
Digital Design & Computer Arch.
Lecture 14: Pipelined Processor Design

Prof. Onur Mutlu

ETH Zürich
Spring 2022
8 April 2022

Extra Assignment: Moore’s Law (I)
n Paper review
n G.E. Moore. "Cramming more components onto integrated

circuits," Electronics magazine, 1965

n Optional Assignment – for 1% extra credit
q Write a 1-page review
q Upload PDF file to Moodle – Deadline: April 11

n I strongly recommend that you follow my guidelines for
(paper) review (see next slide)

2

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (II)
n Guidelines on how to review papers critically

q Guideline slides: pdf ppt
q Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

q Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)
n Review 1
n Review 2

q Example review on “Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
n Review 1

3

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

Agenda for Today & Next Few Lectures
n Last week: Microarchitecture Fundamentals

q Single-cycle Microarchitectures
q Multi-cycle Microarchitectures

n This week: Pipelining
q Pipelining
q Pipelined Processor Design

n Control & Data Dependence Handling
n Precise Exceptions: State Maintenance & Recovery

n Next week+: Out-of-Order Execution
q Out-of-Order Execution
q Issues in OoO Execution: Load-Store Handling, …

4

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Readings
n This week

q Pipelining
n H&H, Chapter 7.5

q Pipelining Issues
n H&H, Chapter 7.7, 7.8.1-7.8.3

n Next week
q Out-of-order execution

q H&H, Chapter 7.8-7.9
q Smith & Sohi, “The Microarchitecture of Superscalar Processors,”

Proceedings of the IEEE, 1995
n More advanced pipelining
n Interrupt and exception handling
n Out-of-order and superscalar execution concepts

5

ImmExt

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1PC 0

1

PC' Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

Zero
CLK

AL
U

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN
00
01
10

<<2

25:0 (Addr)

31:28

27:0

PCJump

5:0

31:26

Branch

MemWrite

ALUSrcA
RegWrite

Op
Funct

Control
Unit

PCSrc

CLK

ALUControl2:0

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

R
egD

st

M
em

toR
eg

6

Review: Pipelining Basic Idea

Of course, we need to be more careful than this!

Carnegie Mellon

7

Review: Pipelined Datapath & Control

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4EPCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

ZeroM

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

BranchE BranchM

RegDstE

ALUSrcE

WriteRegE4:0

¢ Same control unit as single-cycle processor
Control delayed to proper pipeline stage

Review: Execution of Four Independent ADDs

n Multi-cycle: 4 cycles per instruction

n Pipelined: 4 cycles per 4 instructions (steady state)

8

Time

F D E W
F D E W

F D E W
F D E W

F D E W
F D E W

F D E W
F D E W

TimeIs life always this beautiful?

1 instruction completed per cycle

1 instruction completed per 4 cycles

Review: Issues in Pipeline Design
n Balancing work in pipeline stages

q How many stages and what is done in each stage

n Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow
q Handling dependences

n Data
n Control

q Handling resource contention
q Handling long-latency (multi-cycle) operations

n Handling exceptions, interrupts

n Advanced: Improving pipeline throughput
q Minimizing stalls

9

Review: Causes of Pipeline Stalls
n Stall: A condition when the pipeline stops moving

n Resource contention

n Dependences (between instructions)
q Data
q Control

n Long-latency (multi-cycle) operations

10

Data Dependence Handling:
Concepts and Implementation

11

Review: Data Dependence Types

12

Flow dependence
r3 ¬ r1 op r2 Read-after-Write
r5 ¬ r3 op r4 (RAW)

Anti dependence
r3 ¬ r1 op r2 Write-after-Read
r1 ¬ r4 op r5 (WAR)

Output dependence
r3 ¬ r1 op r2 Write-after-Write
r5 ¬ r3 op r4 (WAW)
r3 ¬ r6 op r7

Review: How to Handle Data Dependences
n Anti and output dependences are easier to handle

q write to the destination only in last stage and in program order

n Flow dependences are more interesting & challenging

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
13

Review: Pipeline Stall: Resolving Data Dependence

14

IF

WB

IF ID ALU MEM
IF ID ALU MEM

IF ID ALU MEM
IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM
IF ID ALU

IF ID

Insti
Instj
Instk
Instl

WB
WB

i: rx ¬ _
j: _ ¬ rx dist(i,j)=1

i
j

Insth

WB
MEM
ALU

i: rx ¬ _
bubble
j: _ ¬ rx dist(i,j)=2

WB

IF ID ALU MEM
IF ID ALU MEM

IF ID ALU MEM
IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti
Instj
Instk
Instl

