
Digital Design & Computer Arch.
Lecture 13: Pipelining

Prof. Onur Mutlu

ETH Zürich
Spring 2022
7 April 2022

Extra Assignment: Moore’s Law (I)
n Paper review
n G.E. Moore. "Cramming more components onto integrated

circuits," Electronics magazine, 1965

n Optional Assignment – for 1% extra credit
q Write a 1-page review
q Upload PDF file to Moodle – Deadline: April 7

n I strongly recommend that you follow my guidelines for
(paper) review (see next slide)

2

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (II)
n Guidelines on how to review papers critically

q Guideline slides: pdf ppt
q Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

q Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)
n Review 1
n Review 2

q Example review on “Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
n Review 1

3

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

Agenda for Today & Next Few Lectures
n Last week: Microarchitecture Fundamentals

q Single-cycle Microarchitectures
q Multi-cycle Microarchitectures

n This week: Pipelining
q Pipelining
q Pipelined Processor Design

n Control & Data Dependence Handling
n Precise Exceptions: State Maintenance & Recovery

n Next week+: Out-of-Order Execution
q Out-of-Order Execution
q Issues in OoO Execution: Load-Store Handling, …

4

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Readings
n This week

q Pipelining
n H&H, Chapter 7.5

q Pipelining Issues
n H&H, Chapter 7.7, 7.8.1-7.8.3

n Next week
q Out-of-order execution

q H&H, Chapter 7.8-7.9
q Smith & Sohi, “The Microarchitecture of Superscalar Processors,”

Proceedings of the IEEE, 1995
n More advanced pipelining
n Interrupt and exception handling
n Out-of-order and superscalar execution concepts

5

Review: Single-Cycle MIPS Processor (I)

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Review: Single-Cycle MIPS Processor (II)

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

7Single-cycle processor. Harris and Harris, Chapter 7.3.

Review: Single-Cycle MIPS FSM
n Single-cycle machine

8

ASSequential
Logic
(State)

Combinational
Logic

AS’

AS: Architectural State

Can We Do Better?

9

Review: Multi-Cycle MIPS Processor

ImmExt

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1PC 0

1

PC' Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

Zero
CLK

AL
U

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN
00
01
10

<<2

25:0 (Addr)

31:28

27:0

PCJump

5:0

31:26

Branch

MemWrite

ALUSrcA
RegWrite

Op
Funct

Control
Unit

PCSrc

CLK

ALUControl2:0

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

R
egD

st

M
em

toR
eg

10Multi-cycle processor. Harris and Harris, Chapter 7.4.

Review: Multi-Cycle MIPS FSM

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 00

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

PCSrc = 10
PCWrite

Op = J

S11: Jump

What is the
shortcoming of
this design?

What does
this design
assume
about memory?

11

Can We Do Better?

12

Can We Do Better?
n What limitations do you see with the multi-cycle design?

n Limited concurrency
q Some hardware resources are idle during different phases of

instruction processing cycle
q “Fetch” logic is idle when an instruction is being “decoded” or

“executed”
q Most of the datapath is idle when a memory access is

happening

13

Can We Use the Idle Hardware to Improve Concurrency?

n Goal: More concurrency à Higher instruction throughput
(i.e., more “work” completed in one cycle)

n Idea: When an instruction is using some resources in its
processing phase, process other instructions on idle
resources not needed by that instruction
q E.g., when an instruction is being decoded, fetch the next

instruction
q E.g., when an instruction is being executed, decode another

instruction
q E.g., when an instruction is accessing data memory (ld/st),

execute the next instruction
q E.g., when an instruction is writing its result into the register

file, access data memory for the next instruction
14

Can Have Different Instructions in Different Stages

q Fetch
q Decode
q Evaluate Address
q Fetch Operands
q Execute
q Store Result

15

1. Instruction fetch (IF)
2. Instruction decode and

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

ImmExt

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1PC 0

1

PC' Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

Zero
CLK

AL
U

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN
00
01
10

<<2

25:0 (Addr)

31:28

27:0

PCJump

5:0

31:26

Branch

MemWrite

ALUSrcA
RegWrite

Op
Funct

Control
Unit

PCSrc

CLK

ALUControl2:0

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

R
egD

st

M
em

toR
eg

16

Can Have Different Instructions in Different Stages

Of course, we need to be more careful than this!

Pipelining

17

Pipelining: Basic Idea
n More systematically:

q Pipeline the execution of multiple instructions
q Analogy: “Assembly line processing” of instructions

n Idea:
q Divide the instruction processing cycle into distinct “stages” of

processing
q Ensure there are enough hardware resources to process one

instruction in each stage
q Process a different instruction in each stage

n Instructions consecutive in program order are processed in
consecutive stages

n Benefit: Increases instruction processing throughput (1/CPI)
n Downside: Start thinking about this…

18

Example: Execution of Four Independent ADDs

n Multi-cycle: 4 cycles per instruction

n Pipelined: 4 cycles per 4 instructions (steady state)

19

Time

F D E W
F D E W

F D E W
F D E W

F D E W
F D E W

F D E W
F D E W

TimeIs life always this beautiful?

1 instruction completed per cycle

1 instruction completed per 4 cycles

The Laundry Analogy

n “place one dirty load of clothes in the washer”
n “when the washer is finished, place the wet load in the dryer”
n “when the dryer is finished, take out the dry load and fold”
n “when folding is finished, put the clothes away”

20

- steps to do a load are sequentially dependent
- no dependence between different loads
- different steps do not share resources

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Task
order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry

21

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Task
order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Task
order

- latency per load is the same
- throughput increased by 4

- 4 loads of laundry in parallel
- no additional resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

22

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Task
order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Task
order

the slowest step (the dryer) decides throughput

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

23

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Task
order

A

B
A

B

throughput restored (2 loads per hour) using 2 dryers

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Task
order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

A Real-Life Pipeline: Automobile Assembly

24https://www.caranddriver.com/features/a15115930/fords-assembly-line-turns-100-how-it-really-put-the-world-on-wheels-feature/
By Apparent scan made by the original uploader User:Steveking 89., Fair use, https://en.wikipedia.org/w/index.php?curid=11009879

A Real-Life Pipeline: Automobile Assembly

25https://medium.com/@ScottAmyx/toyotas-production-philosophy-combines-human-effort-with-automation-a9df78c64ee1

An Old Pipelined Computer: IBM Stretch

26https://en.wikipedia.org/wiki/IBM_7030_Stretch

https://en.wikipedia.org/wiki/IBM_7030_Stretch

An Ideal Pipeline
n Goal: Increase throughput with little increase in cost

(hardware cost, in case of instruction processing)

n Repetition of identical operations
q The same operation is repeated on a large number of different

inputs (e.g., all laundry loads go through the same steps)
n Repetition of independent operations

q No dependences between repeated operations
n Uniformly partitionable suboperations

q Processing can be evenly divided into uniform-latency
suboperations (that do not share resources)

n Fitting examples: automobile assembly line, doing laundry
q What about the instruction processing “cycle”?

