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Extra Assignment: Moore’s Law (I)
n Paper review
n G.E. Moore. "Cramming more components onto integrated 

circuits," Electronics magazine, 1965

n Optional Assignment – for 1% extra credit
q Write a 1-page review 
q Upload PDF file to Moodle – Deadline: April 7

n I strongly recommend that you follow my guidelines for 
(paper) review (see next slide)
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https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf


Extra Assignment 2: Moore’s Law (II)
n Guidelines on how to review papers critically

q Guideline slides: pdf ppt
q Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

q Example reviews on “Main Memory Scaling: Challenges and 
Solution Directions” (link to the paper)
n Review 1
n Review 2

q Example review on “Staged memory scheduling: Achieving 
high performance and scalability in heterogeneous 
systems” (link to the paper)
n Review 1
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https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf


Agenda for Today & Next Few Lectures
n Last week: Microarchitecture Fundamentals

q Single-cycle Microarchitectures
q Multi-cycle Microarchitectures

n This week: Pipelining
q Pipelining
q Pipelined Processor Design

n Control & Data Dependence Handling
n Precise Exceptions: State Maintenance & Recovery

n Next week+: Out-of-Order Execution
q Out-of-Order Execution
q Issues in OoO Execution: Load-Store Handling, …
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Readings
n This week

q Pipelining
n H&H, Chapter 7.5

q Pipelining Issues
n H&H, Chapter 7.7, 7.8.1-7.8.3

n Next week
q Out-of-order execution

q H&H, Chapter 7.8-7.9
q Smith & Sohi, “The Microarchitecture of Superscalar Processors,”

Proceedings of the IEEE, 1995
n More advanced pipelining
n Interrupt and exception handling
n Out-of-order and superscalar execution concepts

5



Review: Single-Cycle MIPS Processor (I)
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



Review: Single-Cycle MIPS Processor (II)
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7Single-cycle processor. Harris and Harris, Chapter 7.3.



Review: Single-Cycle MIPS FSM
n Single-cycle machine
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Can We Do Better?
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Review: Multi-Cycle MIPS Processor
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Review: Multi-Cycle MIPS FSM
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Can We Do Better?
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Can We Do Better?
n What limitations do you see with the multi-cycle design?

n Limited concurrency
q Some hardware resources are idle during different phases of 

instruction processing cycle
q “Fetch” logic is idle when an instruction is being “decoded” or 

“executed”
q Most of the datapath is idle when a memory access is 

happening
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Can We Use the Idle Hardware to Improve Concurrency?

n Goal: More concurrency à Higher instruction throughput 
(i.e., more “work” completed in one cycle)

n Idea: When an instruction is using some resources in its 
processing phase, process other instructions on idle 
resources not needed by that instruction
q E.g., when an instruction is being decoded, fetch the next 

instruction
q E.g., when an instruction is being executed, decode another 

instruction
q E.g., when an instruction is accessing data memory (ld/st), 

execute the next instruction
q E.g., when an instruction is writing its result into the register 

file, access data memory for the next instruction
14



Can Have Different Instructions in Different Stages

q Fetch
q Decode
q Evaluate Address
q Fetch Operands
q Execute
q Store Result
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1. Instruction fetch (IF)
2. Instruction decode and 

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB) 



ImmExt

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1PC 0

1

PC' Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

Zero
CLK

AL
U

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN
00
01
10

<<2

25:0 (Addr)

31:28

27:0

PCJump

5:0

31:26

Branch

MemWrite

ALUSrcA
RegWrite

Op
Funct

Control
Unit

PCSrc

CLK

ALUControl2:0

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

R
egD

st

M
em

toR
eg

16

Can Have Different Instructions in Different Stages

Of course, we need to be more careful than this!



Pipelining
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Pipelining: Basic Idea
n More systematically:

q Pipeline the execution of multiple instructions
q Analogy: “Assembly line processing” of instructions

n Idea:
q Divide the instruction processing cycle into distinct “stages” of 

processing
q Ensure there are enough hardware resources to process one 

instruction in each stage
q Process a different instruction in each stage

n Instructions consecutive in program order are processed in 
consecutive stages

n Benefit: Increases instruction processing throughput (1/CPI)
n Downside: Start thinking about this…
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Example: Execution of Four Independent ADDs

n Multi-cycle: 4 cycles per instruction

n Pipelined: 4 cycles per 4 instructions (steady state)
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The Laundry Analogy 

n “place one dirty load of clothes in the washer”
n “when the washer is finished, place the wet load in the dryer”
n “when the dryer is finished, take out the dry load and fold”
n “when folding is finished, put the clothes away”

20

- steps to do a load are sequentially dependent
- no dependence between different loads
- different steps do not share resources
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry: In Practice
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry: In Practice
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A Real-Life Pipeline: Automobile Assembly

24https://www.caranddriver.com/features/a15115930/fords-assembly-line-turns-100-how-it-really-put-the-world-on-wheels-feature/
By Apparent scan made by the original uploader User:Steveking 89., Fair use, https://en.wikipedia.org/w/index.php?curid=11009879



A Real-Life Pipeline: Automobile Assembly

25https://medium.com/@ScottAmyx/toyotas-production-philosophy-combines-human-effort-with-automation-a9df78c64ee1



An Old Pipelined Computer: IBM Stretch

26https://en.wikipedia.org/wiki/IBM_7030_Stretch

https://en.wikipedia.org/wiki/IBM_7030_Stretch


An Ideal Pipeline
n Goal: Increase throughput with little increase in cost 

(hardware cost, in case of instruction processing)

n Repetition of identical operations
q The same operation is repeated on a large number of different 

inputs (e.g., all laundry loads go through the same steps)
n Repetition of independent operations

q No dependences between repeated operations
n Uniformly partitionable suboperations

q Processing can be evenly divided into uniform-latency 
suboperations (that do not share resources)

n Fitting examples: automobile assembly line, doing laundry
q What about the instruction processing “cycle”?
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Ideal Pipelining
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combinational logic (F,D,E,M,W)
T psec

Tput=~(1/T)

Tput=~(2/T)T/2 ps (F,D,E) T/2 ps (M,W)

Tput=~(3/T)T/3
ps (F,D)

T/3
ps (E,M)

T/3
ps (M,W)

