PC]== jalr rs

$ra ¬ PC + 4
PC ¬ GPR(rs)

112✝This is the incremented PC



Aside: MIPS Cheat Sheet
n https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetc

h.php?media=mips_reference_data.pdf

n On the course website
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https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetch.php?media=mips_reference_data.pdf


Conditional Branch Instructions
n beq (Branch if Equal)

n Semantics (assuming no branch delay slot)
if MEM[PC] == beq rs rt immediate16

target = PC✝+ sign-extend(immediate) x 4 
if GPR[rs]==GPR[rt] then PC ¬ target
else PC ¬ PC + 4

q Variations: beq, bne, blez, bgtz
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beq (4) rs rt immediate=offset
6 bits 5 bits 5 bits 16 bits

beq $s0, $s1, offset #$s0=rs,$s1=rt

✝This is the incremented PC

I-Type



Conditional Branch Datapath (for you to finish)

16 32
Sign 

extend

ZeroALU

Sum

Shift 
left 2

To branch 
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write 
register

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Write 
data

RegWrite

ALU operation3

PC

Instruction 
memory

Read 
address

Instruction

4

Add

PCSrc

concat

0

sub

How to uphold the delayed branch semantics?

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

watch out



Putting It All Together
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



Single-Cycle Control Logic



Single-Cycle Hardwired Control
n As combinational function of Inst=MEM[PC]

n Consider
q All R-type and I-type ALU instructions
q lw and sw
q beq, bne, blez, bgtz
q j, jr, jal, jalr
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0 rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type
15 0162021252631 11 10 6 5

opcode rs rt immediate I-Type
15 0162021252631

6 bits 5 bits 5 bits 16 bits

opcode immediate
6 bits 26 bits

J-Type
0252631



Generate Control Signals (in Orange Color)
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



Single-Bit Control Signals (I)

When De-asserted When asserted Equation

RegDest
GPR write select 
according to rt, i.e., 
inst[20:16]

GPR write select 
according to rd, i.e., 
inst[15:11]

opcode==0

ALUSrc
2nd ALU input from      
2nd GPR read port

2nd ALU input from  
sign-extended 16-bit 
immediate

(opcode!=0) &&

(opcode!=BEQ) &&
(opcode!=BNE)

MemtoReg Steer ALU result            
to GPR write port

Steer memory output    
to GPR write port

opcode==LW

RegWrite

GPR write disabled GPR write enabled (opcode!=SW) &&

(opcode!=Bxx) &&

(opcode!=J) &&

(opcode!=JR))

JAL and JALR require additional RegDest and MemtoReg options 



Single-Bit Control Signals (II)

When De-asserted When asserted Equation

MemRead
Memory read disabled Memory read port 

returns load value
opcode==LW

MemWrite
Memory write disabled Memory write enabled opcode==SW

PCSrc1
According to PCSrc2 next PC is based on 26-

bit immediate jump 
target

(opcode==J) ||

(opcode==JAL)

PCSrc2
next PC = PC + 4 next PC is based on     

16-bit immediate 
branch target

(opcode==Bxx) &&
“bcond is satisfied”

JR and JALR require additional PCSrc options 
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**Based on original figure from [P&H CO&D, COPYRIGHT 
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I-Type ALU
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]
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Branch (Not Taken)
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]
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Some control signals are dependent
on the processing of data



Branch (Taken)
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]
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What is in That Control Box?
n Combinational Logic à Hardwired Control

q Idea: Control signals generated combinationally based on bits 
in instruction encoding

n Sequential Logic à Sequential Control
q Idea: A memory structure contains the control signals 

associated with an instruction
n Called Control Store

n Both types of control structure can be used in single-cycle 
processors
q Choice depends on latency of each structure + how much on 

the critical path control signal generation is, etc. 
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Review: Complete Single-Cycle Processor
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



Another Single-Cycle 
MIPS Processor (from H&H)

See backup slides to reinforce the concepts we have covered. 
They are to complement your reading:

H&H, Chapter 7.1-7.3, 7.6



Another Complete Single-Cycle Processor

SignImm
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132Single-cycle processor. Harris and Harris, Chapter 7.3.
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Example: Single-Cycle Datapath: lw fetch
¢ STEP 1: Fetch instruction