27

Ideal Pipelining

28

combinational logic (F,D,E,M,W)
T psec

Tput=~(1/T)

Tput=~(2/T)T/2 ps (F,D,E) T/2 ps (M,W)

Tput=~(3/T)T/3
ps (F,D)

T/3
ps (E,M)

T/3
ps (M,W)

Tput = Throughput

More Realistic Pipeline: Throughput
n Nonpipelined version with delay T

Tput = 1 / (T+S) where S = register (sequential logic) delay

n k-stage pipelined version
Tputk-stage = 1 / (T/k + S)
Tputmax = 1 / (1 gate delay + S)

T ps

T/k
ps

T/k
ps

Register delay reduces throughput
(sequencing overhead b/w stages)

This picture assumes “perfect division of work between stages (T/k)”

More Realistic Pipeline: Cost
n Nonpipelined version with combinational cost G

Cost = G+R where R = register cost

n k-stage pipelined version
Costk-stage = G + Rk

G gates

G/k G/k

Registers increase hardware cost

This picture ignores resource and register replication that is likely needed (G/k and Rk)

Pipelining Instruction Processing

31

q FETCH
q DECODE
q EVALUATE ADDRESS

q FETCH OPERANDS
q EXECUTE
q STORE RESULT

32

Remember: The Instruction Processing Cycle

Remember: The Instruction Processing Cycle

q Fetch
q Decode
q Evaluate Address
q Fetch Operands
q Execute
q Store Result

33

1. Instruction fetch (IF)
2. Instruction decode and

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

Remember the Single-Cycle Microarchitecture

34

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

T BW=~(1/T)

Dividing the Single-Cycle Uarch Into Stages

35

200ps

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

Instruction

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataAddress

Data
memory

1

ALU
result

M
u
x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back

Is this the correct partitioning?
Why not 4 or 6 stages? Why not different boundaries?

100ps 200ps 200ps 100ps

RF
write

ignore
for now

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Instruction Pipeline Throughput

36

Instruction
fetch Reg ALU Data

access Reg

8 ns Instruction
fetch Reg ALU Data

access Reg

8 ns Instruction
fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch Reg ALU Data

access Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns Instruction
fetch Reg ALU Data

access Reg

2 ns Instruction
fetch Reg ALU Data

access Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution
order
(in instructions)

200 400 600 800 1000 1200 1400 1600 1800

200 400 600 800 1000 1200 1400

800ps

800ps

800ps

200ps200ps200ps200ps200ps

200ps

200ps

5-stage speedup is 4, not 5 as predicted by the ideal model. Why?

1 instruction every 200 ps

1 instruction every 800 ps

Enabling Pipelined Processing: Pipeline Registers

37
T

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

Instruction

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataAddress

Data
memory

1

ALU
result

M
u
x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Data
memory

Address

No resource is used by more than one stage
IR

D

PC
F

PC
D
+4

PC
E+
4

nP
C M

A E
B E

Im
m

E

Ao
ut

M
B M

M
D
R W

Ao
ut

W

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

T/k
ps

T/k
ps

Pipelined Operation Example

38

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction fetch
lw

Address

Data
memory

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Instruction decode
lw

Address

Data
memory

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction fetch
lw

Address

Data
memory

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Instruction decode
lw

Address

Data
memory

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Execution
lw

Address

Data
memory

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataData

memory
1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Memory
lw

Address

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
data

Read
dataData

memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Write back
lw

Write
register

Address

97108/Patterson
Figure 06.15

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataData

memory
1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Memory
lw

Address

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
data

Read
dataData

memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Write back
lw

Write
register

Address

97108/Patterson
Figure 06.15

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0

Address

Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data
memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

All instruction classes must follow the same path
and timing through the pipeline stages.

Any performance impact?

Pipelined Operation Example

39

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction decode
lw $10, 20($1)

Instruction fetch
sub $11, $2, $3

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction fetch
lw $10, 20($1)

Address

Data
memory

Address

Data
memory

Clock 1

Clock 2

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction decode
lw $10, 20($1)

Instruction fetch
sub $11, $2, $3

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction fetch
lw $10, 20($1)

Address

Data
memory

Address

Data
memory

Clock 1

Clock 2

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory
lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Execution
sub $11, $2, $3

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Execution
lw $10, 20($1)

Instruction decode
sub $11, $2, $3

3216
Sign

extend

Address

Data
memory

Data
memory

Address

Clock 3

Clock 4

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory
lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Execution
sub $11, $2, $3

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Execution
lw $10, 20($1)

Instruction decode
sub $11, $2, $3

3216
Sign

extend

Address

Data
memory

Data
memory

Address

Clock 3

Clock 4

Instruction
memory

Address

4

32

0

Add Add
result

1

ALU
result

Zero

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction
memory

Address

4

32

0

Add Add
result

1

ALU
result

Zero

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory
sub $11, $2, $3

Address

Data
memory

Address

Data
memory

Clock 6

Clock 5

Instruction
memory

Address

4

32

0

Add Add
result

1

ALU
result

Zero

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction
memory

Address

4

32

0

Add Add
result

1

ALU
result

Zero

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory
sub $11, $2, $3

Address

Data
memory

Address

Data
memory

Clock 6

Clock 5

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is life always this beautiful?

Illustrating Pipeline Operation: Operation View

40

MEM
EX
ID
IFInst4

WB

IF

MEM

IF

MEM
EX

t0 t1 t2 t3 t4 t5

ID
EXIF ID

IF ID

Inst0 ID
IFInst1

EX
ID
IFInst2

MEM
EX
ID
IFInst3

WB

WBMEM
EX

WB

steady state
(full pipeline)

Illustrating Pipeline Operation: Resource View

41

I0

I0

I1

I0

I1

I2

I0

I1

I2

I3

I0

I1

I2

I3

I4

I1

I2

I3

I4

I5

I2

I3

I4

I5

I6

I3

I4

I5

I6

I7

I4

I5

I6

I7

I8

I5

I6

I7

I8

I9

I6

I7

I8

I9

I10

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

IF

ID

EX

MEM

WB

Control Points in a Pipeline

42

PC

Instruction
memory

Address

In
st

ru
ct

io
n

Instruction
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15– 0]

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1
Write
data

Read
data M

u
x

1

ALU
control

RegWrite

MemRead

Instruction
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data
memory

PCSrc

Zero

Add Add
result

Shift
left 2

ALU
result

ALU
Zero

Add

0

1

M
u
x

0

1

M
u
x

Identical set of control points as the single-cycle datapath

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS
RESERVED.]

Control Signals in a Pipeline
n For a given instruction

q same control signals as single-cycle, but
q control signals required at different cycles, depending on stage
Þ Option 1: decode once using the same logic as single-cycle and

buffer signals until consumed

Þ Option 2: carry relevant “instruction word/field” down the pipeline
and decode locally within each or in a previous stage

Which one is better?

43

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

Pipelined Control Signals

44

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20– 16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address
Data

memory

Address

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS
RESERVED.]

Carnegie Mellon

45

Another Example: Single-Cycle and Pipelined

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCF0
1

PC' InstrD 25:21

20:16

15:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

ResultW

PCPlus4EPCPlus4F

ZeroM

CLK CLK

AL
U

WriteRegE4:0

CLK
CLK

CLK

SignImm

CLK

A RD
Instruction

Memory
+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

Zero

CLK

AL
U

Fetch Decode Execute Memory Writeback

Is this correct?

Carnegie Mellon

46

Another Example: Correct Pipelined Datapath

¢ WriteReg control signal must arrive at the same time as Result

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCF0
1

PC' InstrD 25:21

20:16

15:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4EPCPlus4F

ZeroM

CLK CLK

WriteRegW4:0

AL
U

WriteRegE4:0

CLK
CLK

CLK

Fetch Decode Execute Memory Writeback

Pipelined processor. Harris and Harris, Chapter 7.5

Carnegie Mellon

47

Another Example: Pipelined Control

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4EPCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

ZeroM

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

BranchE BranchM

RegDstE

ALUSrcE

WriteRegE4:0

¢ Same control unit as single-cycle processor
Control delayed to proper pipeline stage

Remember: An Ideal Pipeline
n Goal: Increase throughput with little increase in cost

(hardware cost, in case of instruction processing)

n Repetition of identical operations
q The same operation is repeated on a large number of different

inputs (e.g., all laundry loads go through the same steps)
n Repetition of independent operations

q No dependencies between repeated operations
n Uniformly partitionable suboperations

q Processing an be evenly divided into uniform-latency
suboperations (that do not share resources)

n Fitting examples: automobile assembly line, doing laundry
q What about the instruction processing “cycle”?

48

Instruction Pipeline: Not An Ideal Pipeline
n Identical operations ... NOT!