Tput = Throughput



More Realistic Pipeline: Throughput
n Nonpipelined version with delay T 

Tput = 1 / (T+S) where S = register (sequential logic) delay

n k-stage pipelined version
Tputk-stage = 1 / (T/k + S )
Tputmax = 1 / (1 gate delay + S )

T ps

T/k
ps

T/k
ps

Register delay reduces throughput
(sequencing overhead b/w stages)

This picture assumes “perfect division of work between stages (T/k)”



More Realistic Pipeline: Cost
n Nonpipelined version with combinational cost G 

Cost = G+R where R = register cost

n k-stage pipelined version
Costk-stage = G + Rk

G gates

G/k G/k

Registers increase hardware cost

This picture ignores resource and register replication that is likely needed (G/k and Rk)



Pipelining Instruction Processing

31



q FETCH
q DECODE
q EVALUATE ADDRESS

q FETCH OPERANDS
q EXECUTE
q STORE RESULT

32

Remember: The Instruction Processing Cycle



Remember: The Instruction Processing Cycle

q Fetch
q Decode
q Evaluate Address
q Fetch Operands
q Execute
q Store Result

33

1. Instruction fetch (IF)
2. Instruction decode and 

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB) 



Remember the Single-Cycle Microarchitecture
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]

T BW=~(1/T)



Dividing the Single-Cycle Uarch Into Stages
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Instruction Pipeline Throughput
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Enabling Pipelined Processing: Pipeline Registers
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Pipelined Operation Example
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

All instruction classes must follow the same path
and timing through the pipeline stages. 

Any performance impact?
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is life always this beautiful?



Illustrating Pipeline Operation: Operation View
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Illustrating Pipeline Operation: Resource View
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Based on original figure from [P&H CO&D, 
COPYRIGHT 2004 Elsevier. ALL RIGHTS 
RESERVED.]



Control Signals in a Pipeline
n For a given instruction

q same control signals as single-cycle, but
q control signals required at different cycles, depending on stage
Þ Option 1: decode once using the same logic as single-cycle and 

buffer signals until consumed

Þ Option 2: carry relevant “instruction word/field” down the pipeline 
and decode locally within each or in a previous stage

Which one is better?
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Pipelined Control Signals
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Another Example: Single-Cycle and Pipelined
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Is this correct?
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Another Example: Correct Pipelined Datapath

¢ WriteReg control signal must arrive at the same time as Result
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Pipelined processor. Harris and Harris, Chapter 7.5
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Another Example: Pipelined Control
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Control delayed to proper pipeline stage



Remember: An Ideal Pipeline
n Goal: Increase throughput with little increase in cost 

(hardware cost, in case of instruction processing)

n Repetition of identical operations
q The same operation is repeated on a large number of different 

inputs (e.g., all laundry loads go through the same steps)
n Repetition of independent operations

q No dependencies between repeated operations
n Uniformly partitionable suboperations

q Processing an be evenly divided into uniform-latency 
suboperations (that do not share resources)

n Fitting examples: automobile assembly line, doing laundry
q What about the instruction processing “cycle”?
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Instruction Pipeline: Not An Ideal Pipeline
n Identical operations ... NOT! 

Þ different instructions à not all need the same stages
Forcing different instructions to go through the same pipe stages

à external fragmentation (some pipe stages idle for some instructions)

n Uniform suboperations ...  NOT! 
Þ different pipeline stages à not the same latency

Need to force each stage to be controlled by the same clock
à internal fragmentation (some pipe stages are fast but still have to 

take the same clock cycle time)

n Independent operations ... NOT!
Þ instructions are not independent of each other

Need to detect and resolve inter-instruction dependences to ensure 
the pipeline provides correct results
à pipeline stalls (pipeline is not always moving)
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Issues in Pipeline Design
n Balancing work in pipeline stages

q How many stages and what is done in each stage

n Keeping the pipeline correct, moving, and full in the 
presence of events that disrupt pipeline flow
q Handling dependences 

n Data
n Control

q Handling resource contention
q Handling long-latency (multi-cycle) operations

n Handling exceptions, interrupts

n Advanced: Improving pipeline throughput
q Minimizing stalls
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Causes of Pipeline Stalls
n Stall: A condition when the pipeline stops moving

n Resource contention

n Dependences (between instructions)
q Data
q Control

n Long-latency (multi-cycle) operations
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Dependences and Their Types
n Also called “dependency” or less desirably “hazard”

n Dependences dictate ordering requirements between 
instructions

n Two types
q Data dependence
q Control dependence

n Resource contention is sometimes called resource 
dependence
q However, this is not fundamental to (dictated by) program 

semantics, so we will treat it separately
52



Handling Resource Contention
n Happens when instructions in two pipeline stages need the 

same resource

n Solution 1: Eliminate the cause of contention
q Duplicate the resource or increase its throughput

n E.g., use separate instruction and data memories (caches)
n E.g., use multiple ports for memory structures

n Solution 2: Detect the resource contention and stall one of 
the contending stages
q Which stage do you stall?
q Example: What if you had a single read and write port for the 

register file?
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Example Resource Dependence: RegFile
¢ The register file can be read and written in the same cycle: 

§ write takes place during the 1st half of the cycle
§ read takes place during the 2nd half of the cycle => no problem!!!
§ However, operations that read/write from/to the register file have 

only half a clock cycle remaining to complete …



Data Dependences
n Data dependence types

q Flow dependence (true data dependence – read after write)
q Anti dependence (write after read)
q Output dependence (write after write)

n Which ones cause stalls in a pipelined machine?
q For all of them, we need to ensure semantics of the program 

is correct
q Flow dependences always need to be obeyed because they 

constitute true dependence on a value
q Anti and output dependences exist due to limited number of 

architectural registers 
n They are dependence on a name, not a value
n We will later see what we can do about them
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Data Dependence Types
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Flow dependence
r3 ¬ r1 op  r2 Read-after-Write
r5 ¬ r3 op  r4 (RAW)

Anti dependence
r3 ¬ r1 op  r2 Write-after-Read
r1 ¬ r4 op  r5 (WAR)

Output dependence
r3 ¬ r1 op  r2 Write-after-Write
r5 ¬ r3 op  r4 (WAW)
r3 ¬ r6 op  r7
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

What if the SUB were dependent on LW?



