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Extra Assignment: Moore’s Law (I)

= Paper review
= G.E. Moore. "Cramming more components onto integrated

circuits,” Electronics magazine, 1965

= Optional Assignment — for 1% extra credit
o Write a 1-page review
o Upload PDF file to Moodle — Deadline: April 7

= I strongly recommend that you follow my guidelines for
(paper) review (see next slide)



https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (11)

= Guidelines on how to review papers critically

a Guideline slides: pdf ppt
a Video: https://www.youtube.com/watch?v=tOL6FANAJSC

o Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)

= Review 1
= Review 2

o Example review on "“Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
= Review 1



https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

Agenda for Today & Next Few Lectures

Last week: Microarchitecture Fundamentals
o Single-cycle Microarchitectures
a Multi-cycle Microarchitectures

This week: Pipelining
o Pipelining
a Pipelined Processor Design

= Control & Data Dependence Handling
= Precise Exceptions: State Maintenance & Recovery

Next week+: Out-of-Order Execution
o Out-of-Order Execution

o Issues in 000 Execution: Load-Store Handling, ...

Problem

Algorithm

Program/Language

System Software

SW/HW Interface




Readings

This week
o Pipelining
H&H, Chapter 7.5
o Pipelining Issues
H&H, Chapter 7.7, 7.8.1-7.8.3

Next week

o Out-of-order execution
o H&H, Chapter 7.8-7.9
o Smith & Sohi, “The Microarchitecture of Superscalar Processors,”
Proceedings of the IEEE, 1995
More advanced pipelining
Interrupt and exception handling
Out-of-order and superscalar execution concepts



Review: Single-Cycle MIPS Processor (1)
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.]
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Review: Single-Cycle MIPS Processor (1)
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Single-cycle processor. Harris and Harris, Chapter 7.3.



Review: Single-Cycle MIPS FSM

= Single-cycle machine

AS’ AS

Sequential |
Logic
(State)

Combinational
Logic

AS: Architectural State



Can We Do Better?




Review: Multi-Cycle MIPS Processor
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Multi-cycle processor. Harris and Harris, Chapter 7.4.
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Review: Multi-Cycle MIPS FSM

lorD=0
AluSrcA=0
ALUSrcB = 01
ALUOp =00
PCSrc =00

IRWrite

Reset
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RegWrite
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PCWrite
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RegDst=0
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What is the
shortcoming of
this design?

What does

this design
assume

about memory?

11



Can We Do Better?

12



Can We Do Better?

What limitations do you see with the multi-cycle design?

Limited concurrency

o Some hardware resources are idle during different phases of
instruction processing cycle

o “Fetch” logic is idle when an instruction is being “decoded” or
“executed”

o Most of the datapath is idle when a memory access is
happening

13



Can We Use the Idle Hardware to Improve Concurrency?

Goal: More concurrency = Higher instruction throughput
(i.e., more “work"” completed in one cycle)

Idea: When an instruction is using some resources in its

processing phase, process other instructions on idle

resources not needed by that instruction

o E.g., when an instruction is being decoded, fetch the next
instruction

o E.g., when an instruction is being executed, decode another
instruction

o E.g., when an instruction is accessing data memory (Id/st),
execute the next instruction

o E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction

14



Can Have Ditferent Instructions in Different Stages

Fetch

Decode

Evaluate Address
Fetch Operands
Execute

Store Result

o o O 0O O O

—t

ok~ W

. Instruction fetch (IF)
. Instruction decode and

register operand fetch (ID/RF)

. Execute/Evaluate memory address (EX/AG)
. Memory operand fetch (MEM)
. Store/writeback result (WB)

15



Can Have Different Instructions in Different Stages
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Of course, we need to be more careful than this! 16



Pipelining




Pipelining: Basic Idea

More systematically:
o Pipeline the execution of multiple instructions
o Analogy: “Assembly line processing” of instructions

Idea:

o Divide the instruction processing cycle into distinct “stages” of
processing

o Ensure there are enough hardware resources to process one
instruction in each stage

o Process a different instruction in each stage

Instructions consecutive in program order are processed in
consecutive stages

Benefit: Increases instruction processing throughput (1/CPI)
Downside: Start thinking about this...

18



Example: |

Hxecution of Four Independent ADDs

= Multi-cycle: 4 cycles per instruction

F

D

E

W

1 instruction completed per 4 cycles

Time

= Pipelined: 4 cycles per 4 instructions (steady state)

F

1 instruction completed per cycle

m| o |m

Tio|lm|s
o|lm|s
=

E|W

Is life always this beautiful?

19



Base

The Laundry Analogy

) 6 PM 7 8 9 10 11 12 1 2 AM
Time

Task
] =
.
P~
B EI ——
—

order
[ o] =
Y P,
——
o
As"’av
v

“place one dirty load of clothes in the washer”

“when the washer is finished, place the wet load in the dryer”
“when the dryer is finished, take out the dry load and fold”
“when folding is finished, put the clothes away”

- steps to do a load are sequentially dependent

- no dependence between different loads
- different steps do not share resources

20

d on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple LLoads of Laundry

6 PM 7 8 9 10 11 12 1 2 AM

Timeﬁ_ﬁ_ﬁ_ﬁ_ﬁ_>

Task
=
A ——

order

S )

—

A ——
—)

- 4 |oads of laundry in parallel

° ' - no additional resources
© '. - throughput increased by 4

[ '. - latency per load is the same

21

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Bas

Pipelining Multiple Loads of Laundry: In Practice

) 6 PM 7 8 9 10 1 12 1 2 AM
T'me_m_m_m_'
Task
order

the slowest step (the dryer) decides throughput

22

ed on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Base

Pipelining Multiple Loads of Laundry: In Practice

6 PM 7 8 9 10 11 12 1 2 AM

T e ] e ]

: Sl
C 'D '

6 PM 7 8 9 10 11 12 1 2 AM
Task
order
> 2
A @)=

throughput restored (2 loads per hour) using 2 dryers

23

d on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



A Real-Life Pipeline: Automobile Assembly

The guinea pig was the T’s magneto, a component that supplied ignition energy to

the engine before generators became common. A complex and innovative

component that was one of the early Model T’s technological advantages, Ford’s
magneto was integrated with the engine’s flywheel and involved many pieces.
Under the old system, each magneto was assembled by one worker. On average,

A that worker could assemble 35 of them in a nine-hour shift, or roughly one every

15 minutes.

Ford’s transition to moving assembly lines began in April 1913 with the integrated (and
complex) flywheel/magneto. With each worker assigned to complete a few specific tasks

rather than build the entire unit, Ford reduced magneto assembly time from about 15

From the collections of the Henry Ford

minutes to 5, and the required workforce decreased from 29 to 14.

https://www.caranddriver.com/features/a15115930/fords-assembly-line-turns-100-how-it-really-put-the-world-on-wheels-feature/ 24
By Apparent scan made by the original uploader User:Steveking 89., Fair use, https://en.wikipedia.org/w/index.php?curid=11009879



A Real-Life Pipeline: Automobile Assembly

https://medium.com/@ScottAmyx/toyotas-production-philosophy-combines-human-effort-with-automation-a9df78c64ee 25



An Old Pipelined Computer: IBM Stretch

Design
Manufacturer |IBM
Designer Gene Amdahl
Release date May 1961
Units sold 9
Price US$7,780,000 (equivalent to
$67,380,000 in 2020)
Casing
Weight 70,000 pounds (35 short tons;
32 t)[1]
Power 100 kWl'l @ 110 v
System
Operating MCP
system
CPU 64-bit processor
Memory 2048 kilobytes (262144 x 64bits)!"!
MIPS 1.2 MIPS

https://en.wikipedia.org/wiki/IBM 7030 Stretch 26



https://en.wikipedia.org/wiki/IBM_7030_Stretch

An Ideal Pipeline

Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

Repetition of identical operations

o The same operation is repeated on a large number of different
inputs (e.q., all laundry loads go through the same steps)

Repetition of independent operations
o No dependences between repeated operations
Uniformly partitionable suboperations

o Processing can be evenly divided into uniform-latency
suboperations (that do not share resources)

Fitting examples: automobile assembly line, doing laundry

o What about the instruction processing “cycle”?
27



Ideal Pipelining

Tput = Throughput

‘| combinational logic (F,D,E,M,W)

\ 4

- Tput="(1/T)

T psec

—{ —={T/2ps(EDE) | {T/2ps(Mw) = = Teut="(2/T)

. R T/3 R R T/3 > > T/3 o |— Tput="(3/T)
ps (F.D) ps (E,M) ps (M,W)

28



More Realistic Pipeline: Throughput

Nonpipelined version with delay T
Tput =1/ (T+S) where S = register (sequential logic) delay

k-stage pipelined version Register delay reduces throughput
sequencing overhead b/w stages
Tputy grage =1/ (T/k+S) (seq g ges)

Tput,.,=1/(1gatedelay+S)

T/k T/k

—> > » | —> 6 o6 o6 o6 o o6 o6 —) » >

psS psS

This picture assumes “perfect division of work between stages (T/k)”



More Realistic Pipeline: Cost

Nonpipelined version with combinational cost G
Cost = G+R where R = register cost

—> » G gates »
k-stage pipelined version
Costy stage = G + Rk Registers increase hardware cost

l

\ 4

l

G/k

—>ooooooo—>G/k

This picture ignores resource and register replication that is likely needed (G/k and RK)



Pipelining Instruction Processing

31



Remember: The Instruction Processing Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O O O 0O DO

32



Remember: The Instruction Processing Cycle

. Instruction fetch (IF)
2. Instruction decode and
register operand fetch (ID/RF)
. Execute/Evaluate memory address (EX/AG)
. Memory operand fetch (MEM)
. Store/writeback result (WB)

ok~ W

33



Remember the Single-Cycle Microarchitecture

Instruction [25-0] y @\

Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

Add

Read
address

Instruction
[31-
Instruction
memory

Instruction [31—26]
———————

Instruction [25-21]

Instruction [20— 16]

Instruction [15—-11]
—_—

L.