Þ different instructions à not all need the same stages
Forcing different instructions to go through the same pipe stages

à external fragmentation (some pipe stages idle for some instructions)

n Uniform suboperations ... NOT!
Þ different pipeline stages à not the same latency

Need to force each stage to be controlled by the same clock
à internal fragmentation (some pipe stages are fast but still have to

take the same clock cycle time)

n Independent operations ... NOT!
Þ instructions are not independent of each other

Need to detect and resolve inter-instruction dependences to ensure
the pipeline provides correct results
à pipeline stalls (pipeline is not always moving)

49

Issues in Pipeline Design
n Balancing work in pipeline stages

q How many stages and what is done in each stage

n Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow
q Handling dependences

n Data
n Control

q Handling resource contention
q Handling long-latency (multi-cycle) operations

n Handling exceptions, interrupts

n Advanced: Improving pipeline throughput
q Minimizing stalls

50

Causes of Pipeline Stalls
n Stall: A condition when the pipeline stops moving

n Resource contention

n Dependences (between instructions)
q Data
q Control

n Long-latency (multi-cycle) operations

51

Dependences and Their Types
n Also called “dependency” or less desirably “hazard”

n Dependences dictate ordering requirements between
instructions

n Two types
q Data dependence
q Control dependence

n Resource contention is sometimes called resource
dependence
q However, this is not fundamental to (dictated by) program

semantics, so we will treat it separately
52

Handling Resource Contention
n Happens when instructions in two pipeline stages need the

same resource

n Solution 1: Eliminate the cause of contention
q Duplicate the resource or increase its throughput

n E.g., use separate instruction and data memories (caches)
n E.g., use multiple ports for memory structures

n Solution 2: Detect the resource contention and stall one of
the contending stages
q Which stage do you stall?
q Example: What if you had a single read and write port for the

register file?

53

Carnegie Mellon

54

Example Resource Dependence: RegFile
¢ The register file can be read and written in the same cycle:

§ write takes place during the 1st half of the cycle
§ read takes place during the 2nd half of the cycle => no problem!!!
§ However, operations that read/write from/to the register file have

only half a clock cycle remaining to complete …

Data Dependences
n Data dependence types

q Flow dependence (true data dependence – read after write)
q Anti dependence (write after read)
q Output dependence (write after write)

n Which ones cause stalls in a pipelined machine?
q For all of them, we need to ensure semantics of the program

is correct
q Flow dependences always need to be obeyed because they

constitute true dependence on a value
q Anti and output dependences exist due to limited number of

architectural registers
n They are dependence on a name, not a value
n We will later see what we can do about them

55

Data Dependence Types

56

Flow dependence
r3 ¬ r1 op r2 Read-after-Write
r5 ¬ r3 op r4 (RAW)

Anti dependence
r3 ¬ r1 op r2 Write-after-Read
r1 ¬ r4 op r5 (WAR)

Output dependence
r3 ¬ r1 op r2 Write-after-Write
r5 ¬ r3 op r4 (WAW)
r3 ¬ r6 op r7

Pipelined Operation Example

57

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction decode
lw $10, 20($1)

Instruction fetch
sub $11, $2, $3

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction fetch
lw $10, 20($1)

Address

Data
memory

Address

Data
memory

Clock 1

Clock 2

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction decode
lw $10, 20($1)

Instruction fetch
sub $11, $2, $3

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction fetch
lw $10, 20($1)

Address

Data
memory

Address

Data
memory

Clock 1

Clock 2

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory
lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Execution
sub $11, $2, $3

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Execution
lw $10, 20($1)

Instruction decode
sub $11, $2, $3

3216
Sign

extend

Address

Data
memory

Data
memory

Address

Clock 3

Clock 4

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory
lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Execution
sub $11, $2, $3

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Execution
lw $10, 20($1)

Instruction decode
sub $11, $2, $3

3216
Sign

extend

Address

Data
memory

Data
memory

Address

Clock 3

Clock 4

Instruction
memory

Address

4

32

0

Add Add
result

1

ALU
result

Zero

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction
memory

Address

4

32

0

Add Add
result

1

ALU
result

Zero

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory
sub $11, $2, $3

Address

Data
memory

Address

Data
memory

Clock 6

Clock 5

Instruction
memory

Address

4

32

0

Add Add
result

1

ALU
result

Zero

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction
memory

Address

4

32

0

Add Add
result

1

ALU
result

Zero

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory
sub $11, $2, $3

Address

Data
memory

Address

Data
memory

Clock 6

Clock 5

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

What if the SUB were dependent on LW?

Data Dependence Handling

58

Readings for Next Few Lectures
n H&H, Chapter 7.5-7.9

n Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995
q More advanced pipelining
q Interrupt and exception handling
q Out-of-order and superscalar execution concepts

59

How to Handle Data Dependences
n Anti and output dependences are easier to handle

q write to the destination only in last stage and in program order

n Flow dependences are more interesting & challenging

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
60

Recall: Data Dependence Types

61

Flow dependence
r3 ¬ r1 op r2 Read-after-Write
r5 ¬ r3 op r4 (RAW)

Anti dependence
r3 ¬ r1 op r2 Write-after-Read
r1 ¬ r4 op r5 (WAR)

Output dependence
r3 ¬ r1 op r2 Write-after-Write
r5 ¬ r3 op r4 (WAW)
r3 ¬ r6 op r7

RAW Dependence Handling
n Which one of the following flow dependences lead to

conflicts in the 5-stage pipeline?

62

MEM

WBIF ID

IF

EX

ID

MEM

EX WB

addi ra r- -

addi r- ra -

MEMIF ID EX

IF ID EX

IF ID

IF

addi r- ra -

addi r- ra -

addi r- ra -

addi r- ra -

?

Pipeline Stall: Resolving Data Dependence

63

IF

WB

IF ID ALU MEM
IF ID ALU MEM

IF ID ALU MEM
IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM
IF ID ALU

IF ID

Insti
Instj
Instk
Instl

WB
WB

i: rx ¬ _
j: _ ¬ rx dist(i,j)=1

i
j

Insth

WB
MEM
ALU

i: rx ¬ _
bubble
j: _ ¬ rx dist(i,j)=2

WB

IF ID ALU MEM
IF ID ALU MEM

IF ID ALU MEM
IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti
Instj
Instk
Instl

WB
WBi

j

Insth

ID
IF

IF

IF ID ALU
IF ID

i: rx ¬ _
bubble
bubble
j: _ ¬ rx dist(i,j)=3

IF

IF ID ALU MEM
IF ID ALU MEM

IF ID ALU
IF ID

t0 t1 t2 t3 t4 t5

IF

MEM
ALU
ID

Insti
Instj
Instk
Instl

WB
WBi

j

Insth

ID
IF

ID
IF

i: rx ¬ _
bubble
bubble
bubble
j: _ ¬ rx dist(i,j)=4

IF

IF ID ALU MEM
IF ID ALU MEM

IF ID
IF

t0 t1 t2 t3 t4 t5

ALU
ID

Insti
Instj
Instk
Instl

WB
WBi

j

Insth

ID
IF

ID
IF

ID
IF

Stall = make the dependent instruction wait
until its source data value is available
1. stop all up-stream stages
2. drain all down-stream stages

Interlocking
n Interlocking: Detection of dependence between instructions

in a pipelined processor to guarantee correct execution

n Software based interlocking
vs.

n Hardware based interlocking

n MIPS acronym?

64

Approaches to Dependence Detection (I)
n Scoreboarding

q Each register in register file has a Valid bit associated with it
q An instruction that is writing to the register resets the Valid bit
q An instruction in Decode stage checks if all its source and

destination registers are Valid
n Yes: No need to stall… No dependence
n No: Stall the instruction

n Advantage:
q Simple. 1 bit per register

n Disadvantage:
q Need to stall for all types of dependences, not only flow dep.