Data Dependence Handling

58



Readings for Next Few Lectures
n H&H, Chapter 7.5-7.9

n Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995
q More advanced pipelining
q Interrupt and exception handling
q Out-of-order and superscalar execution concepts
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How to Handle Data Dependences
n Anti and output dependences are easier to handle 

q write to the destination only in last stage and in program order

n Flow dependences are more interesting & challenging

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
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Recall: Data Dependence Types
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Flow dependence
r3 ¬ r1 op  r2 Read-after-Write
r5 ¬ r3 op  r4 (RAW)

Anti dependence
r3 ¬ r1 op  r2 Write-after-Read
r1 ¬ r4 op  r5 (WAR)

Output dependence
r3 ¬ r1 op  r2 Write-after-Write
r5 ¬ r3 op  r4 (WAW)
r3 ¬ r6 op  r7



RAW Dependence Handling
n Which one of the following flow dependences lead to 

conflicts in the 5-stage pipeline?

62

MEM

WBIF ID

IF

EX

ID

MEM

EX WB

addi ra r- -

addi  r- ra -

MEMIF ID EX

IF ID EX

IF ID

IF

addi r- ra -

addi  r- ra -

addi  r- ra -

addi  r- ra -

?



Pipeline Stall: Resolving Data Dependence
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Stall = make the dependent instruction wait
until its source data value is available
1. stop all up-stream stages
2. drain all down-stream stages



Interlocking
n Interlocking: Detection of dependence between instructions 

in a pipelined processor to guarantee correct execution

n Software based interlocking
vs. 

n Hardware based interlocking

n MIPS acronym?
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Approaches to Dependence Detection (I)
n Scoreboarding

q Each register in register file has a Valid bit associated with it
q An instruction that is writing to the register resets the Valid bit
q An instruction in Decode stage checks if all its source and 

destination registers are Valid
n Yes: No need to stall… No dependence
n No: Stall the instruction

n Advantage:
q Simple. 1 bit per register

n Disadvantage:
q Need to stall for all types of dependences, not only flow dep.
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Pipelined Operation Example
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
Now assume SUB is dependent on LW
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Approaches to Dependence Detection (II)
n Combinational dependence check logic 

q Special logic checks if any instruction in later stages is 
supposed to write to any source register of the instruction that 
is being decoded

q Yes: stall the instruction/pipeline
q No: no need to stall… no flow dependence

n Advantage:
q No need to stall on anti and output dependences

n Disadvantage:
q Logic is more complex than a scoreboard
q Logic becomes more complex as we make the pipeline deeper 

and wider (flash-forward: think superscalar execution)
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Pipelined Operation Example
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
Now assume SUB is dependent on LW
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Once You Detect the Dependence in Hardware

n What do you do afterwards?

n Observation: Dependence between two instructions is 
detected before the communicated data value becomes 
available

n Option 1: Stall the dependent instruction right away
n Option 2: Stall the dependent instruction only when 

necessary à data forwarding/bypassing
n Option 3: …
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Data Forwarding/Bypassing
n Problem: A consumer (dependent) instruction has to wait in 

decode stage until the producer instruction writes its value 
in the register file

n Goal: We do not want to stall the pipeline unnecessarily

n Observation: The data value needed by the consumer 
instruction can be supplied directly from a later stage in the 
pipeline (instead of only from the register file)

n Idea: Add additional dependence check logic and data 
forwarding paths (buses) to supply the producer’s value to 
the consumer right after the value is available

n Benefit: Consumer can move in the pipeline until the point 
the value can be supplied à less stalling

70



Data Dependence Handling: 
Concepts and Implementation
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How to Implement Stalling

n Stall
q disable PC and IF/ID latching; ensure stalled instruction stays in its stage
q Insert “invalid” instructions/nops into the stage following the stalled one 

(called “bubbles”)
72
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RAW Data Dependence Example
¢ One instruction writes a register ($s0) and next instructions 

read this register => read after write (RAW) dependence. 
q add writes into $s0 in the first half of cycle 5
q and reads $s0 on cycle 3, obtaining the wrong value
q or reads $s0 on cycle 4, again obtaining the wrong value
q sub reads $s0 in 2nd half of cycle 5, getting the correct value
q subsequent instructions read the correct value of $s0

Time (cycles)
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Only if the pipeline handles 
data dependences incorrectly!



Compile-Time Detection and Elimination
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9 10

n Insert enough independent instructions for the required result 
to be ready by the time it is needed by a dependent one
q Reorder/reschedule/insert instructions at the compiler level



Data Forwarding
n Also called Data Bypassing

n Forward the result value to the dependent instruction                 
as soon as the value is available

n We have already seen the basic idea before
n Remember dataflow?

q Data value is supplied to dependent instruction as soon as it is 
available

q Instruction executes when all its operands are available

n Data forwarding brings a pipeline closer to data flow 
execution principles
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Data Forwarding
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Data Forwarding
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Data Forwarding
n Forward to Execute stage from either:

q Memory stage or
q Writeback stage

n When should we forward from either Memory or Writeback 
stage?
q If that stage will write to a destination register and the 

destination register matches the source register 
q If both the Memory & Writeback stages contain matching 

destination registers, Memory stage has priority to forward its 
data, because it contains the more recently executed instruction



Data Forwarding (in Pseudocode)
n Forward to Execute stage from either:

q Memory stage or
q Writeback stage

n Forwarding logic for ForwardAE (pseudo code):
if  ((rsE != 0) AND (rsE == WriteRegM) AND RegWriteM) then       

ForwardAE = 10  # forward from Memory stage

else if ((rsE != 0) AND (rsE == WriteRegW) AND RegWriteW) then     

ForwardAE = 01  # forward from Writeback stage

else

ForwardAE = 00  # no forwarding

n Forwarding logic for ForwardBE same, but replace rsE with rtE



Forwarding Is Not Always Possible

n Forwarding is usually sufficient to resolve RAW data dependences
n Unfortunately, there are cases when forwarding is not possible 

q due to pipeline design and instruction latencies
q The lw instruction does not finish reading data until the end of Memory stage

à its result cannot be forwarded to the Execute stage of the next instruction 
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Stalling Necessary for MEM-EX Dependence