CLK

A RD
Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WEPCPC' Instr

CLK

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw register read
¢ STEP 2: Read source operands from register file

Instr

CLK

A RD
Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

25:21
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lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw immediate
¢ STEP 3: Sign-extend the immediate

SignImm
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Single-Cycle Datapath: lw address
¢ STEP 4: Compute the memory address

SignImm
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Single-Cycle Datapath: lw memory read
¢ STEP 5: Read from memory and write back to register file
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SignImm
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lw $s3, 1($0)  # read memory word 1 into $s3
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6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw PC increment
¢ STEP 6: Determine address of next instruction
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n Control signals are generated by the decoder in control unit

Similarly, We Need to Design the Control Unit

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0

lw 100011 1 0 1 0 0 1 00 0

sw 101011 0 X 1 0 1 X 00 0

beq 000100 0 X 0 1 0 X 01 0

addi 001000 1 0 1 0 0 0 00 0

j 000010 0 X X X 0 X XX 1

139Single-cycle processor. Harris and Harris, Chapter 7.3.



Another Complete Single-Cycle Processor (H&H)
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Your Reading Assignment
n Please read the Lecture Slides & the Backup Slides

n Please do your readings from the H&H Book
q H&H, Chapter 7.1-7.3, 7.6
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Single-Cycle Uarch I (We Developed in Lectures)
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



Single-Cycle Uarch II (In Your Readings)
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143Single-cycle processor. Harris and Harris, Chapter 7.3.



Evaluating the Single-Cycle 
Microarchitecture

144



A Single-Cycle Microarchitecture

n Is this a good idea/design?

n When is this a good design?

n When is this a bad design?

n How can we design a better microarchitecture?
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Performance Analysis Basics



Recall: Performance Analysis Basics

n Execution time of a single instruction
q {CPI}  x  {clock cycle time} 

n CPI: Number of cycles it takes to execute an instruction

n Execution time of an entire program
q Sum over all instructions [{CPI}  x  {clock cycle time}]
q {# of instructions}  x  {Average CPI}  x  {clock cycle time}
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Processor Performance
¢ How fast is my program?

§ Every program consists of a series of instructions
§ Each instruction needs to be executed



Carnegie Mellon

149

Processor Performance
¢ How fast is my program?

§ Every program consists of a series of instructions
§ Each instruction needs to be executed

¢ How fast are my instructions?
§ Instructions are realized on the hardware
§ Each instruction can take one or more clock cycles to complete
§ Cycles per Instruction = CPI
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Processor Performance
¢ How fast is my program?

§ Every program consists of a series of instructions
§ Each instruction needs to be executed

¢ How fast are my instructions?
§ Instructions are realized on the hardware
§ Each instruction can take one or more clock cycles to complete
§ Cycles per Instruction = CPI

¢ How long is one clock cycle?
§ The critical path determines how much time one cycle requires = 

clock period
§ 1/clock period = clock frequency = how many cycles can be done 

each second
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Processor Performance
¢ As a general formula

§ Our program consists of executing N instructions
§ Our processor needs CPI cycles (on average) for each instruction
§ The clock frequency of the processor is f 

à the clock period is therefore T=1/f
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Processor Performance
¢ As a general formula

§ Our program consists of executing N instructions
§ Our processor needs CPI cycles (on average) for each instruction
§ The clock frequency of the processor is f 

à the clock period is therefore T=1/f

¢ Our program executes in 

N x CPI x (1/f) = 

N x CPI x T seconds



Performance Analysis of 
Our Single-Cycle Design



A Single-Cycle Microarchitecture: Analysis
n Every instruction takes 1 cycle to execute

q CPI (Cycles per instruction) is strictly 1

n How long each instruction takes is determined by how long 
the slowest instruction takes to execute
q Even though many instructions do not need that long to 

execute

n Clock cycle time of the microarchitecture is determined by 
how long it takes to complete the slowest instruction
q Critical path of the design is determined by the processing 

time of the slowest instruction
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What is the Slowest Instruction to Process?
n Let’s go back to the basics

n All six phases of the instruction processing cycle take a single 
machine clock cycle to complete

q Fetch
q Decode
q Evaluate Address
q Fetch Operands
q Execute
q Store Result

n Do each of the above phases take the same time (latency) 
for all instructions?