65

Pipelined Operation Example

66

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction decode
lw $10, 20($1)

Instruction fetch
sub $11, $2, $3

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction fetch
lw $10, 20($1)

Address

Data
memory

Address

Data
memory

Clock 1

Clock 2

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction decode
lw $10, 20($1)

Instruction fetch
sub $11, $2, $3

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction fetch
lw $10, 20($1)

Address

Data
memory

Address

Data
memory

Clock 1

Clock 2

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory
lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Execution
sub $11, $2, $3

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Execution
lw $10, 20($1)

Instruction decode
sub $11, $2, $3

3216
Sign

extend

Address

Data
memory

Data
memory

Address

Clock 3

Clock 4

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
Now assume SUB is dependent on LW

$10

Approaches to Dependence Detection (II)
n Combinational dependence check logic

q Special logic checks if any instruction in later stages is
supposed to write to any source register of the instruction that
is being decoded

q Yes: stall the instruction/pipeline
q No: no need to stall… no flow dependence

n Advantage:
q No need to stall on anti and output dependences

n Disadvantage:
q Logic is more complex than a scoreboard
q Logic becomes more complex as we make the pipeline deeper

and wider (flash-forward: think superscalar execution)
67

Pipelined Operation Example

68

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction decode
lw $10, 20($1)

Instruction fetch
sub $11, $2, $3

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction fetch
lw $10, 20($1)

Address

Data
memory

Address

Data
memory

Clock 1

Clock 2

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction decode
lw $10, 20($1)

Instruction fetch
sub $11, $2, $3

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction fetch
lw $10, 20($1)

Address

Data
memory

Address

Data
memory

Clock 1

Clock 2

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory
lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Execution
sub $11, $2, $3

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Execution
lw $10, 20($1)

Instruction decode
sub $11, $2, $3

3216
Sign

extend

Address

Data
memory

Data
memory

Address

Clock 3

Clock 4

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
Now assume SUB is dependent on LW

$10

Once You Detect the Dependence in Hardware

n What do you do afterwards?

n Observation: Dependence between two instructions is
detected before the communicated data value becomes
available

n Option 1: Stall the dependent instruction right away
n Option 2: Stall the dependent instruction only when

necessary à data forwarding/bypassing
n Option 3: …

69

Data Forwarding/Bypassing
n Problem: A consumer (dependent) instruction has to wait in

decode stage until the producer instruction writes its value
in the register file

n Goal: We do not want to stall the pipeline unnecessarily

n Observation: The data value needed by the consumer
instruction can be supplied directly from a later stage in the
pipeline (instead of only from the register file)

n Idea: Add additional dependence check logic and data
forwarding paths (buses) to supply the producer’s value to
the consumer right after the value is available

n Benefit: Consumer can move in the pipeline until the point
the value can be supplied à less stalling

70

Data Dependence Handling:
Concepts and Implementation

71

How to Implement Stalling

n Stall
q disable PC and IF/ID latching; ensure stalled instruction stays in its stage
q Insert “invalid” instructions/nops into the stage following the stalled one

(called “bubbles”)
72

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20– 16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address
Data

memory

Address

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

RAW Data Dependence Example
¢ One instruction writes a register ($s0) and next instructions

read this register => read after write (RAW) dependence.
q add writes into $s0 in the first half of cycle 5
q and reads $s0 on cycle 3, obtaining the wrong value
q or reads $s0 on cycle 4, again obtaining the wrong value
q sub reads $s0 in 2nd half of cycle 5, getting the correct value
q subsequent instructions read the correct value of $s0

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

Only if the pipeline handles
data dependences incorrectly!

Compile-Time Detection and Elimination

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

nop

nop

RF RFDMnopIM

RF RFDMnopIM

9 10

n Insert enough independent instructions for the required result
to be ready by the time it is needed by a dependent one
q Reorder/reschedule/insert instructions at the compiler level

Data Forwarding
n Also called Data Bypassing

n Forward the result value to the dependent instruction
as soon as the value is available

n We have already seen the basic idea before
n Remember dataflow?

q Data value is supplied to dependent instruction as soon as it is
available

q Instruction executes when all its operands are available

n Data forwarding brings a pipeline closer to data flow
execution principles

We Covered Until This Point
in Lecture

Digital Design & Computer Arch.
Lecture 13: Pipelining

Prof. Onur Mutlu

ETH Zürich
Spring 2022
7 April 2022

Data Forwarding

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

Data Forwarding

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

Hazard Unit

PCPlus4E

BranchE BranchM

ZeroM

Dependence Detection Logic

Data Forwarding
n Forward to Execute stage from either:

q Memory stage or
q Writeback stage

n When should we forward from either Memory or Writeback
stage?
q If that stage will write to a destination register and the

destination register matches the source register
q If both the Memory & Writeback stages contain matching

destination registers, Memory stage has priority to forward its
data, because it contains the more recently executed instruction

Data Forwarding (in Pseudocode)
n Forward to Execute stage from either:

q Memory stage or
q Writeback stage

n Forwarding logic for ForwardAE (pseudo code):
if ((rsE != 0) AND (rsE == WriteRegM) AND RegWriteM) then

ForwardAE = 10 # forward from Memory stage

else if ((rsE != 0) AND (rsE == WriteRegW) AND RegWriteW) then

ForwardAE = 01 # forward from Writeback stage

else

ForwardAE = 00 # no forwarding

n Forwarding logic for ForwardBE same, but replace rsE with rtE

Forwarding Is Not Always Possible

n Forwarding is usually sufficient to resolve RAW data dependences
n Unfortunately, there are cases when forwarding is not possible

q due to pipeline design and instruction latencies
q The lw instruction does not finish reading data until the end of Memory stage

à its result cannot be forwarded to the Execute stage of the next instruction

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

Trouble!

Stalling Necessary for MEM-EX Dependence

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

9

RF $s1

$s0

IM or

Stall

Stalling and Dependence Detection Hardware

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Hazard Unit

Fl
us
hE

PCPlus4E

BranchE BranchM

ZeroM

EN

EN C
LR

Dependence Detection Logic

Hardware Needed for Stalling
n Stalls are supported by adding

q enable inputs (EN) to the Fetch and Decode pipeline registers
q synchronous reset/clear (CLR) input to the Execute pipeline

register
n or an INV bit associated with each pipeline register, indicating that

contents are INValid

n When a lw stall occurs
q Keep the values in the Decode and Fetch stage pipeline registers

n StallD and StallF are asserted
q Clear the contents of the Execute stage register, introducing a

bubble
n FlushE is also asserted

A Special Case of Data Dependence
n Control dependence

q Data dependence on the Instruction Pointer / Program Counter

86

Control Dependence
n Question: What should the fetch PC be in the next cycle?
n Answer: The address of the next instruction

q All instructions are control dependent on previous ones. Why?

n If the fetched instruction is a non-control-flow instruction:
q Next Fetch PC is the address of the next-sequential instruction
q Easy to determine if we know the size of the fetched instruction

n If the instruction that is fetched is a control-flow instruction:
q How do we determine the next Fetch PC?

n In fact, how do we know whether or not the fetched
instruction is a control-flow instruction?

87

Carnegie Mellon

88

Branch Prediction
¢ Special case of data dependence: dependence on PC

¢ beq:
§ Conditional branch is not resolved until the fourth stage of the pipeline
§ Instructions after the branch are fetched before branch is resolved
§ Simple “branch prediction” example:

§ Always predict that the next sequential instruction is fetched
§ Called “Always not taken” prediction
§ Flush (invalidate) such instructions if the branch is taken

¢ Branch misprediction penalty
§ number of instructions flushed when branch is incorrectly predicted
§ Penalty can be reduced by resolving the branch earlier

§ Called “Early branch resolution”

Carnegie Mellon

89

Control Dependence: Original Pipeline

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Hazard Unit

Fl
us
hE

PCPlus4E

BranchE BranchM

ZeroM

EN

EN

C
LR

Dependence Detection Logic

Carnegie Mellon

90

Control Dependence: Flush on Misprediction

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1
RF- DM

RF $s1

$s0
RF& DM

RF $s0

$s4
RF| DM

RF $s5

$s0
RF- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

20

24

28

2C

30

...