WB
WBi

j

Insth

ID
IF

IF

IF ID ALU
IF ID

i: rx ¬ _
bubble
bubble
j: _ ¬ rx dist(i,j)=3

IF

IF ID ALU MEM
IF ID ALU MEM

IF ID ALU
IF ID

t0 t1 t2 t3 t4 t5

IF

MEM
ALU
ID

Insti
Instj
Instk
Instl

WB
WBi

j

Insth

ID
IF

ID
IF

i: rx ¬ _
bubble
bubble
bubble
j: _ ¬ rx dist(i,j)=4

IF

IF ID ALU MEM
IF ID ALU MEM

IF ID
IF

t0 t1 t2 t3 t4 t5

ALU
ID

Insti
Instj
Instk
Instl

WB
WBi

j

Insth

ID
IF

ID
IF

ID
IF

Stall = make the dependent instruction wait
until its source data value is available
1. stop all up-stream stages
2. drain all down-stream stages

Review: How to Implement Stalling

n Stall
q disable PC and IF/ID latching; ensure stalled instruction stays in its stage
q Insert “invalid” instructions/nops into the stage following the stalled one

(called “bubbles”)
15

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20– 16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address
Data

memory

Address

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Review: RAW Data Dependence Example
¢ One instruction writes a register ($s0) and next instructions

read this register => read after write (RAW) dependence.
q add writes into $s0 in the first half of cycle 5
q and reads $s0 on cycle 3, obtaining the wrong value
q or reads $s0 on cycle 4, again obtaining the wrong value
q sub reads $s0 in 2nd half of cycle 5, getting the correct value
q subsequent instructions read the correct value of $s0

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

Wrong results happen only if
the pipeline handles

data dependences incorrectly!

Review: Compile-Time Detection and Elimination

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

nop

nop

RF RFDMnopIM

RF RFDMnopIM

9 10

n Insert enough independent instructions for the required result
to be ready by the time it is needed by a dependent one
q Reorder/reschedule/insert instructions at the compiler level

Review: Data Forwarding
n Also called Data Bypassing

n Forward the result value to the dependent instruction
as soon as the value is available

n We have already seen the basic idea before
n Remember dataflow?

q Data value is supplied to dependent instruction as soon as it is
available

q Instruction executes when all its operands are available

n Data forwarding brings a pipeline closer to data flow
execution principles

Data Forwarding: Locations in Datapath

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

From latched output of ALU to input of ALU
From WB to input of ALU
From WB to RF (internal in Register File)

Data Forwarding: Datapath & Control

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

Hazard Unit

PCPlus4E

BranchE BranchM

ZeroM

Dependence Detection Logic

From latched output of ALU to input of ALU
From WB to input of ALU
From Regfile

Data Forwarding: Implementation
n Forward to Execute stage from either:

q Memory stage or
q Writeback stage

n When should we forward from either Memory or Writeback
stage?
q If that stage will write to a destination register and the

destination register matches the source register
q If both the Memory & Writeback stages contain matching

destination registers, Memory stage has priority to forward its
data, because it contains the more recently executed instruction

Data Forwarding (in Pseudocode)
n Forward to Execute stage from either:

q Memory stage or
q Writeback stage

n Forwarding logic for ForwardAE (pseudo code):
if ((rsE != 0) AND (rsE == WriteRegM) AND RegWriteM) then

ForwardAE = 10 # forward from Memory stage

else if ((rsE != 0) AND (rsE == WriteRegW) AND RegWriteW) then

ForwardAE = 01 # forward from Writeback stage

else

ForwardAE = 00 # no forwarding

n Forwarding logic for ForwardBE same, but replace rsE with rtE

Data Forwarding Is Not Always Possible

n Forwarding is usually sufficient to resolve RAW data dependences
n Unfortunately, there are cases when forwarding is not possible

q due to pipeline design and instruction latencies
q The lw instruction does not finish reading data until the end of Memory stage

à its result cannot be forwarded to the Execute stage of the next instruction
unless we want a long critical path à breaks critical path design principle

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

Trouble!