Time (cycles)
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Stalling and Dependence Detection Hardware
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Hardware Needed for Stalling
n Stalls are supported by adding

q enable inputs (EN) to the Fetch and Decode pipeline registers 
q synchronous reset/clear (CLR) input to the Execute pipeline 

register 
n or an INV bit associated with each pipeline register, indicating that 

contents are INValid

n When a lw stall occurs
q Keep the values in the Decode and Fetch stage pipeline registers

n StallD and StallF are asserted
q Clear the contents of the Execute stage register, introducing a 

bubble
n FlushE is also asserted



A Special Case of Data Dependence
n Control dependence

q Data dependence on the Instruction Pointer / Program Counter

86



Control Dependence
n Question: What should the fetch PC be in the next cycle?
n Answer: The address of the next instruction

q All instructions are control dependent on previous ones. Why?

n If the fetched instruction is a non-control-flow instruction:
q Next Fetch PC is the address of the next-sequential instruction
q Easy to determine if we know the size of the fetched instruction

n If the instruction that is fetched is a control-flow instruction:
q How do we determine the next Fetch PC?

n In fact, how do we know whether or not the fetched 
instruction is a control-flow instruction?
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Branch Prediction
¢ Special case of data dependence: dependence on PC

¢ beq: 
§ Conditional branch is not resolved until the fourth stage of the pipeline
§ Instructions after the branch are fetched before branch is resolved
§ Simple “branch prediction” example:

§ Always predict that the next sequential instruction is fetched
§ Called “Always not taken” prediction
§ Flush (invalidate) such instructions if the branch is taken

¢ Branch misprediction penalty
§ number of instructions flushed when branch is incorrectly predicted
§ Penalty can be reduced by resolving the branch earlier

§ Called “Early branch resolution”
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Control Dependence: Original Pipeline
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Control Dependence: Flush on Misprediction

Time (cycles)
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Pipeline with Early Branch Resolution

Need to calculate branch target and condition in the Decode Stage

Dependence Detection Logic
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Early Branch Resolution

Time (cycles)
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Early Branch Resolution: Good Idea?
¢ Advantages

§ Reduced branch misprediction penalty 
à Reduced CPI (cycles per instruction)

¢ Disadvantages
§ Potential increase in clock cycle time?

à Higher clock period and lower frequency?
§ Additional hardware cost

à Specialized and likely not used by other instructions



Recall: Performance Analysis Basics

n Execution time of a single instruction
q {CPI}  x  {clock cycle time} 

n CPI: Number of cycles it takes to execute an instruction

n Execution time of an entire program
q Sum over all instructions [{CPI}  x  {clock cycle time}]
q {# of instructions}  x  {Average CPI}  x  {clock cycle time}
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Data Forwarding for Early Branch Resolution

EqualD

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

0
1
0
1

=

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

Fo
rw
ar
dA
D

Fo
rw
ar
dB
D

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eE

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Br
an
ch
D

Hazard Unit

Fl
us
hE

EN

EN

C
LR

C
LR

Data forwarding for early branch resolution adds even more complexity

Dependence Detection Logic
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Forwarding and Stalling Hardware Control
// Forwarding logic:
assign ForwardAD = (rsD != 0) & (rsD == WriteRegM) & RegWriteM;
assign ForwardBD = (rtD != 0) & (rtD == WriteRegM) & RegWriteM;

//Stalling logic:
assign lwstall = ((rsD == rtE) | (rtD == rtE)) & MemtoRegE;

assign branchstall = (BranchD & RegWriteE &
(WriteRegE == rsD | WriteRegE == rtD))
|
(BranchD & MemtoRegM &
(WriteRegM == rsD | WriteRegM == rtD));

// Stall signals;
assign StallF = lwstall | branchstall;
assign StallD = lwstall | branchstall; 
assign FLushE = lwstall | branchstall;
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Final Pipelined MIPS Processor (H&H)

Includes always-taken br prediction, early branch resolution, forwarding, stall logic

Dependence Detection Logic
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Doing Better: Smarter Branch Prediction
¢ Guess whether or not branch will be taken

§ Backward branches are usually taken (loops)
§ Consider history of whether branch was previously taken to improve 

the guess

¢ Accurate branch prediction reduces the fraction of branches 
requiring a flush 

¢ Many sophisticated techniques are employed in modern 
processors
§ Including simple machine learning methods
§ We will see them in the Branch Prediction lectures



More on Branch Prediction (I)

https://www.youtube.com/watch?v=h6l9yYSyZHM&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=22

https://www.youtube.com/watch?v=h6l9yYSyZHM&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=22


More on Branch Prediction (II)

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23


More on Branch Prediction (III)

https://www.youtube.com/watch?v=yDjsr-jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

https://www.youtube.com/watch?v=yDjsr-jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4


Lectures on Branch Prediction
n Digital Design & Computer Architecture, Spring 2020, Lecture 16b

q Branch Prediction I (ETH Zurich, Spring 2020)
q https://www.youtube.com/watch?v=h6l9yYSyZHM&list=PL5Q2soXY2Zi_FRrloMa2fU

YWPGiZUBQo2&index=22

n Digital Design & Computer Architecture, Spring 2020, Lecture 17
q Branch Prediction II (ETH Zurich, Spring 2020)
q https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fU

YWPGiZUBQo2&index=23

n Computer Architecture, Spring 2015, Lecture 5
q Advanced Branch Prediction (CMU, Spring 2015)
q https://www.youtube.com/watch?v=yDjsr-

jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

102https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures


Pipelined Performance Example
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Pipelined Performance Example
¢ SPECINT2017 benchmark: 

§ 25% loads
§ 10% stores 
§ 11% branches
§ 2% jumps
§ 52% R-type

¢ Suppose:
§ 40% of loads used by next instruction
§ 25% of branches mispredicted

¢ All jumps flush next instruction

¢ What is the average CPI?
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Pipelined Performance Example Solution
¢ Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.

Thus:
§ CPIlw = 1(0.6) + 2(0.4) = 1.4 Average CPI for load
§ CPIbeq = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch

¢ And 
§ Average CPI     =
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Pipelined Performance Example Solution
¢ Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.