...

9

Flush
these

instructions

64 slt $t3, $s2, $s3 RF $s3

$s2
RF

$t3s
l
t DMIM slt

Flush
3 instructions

Carnegie Mellon

91

Pipeline with Early Branch Resolution

Need to calculate branch target and condition in the Decode Stage

Dependence Detection Logic

Carnegie Mellon

92

Early Branch Resolution

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1
RF- DM

RF $s1

$s0
RF& DMand $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

andIM

IM lw20

24

28

2C

30

...

...

9

Flush
this

instruction

64 slt $t3, $s2, $s3 RF $s3

$s2
RF

$t3s
l
t DMIM slt

Flush
1 instruction

Carnegie Mellon

93

Early Branch Resolution: Good Idea?
¢ Advantages

§ Reduced branch misprediction penalty
à Reduced CPI (cycles per instruction)

¢ Disadvantages
§ Potential increase in clock cycle time?

à Higher clock period and lower frequency?
§ Additional hardware cost

à Specialized and likely not used by other instructions

Recall: Performance Analysis Basics

n Execution time of a single instruction
q {CPI} x {clock cycle time}

n CPI: Number of cycles it takes to execute an instruction

n Execution time of an entire program
q Sum over all instructions [{CPI} x {clock cycle time}]
q {# of instructions} x {Average CPI} x {clock cycle time}

94

Carnegie Mellon

95

Data Forwarding for Early Branch Resolution

EqualD

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

0
1
0
1

=

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

Fo
rw
ar
dA
D

Fo
rw
ar
dB
D

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eE

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Br
an
ch
D

Hazard Unit

Fl
us
hE

EN

EN

C
LR

C
LR

Data forwarding for early branch resolution adds even more complexity

Dependence Detection Logic

Carnegie Mellon

96

Forwarding and Stalling Hardware Control
// Forwarding logic:
assign ForwardAD = (rsD != 0) & (rsD == WriteRegM) & RegWriteM;
assign ForwardBD = (rtD != 0) & (rtD == WriteRegM) & RegWriteM;

//Stalling logic:
assign lwstall = ((rsD == rtE) | (rtD == rtE)) & MemtoRegE;

assign branchstall = (BranchD & RegWriteE &
(WriteRegE == rsD | WriteRegE == rtD))
|
(BranchD & MemtoRegM &
(WriteRegM == rsD | WriteRegM == rtD));

// Stall signals;
assign StallF = lwstall | branchstall;
assign StallD = lwstall | branchstall;
assign FLushE = lwstall | branchstall;

Carnegie Mellon

97

Final Pipelined MIPS Processor (H&H)

Includes always-taken br prediction, early branch resolution, forwarding, stall logic

Dependence Detection Logic

Carnegie Mellon

98

Doing Better: Smarter Branch Prediction
¢ Guess whether or not branch will be taken

§ Backward branches are usually taken (loops)
§ Consider history of whether branch was previously taken to improve

the guess

¢ Accurate branch prediction reduces the fraction of branches
requiring a flush

¢ Many sophisticated techniques are employed in modern
processors
§ Including simple machine learning methods
§ We will see them in the Branch Prediction lectures

More on Branch Prediction (I)

https://www.youtube.com/watch?v=h6l9yYSyZHM&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=22

https://www.youtube.com/watch?v=h6l9yYSyZHM&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=22

More on Branch Prediction (II)

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23

More on Branch Prediction (III)

https://www.youtube.com/watch?v=yDjsr-jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

https://www.youtube.com/watch?v=yDjsr-jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

Lectures on Branch Prediction
n Digital Design & Computer Architecture, Spring 2020, Lecture 16b

q Branch Prediction I (ETH Zurich, Spring 2020)
q https://www.youtube.com/watch?v=h6l9yYSyZHM&list=PL5Q2soXY2Zi_FRrloMa2fU

YWPGiZUBQo2&index=22

n Digital Design & Computer Architecture, Spring 2020, Lecture 17
q Branch Prediction II (ETH Zurich, Spring 2020)
q https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fU

YWPGiZUBQo2&index=23

n Computer Architecture, Spring 2015, Lecture 5
q Advanced Branch Prediction (CMU, Spring 2015)
q https://www.youtube.com/watch?v=yDjsr-

jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

102https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Pipelined Performance Example

103

Carnegie Mellon

104

Pipelined Performance Example
¢ SPECINT2017 benchmark:

§ 25% loads
§ 10% stores
§ 11% branches
§ 2% jumps
§ 52% R-type

¢ Suppose:
§ 40% of loads used by next instruction
§ 25% of branches mispredicted

¢ All jumps flush next instruction

¢ What is the average CPI?

Carnegie Mellon

105

Pipelined Performance Example Solution
¢ Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.

Thus:
§ CPIlw = 1(0.6) + 2(0.4) = 1.4 Average CPI for load
§ CPIbeq = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch

¢ And
§ Average CPI =

Carnegie Mellon

106

Pipelined Performance Example Solution
¢ Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.

Thus:
§ CPIlw = 1(0.6) + 2(0.4) = 1.4 Average CPI for load
§ CPIbeq = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch

¢ And
§ Average CPI = (0.25)(1.4) + load

(0.1)(1) + store
(0.11)(1.25) + beq
(0.02)(2) + jump
(0.52)(1) r-type

= 1.15

Carnegie Mellon

107

Pipelined Performance
¢ There are 5 stages, and 5 different timing paths:

Tc = max {
tpcq + tmem + tsetup fetch
2(tRFread + tmux + teq + tAND + tmux + tsetup) decode
tpcq + tmux + tmux + tALU + tsetup execute
tpcq + tmemwrite + tsetup memory
2(tpcq + tmux + tRFwrite) writeback
}

¢ The operation speed depends on the slowest operation

¢ Decode and Writeback use register file and have only half a
clock cycle to complete, that is why there is a 2 in front of them

Carnegie Mellon

108

Pipelined Performance Example
Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Equality comparator teq 40

AND gate tAND 15

Memory write Tmemwrite 220

Register file write tRFwrite 100

Tc = 2(tRFread + tmux + teq + tAND + tmux + tsetup)
= 2[150 + 25 + 40 + 15 + 25 + 20] ps
= 550 ps

Carnegie Mellon

109

Pipelined Performance Example
¢ For a program with 100 billion instructions executing on a

pipelined MIPS processor:
§ CPI = 1.15
§ Tc = 550 ps

¢ Execution Time = (# instructions) × CPI × Tc
= (100 × 109)(1.15)(550 × 10-12)
= 63 seconds

Carnegie Mellon

110

Performance Summary for 3 MIPS microarch.

Processor
Execution Time
(seconds)

Speedup
(single-cycle is baseline)

Single-cycle 95 1
Multicycle 133 0.71
Pipelined 63 1.51

¢ Pipelined implementation is the fastest of 3 implementations

¢ Even though we have a 5-stage pipeline, speedup is not 5X
over multi-cycle!

Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle

q write to the destination only in last stage and in program order

n Flow dependences are more interesting

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
111

Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle

q write to the destination only in last stage and in program order

n Flow dependences are more interesting

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
112

Questions to Ponder
n What is the role of the hardware vs. the software in data

dependence handling?
q Software based interlocking
q Hardware based interlocking
q Who inserts/manages the pipeline bubbles?
q Who finds the independent instructions to fill “empty” pipeline

slots?
q What are the advantages/disadvantages of each?

n Think of the performance equation as well

113

Questions to Ponder
n What is the role of the hardware vs. the software in the

order in which instructions are executed in the pipeline?
q Software based instruction scheduling à static scheduling
q Hardware based instruction scheduling à dynamic scheduling

n How does each impact different metrics?
q Performance (and parts of the performance equation)
q Complexity
q Power consumption
q Reliability
q …

114

More on Software vs. Hardware
n Software based scheduling of instructions à static scheduling

q Compiler orders the instructions, hardware executes them in
that order

q Contrast this with dynamic scheduling (in which hardware can
execute instructions out of the compiler-specified order)

q How does the compiler know the latency of each instruction?

n What information does the compiler not know that makes
static scheduling difficult?
q Answer: Anything that is determined at run time

n Variable-length operation latency, memory addr, branch direction

n How can the compiler alleviate this (i.e., estimate the
unknown)?
q Answer: Profiling

115

More on Static Instruction Scheduling

116https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Lectures on Static Instruction Scheduling

n Computer Architecture, Spring 2015, Lecture 16
q Static Instruction Scheduling (CMU, Spring 2015)
q https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JC

L1TWybTDtKq&index=18

n Computer Architecture, Spring 2013, Lecture 21
q Static Instruction Scheduling (CMU, Spring 2013)
q https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59RE

og9jDnPDTG6IJ&index=21

117https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures

Harder mapping of HLL to ISA
More work for software designer
Less work for hardware designer
Optimization burden on SW

Recall: Semantic Gap
n How close instructions & data types & addressing modes

are to high-level language (HLL)

HLL

HW
Control
Signals

HLL

HW
Control
Signals

ISA with
Complex Inst
& Data Types
& Addressing Modes ISA with

Simple Inst
& Data Types
& Addressing Modes

Small Semantic Gap

Large Semantic Gap

Easier mapping of HLL to ISA
Less work for software designer
More work for hardware designer
Optimization burden on HW

Recall: How to Change the Semantic Gap Tradeoffs

n Translate from one ISA into a different “implementation” ISA

119

HLL

HW
Control
Signals

Small Semantic Gap

Implementation ISA with
Simple Inst
& Data Types
& Addressing Modes

Software or Hardware Translator

ISA with
Complex Inst
& Data Types
& Addressing Modes

X86-64

ARM v8.4

Another Example: NVIDIA Denver

120https://www.anandtech.com/show/8701/the-google-nexus-9-review/4
https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1

Transmeta: x86 to VLIW Translation

121
Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

X86

Proprietary VLIW ISA

X86

https://www.wikiwand.com/en/Transmeta_Efficeon

More on Static Instruction Scheduling

122https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Lectures on Static Instruction Scheduling

n Computer Architecture, Spring 2015, Lecture 16
q Static Instruction Scheduling (CMU, Spring 2015)
q https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JC

L1TWybTDtKq&index=18

n Computer Architecture, Spring 2013, Lecture 21
q Static Instruction Scheduling (CMU, Spring 2013)
q https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59RE

og9jDnPDTG6IJ&index=21

123https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures

Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle

q write to the destination only in last stage and in program order

n Flow dependences are more interesting

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
124

Fine-Grained Multithreading

125

Fine-Grained Multithreading
n Idea: Hardware has multiple thread contexts (PC+registers).

Each cycle, fetch engine fetches from a different thread.
q By the time the fetched branch/instruction resolves, no

instruction is fetched from the same thread
q Branch/instruction resolution latency overlapped with execution

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread

-- Single thread performance suffers
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough

threads to cover the whole pipeline
126

Fine-Grained Multithreading (II)
n Idea: Switch to another thread every cycle such that no two

instructions from a thread are in the pipeline concurrently

n Tolerates the control and data dependence latencies by
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple
threads

n Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

n Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

127

Fine-Grained Multithreading: History
n CDC 6600’s peripheral processing unit is fine-grained

multithreaded
q Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
q Processor executes a different I/O thread every cycle
q An operation from the same thread is executed every 10 cycles

n Denelcor HEP (Heterogeneous Element Processor)
q Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
q 120 threads/processor
q available queue vs. unavailable (waiting) queue for threads
q each thread can have only 1 instruction in the processor pipeline; each thread

independent
q to each thread, processor looks like a non-pipelined machine
q system throughput vs. single thread performance tradeoff

128

Fine-Grained Multithreading in HEP
n Cycle time: 100ns

n 8 stages à 800 ns to
complete an
instruction
q assuming no memory

access

n No control and data
dependence checking

129

Burton Smith
(1941-2018)

Multithreaded Pipeline Example

130Slide credit: Joel Emer

Sun Niagara Multithreaded Pipeline

131
Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-Grained Multithreading
n Advantages

+ No need for dependence checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic
+ Otherwise-bubble cycles used for executing useful instructions from

different threads
+ Improved system throughput, latency tolerance, utilization

n Disadvantages
- Extra hardware complexity: multiple hardware contexts (PCs, register

files, …), thread selection logic
- Reduced single thread performance (one instruction fetched every N

cycles from the same thread)
- Resource contention between threads in caches and memory
- Some dependence checking logic between threads remains (load/store)

132

Modern GPUs are
FGMT Machines

133

NVIDIA GeForce GTX 285 “core”

134

…

= instruction stream decode= data-parallel (SIMD) func. unit,
control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage
for thread contexts
(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

135

…
64 KB of storage
for thread contexts
(registers)

n Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

n Up to 32 warps are interleaved in an FGMT manner
n Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

136

30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian

Further Reading for the Interested (I)

137

Burton Smith
(1941-2018)

Further Reading for the Interested (II)

138

More on Multithreading (I)

https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=51

https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=51

More on Multithreading (II)

https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=52

https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=52

More on Multithreading (III)

https://www.youtube.com/watch?v=7vkDpZ1-hHM&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=53

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23

More on Multithreading (IV)

https://www.youtube.com/watch?v=-hbmzIDe0sA&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=54

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23

Lectures on Multithreading
n Parallel Computer Architecture, Fall 2012, Lecture 9

q Multithreading I (CMU, Fall 2012)
q https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY

_tGtUlynnyV6D&index=51

n Parallel Computer Architecture, Fall 2012, Lecture 10
q Multithreading II (CMU, Fall 2012)
q https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_

tGtUlynnyV6D&index=52

n Parallel Computer Architecture, Fall 2012, Lecture 13
q Multithreading III (CMU, Fall 2012)
q https://www.youtube.com/watch?v=7vkDpZ1-

hHM&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=53
n Parallel Computer Architecture, Fall 2012, Lecture 15

q Speculation I (CMU, Fall 2012)
q https://www.youtube.com/watch?v=-

hbmzIDe0sA&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=54

143https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=51
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Digital Design & Computer Arch.
Lecture 13: Pipelining

Prof. Onur Mutlu

ETH Zürich
Spring 2022
7 April 2022

Pipelining and Precise Exceptions:
Preserving Sequential Semantics

Multi-Cycle Execution
n Not all instructions take the same amount of time for

“execution”

n Idea: Have multiple different functional units that take
different number of cycles
q Can be pipelined or not pipelined
q Can let independent instructions start execution on a different

functional unit before a previous long-latency instruction
finishes execution

146

F D

E

?
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

Issues in Pipelining: Multi-Cycle Execute
n Instructions can take different number of cycles in EXECUTE

stage
q Integer ADD versus Integer DIVide

q What is wrong with this picture in a Von Neumann architecture?
n Sequential semantics of the ISA NOT preserved!
n What if DIV incurs an exception?