155

1. Instruction fetch (IF)
2. Instruction decode and 

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB) 



Let’s Find the Critical Path
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bcond

[Based on original figure from P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]



steps IF ID EX MEM WB
Delay

resources mem RF ALU mem RF

R-type 200 50 100 50 400

I-type 200 50 100 50 400

LW 200 50 100 200 50 600
SW 200 50 100 200 550

Branch 200 50 100 350
Jump 200 200

Example Single-Cycle Datapath Analysis
n Assume (for the design in the previous slide)

q memory units (read or write): 200 ps
q ALU and adders: 100 ps
q register file (read or write): 50 ps
q other combinational logic: 0 ps



Let’s Find the Critical Path
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[Based on original figure from P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]



R-Type and I-Type ALU
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What About Control Logic?
n How does that affect the critical path?

n Food for thought for you:
q Can control logic be on the critical path?
q Historical example:

n CDC 5600: control store access too long…
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What is the Slowest Instruction to Process?
n Real world: Memory is slow (not magic)

n What if memory sometimes takes 100ms to access?

n Does it make sense to have a simple register to register 
add or jump to take {100ms+all else to do a memory 
operation}?

n And, what if you need to access memory more than once to 
process an instruction?
q Which instructions need this?
q Do you provide multiple ports to memory?
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Single Cycle uArch: Complexity
n Contrived 

q All instructions run as slow as the slowest instruction

n Inefficient
q All instructions run as slow as the slowest instruction
q Must provide worst-case combinational resources in parallel as required 

by any instruction
q Need to replicate a resource if it is needed more than once by an 

instruction during different parts of the instruction processing cycle

n Not necessarily the simplest way to implement an ISA
q Single-cycle implementation of REP MOVS (x86) or INDEX (VAX)?

n Not easy to optimize/improve performance
q Optimizing the common case (frequent instructions) does not work 
q Need to optimize the worst case all the time
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(Micro)architecture Design Principles
n Critical path design

q Find and decrease the maximum combinational logic delay
q Break a path into multiple cycles if it takes too long

n Bread and butter (common case) design
q Spend time and resources on where it matters most

n i.e., improve what the machine is really designed to do
q Common case vs. uncommon case 

n Balanced design
q Balance instruction/data flow through hardware components
q Design to eliminate bottlenecks: balance the hardware for the 

work
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Single-Cycle Design vs. Design Principles
n Critical path design

n Bread and butter (common case) design

n Balanced design

How does a single-cycle microarchitecture fare 
with respect to these principles?
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Aside: System Design Principles
n When designing computer systems/architectures, it is 

important to follow good principles
q Actually, this is true for *any* system design

n Real architectures, buildings, bridges, …
n Good consumer products
n Mechanisms for security/safety-critical systems
n …

n Remember: “principled design” from our second lecture
q Frank Lloyd Wright: “architecture […] based upon principle, 

and not upon precedent”
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Aside: From Lecture 2
n “architecture […] based upon principle, and not upon 

precedent”
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This
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That
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Recall: Takeaways

n It all starts from the basic building blocks and design 
principles

n And, knowledge of how to use, apply, enhance them

n Underlying technology might change (e.g., steel vs. wood)
q but methods of taking advantage of technology bear resemblance
q methods used for design depend on the principles employed
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Aside: System Design Principles
n We will continue to cover key principles in this course
n Here are some references where you can learn more

n Yale Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for 
Microprocessor Evolution,” Proc. of IEEE, 2001. (Levels of 
transformation, design point, etc)

n Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 
1966. (Flynn’s Bottleneck à Balanced design)

n Gene M. Amdahl, "Validity of the single processor approach to achieving 
large scale computing capabilities," AFIPS Conference, April 1967. 
(Amdahl’s Law à Common-case design)

n Butler W. Lampson, “Hints for Computer System Design,” ACM 
Operating Systems Review, 1983.
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A Key System Design Principle 
n Keep it simple

n “Everything should be made as simple as possible,           
but no simpler.”
q Albert Einstein

n And, keep it low cost: “An engineer is a person who can   
do for a dime what any fool can do for a dollar.”

n For more, see:
q Butler W. Lampson, “Hints for Computer System Design,” ACM 

Operating Systems Review, 1983.
q http://research.microsoft.com/pubs/68221/acrobat.pdf
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Can We Do Better?
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Multi-Cycle Microarchitectures
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Backup Slides on Single-Cycle
Uarch for Your Own Study

Please study these to reinforce the concepts 
we covered in lectures.