Thus:
§ CPIlw = 1(0.6) + 2(0.4) = 1.4 Average CPI for load
§ CPIbeq = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch

¢ And 
§ Average CPI = (0.25)(1.4) + load

(0.1)(1) + store
(0.11)(1.25) + beq
(0.02)(2) + jump
(0.52)(1) r-type

= 1.15
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Pipelined Performance
¢ There are 5 stages, and 5 different timing paths:

Tc = max {
tpcq + tmem + tsetup fetch
2(tRFread + tmux + teq + tAND + tmux + tsetup ) decode
tpcq + tmux + tmux + tALU + tsetup execute
tpcq + tmemwrite + tsetup memory
2(tpcq + tmux + tRFwrite) writeback
}

¢ The operation speed depends on the slowest operation

¢ Decode and Writeback use register file and have only half a
clock cycle to complete, that is why there is a 2 in front of them
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Pipelined Performance Example
Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Equality comparator teq 40

AND gate tAND 15

Memory write Tmemwrite 220

Register file write tRFwrite 100

Tc = 2(tRFread + tmux + teq + tAND + tmux + tsetup )
= 2[150 + 25 + 40 + 15 + 25 + 20] ps
= 550 ps
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Pipelined Performance Example
¢ For a program with 100 billion instructions executing on a 

pipelined MIPS processor:
§ CPI = 1.15
§ Tc = 550 ps

¢ Execution Time = (# instructions) × CPI × Tc
= (100 × 109)(1.15)(550  × 10-12)
= 63 seconds



Carnegie Mellon

110

Performance Summary for 3 MIPS microarch.

Processor
Execution Time
(seconds)

Speedup
(single-cycle is baseline)

Single-cycle 95 1
Multicycle 133 0.71
Pipelined 63 1.51

¢ Pipelined implementation is the fastest of 3 implementations

¢ Even though we have a 5-stage pipeline, speedup is not 5X 
over multi-cycle!



Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle 

q write to the destination only in last stage and in program order

n Flow dependences are more interesting

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
111



Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle 

q write to the destination only in last stage and in program order

n Flow dependences are more interesting

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
112



Questions to Ponder
n What is the role of the hardware vs. the software in data 

dependence handling?
q Software based interlocking 
q Hardware based interlocking
q Who inserts/manages the pipeline bubbles?
q Who finds the independent instructions to fill “empty” pipeline 

slots?
q What are the advantages/disadvantages of each?

n Think of the performance equation as well

113



Questions to Ponder
n What is the role of the hardware vs. the software in the 

order in which instructions are executed in the pipeline?
q Software based instruction scheduling à static scheduling
q Hardware based instruction scheduling à dynamic scheduling

n How does each impact different metrics?
q Performance (and parts of the performance equation)
q Complexity
q Power consumption
q Reliability
q …

114



More on Software vs. Hardware
n Software based scheduling of instructions à static scheduling

q Compiler orders the instructions, hardware executes them in 
that order

q Contrast this with dynamic scheduling (in which hardware can 
execute instructions out of the compiler-specified order)

q How does the compiler know the latency of each instruction?

n What information does the compiler not know that makes 
static scheduling difficult?
q Answer: Anything that is determined at run time

n Variable-length operation latency, memory addr, branch direction 

n How can the compiler alleviate this (i.e., estimate the 
unknown)?
q Answer: Profiling

115



More on Static Instruction Scheduling

116https://www.youtube.com/onurmutlulectures
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Lectures on Static Instruction Scheduling

n Computer Architecture, Spring 2015, Lecture 16
q Static Instruction Scheduling (CMU, Spring 2015)
q https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JC

L1TWybTDtKq&index=18

n Computer Architecture, Spring 2013, Lecture 21
q Static Instruction Scheduling (CMU, Spring 2013)
q https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59RE

og9jDnPDTG6IJ&index=21

117https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures


Harder mapping of HLL to ISA
More work for software designer
Less work for hardware designer
Optimization burden on SW

Recall: Semantic Gap
n How close instructions & data types & addressing modes 

are to high-level language (HLL)

HLL

HW
Control 
Signals

HLL

HW
Control 
Signals

ISA with
Complex Inst
& Data Types
& Addressing Modes ISA with

Simple Inst
& Data Types
& Addressing Modes

Small Semantic Gap

Large Semantic Gap

Easier mapping of HLL to ISA
Less work for software designer
More work for hardware designer
Optimization burden on HW



Recall: How to Change the Semantic Gap Tradeoffs

n Translate from one ISA into a different “implementation” ISA

119

HLL

HW
Control 
Signals

Small Semantic Gap

Implementation ISA with
Simple Inst
& Data Types
& Addressing Modes

Software or Hardware Translator

ISA with
Complex Inst
& Data Types
& Addressing Modes

X86-64

ARM v8.4



Another Example: NVIDIA Denver

120https://www.anandtech.com/show/8701/the-google-nexus-9-review/4
https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1



Transmeta: x86 to VLIW Translation

121
Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

X86

Proprietary VLIW ISA

X86

https://www.wikiwand.com/en/Transmeta_Efficeon



More on Static Instruction Scheduling
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Lectures on Static Instruction Scheduling

n Computer Architecture, Spring 2015, Lecture 16
q Static Instruction Scheduling (CMU, Spring 2015)
q https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JC

L1TWybTDtKq&index=18

n Computer Architecture, Spring 2013, Lecture 21
q Static Instruction Scheduling (CMU, Spring 2013)
q https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59RE

og9jDnPDTG6IJ&index=21

123https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures


Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle 

q write to the destination only in last stage and in program order

n Flow dependences are more interesting

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
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Fine-Grained Multithreading
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Fine-Grained Multithreading
n Idea: Hardware has multiple thread contexts (PC+registers). 

Each cycle, fetch engine fetches from a different thread.
q By the time the fetched branch/instruction resolves, no 

instruction is fetched from the same thread
q Branch/instruction resolution latency overlapped with execution 

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread 

-- Single thread performance suffers 
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough 

threads to cover the whole pipeline
126



Fine-Grained Multithreading (II)
n Idea: Switch to another thread every cycle such that no two 

instructions from a thread are in the pipeline concurrently

n Tolerates the control and data dependence latencies by 
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple 
threads

n Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

n Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Fine-Grained Multithreading: History
n CDC 6600’s peripheral processing unit is fine-grained 

multithreaded
q Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
q Processor executes a different I/O thread every cycle
q An operation from the same thread is executed every 10 cycles

n Denelcor HEP (Heterogeneous Element Processor)
q Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
q 120 threads/processor 
q available queue vs. unavailable (waiting) queue for threads 
q each thread can have only 1 instruction in the processor pipeline; each thread 

independent 
q to each thread, processor looks like a non-pipelined machine
q system throughput vs. single thread performance tradeoff 

128



Fine-Grained Multithreading in HEP
n Cycle time: 100ns

n 8 stages à 800 ns to 
complete an 
instruction
q assuming no memory 

access

n No control and data 
dependence checking

129

Burton Smith
(1941-2018)



Multithreaded Pipeline Example

130Slide credit: Joel Emer



Sun Niagara Multithreaded Pipeline

131
Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.