“xc=Z

Instruction [15-0]

N “lextend

Instruction [5-0]

\

0
M M
O u u
X X
ALU
Add result \1/ 0
—> |
Jump
Read
register 1 Read
Read data 1
register 2
_ Registers Read ALU AlU
Write data 2 0 result Address Read|
register M data M
u
Write X u
—| Data
data | 4 memory OX
f d! Write
bcond*| 515
16 _ 32
\ Sign |\

}
_l

Based on original figure from [P&H CO&D, COPYRIGHT 2004

Elsevier. ALL RIGHTS RESERVED.]

\ 4

— BW="(1/T)

34




Dividing the Single-Cycle Uarch Into Stages

200ps 100ps 200ps 200ps 100ps

IF: Instruction fetch ID: Instruction decode/ EX: Execute/ MEM: Memory access | WB: Write back
register file read address calculation
e %I
1 ignore
'''''' for now

.
.
ey
.
.
.
"""
.
.
.
.
.
.

Add [\
Add
4 Add result
Shift
left 2

Read
—| PC Address register 1 Read
data 1 EYTT TP

Read
register 2 Zero

Instruction Registers Read ALU Alu

Read

result Address

Write
data 2 data

Instruction register Data M i R F
memory Write memo U [negresanans : .
| data | i s i write

(—‘xcgo)

Write

data
16 . 72 A I I [ S— S I
A Sign |
A} @ A}

Is this the correct partitioning?
Why not 4 or 6 stages? Why not different boundaries?

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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Instruction Pipeline Throughput

Program
execution
order

(in instructions)

Iw $1, 100($0)

Time

lw $2, 200($0)

lw $3, 300($0)

Y

Program
execution
order

(in instructions)

lw $1, 100($0)

Time

lw $2, 200($0)

lw $3, 300($0)

v

200 400 600 800 1000 1200 1400 1600 1800
T T T T T T T T T >
Instruction Data 1 instruction every 800 ps
fetch Reg ALU access Reg W p
< »| Instruction Data
800ps fetch | Re9| ALY access | 39
< »|Instruction
800ps fetch
—— i >
800ps
200 400 600 800 1000 1200 1400
T T T I T T T >
Ins:ruction Reg ALU Data Reg 1 instruction every 200 PS
etch access
Instruction Data
200ps fetch Reg ALU access Reg
<*—*|Instruction Data
200ps fetch Reg ALU access | &9

200ps 200ps

200ps

200ps

 —r¢——P¢——rP¢—— P ¢—>

200ps

5-stage speedup is 4, not 5 as predicted by the ideal model. Why?

36



Enabling Pipelined Processing: Pipeline Registers

— No resource is used by more than one stage
X
]
IF/ID EX/MEM MEM/WB
#
Add +] L)E
O o
4 o <
wl Add S 2Z?§er1
L - ress 3
J E
Instruction L £ regiSte{?%gisters 8 K f
memory o:u Wri_te d;gazd < Address %Z?g — 8 !
— register Data E M
Write X
| Wi memory X
o °
ata
E ;
o (e & =
N Tlextend [ Y =
V) 1 -

T/k T/k

—> > > —» © 0 0 0 ¢ 0 o —)p

ps ps

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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Pipelined Operation Example

All instruction classes must follow the same path
and timing through the pipeline stages.

Any performance impact?

=

IF/ID ID/EX EX/IMEM MEM/WB
Add [\
Add
4 Add result
Shift
left 2
c Read
Address £ register 1 Read ‘\
=)
3 Read 2 darat Zero —>
; £ register >
Instruction Registers Read AU ALu
memory Write data 2 0 result Address Read| | L
register M Dat data M
u ata
Write X memory )":
data 1 0

Write
/\ data
16 . 32
\ Sign |\

38

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelined Operation Example

| sub $11, $2, $3 |

pr-{ ()
v | Write back !
X
|—> 1
IF/ID ID/EX EX/MEM MEM/WB
Add > ‘\‘
Add
4 Add result
Shift
left 2
c Read
—(PC Address -% register 1 Read [\
2 data 1
= Read
Instruction 2 reZ?sterZ Zero >
r?elrjr?c:?y = — Registers Read ﬂ ALU  ALU Read
Write
I . data 2 I |M result T— Address daﬁ_' —»m
life al his b iful?
Is life always this beautiful:
16 / ) \32 l J
\ Sign |\ l N
A} @ A}

Clock 6 T

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



[lustrating Pipeline Operation: Operation View

Inst,
Inst,
Inst,
Inst;
Inst,

T 8] 5 £ v s —

IF ID EX ||MEM|| WB
IF ID EX || MEM|| WB
IF ID EX || MEM|| WB

IF ID EX |[|[MEM|[WB <

IF ID EX |[|[MEM

IF ID EX <

steady state Ik D %

(full pipeline) IF =2

40



[lustrating Pipeline Operation: Resource View

IF o |l |2

ID lo |11
EX lg
MEM

WB




Control Points 1n a Pipeline

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS
RESERVED.]

EX/IMEM

Address

Data
memory

Write
data

Read
data

MEM/WB

— IF/ID ID/EX
Add
Add
4 = Addesult
Shift
left 2
s Read
—» Address 8 register 1 Read| |
=)
E Read data 1
; i= register 2
Instruction = Registers Read ALU ALU
memory Write data 2 result
register
Write
| data b
Instruction
15-0 16 ) 32 6
[ | \ Sign \
% |extend A}
Instruction
[20-16]
0
)
Instruction u
[15-11] \j
1

Oxc=Z

Identical set of control points as the single-cycle datapath
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Control Signals in a Pipeline

= For a given instruction
o same control signals as single-cycle, but
o control signals required at different cycles, depending on stage

- Option 1: decode once using the same logic as single-cycle and
buffer signals until consumed

Instruction
Control [—> M ,| VB L

EX

[T]

IF/ID ID/EX EX/MEM MEM/WB

— Option 2: carry relevant “instruction word/field” down the pipeline
and decode locally within each or in a previous stage

Which one is better?

43



Pipelined Control Signals

PCSrc
0 ID/EX
M
M EX/MEM
[~ |
Control M EM/WI
\ IF/ID =X
> Add \‘
Add
4 / ® >Add result
g Shift Branch
left 2 :D e
ALUSrc =
5 »| Read 5 D
PC Address <§ register 1 Read \ = %
= Read data 1 . E
Instruction < register 2 zero 10 =
md _ Registers Read [/~ >ALU ALU
memory \anitet ] data2 [ g CI)VI result > Address %Z?g > I
egistel U Data M
| Write X memory ;
data p—>{ 1 0
Write
data
Instruction
16 . 32
[15-0] s ef;eg:d MemRead
Instruction
[20-16]
Instruction
_‘ [15-11]
Based on original figure from [P&H CO&D, 4.4
=T

COPYRIGHT 2004 Elsevier. ALL RIGHTS

RESERVED.]



Another Example: Single-Cycle and Pipelined

CLK CLK
CLK | | | |
' WE3 SrcA \L Zero WE
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Register WriteDataM ry
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! 2016 !
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4 120 SignExtend || : PCBranchM
PCPlus4F 5 PCPlus4D ' PCPIus4E
; e e e
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Fetch Decode Execute Memory Writeback



Another Example: Correct Pipelined Datapath

CLK

CLK %7ALu0utw
CLK CLK CLK CLK :
CLK % | | : ‘ |
' WE3 : '+ | zerom WE
-ITJL PC €7PCF linstp 22 A1 RD1 H SreAE Y : ~
1 A RD H : ! 3 ' |ALUOuUtM H ReadDataW
— L Instruction | | : 2016 : >< : A RDRH: 1
Memory : A2 RD2 0 ]srcBE Data :
A3 ) : 1 : ) Memory
WD3 Register ! WriteDataE 1 | WriteDataM WD
: File : :
: 20:16 } [RE R . : i : )
' ' RAE 0 WriteRegE,,., + | WriteRegM,, v |WriteRegW,
H 15:11 H 1 ! H
: ' | — :
' ' | SignimmE !
: 15:0 SionExtend [1° <<2 :
4 : 'gn =xten : + 1 | PCBranchM
PCPIus4F : PCPIus4D : PCPIUS4E :
ResultW
Fetch : Decode : Execute : Memory . Writeback

m WriteReg control signal must arrive at the same time as Result

Pipelined processor. Harris and Harris, Chapter 7.5



Another Example: Pipelined Control

CLK

CLK
-F" PC ~) PCF
I
4
PCPlus4F

A RD

Instruction
Memory

InstrD

CLK CLK CLK
—\ |RegWriteD % RegWriteE % RegWriteM % RegWriteW
C%nt.:m MemtoRegD MemtoRegE MemtoRegM MemtoRegW
ni
MemWriteD MemWriteE MemWriteM
BranchD BranchE BranchM
31:26
Op ALUControlD|  [ALUControlE,,, PCSrcM
20 JFunct | |ALUSKCD ALUSICE
RegDstD RegDstE
\ ) ALUOuUtW
CLK — CLK
| L |
25210 A1 WE3 RD1 M SrcAE ZeroM WE -
>3 aoum ] |\ o ReadDataw |
20104 A2 RD2 H M Vsreee[ < Data
A3 . 1 ] Memory
WD3 Reg_'Ster WriteDataE WriteDataM WD
File
. RtE
20:16 B\ WriteRegE,,., WriteRegM,., WriteRegW,,.,
1511 RdE
1
/
150 [~ signExtend [| [Sommme \ >
97 X onmm + PCBranchM
PCPlus4D PCPIlus4E
ResultW

m Same control unit as single-cycle processor
Control delayed to proper pipeline stage




Remember: An Ideal Pipeline

Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

Repetition of identical operations

o The same operation is repeated on a large number of different
inputs (e.q., all laundry loads go through the same steps)

Repetition of independent operations
o No dependencies between repeated operations
Uniformly partitionable suboperations

o Processing an be evenly divided into uniform-latency
suboperations (that do not share resources)

Fitting examples: automobile assembly line, doing laundry

a What about the instruction processing “cycle™?
48



Instruction Pipeline: Not An Ideal Pipeline

Identical operations ... NOT!

— different instructions - not all need the same stages

Forcing different instructions to go through the same pipe stages
- external fragmentation (some pipe stages idle for some instructions)

Uniform suboperations ... NOT!