Please do the readings together with these slides:
H&H, Chapter 7.1-7.3, 7.6



Another Single-Cycle 
MIPS Processor (from H&H)

These are slides for your own study.
They are to complement your reading

H&H, Chapter 7.1-7.3, 7.6
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What to do with the Program Counter?

reg [31:0] PC_p, PC_n;      // Present and next state of PC

// […]

assign PC_n <= PC_p + 4;                   // Increment by 4;

always @ (posedge clk, negedge rst)
begin

if (rst == ‘0’) PC_p <= 32’h00400000; // default
else PC_p <= PC_n;         // when clk

end

¢ The PC needs to be incremented by 4 during each cycle 
(for the time being). 

¢ Initial PC value (after reset) is 0x00400000
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We Need a Register File
¢ Store 32 registers, each 32-bit

§ 25 == 32, we need 5 bits to address each

¢ Every R-type instruction uses 3 register
§ Two for reading (RS, RT)
§ One for writing (RD)

¢ We need a special memory with:
§ 2 read ports (address x2, data out x2)
§ 1 write port (address, data in)
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Register File
input [4:0]   a_rs, a_rt, a_rd;
input [31:0]  di_rd;
input we_rd;
output [31:0] do_rs, do_rt;

reg [31:0] R_arr [31:0]; // Array that stores regs

// Circuit description
assign do_rs = R_arr[a_rs];          // Read RS

assign do_rt = R_arr[a_rt];          // Read RT

always @ (posedge clk)
if (we_rd) R_arr[a_rd] <= di_rd; // write RD
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Register File
input [4:0]   a_rs, a_rt, a_rd;
input [31:0]  di_rd;
input we_rd;
output [31:0] do_rs, do_rt;

reg [31:0] R_arr [31:0]; // Array that stores regs

// Circuit description; add the trick with $0
assign do_rs = (a_rs != 5’b00000)? // is address 0?  

R_arr[a_rs] : 0;     // Read RS or 0

assign do_rt = (a_rt != 5’b00000)? // is address 0?
R_arr[a_rt] : 0;     // Read RT or 0

always @ (posedge clk)
if (we_rd) R_arr[a_rd] <= di_rd; // write RD
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Data Memory Example

input [15:0]  addr; // Only 16 bits in this example 
input [31:0]  di;
input we;
output [31:0] do;

reg [31:0] M_arr [0:65535];          // Array for Memory

// Circuit description
assign do = M_arr[addr];             // Read memory

always @ (posedge clk)
if (we) M_arr[addr] <= di;       // write memory

¢ Will be used to store the bulk of data
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Single-Cycle Datapath: lw fetch
¢ STEP 1: Fetch instruction

CLK

A RD
Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WEPCPC' Instr

CLK

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw register read
¢ STEP 2: Read source operands from register file

Instr

CLK

A RD
Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

25:21

CLK

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw immediate
¢ STEP 3: Sign-extend the immediate

SignImm

CLK

A RD
Instruction

Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

A RD
Data

Memory
WD

WE
PCPC' Instr 25:21

15:0

CLK

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw address
¢ STEP 4: Compute the memory address

SignImm

CLK

A RD
Instruction

Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

A RD
Data

Memory
WD

WE
PCPC' Instr 25:21

15:0

SrcB

ALUResult
SrcA Zero

CLK

ALUControl2:0

AL
U

010

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw memory read
¢ STEP 5: Read from memory and write back to register file

A1

A3
WD3

RD2

RD1
WE3

A2

SignImm

CLK

A RD
Instruction

Memory

CLK

Sign Extend

Register
File

A RD
Data

Memory
WD

WE
PCPC' Instr 25:21

15:0

SrcB20:16

ALUResult ReadData
SrcA

RegWrite

Zero

CLK

ALUControl2:0

AL
U

0101

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw PC increment
¢ STEP 6: Determine address of next instruction

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

A RD
Data

Memory
WD

WE
PCPC' Instr 25:21

15:0

SrcB
20:16

ALUResult ReadData
SrcA

PCPlus4

Result

RegWrite

Zero

CLK

ALUControl2:0

AL
U

0101

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: sw
¢ Write data in rt to memory