Fine-Grained Multithreading
n Advantages

+ No need for dependence checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic
+ Otherwise-bubble cycles used for executing useful instructions from 

different threads
+ Improved system throughput, latency tolerance, utilization

n Disadvantages
- Extra hardware complexity: multiple hardware contexts (PCs, register 

files, …), thread selection logic
- Reduced single thread performance (one instruction fetched every N 

cycles from the same thread) 
- Resource contention between threads in caches and memory
- Some dependence checking logic between threads remains (load/store)
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Modern GPUs are 
FGMT Machines

133



NVIDIA GeForce GTX 285 “core”

134

…

= instruction stream decode= data-parallel (SIMD) func. unit, 
control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 
for thread contexts 
(registers)

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…
64 KB of storage 
for thread contexts 
(registers)

n Groups of 32 threads share instruction stream (each group is 
a Warp): they execute the same instruction on different data

n Up to 32 warps are interleaved in an FGMT manner
n Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian



Further Reading for the Interested (I)
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Further Reading for the Interested (II)
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More on Multithreading (I)

https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=51

https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=51


More on Multithreading (II)

https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=52

https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=52


More on Multithreading (III)

https://www.youtube.com/watch?v=7vkDpZ1-hHM&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=53 

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23


More on Multithreading (IV)

https://www.youtube.com/watch?v=-hbmzIDe0sA&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=54

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23


Lectures on Multithreading
n Parallel Computer Architecture, Fall 2012, Lecture 9

q Multithreading I (CMU, Fall 2012)
q https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY

_tGtUlynnyV6D&index=51

n Parallel Computer Architecture, Fall 2012, Lecture 10
q Multithreading II (CMU, Fall 2012)
q https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_

tGtUlynnyV6D&index=52

n Parallel Computer Architecture, Fall 2012, Lecture 13
q Multithreading III (CMU, Fall 2012)
q https://www.youtube.com/watch?v=7vkDpZ1-

hHM&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=53 
n Parallel Computer Architecture, Fall 2012, Lecture 15

q Speculation I (CMU, Fall 2012)
q https://www.youtube.com/watch?v=-

hbmzIDe0sA&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=54

143https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=51
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures
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Pipelining and Precise Exceptions: 
Preserving Sequential Semantics



Multi-Cycle Execution
n Not all instructions take the same amount of time for 

“execution”

n Idea: Have multiple different functional units that take 
different number of cycles
q Can be pipelined or not pipelined
q Can let independent instructions start execution on a different 

functional unit before a previous long-latency instruction 
finishes execution
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Issues in Pipelining: Multi-Cycle Execute
n Instructions can take different number of cycles in EXECUTE 

stage
q Integer ADD versus Integer DIVide

q What is wrong with this picture in a Von Neumann architecture?
n Sequential semantics of the ISA NOT preserved!
n What if DIV incurs an exception?
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Exceptions and Interrupts
n “Unplanned” changes or interruptions in program execution

n Due to internal problems in execution of the program
à Exceptions

n Due to external events that need to be handled by the 
processor
à Interrupts

n Both exceptions and interrupts require 
q stopping of the current program
q saving the architectural state
q handling the exception/interrupt à switch to handler
q return back to program execution (if possible and makes sense)
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Exceptions vs. Interrupts
n Cause

q Exceptions: internal to the running thread
q Interrupts: external to the running thread

n When to Handle
q Exceptions: when detected (and known to be non-speculative)
q Interrupts: when convenient

n Except for very high priority ones
q Power failure
q Machine check (error)

n Priority: process (exception), depends (interrupt)

n Handling Context: process (exception), system (interrupt)
149



Precise Exceptions/Interrupts
n The architectural state should be consistent (precise)    

when the exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired. 

Retire = commit = finish execution and update arch. state

150



Checking for and Handling Exceptions in Pipelining

n When the oldest instruction ready-to-be-retired is detected 
to have caused an exception, the control logic

q Ensures architectural state is precise (register file, PC, memory)

q Flushes all younger instructions in the pipeline

q Saves PC and registers (as specified by the ISA)

q Redirects the fetch engine to the appropriate exception 
handling routine
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Why Do We Want Precise Exceptions?
n Semantics of the von Neumann model ISA specifies it

q Remember von Neumann vs. Dataflow

n Aids software debugging

n Enables (easy) recovery from exceptions

n Enables (easily) restartable processes

n Enables traps into software (e.g., software implemented 
opcodes)
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Ensuring Precise Exceptions 
n Easy to do in single-cycle and multi-cycle machines

n Single-cycle
q Instruction boundaries == Cycle boundaries

n Multi-cycle
q Add special states in the control FSM that lead to the 

exception or interrupt handlers
q Switch to the handler only at a precise state à before fetching 

the next instruction

153See H&H Section 7.7 for a treatment of exceptions in multi-cycle uarch



Precise Exceptions in Multi-Cycle FSM
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Precise Exceptions in Multi-Cycle Datapath

155See H&H Section 7.7 for a treatment of exceptions in multi-cycle uarch



Multi-Cycle Execute: More Complications
n Instructions can take different number of cycles in EXECUTE 

stage
q Integer ADD versus Integer DIVide

q What is wrong with this picture in a Von Neumann architecture?
n Sequential semantics of the ISA NOT preserved!
n What if DIV incurs an exception?
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Ensuring Precise Exceptions in Pipelining
n Idea: Make each operation take the same amount of time

n Downside
q Worst-case instruction latency determines all instructions’ latency

n What about memory operations?
n Each functional unit takes worst-case number of cycles?
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Solutions
n Reorder buffer

n History buffer

n Future register file

n Checkpointing

n Suggested reading
q Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 

Processors,” IEEE Trans on Computers 1988 and ISCA 1985.
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Solution I: Reorder Buffer (ROB)
n Idea: Complete instructions out-of-order, but reorder them 

before making results visible to architectural state
n When instruction is decoded, it reserves the next-sequential 

entry in the ROB
n When instruction completes, it writes result into ROB entry
n When instruction oldest in ROB and it has completed 

without exceptions, its result moved to reg. file or memory
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Reorder Buffer

n Buffers information about all instructions that are decoded
but not yet retired/committed
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What’s in a ROB Entry?