— different pipeline stages - not the same latency
Need to force each stage to be controlled by the same clock
- internal fragmentation (some pipe stages are fast but still have to
take the same clock cycle time)

Independent operations ... NOT!

— instructions are not independent of each other
Need to detect and resolve inter-instruction dependences to ensure
the pipeline provides correct results
—> pipeline stalls (pipeline is not always moving)
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Issues 1n Pipeline Design

Balancing work in pipeline stages
o How many stages and what is done in each stage

Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

o Handling dependences
Data
Control

o Handling resource contention
o Handling long-latency (multi-cycle) operations

Handling exceptions, interrupts

Advanced: Improving pipeline throughput
o Minimizing stalls
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Causes ot Pipeline S7alls

Stall: A condition when the pipeline stops moving
Resource contention

Dependences (between instructions)
o Data
o Control

Long-latency (multi-cycle) operations
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Dependences and Their Types

Also called “dependency” or /ess desirably “hazard”

Dependences dictate ordering requirements between
instructions

Two types
o Data dependence
o Control dependence

Resource contention is sometimes called resource
dependence

o However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately

52



Handling Resource Contention

Happens when instructions in two pipeline stages need the
same resource

Solution 1: Eliminate the cause of contention

o Duplicate the resource or increase its throughput
E.g., use separate instruction and data memories (caches)
E.g., use multiple ports for memory structures

Solution 2: Detect the resource contention and stall one of
the contending stages

o Which stage do you stall?

o Example: What if you had a single read and write port for the
register file?
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Example Resource Dependence: RegFile

m The register file can be read and written in the same cycle:

= write takes place during the 1st half of the cycle
= read takes place during the 2nd half of the cycle => no problem!!!

= However, operations that read/write from/to the register file have
only half a clock cycle remaining to complete ...

1 2 3 4 5 6 7 8 9 10

it S0 $s2
lw  $s2, 40(s0) [IM lljl-[RF 40 ]:B_]TDM || i
dd it $s3
add $s3, $tl1, $t2 M |= ]{RF $t2]:B_]TD _r -
D

$s
sub $s4, $sl1, $sb5 IM S—ub[l{RF $s T —RF

SIES)
and $s5, $t5, $t6 M and]{ RP[sce E |

&
¥ $s1M
sw $s6, 20($s1) = -[_R;Zo :

D
=
] St3M™ 87
or $s7, $t3, st4 M == ] REscs :B——[ITDM RF

|

Time (cycles)

o |~
4
ur
S

RF

Figure 7.44 Abstract view of pipeline in operation Jv



Data Dependences

Data dependence types
o Flow dependence (true data dependence — read after write)

o Anti dependence (write after read)
o Output dependence (write after write)

Which ones cause stalls in a pipelined machine?
a For all of them, we need to ensure semantics of the program
IS correct
o Flow dependences always need to be obeyed because they
constitute true dependence on a value
o Anti and output dependences exist due to limited number of
architectural registers
They are dependence on a hame, not a value
We will later see what we can do about them
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Flow dependence

r3'\(_r1 Op r2
re <~ ry opry,
Anti dependence

rs < ,rpopr,

/

Output dependence
rs < r,opr
re < 3 0p Iy
rs < g Op ry

Data Dependence Types

Read-after-Write
(RAW)

Write-after-Read
(WAR)

Write-after-Write
(WAW)

56



Pipelined Operation Example

l

| sub $11, $2, $3 |

pre-{ ()
v | Write back
X
|—> 1
IF/ID ID/EX EX/MEM MEM/WB
— | L L L
Add ‘\‘
Add
4= Add ot
Shift
left 2
c Read
—|PC Address % registen dF\’tea;j [\
= Read ata
[2]
i £ register 2 Zero —>
In;‘:ﬁg?yn | — Registers Read 5 }ALU ALU Read
Write
I rogi data 2 I m result — Address data — —»m
[ ]
What if the SUB were dependent on LW?
16 / ) \32 l J
\ Sign |\ |
A} @ A}
Clock 6 — L __‘l

-

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Data Dependence Handling




Readings for Next Few Lectures

H&H, Chapter 7.5-7.9

Smith and Sohi, “"The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts
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How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination only in last stage and in program order

Flow dependences are more interesting & challenging

Six fundamental ways of handling flow dependences

Q

Q

Q

Detect
Detect
Detect

NO 1

and wait until value is available in register file
and forward/bypass data to dependent instruction

and eliminate the dependence at the software level
eed for the hardware to detect dependence

Detect|and move it out of the way for independent instructions

Predict the needed value(s), execute “speculatively”, and verify

Do something else (fine-grained multithreading)
No need to detect
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Recall: Data Dependence Types

Flow dependence

r3\<—A r, op r, Read-after-Write
re <'ryopry, (RAW)

Anti dependence

rs < ,rpopr, Write-after-Read
r1/<—'r4 op Is (WAR)

Output dependence

rs < r,oprn Write-after-Write
(rS «— ryopr, (WAW)

rs < g Op ry
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RAW Dependence Handling

Which one of the following flow dependences lead to
conflicts in the 5-stage pipeline?

addi rar- -

addi  r-fa- ‘E* At

v "

addi r-ra- *

addi r-ra -

addi r-ra -




Pipeline Stall: Resolving Data Dependence

Inst;,
Inst;
Inst;
Inst,
Inst,

T 8] 5 £ v s -
IF__]ip_]J[Au |[MEM][WB
i [IF_][io__J[ALu J[MEM][WB
- [IF_Jp>—]—]—][ib  ]lALu 3
LElEe—F D <2
IF <2

Stall = make the dependent instruction wait

until its source data value is available

1. stop all up-stream stages

2. drain all down-stream stages



Interlocking

= Interlocking: Detection of dependence between instructions
in a pipelined processor to guarantee correct execution

= Software based interlocking
VS.

= Hardware based interlocking

= MIPS acronym?

04



Approaches to Dependence Detection (I)

Scoreboarding
o Each register in register file has a Valid bit associated with it
o An instruction that is writing to the register resets the Valid bit

a An instruction in Decode stage checks if all its source and
destination registers are Valid

Yes: No need to stall... No dependence
No: Stall the instruction

Advantage:
o Simple. 1 bit per register

Disadvantage:
o Need to stall for all types of dependences, not only flow dep.
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Pipelined Operation Example

sub $11, $2, $10 w $10, 20($1)
Instruction decode Execution
> )
M
u
X
1
IF/ID ID/EX EX/MEM MEM/WB
L S L -
Add
4 —
Shift
left 2
5 Read
—> PC Address B register 1 Read
% Read , data 1 L,
; £ register I
In;t;t::;lon > [ ~ Registers Read
v Write data 2 result Address Readl | |
register data
Wit Data
rite
—| data memory
Write
/\ data

16 32

A Sign |\ I

| @ \

Clock 3 ] . __—l

Now assume SUB is dependent on LW

Based on




Approaches to Dependence Detection (I1I)

Combinational dependence check logic

o Special logic checks if any instruction in later stages is
supposed to write to any source register of the instruction that
is being decoded

o Yes: stall the instruction/pipeline
o No: no need to stall... no flow dependence

Advantage:
o No need to stall on anti and output dependences

Disadvantage:
o Logic is more complex than a scoreboard

o Logic becomes more complex as we make the pipeline deeper

and wider (flash-forward: think superscalar execution)
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Pipelined Operation Example

sub $11, $2, $10 w $10, 20($1)
Instruction decode Execution
> )
M
u
X
1
IF/ID ID/EX EX/MEM MEM/WB
L S L -
Add
4 —
Shift
left 2
5 Read
—> PC Address B register 1 Read
% Read , data 1 L,
; £ register I
In;t;t::;lon > [ ~ Registers Read
v Write data 2 result Address Readl | |
register data
Wit Data
rite
—| data memory
Write
/\ data

16 32

A Sign |\ I

| @ \

Clock 3 ] . __—l

Now assume SUB is dependent on LW

Based on




Once You Detect the

Dependence in Hardware

What do you do afterwards?

Observation: Dependence

between two instructions is

detected before the communicated data value becomes

available

Option 1: Stall the depend
Option 2: Stall the depend

necessary - data forward
Option 3: ...

ent instruction right away

ent instruction only when
ing/bypassing
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Data Forwarding/Bypassing

Problem: A consumer (dependent) instruction has to wait in
decode stage until the producer instruction writes its value
in the register file

Goal: We do not want to stall the pipeline unnecessarily

Observation: The data value needed by the consumer
instruction can be supplied directly from a later stage in the
pipeline (instead of only from the register file)

Idea: Add additional dependence check logic and data
forwarding paths (buses) to supply the producer’s value to
the consumer right after the value is available

Benefit: Consumer can move in the pipeline until the point
the value can be supplied - less stalling
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Data Dependence Handling:

Concepts and Implementation




How to Implement Stalling

PCSrc
0 ID/EX
M —
u e EX/MEM
I—» 1 | ]
Control M | wB LNlEM/WB
IF/ID EX M e
— — —_— —
Add [\‘
Add
4 Add result
= Shift Branch
ALUS %
s Read 5 o)
PCH4—| Address £ egister 1 Read = $
=4 R data 1 €
3 ead )
£ register | =
Instructi L) Regist Read
memory Write data 2 [ Add %e?d N (1
i a
register Data M
Write memory d
| data (;(
Wit
dat:
tructi
16 32
15-0 i
L ] \y eftlg:d MemRead
Instructiol
[20—-16]
|
[15-11]
1
_ - RegDst - -

o disable PC and IF/ID latching; ensure stalled instruction stays in its stage

o Insert “invalid” instructions/nops into the stage following the stalled one
(called “bubbles”)

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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RAW Data Dependence Example

One instruction writes a register ($s0) and next instructions
read this register => read after write (RAW) dependence.

add writes into $s0 in the first half of cvcle 5§
Only if the pipeline handles
data dependences incorrectly!
sub reads $s0 in Znd half of cycle 5, getting the correct value
subsequent instructions read the correct value of $s0