147

F D E W
F D E WE E E E E E EDIV R4 ß R1, R2

ADD R3 ß R1, R2

F D E W
F D E W

F D E W
F D E W

DIV R2 ß R5, R6
ADD R7 ß R5, R6

F D E WE E E E E E E

Exceptions and Interrupts
n “Unplanned” changes or interruptions in program execution

n Due to internal problems in execution of the program
à Exceptions

n Due to external events that need to be handled by the
processor
à Interrupts

n Both exceptions and interrupts require
q stopping of the current program
q saving the architectural state
q handling the exception/interrupt à switch to handler
q return back to program execution (if possible and makes sense)

148

Exceptions vs. Interrupts
n Cause

q Exceptions: internal to the running thread
q Interrupts: external to the running thread

n When to Handle
q Exceptions: when detected (and known to be non-speculative)
q Interrupts: when convenient

n Except for very high priority ones
q Power failure
q Machine check (error)

n Priority: process (exception), depends (interrupt)

n Handling Context: process (exception), system (interrupt)
149

Precise Exceptions/Interrupts
n The architectural state should be consistent (precise)

when the exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

150

Checking for and Handling Exceptions in Pipelining

n When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

q Ensures architectural state is precise (register file, PC, memory)

q Flushes all younger instructions in the pipeline

q Saves PC and registers (as specified by the ISA)

q Redirects the fetch engine to the appropriate exception
handling routine

151

Why Do We Want Precise Exceptions?
n Semantics of the von Neumann model ISA specifies it

q Remember von Neumann vs. Dataflow

n Aids software debugging

n Enables (easy) recovery from exceptions

n Enables (easily) restartable processes

n Enables traps into software (e.g., software implemented
opcodes)

152

Ensuring Precise Exceptions
n Easy to do in single-cycle and multi-cycle machines

n Single-cycle
q Instruction boundaries == Cycle boundaries

n Multi-cycle
q Add special states in the control FSM that lead to the

exception or interrupt handlers
q Switch to the handler only at a precise state à before fetching

the next instruction

153See H&H Section 7.7 for a treatment of exceptions in multi-cycle uarch

Precise Exceptions in Multi-Cycle FSM

154

Precise Exceptions in Multi-Cycle Datapath

155See H&H Section 7.7 for a treatment of exceptions in multi-cycle uarch

Multi-Cycle Execute: More Complications
n Instructions can take different number of cycles in EXECUTE

stage
q Integer ADD versus Integer DIVide

q What is wrong with this picture in a Von Neumann architecture?
n Sequential semantics of the ISA NOT preserved!
n What if DIV incurs an exception?

156

F D E W
F D E WE E E E E E EDIV R4 ß R1, R2

ADD R3 ß R1, R2

F D E W
F D E W

F D E W
F D E W

DIV R2 ß R5, R6
ADD R7 ß R5, R6

F D E WE E E E E E E

Ensuring Precise Exceptions in Pipelining
n Idea: Make each operation take the same amount of time

n Downside
q Worst-case instruction latency determines all instructions’ latency

n What about memory operations?
n Each functional unit takes worst-case number of cycles?

157

F D E W
F D E WE E E E E E E

F D E W
F D E W

F D E W
F D E W

F D E W

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

DIV R3 ß R1, R2
ADD R4 ß R1, R2

Solutions
n Reorder buffer

n History buffer

n Future register file

n Checkpointing

n Suggested reading
q Smith and Plezskun, “Implementing Precise Interrupts in Pipelined

Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

158

We will not cover these
See suggested lecture videos from Spring 2015

Solution I: Reorder Buffer (ROB)
n Idea: Complete instructions out-of-order, but reorder them

before making results visible to architectural state
n When instruction is decoded, it reserves the next-sequential

entry in the ROB
n When instruction completes, it writes result into ROB entry
n When instruction oldest in ROB and it has completed

without exceptions, its result moved to reg. file or memory

159

Register
File

Func Unit

Func Unit

Func Unit

Reorder
Buffer

Instruction
Cache

Reorder Buffer

n Buffers information about all instructions that are decoded
but not yet retired/committed

160

What’s in a ROB Entry?

n Everything required to:
q correctly reorder instructions back into the program order
q update the architectural state with the instruction’s result(s), if

instruction can retire without any issues
q handle an exception/interrupt precisely, if an

exception/interrupt needs to be handled before retiring the
instruction

n Need valid bits to keep track of readiness of the result(s)
and find out if the instruction has completed execution

161

V DestRegID DestRegVal StoreAddr StoreData PC
Valid bits for reg/data
+ control bits Exception?

Reorder Buffer: Independent Operations
n Result first written to ROB on instruction completion
n Result written to register file at commit time

n What if a later instruction needs a value in the reorder buffer?
q One option: stall the operation à stall the pipeline
q Better: Read the value from the reorder buffer. How?

162

F D E W
F D E RE E E E E E E

F D E W
F D E R

F D E R
F D E R

F D E RE E E E E E E

W
R

R
W

W
W

W

Reorder Buffer: How to Access?
n A register value can be in the register file, reorder buffer,

(or bypass/forwarding paths)

163

Register
File

Func Unit

Func Unit

Func UnitReorder
Buffer

Instruction
Cache

bypass paths

Content
Addressable
Memory
(searched with
register ID,
which is part of the content of an entry)

Random Access Memory
(indexed with Register ID,
which is the address of an entry)

Simplifying Reorder Buffer Access
n Idea: Use indirection

n Access register file first (check if the register is valid)
q If register not valid, register file stores the ID of the reorder

buffer entry that contains (or will contain) the value of the
register

q Mapping of the register to a ROB entry: Register file maps the
register to a reorder buffer entry if there is an in-flight
instruction writing to the register

n Access reorder buffer next

n Now, reorder buffer does not need to be content addressable
164

Reorder Buffer in Intel Pentium III

165

Boggs et al., “The
Microarchitecture of the
Pentium 4 Processor,” Intel
Technology Journal, 2001.

Important: Register Renaming with a Reorder Buffer

n Output and anti dependences are not true dependences
q WHY? The same register refers to values that have nothing to

do with each other
q They exist due to lack of register ID’s (i.e. names) in

the ISA

n The register ID is renamed to the reorder buffer entry that
will hold the register’s value
q Register ID à ROB entry ID
q Architectural register ID à Physical register ID
q After renaming, ROB entry ID used to refer to the register

n This eliminates anti and output dependences
q Gives the illusion that there are a large number of registers

166

Recall: Data Dependence Types

167

True (flow) dependence
r3 ¬ r1 op r2 Read-after-Write
r5 ¬ r3 op r4 (RAW) -- True

Anti dependence
r3 ¬ r1 op r2 Write-after-Read
r1 ¬ r4 op r5 (WAR) -- Anti

Output-dependence
r3 ¬ r1 op r2 Write-after-Write
r5 ¬ r3 op r4 (WAW) -- Output
r3 ¬ r6 op r7

Renaming Example
n Assume

q Register file has a pointer to the reorder buffer entry that
contains or will contain the value, if the register is not valid

q Reorder buffer works as described before

n Where is the latest definition of R3 for each instruction
below in sequential order?

LD R0(0) à R3
LD R3, R1 à R10
MUL R1, R2 à R3
MUL R3, R4 à R11
ADD R5, R6 à R3
ADD R7, R8 à R12

168

In-Order Pipeline with Reorder Buffer
n Decode (D): Access regfile/ROB, allocate entry in ROB, check if

instruction can execute, if so dispatch instruction
n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer
n Retirement/Commit (W): Check for exceptions; if none, write result to

architectural register file or memory; else, flush pipeline and start from
exception handler

n In-order dispatch/execution, out-of-order completion, in-order retirement

169

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

R

Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing

170

We will not cover these
See suggested lecture videos from Spring 2015

More on State Maintenance & Precise Exceptions

171https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

More on State Maintenance & Precise Exceptions

172https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Lectures on State Maintenance & Recovery
n Computer Architecture, Spring 2015, Lecture 11

q Precise Exceptions, State Maintenance/Recovery (CMU, Spring 2015)
q https://www.youtube.com/watch?v=nMfbtzWizDA&list=PL5PHm2jkkXmi5CxxI7b3J

CL1TWybTDtKq&index=13

n Digital Design & Computer Architecture, Spring 2019, Lecture 15a
q Reorder Buffer (ETH Zurich, Spring 2019)
q https://www.youtube.com/watch?v=9yo3yhUijQs&list=PL5Q2soXY2Zi8J58xLKBNFQ