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

A RD
Data

Memory
WD

WE
PCPC' Instr 25:21

20:16

15:0

SrcB
20:16

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

MemWriteRegWrite

Zero

CLK

ALUControl2:0

AL
U

10100

sw $t7, 44($0)  # write t7 into memory address 44

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: R-type Instructions
¢ Read from rs and rt,  write ALUResult to register file

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCPC' Instr 25:21

20:16

15:0

SrcB

20:16

15:11

ALUResult ReadData

WriteData

SrcA

PCPlus4
WriteReg4:0

Result

RegDst MemWrite MemtoRegALUSrcRegWrite

Zero

CLK

ALUControl2:0

AL
U

0
varies1 001

add t, b, c  # t = b + c

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type
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Single-Cycle Datapath: beq

¢ Determine whether values in rs and rt are equal
Calculate BTA = (sign-extended immediate << 2) + (PC+4)

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

RegDst Branch MemWrite MemtoRegALUSrcRegWrite

Zero

PCSrc

CLK

ALUControl2:0

AL
U

0
1100 x0x 1

beq $s0, $s1, target  # branch is taken
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Complete Single-Cycle Processor

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U
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Our MIPS Datapath has Several Options
¢ ALU inputs

§ Either RT or Immediate (MUX)

¢ Write Address of Register File
§ Either RD or RT (MUX)

¢ Write Data In of Register File
§ Either ALU out or Data Memory Out (MUX)

¢ Write enable of Register File
§ Not always a register write  (MUX)

¢ Write enable of Memory
§ Only when writing to memory (sw) (MUX)

All these options are our control signals
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Control Unit

RegDst

Branch
MemWrite
MemtoReg

ALUSrc
Opcode5:0

Control
Unit

ALUControl2:0Funct5:0

Main
Decoder

ALUOp1:0

ALU
Decoder

RegWrite
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ALU Does the Real Work in a Processor

ALU

N N

N
3

A B

Y

F

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT
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ALU Internals

+

2 01

A B

Cout

Y

3

01

F2

F1:0

[N-1] S

NN

N

N

N NNN

N

2

Zero
Extend

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT
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Control Unit: ALU Decoder
ALUOp1:0 Meaning
00 Add
01 Subtract
10 Look at Funct
11 Not Used

ALUOp1:0 Funct ALUControl2:0
00 X 010 (Add)
X1 X 110 (Subtract)
1X 100000 (add) 010 (Add)
1X 100010 (sub) 110 (Subtract)
1X 100100 (and) 000 (And)
1X 100101 (or) 001 (Or)
1X 101010 (slt) 111 (SLT)

RegDst

Branch
MemWrite
MemtoReg

ALUSrc
Opcode5:0

Control
Unit

ALUControl2:0Funct5:0

Main
Decoder

ALUOp1:0

ALU
Decoder

RegWrite
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Let us Develop our Control Table
Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

§ RegWrite: Write enable for the register file
§ RegDst: Write to register RD or RT
§ AluSrc: ALU input RT or immediate
§ MemWrite: Write Enable
§ MemtoReg: Register data in from Memory or ALU
§ ALUOp: What operation does ALU do
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Let us Develop our Control Table
Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

§ RegWrite: Write enable for the register file
§ RegDst: Write to register RD or RT
§ AluSrc: ALU input RT or immediate
§ MemWrite: Write Enable
§ MemtoReg: Register data in from Memory or ALU
§ ALUOp: What operation does ALU do
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Let us Develop our Control Table
Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct
lw 100011 1 0 1 0 1 add

§ RegWrite: Write enable for the register file
§ RegDst: Write to register RD or RT
§ AluSrc: ALU input RT or immediate
§ MemWrite: Write Enable
§ MemtoReg: Register data in from Memory or ALU
§ ALUOp: What operation does ALU do
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Let us Develop our Control Table
Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct
lw 100011 1 0 1 0 1 add
sw 101011 0 X 1 1 X add

§ RegWrite: Write enable for the register file
§ RegDst: Write to register RD or RT
§ AluSrc: ALU input RT or immediate
§ MemWrite: Write Enable
§ MemtoReg: Register data in from Memory or ALU
§ ALUOp: What operation does ALU do
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More Control Signals
Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 0 funct

lw 100011 1 0 1 0 0 1 add

sw 101011 0 X 1 0 1 X add

beq 000100 0 X 0 1 0 X sub

¢ New Control Signal
§ Branch: Are we jumping or not ?
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Control Unit: Main Decoder
Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10
lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+
ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U
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Single-Cycle Datapath Example: or