1 2 3 4 5 6 7 8

>

Time (cycles)

add $s0, $s2, $s3

and $tO 0, S$sil

or S$tl, ¥©s4, S$sO

$t2

sub $t2, $s0, $sb5 RF




Compile-Time Detection and Elimination

1 2 3 4 5 6 7 8 9 10

$s2
add $s0, $s2, $s3 [ L“I]{RF $S3]:B_]T DM_DEW{F
no

IM p]{ RF ]:B ]T
$s0
and $tO, A\ $s1 M 2 |-||RF $Slj|:8_j|_r DM_!T't_O RE
or

or S$t1,

O

$s0
t2
= ]{RF 555 DM "2 RF

= Insert enough independent instructions for the required result
to be ready by the time it is needed by a dependent one

a Reorder/reschedule/insert instructions at the compiler level

sub $t2, , $sb IM




Data Forwarding

Also called Data Bypassing

Forward the result value to the dependent instruction
as soon as the value is available

We have already seen the basic idea before
Remember dataflow?

o Data value is supplied to dependent instruction as soon as it is
available

o Instruction executes when all its operands are available

Data forwarding brings a pipeline closer to data flow
execution principles



We Covered Until This Point

in Lecture
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Data Forwarding

1 2 3 4 ) 6 7 8
>
Time (cycles)
$S2[% 7 M ss0
add $s0, $s2, $s3 |IM 2dd RF |ss3 :B— DM __ ﬁ.u:
N $s0 ] /
and $tO 0, Ssl Im 2o -[RF ss1 i D'*/l_ 0 RF
or N :Ek DM stl
or $tl, 0 IM | RF [5s0 B RF
b 230 52

sub $t2, $s0, $s5 IM == H| RF [ss5 E-} | _[Dm ‘ -




Data Forwarding

HE
£l 5
gl&

[ Dependence Detection Logic




Data Forwarding

Forward to Execute stage from either:
o Memory stage or
o Writeback stage

When should we forward from either Memory or Writeback

stage?

o If that stage will write to a destination register and the
destination register matches the source register

o If both the Memory & Writeback stages contain matching
destination registers, Memory stage has priority to forward its
data, because it contains the more recently executed instruction



Data Forwarding (in Pseudocode)

Forward to Execute stage from either:
o Memory stage or
o Writeback stage

Forwarding logic for ForwardAE (pseudo code):

if ((rsE != 0) AND (rsE == WriteRegM) AND RegWriteM) then
ForwardAE = 10 # forward from Memory stage

else if ((rs != @) AND (rsE == WriteRegW) AND RegWriteW) then
ForwardAE = @1 # forward from Writeback stage

else

ForwardAE = 00 # no forwarding

Forwarding logic for ForwardBE same, but replace rsE with rtE



Forwarding Is Not Always Possible

2 3 4 5 6 7 8
>

Time (cycles)

4 4

$0
lw $s0, 40(s$0) M [ RF |40 VZB_ DM $s0[DC
’ —|— ?

~ Trouble! -]
andv 2509 N D v$tO
and St 0, $sl IM -[RF ss1 T - RF

N $s4 N N

Stl
or S$t1, \$s4, $s0 M 2 H] RF [ss0 —[D'V'— RF

SsOM ]

$t2
sub $t2, $s0, $s5 M ERR RF |ss5 :B— DM RF

Forwarding is usually sufficient to resolve RAW data dependences

Unfortunately, there are cases when forwarding is not possible
o due to pipeline design and instruction latencies
o The 1w instruction does not finish reading data until the end of Memory stage

-> its result cannot be forwarded to the Execute stage of the next instruction



Stalling Necessary for MEM-EX Dependence

1 2 3 4 5 6 7 8 9
L
Time (cycles)
1 20 M M v$sO
1w $s0, 40($0) M LD-[RF 40 _:B—_TDM—_ |RF
dV $sOM $s0 / ¥ vsto
and $t0 0, $sl M P24 HIRE [ss1| I RF [ss1] [ e -{ov] B
"] ] Alssé}v ] v$t1
or s$tl, $s0 IM == M = H| RF 550 _l_DM_ RE
af )L i i i
Stall o S50 o )
sub $t2, $s0, $s5 M = RF [ss5 E:'— —|—DM RF




Stalling and Dependence Detection Hardware

[ Dependence Detection Logic J




Hardware Needed for Stalling

= Stalls are supported by adding
o enable inputs (EN) to the Fetch and Decode pipeline registers

a synchronous reset/clear (CLR) input to the Execute pipeline
register

= or an INV bit associated with each pipeline register, indicating that
contents are INValid

= When a Iw stall occurs
o Keep the values in the Decode and Fetch stage pipeline registers
= StallD and StallF are asserted

a Clear the contents of the Execute stage register, introducing a
bubble

= FlushE is also asserted




A Special Case of Data Dependence

= Control dependence
o Data dependence on the Instruction Pointer / Program Counter
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Control Dependence

Question: What should the fetch PC be in the next cycle?
Answer: The address of the next instruction
a All instructions are control dependent on previous ones. Why?

If the fetched instruction is a non-control-flow instruction:
o Next Fetch PC is the address of the next-sequential instruction
o Easy to determine if we know the size of the fetched instruction

If the instruction that is fetched is a control-flow instruction:
o How do we determine the next Fetch PC?

In fact, how do we know whether or not the fetched

instruction is a control-flow instruction?
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Branch Prediction

m Special case of data dependence: dependence on PC

m beq:

= Conditional branch is not resolved until the fourth stage of the pipeline
= Instructions after the branch are fetched before branch is resolved
= Simple “branch prediction” example:

= Always predict that the next sequential instruction is fetched

= Called “Always not taken” prediction

= Flush (invalidate) such instructions if the branch is taken

m Branch misprediction penalty

= number of instructions flushed when branch is incorrectly predicted

= Penalty can be reduced by resolving the branch earlier
= Called “Early branch resolution”



Control Dependence: Original Pipeline

CLK CLK CLK
/~—\ | RegWriteD €7RegWriteE €7RegWriteM €7RegWriteW
Cznt_rtol MemtoRegD MemtoRegE MemtoRegM MemtoRegW
ni
MemWriteD MemWriteE MemWriteM
ALUControlD,,., ALUControlE,.,
31:26
—1©p ALUSIcD ALUSrcE
5:0
—=— Funct
RegDstD RegDstE PCSrcM
BranchD BranchE BranchM -
—
CLK CLK ] CLK
CLK %7 | - |
: WE3 SrcAE [ WE
-F pc |V |ece] o ro H st J22H A1 RD1 o ZeroM
1 m 10 -} ALUOUtM ReadDataW
Z : =>_ A RD [~
Instruction 2016] Ao RD2 <
Memory Data
3 Regist i WriteDataM Memory
WD3 eg.ls er WriteDataE WD
File 1
25:21 RsD RsE ALUOUtW 0
. RtD RtE ~.
20.16 O\I WriteRegE,, WriteRegM, WriteRegW .o
RdD RdE - — :
15:11 ﬂ
o Sign SignimmD SignimmE
4 Extend
+
PCPlus4F o PCPlus4D o PCPlus4E
P
(T PCBranchM
ResultW
w
w
w =ls S £
s 3 g 2|z E = %
[ [ T i = & 4

Dependence Detection Logic
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Control Dependence: Flush on Misprediction

$t2,

9

Stl

and $t0, $s0,

or S$tl, $s4,

sub $t2, $s0,

y

slt $t3, $s2,

5s3

slt

RF

$s2

$s3

DM

>

Time (cycles)

$t3

Flush
these

instructions

Flush
3 instructions

RF




Pipeline with Early Branch Resolution

oR

Dependence Detection Logic

Need to calculate branch target and condition in the Decode Stage
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Early Branch Resolution

9

Stl

or Stl,

sub $t2,

$s4,

$s0,

$s0

$s5

y

slt $t3,

Ss2,

5s3

slt

RF

$s2

$s3

DM

$t3

RF

>

Time (cycles)

Flush
this
instruction

Flush
1 instruction



Early Branch Resolution: Good Idea?

m Advantages
= Reduced branch misprediction penalty
— Reduced CPI (cycles per instruction)

m Disadvantages
= Potential increase in clock cycle time?
- Higher clock period and lower frequency?
= Additional hardware cost
— Specialized and likely not used by other instructions



Recall: Performance Analysis Basics

= Execution time of a single instruction

a {CPI} x {clock cycle time}
= CPI: Number of cycles it takes to execute an instruction

= Execution time of an entire program
a Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}
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Data Forwarding for Early Branch Resolution

Dependence Detection Logic

Data forwarding for early branch resolution adds even more complexity



Forwarding and Stalling Hardware Control

// Forwarding logic:
assign ForwardAD = (rsD != @) & (rsD
assign ForwardBD = (rtD != @) & (rtD

WriteRegM) & RegWriteM;
WriteRegM) & RegWriteM;

//Stalling logic:
assign lwstall = ((rsD == rtE) | (rtD == rtE)) & MemtoRegE;

assign branchstall = (BranchD & RegWriteE &

(WriteRegE == rsD | WriteRegE == rtD))
|

(BranchD & MemtoRegM &

(WriteRegM == rsD | WriteRegM == rtD));

// Stall signals;

assign StallF = lwstall | branchstall;
assign StallD = lwstall | branchstall;
assign FLushE = lwstall | branchstall;




Final Pipelined MIPS Processor (H&H)

CLK CLK CLK
~— | RegWriteD RegWriteE RegWriteM RegWriteW
COhiEI;OI MemtoRegD MemtoRegE MemtoRegM MemtoRegW
uni MemWriteD MemWriteE MemWriteM
ALUControlD,,, ALUControlE,,
31:26
—1°p ALUSrcD ALUSrcE
5:0
Funct RegDstD RegDstE
BranchD -
~———
CLK CLK Equalp[—PCSreD — CLK
CLK %7 o) — | |
25:21 WE3 = SrcAE WE
01 pc' | M]PcE RD InsttD [— Al RD1 0 00
P — A — 1J—' ) D ALUOUM ReadDataW
Instruction 2016 == >3:j A RD R
memory . RD2 0 o 0 ]sreBE| Data
A3 Reqist — U L2 WriteDataM memory
egister T i
WD3 gle WriteDataE WD :
25:21 RsD RsE ALUOUtW \j—
. RtD RtE ~
2018 C\| WriteRegE,, WriteRegM,,, WriteRegW,,
15:11 RdE RdE -
[
- SignlmmD SignlmmE
15:0 Sign
4 extend
<<2
= +
PCPlus4F o PCPlus4D 2
S - -
PCBranchD
ResultW
| | - % D
@ ol|o olo 3 o) ’3' (8
x 22 - 2|2 FE 5
® @ 2 S I oD S 2|2
& Iy ° ala & cl|la o= o | =
=2 = = >| > > | o a|d Qle
T [S) s} o|o m mim m]m ==