n Everything required to:
q correctly reorder instructions back into the program order
q update the architectural state with the instruction’s result(s), if 

instruction can retire without any issues
q handle an exception/interrupt precisely, if an 

exception/interrupt needs to be handled before retiring the 
instruction

n Need valid bits to keep track of readiness of the result(s) 
and find out if the instruction has completed execution
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V DestRegID DestRegVal StoreAddr StoreData PC
Valid bits for reg/data 
+ control bits Exception?



Reorder Buffer: Independent Operations
n Result first written to ROB on instruction completion
n Result written to register file at commit time

n What if a later instruction needs a value in the reorder buffer?
q One option: stall the operation à stall the pipeline
q Better: Read the value from the reorder buffer. How?
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Reorder Buffer: How to Access?
n A register value can be in the register file, reorder buffer, 

(or bypass/forwarding paths)
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Simplifying Reorder Buffer Access
n Idea: Use indirection

n Access register file first (check if the register is valid)
q If register not valid, register file stores the ID of the reorder 

buffer entry that contains (or will contain) the value of the 
register

q Mapping of the register to a ROB entry: Register file maps the 
register to a reorder buffer entry if there is an in-flight 
instruction writing to the register

n Access reorder buffer next

n Now, reorder buffer does not need to be content addressable
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Reorder Buffer in Intel Pentium III

165

Boggs et al., “The 
Microarchitecture of the 
Pentium 4 Processor,” Intel 
Technology Journal, 2001.



Important: Register Renaming with a Reorder Buffer

n Output and anti dependences are not true dependences
q WHY? The same register refers to values that have nothing to 

do with each other
q They exist due to lack of register ID’s (i.e. names) in 

the ISA

n The register ID is renamed to the reorder buffer entry that 
will hold the register’s value
q Register ID à ROB entry ID
q Architectural register ID à Physical register ID
q After renaming, ROB entry ID used to refer to the register

n This eliminates anti and output dependences
q Gives the illusion that there are a large number of registers
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Recall: Data Dependence Types

167

True (flow) dependence
r3 ¬ r1 op  r2 Read-after-Write
r5 ¬ r3 op  r4 (RAW) -- True

Anti dependence
r3 ¬ r1 op  r2 Write-after-Read
r1 ¬ r4 op  r5 (WAR) -- Anti

Output-dependence
r3 ¬ r1 op  r2 Write-after-Write
r5 ¬ r3 op  r4 (WAW) -- Output
r3 ¬ r6 op  r7



Renaming Example
n Assume

q Register file has a pointer to the reorder buffer entry that 
contains or will contain the value, if the register is not valid

q Reorder buffer works as described before

n Where is the latest definition of R3 for each instruction 
below in sequential order?

LD R0(0) à R3
LD R3, R1 à R10
MUL R1, R2 à R3
MUL R3, R4 à R11
ADD R5, R6 à R3
ADD R7, R8 à R12 
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In-Order Pipeline with Reorder Buffer
n Decode (D): Access regfile/ROB, allocate entry in ROB, check if 

instruction can execute, if so dispatch instruction
n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer
n Retirement/Commit (W): Check for exceptions; if none, write result to 

architectural register file or memory; else, flush pipeline and start from 
exception handler

n In-order dispatch/execution, out-of-order completion, in-order retirement 
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Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that 

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing
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See suggested lecture videos from Spring 2015



More on State Maintenance & Precise Exceptions

171https://www.youtube.com/onurmutlulectures
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More on State Maintenance & Precise Exceptions

172https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures


Lectures on State Maintenance & Recovery
n Computer Architecture, Spring 2015, Lecture 11

q Precise Exceptions, State Maintenance/Recovery (CMU, Spring 2015)
q https://www.youtube.com/watch?v=nMfbtzWizDA&list=PL5PHm2jkkXmi5CxxI7b3J

CL1TWybTDtKq&index=13

n Digital Design & Computer Architecture, Spring 2019, Lecture 15a
q Reorder Buffer (ETH Zurich, Spring 2019)
q https://www.youtube.com/watch?v=9yo3yhUijQs&list=PL5Q2soXY2Zi8J58xLKBNFQ

FHRO3GrXxA9&index=17

173https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=nMfbtzWizDA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=13
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Suggested Readings for the Interested
n Smith and Plezskun, “Implementing Precise Interrupts in 

Pipelined Processors,” IEEE Trans on Computers 1988 and 
ISCA 1985.

n Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

n Hwu and Patt, “Checkpoint Repair for Out-of-order 
Execution Machines,” ISCA 1987.

n Backup Slides
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Backup Slides 
on Precise Exceptions
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Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that 

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing
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Solution II: History Buffer (HB)
n Idea: Update the register file when instruction completes, 

but UNDO UPDATES when an exception occurs

n When instruction is decoded, it reserves an HB entry
n When the instruction completes, it stores the old value of 

its destination in the HB
n When instruction is oldest and no exceptions/interrupts, the 

HB entry discarded
n When instruction is oldest and an exception needs to be 

handled, old values in the HB are written back into the 
architectural state from tail to head
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History Buffer

n Advantage:
q Register file contains up-to-date values for incoming instructions 