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2
+

ALUResult ReadData

WriteData

SrcA

PCPlus4
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Extended Functionality: addi
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¢ No change to datapath
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Control Unit: addi
Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10
lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01
addi 001000 1 0 1 0 0 0 00
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Extended Functionality: j
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Control Unit: Main Decoder
Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0
lw 100011 1 0 1 0 0 1 00 0
sw 101011 0 X 1 0 1 X 00 0
beq 000100 0 X 0 1 0 X 01 0
j 000100 0 X X X 0 X XX 1



Review: Complete Single-Cycle Processor (H&H)
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A Bit More on
Performance Analysis
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Processor Performance
¢ How fast is my program?

§ Every program consists of a series of instructions
§ Each instruction needs to be executed.
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Processor Performance
¢ How fast is my program?

§ Every program consists of a series of instructions
§ Each instruction needs to be executed.

¢ So how fast are my instructions ?
§ Instructions are realized on the hardware
§ They can take one or more clock cycles to complete
§ Cycles per Instruction = CPI

¢ How much time is one clock cycle?
§ The critical path determines how much time  one cycle requires = 

clock period.
§ 1/clock period = clock frequency = how many cycles can be done 

each second.



Performance Analysis
n Execution time of an instruction

q {CPI}  x  {clock cycle time} 

n Execution time of a program
q Sum over all instructions [{CPI}  x  {clock cycle time}]
q {# of instructions}  x  {Average CPI}  x  {clock cycle time}

216
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Processor Performance
¢ Now as a general formula

§ Our program consists of executing N instructions.
§ Our processor needs CPI cycles for each instruction.
§ The maximum clock speed of the processor is f,

and the clock period is therefore T=1/f
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Processor Performance
¢ Now as a general formula

§ Our program consists of executing N instructions.
§ Our processor needs CPI cycles for each instruction.
§ The maximum clock speed of the processor is f,

and the clock period is therefore T=1/f

¢ Our program will execute in 

N x CPI x (1/f) = N x CPI x T seconds



Carnegie Mellon

219

How can I Make the Program Run Faster?

N x CPI x (1/f)



Carnegie Mellon

220

How can I Make the Program Run Faster?

N x CPI x (1/f)

¢ Reduce the number of instructions
§ Make instructions that ‘do’ more (CISC)
§ Use better compilers



Carnegie Mellon

221

How can I Make the Program Run Faster?

N x CPI x (1/f)

¢ Reduce the number of instructions
§ Make instructions that ‘do’ more (CISC)
§ Use better compilers

¢ Use less cycles to perform the instruction
§ Simpler instructions (RISC)
§ Use multiple units/ALUs/cores in parallel



Carnegie Mellon

222

How can I Make the Program Run Faster?

N x CPI x (1/f)

¢ Reduce the number of instructions
§ Make instructions that ‘do’ more (CISC)
§ Use better compilers

¢ Use less cycles to perform the instruction
§ Simpler instructions (RISC)
§ Use multiple units/ALUs/cores in parallel

¢ Increase the clock frequency
§ Find a ‘newer’ technology to manufacture
§ Redesign time critical components
§ Adopt pipelining
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Single-Cycle Performance

¢ TC is limited by the critical path (lw)
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Single-Cycle Performance
¢ Single-cycle critical path:

§ Tc = tpcq_PC + tmem + max(tRFread, tsext + tmux) + tALU + tmem + tmux + tRFsetup

¢ In most implementations, limiting paths are: 
§ memory, ALU, register file. 
§ Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup
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Single-Cycle Performance Example
Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Tc =
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Single-Cycle Performance Example
Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

= [30 + 2(250) + 150 + 25 + 200 + 20] ps
= 925 ps
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Single-Cycle Performance Example
¢ Example:

For a program with 100 billion instructions executing on a single-cycle 
MIPS processor:
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Single-Cycle Performance Example
¢ Example:

For a program with 100 billion instructions executing on a single-cycle 
MIPS processor:

Execution Time = # instructions x CPI x TC
= (100 × 109)(1)(925  × 10-12 s)
= 92.5 seconds