Dependence Detection Logic

Membey

Includes always-taken br prediction, early branch resolution, forwarding, stall logic

Figure 7.58 Pipelined processor with full hazard handling



Doing Better: Smarter Branch Prediction

m Guess whether or not branch will be taken

= Backward branches are usually taken (loops)

= Consider history of whether branch was previously taken to improve
the guess

m Accurate branch prediction reduces the fraction of branches
requiring a flush

m Many sophisticated techniques are employed in modern
processors

® Including simple machine learning methods

= We will see them in the Branch Prediction lectures



More on Branch Prediction (I

mportance of The Branch Problem
[ t f The B h Probl

Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)
Assume: 1 out of 5 instructions is a branch
Assume: Each 5 instruction-block ends with a branch

How long does it take to fetch 500 instructions?
2 100% accuracy
100 cycles (all instructions fetched on the correct path)
No wasted work; IPC = 500/100
» 99% accuracy
100 (correct path) + 20 * 1 (wrong path) = 120 cycles

20% extra instructions fetched; 1P( 500/120

1 90% accuracy
100 (correct path) + 20 * 10 (wrong path) = 300 cycles
200% extra instructions fetched; IPC = 500/300

)y 60% accuracy
100 (correct path) + 20 * 40 (wrong path) = 900 cycles
800% extra instructions fetched; IPC = 500/900
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https://www.youtube.com/watch?v=h6l9yYSyZHM&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=22

More on Branch Prediction (1)

[ntel Pentium M Predictors: Loop and Jump

The advanced branch prediction in the Pentium M
processor is based on the Intel Pentium” 4 processor’s
[6] branch predictor. On top of that, two additional
predictors to capture special program flows, were added
a Loop Detector and an Indirect Branch Predictor Instruction Global
N Pointer History

|
| Count I Limit |Pred|ct|on | 4

‘:ﬂ Target : type : hit target : hit

[ — |
w hit target

Figure 2: The Loop Detector logic Figure 3: The Indirect Branch Predictor logic

Gochman et al.,
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.
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More on Branch Prediction (I11)

S :

- . . y N v
Superblock Code Optimization Fxample

prI mul rjf-rﬁ 4 opA: mul rj <;r2q h

99 pr: add r2<—r2,1J f)[ vdd r2<-r2.1
Wi —— : wl r3<-r2,

=] O
ppC: mul r3<—r23 : ppC: mul r3<-r2,i

Original Code

pA: mul r1<-

==,

99J' :bpB: add r2<-r2,1

»pC’ : mul r3<-r2'$

[ODC: mov r3<-ﬁ e —
Code After Common

Subexpression Elimination
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Lecture 5 slides (pdf): http://www.ece.cmu.edu/~ece740/f15/li...
Lecture 5 slides (ppt): http://www.ece.cmu.edu/~ece740/f15/Ii...

https://www.youtube.com/watch?v=yDjsr-j TOtk&list=PL5PHmM2jkkXmgVhh8CHAuU9N76TShJafYDt&index=4



https://www.youtube.com/watch?v=yDjsr-jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

Lectures on Branch Prediction

= Digital Design & Computer Architecture, Spring 2020, Lecture 16b

o Branch Prediction I (ETH Zurich, Spring 2020)

o https://www.youtube.com/watch?v=h6I19yYSyZHMR&list=PL502s0XY2Zi FRrloMa2fU
YWPGiZUBQo2&index=22

= Digital Design & Computer Architecture, Spring 2020, Lecture 17

o Branch Prediction II (ETH Zurich, Spring 2020)

o https://www.youtube.com/watch?v=z77VpggShvg&list=PL502s0XY2Zi FRrloMa2fU
YWPGiZUBQo2&index=23

= Computer Architecture, Spring 2015, Lecture 5

o Advanced Branch Prediction (CMU, Spring 2015)

o https://www.youtube.com/watch?v=yDjsr-
iTOtk&list=PL5PHM2jkkXmgVhh8CHAU9N76TSh]gfYDt&index=4

SAFARI https://www.youtube.com/onurmutlulectures 102



https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
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Pipelined Performance Example




Pipelined Performance Example

m SPECINT2017 benchmark:

= 25% loads

" 10% stores

= 11% branches
= 2% jumps

= 52% R-type

m Suppose:

= 40% of loads used by next instruction
= 25% of branches mispredicted

m All jumps flush next instruction

m What is the average CPI?



Pipelined Performance Example Solution

m Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.
Thus:

= CPl,,=1(0.6)+2(0.4)=1.4 Average CPI for load
" CPlyeq =1(0.75) + 2(0.25) = 1.25 Average CPI for branch
= And

" Average CPI =



Pipelined Performance Example Solution

m Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.

Thus:

= CPl,, =1(0.6) +2(0.4) = 1.4
= CPlpeq = 1(0.75) +2(0.25) = 1.25

m And
" Average CPI

(0.25)(1.4) +
(0.1)(1) +
(0.11)(1.25) +
(0.02)(2) +
(0.52)(1)

1.15

Average CPI for load
Average CPI for branch

load
store
beqg
jump
r-type



Pipelined Performance

m There are 5 stages, and 5 different timing paths:

T. = max {
tpcq + tnem + tsetup fetch
Iz(tRFread + Toux t 1:eq + tanp + tnux + tsetup ) I decode
tpcq t tmux t tmux t tALU t tsetup execute
tpcq + tmemwrite + tsetup memory
2(tpcq t toux t tRerite) writeback
}

m The operation speed depends on the slowest operation

m Decode and Writeback use register file and have only half a
clock cycle to complete, that is why there is a 2 in front of them



Pipelined Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tocq pC 30
Register setup I 20
Multiplexer trux 25
ALU taLy 200
Memory read tmem 250
Register file read trFread 150
Register file setup tREsetup 20
Equality comparator teq 40
AND gate tanD 15
Memory write Tremwrite 220
Register file write trEwrite 100
Tc = 2(tRFread + tmux + teq + tAND + tmux + tsetup )

=2[150 + 25 + 40 + 15 + 25 + 20] ps
=550 ps



Pipelined Performance Example

m For a program with 100 billion instructions executing on a
pipelined MIPS processor:
= CPI=1.15
= T.=550ps

m Execution Time = (#instructions) X CPI X T,
= (100 X 10°)(1.15)(550 X 1071?)
= 63 seconds



Performance Summary for 3 MIPS microarch.

Execution Time Speedup
Processor (seconds) (single-cycle is baseline)
Single-cycle 95 1
Multicycle 133 0.71
Pipelined 63 1.51

m Pipelined implementation is the fastest of 3 implementations

m Even though we have a 5-stage pipeline, speedup is not 5X
over multi-cycle!



Recall: How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination only in last stage and in program order

Flow dependences are more interesting

Six fundamental ways of handling flow dependences
o Detect and wait until value is available in register file
o Detect and forward/bypass data to dependent instruction

o Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence

|u Detect and move it out of the way for independent instructions |
o Predict the needed value(s), execute “speculatively”, and verify

o Do something else (fine-grained multithreading)
No need to detect
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Recall: How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination only in last stage and in program order

Flow dependences are more interesting

Six fundamental ways of handling flow dependences
o Detect and wait until value is available in register file
o Detect and forward/bypass data to dependent instruction

o Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence

o Detect and move it out of the way for independent instructions
|u Predict the needed value(s), execute “speculatively”, and verify |

o Do something else (fine-grained multithreading)
No need to detect
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Questions to Ponder

What is the role of the hardware vs. the software in data
dependence handling?

o Software based interlocking
Hardware based interlocking

a
o Who inserts/manages the pipeline bubbles?
a

Who finds the independent instructions to fill “empty” pipeline
slots?

o What are the advantages/disadvantages of each?
Think of the performance equation as well
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Questions to Ponder

What is the role of the hardware vs. the software in the
order in which instructions are executed in the pipeline?

o Software based instruction scheduling - static scheduling
o Hardware based instruction scheduling - dynamic scheduling

How does each impact different metrics?

o Performance (and parts of the performance equation)
Complexity

Power consumption

Reliability

o o O o
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More on Software vs. Hardware

Software based scheduling of instructions - static scheduling

o Compiler orders the instructions, hardware executes them in
that order

o Contrast this with dynamic scheduling (in which hardware can
execute instructions out of the compiler-specified order)

o How does the compiler know the latency of each instruction?

What information does the compiler not know that makes
static scheduling difficult?

o Answer: Anything that is determined at run time
Variable-length operation latency, memory addr, branch direction

How can the compiler alleviate this (i.e., estimate the
unknown)?

o Answer: Profiling
115



More on Static Instruction Scheduling

> Pl o) 5818/1:4117

Lecture 16. Static Instruction Scheduling - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu

7,136 views * Feb 26,2015 ifpsc &lo ) SHARE =i SAVE

Carnegie Mellon Computer Architecture 7
@ 23K subscribers SUBSCRIBED ‘A

Lecture 16: Static Instruction Scheduling
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: Feb 23rd, 2015

Lecture 16 slides (pdf): http://www.ece.cmu.edu/~ece447/s15/li...

https:/ /www.youtube.com/onurmutlulectures



https://www.youtube.com/onurmutlulectures

Lectures on Static Instruction Scheduling

= Computer Architecture, Spring 2015, Lecture 16

o Static Instruction Scheduling (CMU, Spring 2015)

o https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHmM2jkkXmi5CxxI7b3]C
L1TWybTDtKg&index=18

= Computer Architecture, Spring 2013, Lecture 21

o Static Instruction Scheduling (CMU, Spring 2013)

o https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHmM2jkkXmidJOd59RE
0g9iDnPDTG6IJ&index=21
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Recall: Semantic Gap

= How close instructions & data types & addressing modes
are to high-level language (HLL)

HLL HLL
| Small Semantic Gap
ISA with

Complex Inst

& Data Types

& Addressing Modes ISA with
Simple Inst

& Data Types
& Addressing Modes

Large Semantic Gap

HW HW

Control Control

Signals Signals
Easier mapping of HLL to ISA Harder mapping of HLL to ISA
Less work for software designer More work for software designer
More work for hardware designer Less work for hardware designer

Optimization burden on HW Optimization burden on SW



Recall: How to Change the Semantic Gap Tradeotts

= Translate from one ISA into a different “implementation” ISA

HLL

Small Semantic Gap

X86-64 ISA with
Complex Inst
& Data Types
& Addressing Modes

Software or Hardware Translator

Implementation ISA with
Simple Inst

& Data Types

& Addressing Modes

ARM v8.4

HW
Control
Signals
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Another Example: NVIDIA Denver

The Secret of Denver: Binary Translation & Code Optimization

As we alluded to earlier, NVIDIA's decision to forgo a traditional out-of-order design for Denver means that
much of Denver’s potential is contained in its software rather than its hardware. The underlying chip itself,
though by no means simple, is at its core a very large in-order processor. So it falls to the software stack to
make Denver sing.