à History buffer access not on critical path
n Disadvantage:

q Need to read the old value of the destination register
q Need to unwind the history buffer upon an exception à

increased exception/interrupt handling latency
178

Register
File

Func Unit

Func Unit

Func Unit

History
Buffer

Instruction
Cache

Used only on exceptions



Comparison of Two Approaches
n Reorder buffer

q Pessimistic register file update
q Update only with non-speculative values (in program order)
q Leads to complexity/delay in accessing the new values

n History buffer
q Optimistic register file update
q Update immediately, but log the old value for recovery
q Leads to complexity/delay in logging old values

n Can we get the best of both worlds?
q Principle: Heterogeneity
q Idea: Have both types of register files
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Solution III: Future File (FF) + ROB
n Idea: Keep two register files (speculative and architectural)

q Arch reg file: Updated in program order for precise exceptions
n Use a reorder buffer to ensure in-order updates

q Future reg file: Updated as soon as an instruction completes 
(if the instruction is the youngest one to write to a register)

n Future file is used for fast access to latest register values 
(speculative state)
q Frontend register file

n Architectural file is used for state recovery on exceptions
(architectural state)
q Backend register file
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Future File

n Advantage
q No need to read the new values from the ROB (no CAM or 

indirection) or the old value of destination register

n Disadvantage
q Multiple register files
q Need to copy arch. reg. file to future file on an exception
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In-Order Pipeline with Future File and Reorder Buffer

n Decode (D): Access future file, allocate entry in ROB, check if instruction 
can execute, if so dispatch instruction

n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer and future file 
n Retirement/Commit (W): Check for exceptions; if none, write result to 

architectural register file or memory; else, flush pipeline, copy 
architectural file to future file, and start from exception handler 

n In-order dispatch/execution, out-of-order completion, in-order retirement 
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Can We Reduce the Overhead of Two Register Files?

n Idea: Use indirection, i.e., pointers to data in frontend and 
retirement
q Have a single storage that stores register data values
q Keep two register maps (speculative and architectural); also 

called register alias tables (RATs)

n Future map used for fast access to latest register values 
(speculative state)
q Frontend register map

n Architectural map is used for state recovery on exceptions
(architectural state)
q Backend register map
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Future Map in Intel Pentium 4

184

Boggs et al., “The 
Microarchitecture of 
the Pentium 4 
Processor,” Intel 
Technology Journal, 
2001.

Many modern 
processors
are similar:
- MIPS R10K
- Alpha 21264



Reorder Buffer vs. Future Map Comparison
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Before We Get to Checkpointing …
n Let’s cover what happens on exceptions
n And branch mispredictions
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Checking for and Handling Exceptions in Pipelining

n When the oldest instruction ready-to-be-retired is detected 
to have caused an exception, the control logic
q Recovers architectural state (register file, IP, and memory)
q Flushes all younger instructions in the pipeline
q Saves IP and registers (as specified by the ISA)
q Redirects the fetch engine to the exception handling routine

n Vectored exceptions
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Pipelining Issues: Branch Mispredictions
n A branch misprediction resembles an “exception”

q Except it is not visible to software (i.e., it is microarchitectural)

n What about branch misprediction recovery?
q Similar to exception handling except can be initiated before 

the branch is the oldest instruction (not architectural)
q All three state recovery methods can be used 

n Difference between exceptions and branch mispredictions?
q Branch mispredictions are much more common 

à need fast state recovery to minimize performance impact of 
mispredictions
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How Fast Is State Recovery?
n Latency of state recovery affects

q Exception service latency
q Interrupt service latency
q Latency to supply the correct data to instructions fetched after 

a branch misprediction

n Which ones above need to be fast?

n How do the three state maintenance methods fare in terms 
of recovery latency?
q Reorder buffer
q History buffer
q Future file

189



Branch State Recovery Actions and Latency
n Reorder Buffer

q Flush instructions in pipeline younger than the branch
q Finish all instructions in the reorder buffer 

n History buffer
q Flush instructions in pipeline younger than the branch
q Undo all instructions after the branch by rewinding from the 

tail of the history buffer until the branch & restoring old values 
one by one into the register file

n Future file
q Wait until branch is the oldest instruction in the machine
q Copy arch. reg. file to future file 
q Flush entire pipeline
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Can We Do Better?
n Goal: Restore the frontend state (future file) such that the 

correct next instruction after the branch can execute right 
away after the branch misprediction is resolved

n Idea: Checkpoint the frontend register state/map at the 
time a branch is decoded and keep the checkpointed state 
updated with results of instructions older than the branch
q Upon branch misprediction, restore the checkpoint associated 

with the branch

n Hwu and Patt, “Checkpoint Repair for Out-of-order 
Execution Machines,” ISCA 1987.
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Checkpointing
n When a branch is decoded

q Make a copy of the future file/map and associate it with the 
branch

n When an instruction produces a register value
q All future file/map checkpoints that are younger than the 

instruction are updated with the value

n When a branch misprediction is detected
q Restore the checkpointed future file/map for the mispredicted 

branch when the branch misprediction is resolved
q Flush instructions in pipeline younger than the branch
q Deallocate checkpoints younger than the branch
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Checkpointing
n Advantages

q Correct frontend register state available right after checkpoint 
restoration à Low state recovery latency

q …

n Disadvantages
q Storage overhead
q Complexity in managing checkpoints
q …
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Many Modern Processors Use Checkpointing
n MIPS R10000
n Alpha 21264
n Pentium 4

n Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

n Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 
March-April 1999.

n Boggs et al., “The Microarchitecture of the Pentium 4 
Processor,” Intel Technology Journal, 2001.
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Summary: Maintaining Precise State
n Reorder buffer

n History buffer

n Future register file

n Checkpointing

n Readings
q Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 

Processors,” IEEE Trans on Computers 1988 and ISCA 1985.
q Hwu and Patt, “Checkpoint Repair for Out-of-order Execution 

Machines,” ISCA 1987.
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Registers versus Memory
n So far, we considered mainly registers as part of state

n What about memory?

n What are the fundamental differences between registers 
and memory?
q Register dependences known statically – memory 

dependences determined dynamically
q Register state is small – memory state is large
q Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a 
shared memory multiprocessor)
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Maintaining Speculative Memory State: Stores

n Handling out-of-order completion of memory operations
q UNDOing a memory write more difficult than UNDOing a 

register write. Why?
q One idea: Keep store address/data in reorder buffer

n How does a load instruction find its data?
q Store/write buffer: Similar to reorder buffer, but used only for 

store instructions
n Program-order list of un-committed store operations
n When store is decoded: Allocate a store buffer entry 
n When store address and data become available: Record in store 

buffer entry
n When the store is the oldest instruction in the pipeline: Update 

the memory address (i.e. cache) with store data

n We will get back to this!
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Need to calculate branch target and condition in the Decode Stage

Dependence Detection Logic