FHRO3GrXxA9&index=17

173https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=nMfbtzWizDA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=13
https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=52
https://www.youtube.com/onurmutlulectures

Suggested Readings for the Interested
n Smith and Plezskun, “Implementing Precise Interrupts in

Pipelined Processors,” IEEE Trans on Computers 1988 and
ISCA 1985.

n Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

n Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.

n Backup Slides

174

Backup Slides
on Precise Exceptions

175

Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing

176

Solution II: History Buffer (HB)
n Idea: Update the register file when instruction completes,

but UNDO UPDATES when an exception occurs

n When instruction is decoded, it reserves an HB entry
n When the instruction completes, it stores the old value of

its destination in the HB
n When instruction is oldest and no exceptions/interrupts, the

HB entry discarded
n When instruction is oldest and an exception needs to be

handled, old values in the HB are written back into the
architectural state from tail to head

177

History Buffer

n Advantage:
q Register file contains up-to-date values for incoming instructions

à History buffer access not on critical path
n Disadvantage:

q Need to read the old value of the destination register
q Need to unwind the history buffer upon an exception à

increased exception/interrupt handling latency
178

Register
File

Func Unit

Func Unit

Func Unit

History
Buffer

Instruction
Cache

Used only on exceptions

Comparison of Two Approaches
n Reorder buffer

q Pessimistic register file update
q Update only with non-speculative values (in program order)
q Leads to complexity/delay in accessing the new values

n History buffer
q Optimistic register file update
q Update immediately, but log the old value for recovery
q Leads to complexity/delay in logging old values

n Can we get the best of both worlds?
q Principle: Heterogeneity
q Idea: Have both types of register files

179

Solution III: Future File (FF) + ROB
n Idea: Keep two register files (speculative and architectural)

q Arch reg file: Updated in program order for precise exceptions
n Use a reorder buffer to ensure in-order updates

q Future reg file: Updated as soon as an instruction completes
(if the instruction is the youngest one to write to a register)

n Future file is used for fast access to latest register values
(speculative state)
q Frontend register file

n Architectural file is used for state recovery on exceptions
(architectural state)
q Backend register file

180

Future File

n Advantage
q No need to read the new values from the ROB (no CAM or

indirection) or the old value of destination register

n Disadvantage
q Multiple register files
q Need to copy arch. reg. file to future file on an exception

181

Future
File

Func Unit

Func Unit

Func Unit

Arch.
FileInstruction

Cache

Used only on exceptions

ROB

VData and Tag

In-Order Pipeline with Future File and Reorder Buffer

n Decode (D): Access future file, allocate entry in ROB, check if instruction
can execute, if so dispatch instruction

n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer and future file
n Retirement/Commit (W): Check for exceptions; if none, write result to

architectural register file or memory; else, flush pipeline, copy
architectural file to future file, and start from exception handler

n In-order dispatch/execution, out-of-order completion, in-order retirement

182

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

Can We Reduce the Overhead of Two Register Files?

n Idea: Use indirection, i.e., pointers to data in frontend and
retirement
q Have a single storage that stores register data values
q Keep two register maps (speculative and architectural); also

called register alias tables (RATs)

n Future map used for fast access to latest register values
(speculative state)
q Frontend register map

n Architectural map is used for state recovery on exceptions
(architectural state)
q Backend register map

183

Future Map in Intel Pentium 4

184

Boggs et al., “The
Microarchitecture of
the Pentium 4
Processor,” Intel
Technology Journal,
2001.

Many modern
processors
are similar:
- MIPS R10K
- Alpha 21264

Reorder Buffer vs. Future Map Comparison

185

Before We Get to Checkpointing …
n Let’s cover what happens on exceptions
n And branch mispredictions

186

Checking for and Handling Exceptions in Pipelining

n When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic
q Recovers architectural state (register file, IP, and memory)
q Flushes all younger instructions in the pipeline
q Saves IP and registers (as specified by the ISA)
q Redirects the fetch engine to the exception handling routine

n Vectored exceptions

187

Pipelining Issues: Branch Mispredictions
n A branch misprediction resembles an “exception”

q Except it is not visible to software (i.e., it is microarchitectural)

n What about branch misprediction recovery?
q Similar to exception handling except can be initiated before

the branch is the oldest instruction (not architectural)
q All three state recovery methods can be used

n Difference between exceptions and branch mispredictions?
q Branch mispredictions are much more common

à need fast state recovery to minimize performance impact of
mispredictions

188

How Fast Is State Recovery?
n Latency of state recovery affects

q Exception service latency
q Interrupt service latency
q Latency to supply the correct data to instructions fetched after

a branch misprediction

n Which ones above need to be fast?

n How do the three state maintenance methods fare in terms
of recovery latency?
q Reorder buffer
q History buffer
q Future file

189

Branch State Recovery Actions and Latency
n Reorder Buffer

q Flush instructions in pipeline younger than the branch
q Finish all instructions in the reorder buffer

n History buffer
q Flush instructions in pipeline younger than the branch
q Undo all instructions after the branch by rewinding from the

tail of the history buffer until the branch & restoring old values
one by one into the register file

n Future file
q Wait until branch is the oldest instruction in the machine
q Copy arch. reg. file to future file
q Flush entire pipeline

190

Can We Do Better?
n Goal: Restore the frontend state (future file) such that the

correct next instruction after the branch can execute right
away after the branch misprediction is resolved

n Idea: Checkpoint the frontend register state/map at the
time a branch is decoded and keep the checkpointed state
updated with results of instructions older than the branch
q Upon branch misprediction, restore the checkpoint associated

with the branch

n Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.

191

Checkpointing
n When a branch is decoded

q Make a copy of the future file/map and associate it with the
branch

n When an instruction produces a register value
q All future file/map checkpoints that are younger than the

instruction are updated with the value

n When a branch misprediction is detected
q Restore the checkpointed future file/map for the mispredicted

branch when the branch misprediction is resolved
q Flush instructions in pipeline younger than the branch
q Deallocate checkpoints younger than the branch

192

Checkpointing
n Advantages

q Correct frontend register state available right after checkpoint
restoration à Low state recovery latency

q …

n Disadvantages
q Storage overhead
q Complexity in managing checkpoints
q …

193

Many Modern Processors Use Checkpointing
n MIPS R10000
n Alpha 21264
n Pentium 4

n Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

n Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

n Boggs et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

194

Summary: Maintaining Precise State
n Reorder buffer

n History buffer

n Future register file

n Checkpointing

n Readings
q Smith and Plezskun, “Implementing Precise Interrupts in Pipelined

Processors,” IEEE Trans on Computers 1988 and ISCA 1985.
q Hwu and Patt, “Checkpoint Repair for Out-of-order Execution

Machines,” ISCA 1987.

195

Registers versus Memory
n So far, we considered mainly registers as part of state

n What about memory?

n What are the fundamental differences between registers
and memory?
q Register dependences known statically – memory

dependences determined dynamically
q Register state is small – memory state is large
q Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a
shared memory multiprocessor)

196

Maintaining Speculative Memory State: Stores

n Handling out-of-order completion of memory operations
q UNDOing a memory write more difficult than UNDOing a

register write. Why?
q One idea: Keep store address/data in reorder buffer

n How does a load instruction find its data?
q Store/write buffer: Similar to reorder buffer, but used only for

store instructions
n Program-order list of un-committed store operations
n When store is decoded: Allocate a store buffer entry
n When store address and data become available: Record in store

buffer entry
n When the store is the oldest instruction in the pipeline: Update

the memory address (i.e. cache) with store data

n We will get back to this!
197

Carnegie Mellon

198

Pipeline with Early Branch Resolution

EqualD

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

=

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdE

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Hazard Unit

Fl
us
hE

EN

EN

C
LR

C
LR

Need to calculate branch target and condition in the Decode Stage

Dependence Detection Logic