Accomplishing this task is NVIDIA's dynamic code optimizer (DCO). The purpose of the DCO is to accomplish
two tasks: to translate ARM code to Denver’s native format, and to optimize this code to make it run better ¢
Denver. With no out-of-order hardware on Denver, it is the DCO'’s task to find instruction level parallelism
within a thread to fill Denver’s many execution units, and to reorder instructions around potential stalls,
something that is no simple task.

DYNAMIC CODE OPTIMIZATION
OPTIMIZE ONCE, USE MANY TIMES

3
2

* aman

Instructions

Dynamic
Profile

Decoder

Unrolls Lo
Execution

Units Imp o Optimization Cache
Denver Hardware ce it

https://www.anandtech.com/show/8701/the-google-nexus-9-review/4 1 20
https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1



Transmeta: x86 to VLIW Translation

BIOS

Code Morphing
Software

Transmeta o

(9]
>
w
w
(o)
w
.

N
=
00
@
w
m

) 3
VLIW engine ol e e s
X86 X86 - .:
Operating Code Morphing Applications W emceon 03426 FO9 :;
System Software WSl TN . :

Figure 5. The Code Morphing software mediates between x86 software and the Crusoe processor.

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

https://www.wikiwand.com/en/Transmeta_Efficeon 1 2 1



More on Static Instruction Scheduling

> Pl o) 5818/1:4117
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https://www.youtube.com/onurmutlulectures

Lectures on Static Instruction Scheduling

= Computer Architecture, Spring 2015, Lecture 16

o Static Instruction Scheduling (CMU, Spring 2015)

o https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHmM2jkkXmi5CxxI7b3]C
L1TWybTDtKg&index=18

= Computer Architecture, Spring 2013, Lecture 21

o Static Instruction Scheduling (CMU, Spring 2013)

o https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHmM2jkkXmidJOd59RE
0g9iDnPDTG6IJ&index=21
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Recall: How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination only in last stage and in program order

Flow dependences are more interesting

Six fundamental ways of handling flow dependences
o Detect and wait until value is available in register file
o Detect and forward/bypass data to dependent instruction

o Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence

o Detect and move it out of the way for independent instructions
o Predict the needed value(s), execute “speculatively”, and verify

o Do something else (fine-grained multithreading)
No need to detect
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Fine-Grained Multithreading




Fine-Grained Multithreading

= Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no

instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough
threads to cover the whole pipeline

Instruction Operands

Stream 3 Instruction
Instruction Fetch

Stream 2 Instruction
Operand Fetch

Stream 1 Instruction
Executicn Phase

tream B Instruction
Execution Phase

Stream 4 Instruction

Resuit Store

126



Fine-Grained Multithreading (II)

Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependence latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Fine-Grained Multithreading: History

CDC 6600’ s peripheral processing unit is fine-grained
multithreaded

a Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
o Processor executes a different I/O thread every cycle

o An operation from the same thread is executed every 10 cycles

Denelcor HEP (Heterogeneous Element Processor)
Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
120 threads/processor

available queue vs. unavailable (waiting) queue for threads

each thread can have only 1 instruction in the processor pipeline; each thread
independent

to each thread, processor looks like a non-pipelined machine
o system throughput vs. single thread performance tradeoff

o O O O

U
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Fine-Grained Multithreading in HEP

FROM DATA MEMORY TO DATA MEMORY

= Cycle time: 100ns VIA SWITCH VIA SWITCH

QUEUE

= 8 stages - 800 ns to

PERFORM
complete an rovcTon
Instruction

. PERFORM
o assuming no memory FUNCTION
access

REGISTER
MEMORY

STORE
RESULT

FETCH
OPERANDS

= No control and data
dependence checking

C FETCH ——
, INSTRUCTION >
Burton Smith

(1941-2018) I

PROGRAM
MEMORY

1LY



Multithreaded Pipeline Example

_ — : > X >
N — 1$ —(IR—I gpR1 =
1 A . Y >
n N |
+1
A

_‘u II :I_l ,’ :l_l
2 Thread N 2 W

select

Slide credit: Joel Emer 130



Sun Niagara Muly

ded Pipeline

e CcOde

<— Instruction type
<+—— Misses
<——— Traps and interrupty

Crossbar
Interface

Resource conflicts

Kongetira et al., "Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.
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Fine-Grained Multithreading

Advantages

+ No need for dependence checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, ...), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependence checking logic between threads remains (load/store)
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Modern GPUs are
FGM'T Machines




NVIDIA GeForce GTX 285 “core’”

64 KB of storage
for thread contexts

-

= multiply-add
B = multiply

o = data-parallel (SIMD) func. unit,
control shared across 8 units

(registers)

- = instruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian
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NVIDIA GeForce GTX 285 “core’”

64 KB of storage

for thread contexts

-

(registers)

= Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

= Up to 32 warps are interleaved in an FGMT manner
= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian
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NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads
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Further Reading for the Interested (I)

A PIPELINED, SHARED RESOUCE MIMD COMPUTEKk

Burton J. Smith

Denelcor, Inc.
Denver, Colorado 80205

Burton Smith
o (1941-2018)

Architecture and applications of the HEP multiprocessor computer system

Burton J. Smith
Denelcor, Inc., 14221 E. 4th Avenue, Aurora, Colorado 80011



Further Reading for the Interested (II)

Robert Alverson

David Callahan
Allan Porterfield

The Tera Computer System”

Tera Computer Company

Seattle, Washington USA

4 Processors

Each processor in a Tera computer can execute multiple
instruction streams simultaneously. In the current im-
plementation, as few as one or as many as 128 program
counters may be active at once. On every tick of the
clock, the processor logic selects a stream that is ready
to execute and allows it to issue its next instruction.
Since instruction interpretation is completely pipelined
by the processor and by the network and memories as
well, a new instruction from a different stream may be
1ssued in each tick without interfering with its predeces-
sors. When an instruction finishes, the stream to which
it belongs thereby becomes ready to execute the next
instruction. As long as there are enough instruction
streams in the processor so that the average instruction
latency is filled with instructions from other streams,
the processor is being fully utilized. Thus, it is only
necessary to have enough streams to hide the expected
latency (perhaps 70 ticks on average); once latency is
hidden the processor is running at peak performance
and additional streams do not speed the result.

Daniel Cummings
Burton Smith

Brian Koblenz
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More on Multithreading (I)

' Coarse-grained Multithreading Coarse-grained Muly

Idea: When a thread is sta

A FFarant
1 O e

Idea: When a thread is sta et

hardware conte

Switch-on-event multithreading

’ Switch-on-event multithre:
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More on Multithreading (1I)
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More on Multithreading (11I)
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Date: October 5, 2012.
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More on Multithreading (IV)
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915 views  Sep 21,2013 @9 &0 ) SHARE = SAVE

¥ Carnegie Mellon Computer Architecture
@ 1.81K subscribers SUBSCRIBED (1

Lecture 15: Speculation |

Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: October 10, 2012.

https://www.youtube.com/watch?v=-hbmzIDe0sA&list=PL5PHmM2jkkXmgDN1PLwQY tGtUlynnyV6D&index=54



https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23

Lectures on Multithreading

= Parallel Computer Architecture, Fall 2012, Lecture 9

o Multithreading I (CMU, Fall 2012)

o https://www.youtube.com/watch?v=igi9wFgFiNU&Iist=PL5PHmM2jkkXmgDN1PLwWQY
tGtUlynnyV6D&index=51

= Parallel Computer Architecture, Fall 2012, Lecture 10

o Multithreading II (CMU, Fall 2012)
o https://www.youtube.com/watch?v=e8Ifl6MbILg&list=PL5PHM2jkkXmgDN1PLwWQY

tGtUlynnyV6D&index=52

= Parallel Computer Architecture, Fall 2012, Lecture 13

o Multithreading III (CMU, Fall 2012)

o https://www.youtube.com/watch?v=7vkDpZ1-
hHM&list=PL5PHM2jkkXmgDN1PLwWQY tGtUlynnyV6D&index=53

= Parallel Computer Architecture, Fall 2012, Lecture 15

o Speculation I (CMU, Fall 2012)

o https://www.youtube.com/watch?v=-
hbmzIDe0sA&list=PL5PHmM2jkkXmgDN1PLwWQOY tGtUlynnyV6D&index=54

https://www.youtube.com/onurmutlulectures 143
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Pipelining and Precise Exceptions:
Preserving Sequential Semantics




Multi-Cycle Execution

Not all instructions take the same amount of time for

“execution”

Idea: Have multiple different functional units that take

different number of cycles

o Can be pipelined or not pipelined

o Can let independent instructions start execution on a different
functional unit before a previous long-latency instruction

finishes execution

E Integer add
Integer mul
E |E |E|E >
FID FP mul :
E|E|E |E|E |E |E|E
E|E|E |E|E|E |E |E |==«>

Load/store
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Issues 1n Pipelining: Multi-Cycle |

Hxecute

Instructions can take different number of cycles in EXECUTE

stage

o Integer ADD versus Integer DIVide

DIV R4 € R1,R2
ADD R3 € R1,R2

DIV R2 ¢« R5, R6
ADD R7 € R5,R6

F | D|E|E|E|E|E|E|E|E |W
F|D|E|W
F|D|E|W
F|D|E |W
F|D|E|E|E|E|E|E|E|E|W
F|D|E|W
F|D|E|W

o What is wrong with this picture in a Von Neumann architecture?
Sequential semantics of the ISA NOT preserved!

What if DIV incurs an exception?
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Exceptions and Interrupts

“Unplanned” changes or interruptions in program execution

Due to internal problems in execution of the program
- EXceptions

Due to external events that need to be handled by the
processor

- Interrupts

Both exceptions and interrupts require
o stopping of the current program
o saving the architectural state
o handling the exception/interrupt - switch to handler
o return back to program execution (if possible and makes sense)
148



Exceptions vs. Interrupts

Cause
o Exceptions: internal to the running thread
o Interrupts: external to the running thread

When to Handle
o Exceptions: when detected (and known to be non-speculative)

o Interrupts: when convenient

Except for very high priority ones
o Power failure
o Machine check (error)

Priority: process (exception), depends (interrupt)

Handling Context: process (exception), system (interrupt)
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Precise Exceptions/Interrupts

= The architectural state should be consistent (precise)
when the exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.
2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state
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Checking for and Handling Exceptions in Pipelining

When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

a Ensures architectural state is precise (register file, PC, memory)
o Flushes all younger instructions in the pipeline
o Saves PC and registers (as specified by the ISA)

o Redirects the fetch engine to the appropriate exception
handling routine
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Why Do We Want Precise Exceptions?

= Semantics of the von Neumann model ISA specifies it
o Remember von Neumann vs. Dataflow

= Aids software debugging
= Enables (easy) recovery from exceptions
= Enables (easily) restartable processes

= Enables traps into software (e.g., software implemented
opcodes)
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Ensuring Precise Exceptions

= Easy to do in single-cycle and multi-cycle machines

= Single-cycle
o Instruction boundaries == Cycle boundaries

= Multi-cycle

o Add special states in the control FSM that lead to the
exception or interrupt handlers

a Switch to the handler only at a precise state > before fetching
the next instruction

See H&H Section 7.7 for a treatment of exceptions in multi-cycle uarch 153



Precise Exceptions in Multi-Cycle FSM

S0: Fetch

Reset

S2: MemAdr Op =sw

S1: Decode Op— 0
lorD=0 p=MFC
AluSrcA=0
ALUSrcB=01 ALUSrcA=0 o
ALUOp =00 ALUSrcB=11 p=J
PCSrc=00 ALUOp =00
IRWrite
PCWrite
Op = ADDI
Op = Lw Op=pE0 "
or Op = R-type
S6: Execute s8: Branch

ALUSrcA=1
ALUSrcB=10

ALUOp=00

Op=1Lw
S3: MemRead

S4: Mem
Writeback

RegDst=0
MemtoReg=01
RegWrite

S12: Undefined S14: MFCO

PCSrc=11
PCWrite
IntCause=1
CauseWrite
EPCWrite

RegDst =0
Memtoreg=10
RegWrite

Op=others

ALUSrcA=1
ALUSrcB=00
ALUOp=01
PCSrc=01
Branch

ALUSrcA=1
ALUSrcB=00
ALUOp=10

Op = sw

S5: MemWrite

S7: ALU Overflow Overflow
S13:

Writeback
Overflow

PCSrc=11

lorD =1 RegDst=1 PCWrite
M V; it MemtoReg =00 IntCause=0
emwvrite RegWrite CauseWrite

EPCWrite

S11: Jump

PCSrc=10
PCWrite

S9: ADDI
Execute,

ALUSrcA=1
ALUSrcB=10
ALUOp =00

S10: ADDI
Writeback

RegDst=0
MemtoReg =00
RegWrite

Figure 7.64 Controller supporting exceptions and mfc0
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Precise Exceptions in Multi-Cycle Datapath

EPCWrite  IntCause CauseWrite

PCEnN
lorD MemWrite IRWrite RegDst MemtoReg RegWrite ALUSrcA ALUSrcB, , ALUControl, Branch PCWrite PCSrc, ,
CLK CLK CLK
CLK | CLK |
WE : WE3 A 3128 CLK |
rc| Mpc| . Instr [— Al RD1 0
- Adf A - 2016 A2 RD2 B ALUResult | [M]ALuOut | o
1
Instr/Data 2016 I _Overflow L 10
Memory 15:11 A3 . 11
WD CLK 1] Register PCJump| | [T
0 File 0x80000180
Data 1 WD3

[N

/ Signlmm
15:0

{ Sign Extend

25:0 (jump)

Figure 7.62 Datapath supporting overflow and undefined instruction exceptions

See H&H Section 7.7 for a treatment of exceptions in multi-cycle uarch 155



Multi-Cycle Execute: More Complications

Instructions can take different number of cycles in EXECUTE
stage
o Integer ADD versus Integer DIVide

DIV R4 & R1,R2 F | D|E|E|E|E|E|E|E|E |W
ADD R3 € R1,R2 FIDIE |W
F|D|E|W
F|D|E |W
DIV R2 & R5,R6 F|D|E|E|E|E|E|E|E|E|W
ADD R7 € R5,R6 F|D|E|W
F|D|E|W

o What is wrong with this picture in a Von Neumann architecture?

Sequential semantics of the ISA NOT preserved!
What if DIV incurs an exception?
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Ensuring Precise Exceptions in Pipelining

Idea: Make each operation take the same amount of time

DIV R3¢R1,R2 |F|D|E|E|E|E|E|E|E|E|W
ADD R4 €< R1,R2 FIDIE|E|E|E|E|E|E|E|W
FIDE|E|E|E|E|E|E|E|W
FIDE|E|E|E|E|E|E|E|W
FID|E|E|E|E|E|E|E|E|W
FIDE|E|E|E|E|E|E|E|W
FID E|E|E|E|E|E|E|E|W
Downside

o Worst-case instruction latency determines all instructions’ latency

What about memory operations?
Each functional unit takes worst-case number of cycles?
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Solutions

= Reorder buffer

= History buffer

We will not cover these

= Future register file See suggested lecture videos from Spring 2015

= Checkpointing

= Suggested reading

o Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.
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Solution I: Reorder Buffer (ROB)

Idea: Complete instructions out-of-order, but reorder them
before making results visible to architectural state

When instruction is decoded, it reserves the next-sequential
entry in the ROB

When instruction completes, it writes result into ROB entry

When instruction oldest in ROB and it has completed
without exceptions, its result moved to reg. file or memory

Func Unit

Instruction Register _ Reorder
Cache [T | File Func Unit Buffer

Func Unit
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Reorder Buffer

= Buffers information about all instructions that are decoded
but not yet retired/committed
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What’s in a ROB Entry?

Valid bits for reg/data

\/ | DestRegID | DestRegVal | StoreAddr | StoreData | PC + control bits

Exception?

Everything required to:
o correctly reorder instructions back into the program order

o update the architectural state with the instruction’s result(s), if
instruction can retire without any issues

a handle an exception/interrupt precisely, if an
exception/interrupt needs to be handled before retiring the
instruction

Need valid bits to keep track of readiness of the result(s)
and find out if the instruction has completed execution

161



Reorder Butter: Independent Operations

Result first written to ROB on instruction completion
Result written to register file at commit time

F D|E|E|E|E|E|E|E|E R|W
F|D|E |R W
F|D|E |R W
F|D|E |R W
F | /D|E|E|E|E|E|E|E|E|R|W
F|DJ|E |R W
F|D|E|R W

What if a later instruction neec
o One option: stall the operation - stall the pipeline
o Better: Read the value from the reorder buffer. How?

s a value in the reorder buffer?
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Reorder Buffer: How to Access?

A register value can be in the register file, reorder buffer,
(or bypass/forwarding paths)

Random Access Memory
_ (indexed with Register ID,
Instruction Register |\ hich is the address of an entry)
Cache | o | File
\ Func Unit
Func Unit
> Reorder / Func Unit
Content Buffer
Addressable
Memory bypass paths
(searched with
reqgister ID,

which is part of the content of an entry)
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Simplifying Reorder Buffer Access

Idea: Use indirection

Access register file first (check if the register is valid)

o If register not valid, register file stores the ID of the reorder
buffer entry that contains (or will contain) the value of the
register

o Mapping of the register to a ROB entry: Register file maps the
register to a reorder buffer entry if there is an in-flight
instruction writing to the register

Access reorder buffer next

Now, reorder buffer does not need to be content addressable
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Reorder Buffer in Intel Pentium 111

Pentium III {45
Data Status

Boggs et al., "The
Microarchitecture of the
Pentium 4 Processor,” Intel
Technology Journal, 2001.

IRRF

/
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Important: Register Renaming with a Reorder Buttfer

Output and anti dependences are not true dependences

a WHY? The same register refers to values that have nothing to
do with each other

o They exist due to lack of register ID’s (i.e. names) in
the ISA

The register ID is renamed to the reorder buffer entry that
will hold the register’s value

o Register ID - ROB entry ID
o Architectural register ID - Physical register ID
o After renaming, ROB entry ID used to refer to the register

This eliminates anti and output dependences

o Gives the illusion that there are a large number of registers
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Recall: Data Dependence Types

True (flow) dependence

rs <— r,opn Read-after-Write

re '\— r; op ry (RAW) -- True

Anti dependence

rs <~ r,opr, Write-after-Read
e .

ry < [, Op rg (WAR) -- Anti

Output-dependence

rs < r; opr, Write-after-Write
( — (WAW) -- Output

rs < g Op ry
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Renaming Example

Assume

o Register file has a pointer to the reorder buffer entry that
contains or will contain the value, if the register is not valid

o Reorder buffer works as described before

Where is the latest definition of R3 for each instruction
below in sequential order?

LD RO(0) > R3

LD R3, R1 - R10

MUL R1, R2 = R3

MUL R3, R4 - R11

ADD R5, R6 = R3

ADD R7, R8 - R12
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In-Order Pipeline with Reorder Butter

Decode (D): Access regfile/ROB, allocate entry in ROB, check if
instruction can execute, if so dispatch instruction

Execute (E): Instructions can complete out-of-order
Completion (R): Write result to reorder buffer

Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline and start from
exception handler

In-order dispatch/execution, out-of-order completion, in-order retirement

E Integer add
Integer mul
E |E |E E
F | D FP mul R W
R E|E|E |E|E |E|E|E

E|E|E|E |E|E|E|E|==—

Load/store
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Reorder Buffer Tradeoffs

Advantages

o Conceptually simple for supporting precise exceptions
o Can eliminate false dependences

Disadvantages

o Reorder buffer needs to be accessed to get the results that
are yet to be written to the register file

CAM or indirection = increased latency and complexity

Other solutions aim to eliminate the disadvantages
o History buffer
a Future file

o Checkpointing

We will not cover these
See suggested lecture videos from Spring 2015
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More on State Maintenance & Precise Exceptions

4 P Pl o) 1:29:59/1:5346

Lecture 11. Precise Exceptions, State Maintenance/Recovery - CMU - Comp. Arch. 2015 - Onur Mutlu
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@ g:&":u%':cmfe'::" Compuieiiichitecire ANALYTICS | EDIT VIDEO

Lecture 11. Precise Exceptions, State Maintenance, State Recovery
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: Feb 11th, 2015

https:/ /www.youtube.com/onurmutlulectures
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https://www.youtube.com/onurmutlulectures

Lectures on State Maintenance & Recovery

= Computer Architecture, Spring 2015, Lecture 11

o Precise Exceptions, State Maintenance/Recovery (CMU, Spring 2015)

o https://www.youtube.com/watch?v=nMfbtzZWizDA&list=PL5PHM2ikkXmi5CxxI7b3]
CL1TWybTDtKg&index=13

= Digital Design & Computer Architecture, Spring 2019, Lecture 15a

o Reorder Buffer (ETH Zurich, Spring 2019)

o https://www.youtube.com/watch?v=9y03yhUijOs&list=PL502s0XY2Zi8]58xLKBNFQ
FHRO3GrXxA9&index=17

https://www.youtube.com/onurmutlulectures 173



https://www.youtube.com/watch?v=nMfbtzWizDA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=13
https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=52
https://www.youtube.com/onurmutlulectures

Suggested Readings for the Interested

Smith and Plezskun, “Implementing Precise Interrupts in

Pipelined Processors,” IEEE Trans on Computers 1988 and
ISCA 1985.

Smith and Sohi, “"The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.

Backup Slides
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Reorder Buffer Tradeoffs

Advantages

o Conceptually simple for supporting precise exceptions
o Can eliminate false dependences

Disadvantages

o Reorder buffer needs to be accessed to get the results that
are yet to be written to the register file

CAM or indirection = increased latency and complexity

Other solutions aim to eliminate the disadvantages
o History buffer
a Future file

o Checkpointing
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Solution II: History Butter (HB)

Idea: Update the register file when instruction completes,
but UNDO UPDATES when an exception occurs

When instruction is decoded, it reserves an HB entry

When the instruction completes, it stores the old value of
its destination in the HB

When instruction is oldest and no exceptions/interrupts, the
HB entry discarded

When instruction is oldest and an exception needs to be
handled, old values in the HB are written back into the
architectural state from tail to head
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History Butfer

Func Unit
Instruction R.egister ) History
Cache [T | File Func Unit Buffer
Func Unit

Used only on exceptions

Advantage:

o Register file contains up-to-date values for incoming instructions
- History buffer access not on critical path

Disadvantage:
o Need to read the old value of the destination register

o Need to unwind the history buffer upon an exception >
increased exception/interrupt handling latency
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Comparison ot Two Approaches

Reorder buffer

o Pessimistic register file update

o Update only with non-speculative values (in program order)
o Leads to complexity/delay in accessing the new values

History buffer

o Optimistic register file update

o Update immediately, but log the old value for recovery
o Leads to complexity/delay in logging old values

Can we get the best of both worlds?

o Principle: Heterogeneity
o Idea: Have both types of register files
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Solution III: Future File (FF) + ROB

Idea: Keep two register files (speculative and architectural)

o Arch reg file: Updated in program order for precise exceptions
Use a reorder buffer to ensure in-order updates

o Future reg file: Updated as soon as an instruction completes
(if the instruction is the youngest one to write to a register)

Future file is used for fast access to latest register values
(speculative state)

o Frontend register file

Architectural file is used for state recovery on exceptions
(architectural state)

o Backend register file
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Future File

| Func Unit
Instruction Future _
Cache T > File i Func Unit
Biia and Tag1V/ Func Unit
Used only on exceptions
Advantage

o No need to read the new values from the ROB (no CAM or
indirection) or the old value of destination register

l

Disadvantage
o Multiple register files

o Need to copy arch. req. file to future file on an exception

ROB

Arch.
File
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In-Order Pipeline with Future File and Reorder Buffer

Decode (D): Access future file, allocate entry in ROB, check if instruction
can execute, if so dispatch instruction

Execute (E): Instructions can complete out-of-order
Completion (R): Write result to reorder buffer and future file

Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline, copy
architectural file to future file, and start from exception handler

In-order dispatch/execution, out-of-order completion, in-order retirement

E Integer add
Integer mul
E |E |E E
F | D FP mul R W
E|E|E |E|E |E|E|E

E|E|E|E |E|E|E|E|==—

Load/store
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Can We Reduce the Overhead of Two Register Files?

= Idea: Use indirection, i.e., pointers to data in frontend and
retirement

o Have a single storage that stores register data values

o Keep two register maps (speculative and architectural); also
called register alias tables (RATS)

= Future map used for fast access to latest register values
(speculative state)

o Frontend register map

= Architectural map is used for state recovery on exceptions
(architectural state)

o Backend register map
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Future Map in Intel Pentitum 4

NetBurst RF ROB

Data Status Boggs et al., “The
Microarchitecture of
the Pentium 4
Processor,” Intel
Technology Journal,

2001.

Front_end RAT

Many modern
processors

are similar:

- MIPS R10K
- Alpha 21264
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Reorder Butter vs. Future Map Comparison

Pentium III ;5 NetBurst RF ROB
Data Status Data Status

Frontend RAT
E e VlV
E EVlV
ECX
EDX
RAT o,
i, EDIL
EBX Enp
s EBP
N ———— ———— B I N N
o T
EDI Retirement RAT .- .
E S P X ...........'._._-,..-.l .........
EBP _Eg'n ............................
T N
EDX ....-..-.._........-....'.',..ni'.‘............ OO L)
ESI """"""‘::_'M'::::: ................. >
£S1 “:::H:::: ........................ ):
——IRRF T e
: o
............................. )
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Betore We Get to Checkpointing ...

= Let’s cover what happens on exceptions
= And branch mispredictions
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Checking for and Handling Exceptions in Pipelining

When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

o Recovers architectural state (register file, IP, and memory)
o Flushes all younger instructions in the pipeline

o Saves IP and registers (as specified by the ISA)
a

Redirects the fetch engine to the exception handling routine
Vectored exceptions
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Pipelining Issues: Branch Mispredictions

A branch misprediction resembles an “exception”
o Except it is not visible to software (i.e., it is microarchitectural)

What about branch misprediction recovery?

o Similar to exception handling except can be initiated before
the branch is the oldest instruction (not architectural)

o All three state recovery methods can be used

Difference between exceptions and branch mispredictions?
a Branch mispredictions are much more common

- need fast state recovery to minimize performance impact of
mispredictions
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How Fast Is State Recovery?

Latency of state recovery affects
o Exception service latency

o Interrupt service latency

o Latency to supply the correct data to instructions fetched after
a branch misprediction

Which ones above need to be fast?

How do the three state maintenance methods fare in terms
of recovery latency?

o Reorder buffer
o History buffer
o Future file
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Branch State Recovery Actions and Latency

Reorder Buffer
o Flush instructions in pipeline younger than the branch
o Finish all instructions in the reorder buffer

History buffer
o Flush instructions in pipeline younger than the branch

o Undo all instructions after the branch by rewinding from the
tail of the history buffer until the branch & restoring old values
one by one into the register file

Future file
o Wait until branch is the oldest instruction in the machine
o Copy arch. reg. file to future file

a Flush entire pipeline
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Can We Do Better?

Goal: Restore the frontend state (future file) such that the
correct next instruction after the branch can execute right
away after the branch misprediction is resolved

Idea: Checkpoint the frontend register state/map at the
time a branch is decoded and keep the checkpointed state
updated with results of instructions older than the branch

o Upon branch misprediction, restore the checkpoint associated
with the branch

Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.
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Checkpointing

When a branch is decoded

o Make a copy of the future file/map and associate it with the
branch

When an instruction produces a register value

o All future file/map checkpoints that are younger than the
instruction are updated with the value

When a branch misprediction is detected

o Restore the checkpointed future file/map for the mispredicted
branch when the branch misprediction is resolved

o Flush instructions in pipeline younger than the branch
o Deallocate checkpoints younger than the branch
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Checkpointing

Advantages

a Correct frontend register state available right after checkpoint
restoration - Low state recovery latency

Disadvantages
o Storage overhead
o Complexity in managing checkpoints

Q ...
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Many Modern Processors Use Checkpointing

MIPS R10000
Alpha 21264
Pentium 4

Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

Boggs et al., "The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.
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Summary: Maintaining Precise State

Reorder buffer
History buffer
Future register file
Checkpointing

Readings

o Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

o Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.
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Registers versus Memory

So far, we considered mainly registers as part of state
What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)
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Maintaining Speculative Memory State: Stores

Handling out-of-order completion of memory operations

o UNDOing a memory write more difficult than UNDQing a
register write. Why?
o One idea: Keep store address/data in reorder buffer
How does a load instruction find its data?
o Store/write buffer: Similar to reorder buffer, but used only for
store instructions
Program-order list of un-committed store operations
When store is decoded: Allocate a store buffer entry

When store address and data become available: Record in store
buffer entry

When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

We will get back to this!
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Pipeline with Early Branch Resolution
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Dependence Detection Logic

—

Need to calculate branch target and condition in the Decode Stage