Stalling Necessary for MEM-EX Dependence

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

9

RF $s1

$s0

IM or

Stall

Stalling and Dependence Detection Hardware

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Hazard Unit

Fl
us
hE

PCPlus4E

BranchE BranchM

ZeroM

EN

EN C
LR

Dependence Detection Logic

Hardware Needed for Stalling
n Stalls are supported by adding

q enable inputs (EN) to the Fetch and Decode pipeline registers
q synchronous reset/clear (CLR) input to the Execute pipeline

register
n or an INV bit associated with each pipeline register, indicating that

contents are INValid

n When a lw stall occurs
q Keep the values in the Decode and Fetch stage pipeline registers

n StallD and StallF are asserted
q Clear the contents of the Execute stage register, introducing a

bubble
n FlushE is also asserted

A Special Case of Data Dependence
n Control dependence

q Data dependence on the Instruction Pointer / Program Counter

27

Control Dependence
n Question: What should the fetch PC be in the next cycle?
n Answer: The address of the next instruction

q All instructions are control dependent on previous ones. Why?

n If the fetched instruction is a non-control-flow instruction:
q Next Fetch PC is the address of the next-sequential instruction
q Easy to determine if we know the size of the fetched instruction

n If the instruction that is fetched is a control-flow instruction:
q How do we determine the next Fetch PC?

n In fact, how do we know whether or not the fetched
instruction is a control-flow instruction?

28

Carnegie Mellon

29

Branch Prediction
¢ Special case of data dependence: dependence on PC

¢ beq:
§ Conditional branch is not resolved until the fourth stage of the pipeline
§ Instructions after the branch are fetched before branch is resolved
§ Simple “branch prediction” example:

§ Always predict that the next sequential instruction is fetched
§ Called “Always not taken” prediction
§ Flush (invalidate) such instructions if the branch is taken

¢ Branch misprediction penalty
§ number of instructions flushed when branch is incorrectly predicted
§ Penalty can be reduced by resolving the branch earlier

§ Called “Early branch resolution”

Carnegie Mellon

30

Our Pipeline So Far

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Hazard Unit

Fl
us
hE

PCPlus4E

BranchE BranchM

ZeroM

EN

EN

C
LR

Dependence Detection Logic

Carnegie Mellon

31

Control Dependence: Flush on Misprediction

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1
RF- DM

RF $s1

$s0
RF& DM

RF $s0

$s4
RF| DM

RF $s5

$s0
RF- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

20

24

28

2C

30

...

...

9

Flush
these

instructions

64 slt $t3, $s2, $s3 RF $s3

$s2
RF

$t3s
l
t DMIM slt

Flush
3 instructions

Carnegie Mellon

32

Pipeline with Early Branch Resolution

Need to calculate branch target and condition in the Decode Stage

Dependence Detection Logic

Carnegie Mellon

33

Early Branch Resolution

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1
RF- DM

RF $s1

$s0
RF& DMand $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

andIM

IM lw20

24

28

2C

30

...

...

9

Flush
this

instruction

64 slt $t3, $s2, $s3 RF $s3

$s2
RF

$t3s
l
t DMIM slt

Flush
1 instruction

Carnegie Mellon

34

Early Branch Resolution: Good Idea?
¢ Advantages

§ Reduced branch misprediction penalty
à Reduced CPI (cycles per instruction)

¢ Disadvantages
§ Potential increase in clock cycle time?

à Higher clock period and lower frequency?
§ Additional hardware cost

à Specialized and likely not used by other instructions

Recall: Performance Analysis Basics

n Execution time of a single instruction
q {CPI} x {clock cycle time}

n CPI: Number of cycles it takes to execute an instruction

n Execution time of an entire program
q Sum over all instructions [{CPI} x {clock cycle time}]
q {# of instructions} x {Average CPI} x {clock cycle time}

35

Carnegie Mellon

36

Data Forwarding for Early Branch Resolution

EqualD

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

0
1
0
1

=

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

Fo
rw
ar
dA
D

Fo
rw
ar
dB
D

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eE

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Br
an
ch
D

Hazard Unit

Fl
us
hE

EN

EN

C
LR

C
LR

Data forwarding for early branch resolution adds even more complexity

Dependence Detection Logic

Carnegie Mellon

37

Forwarding and Stalling Hardware Control
// Forwarding logic:
assign ForwardAD = (rsD != 0) & (rsD == WriteRegM) & RegWriteM;
assign ForwardBD = (rtD != 0) & (rtD == WriteRegM) & RegWriteM;

//Stalling logic:
assign lwstall = ((rsD == rtE) | (rtD == rtE)) & MemtoRegE;

assign branchstall = (BranchD & RegWriteE &
(WriteRegE == rsD | WriteRegE == rtD))
|
(BranchD & MemtoRegM &
(WriteRegM == rsD | WriteRegM == rtD));

// Stall signals;
assign StallF = lwstall | branchstall;
assign StallD = lwstall | branchstall;
assign FLushE = lwstall | branchstall;

Carnegie Mellon

38

Final Pipelined MIPS Processor (H&H)

Includes always-taken br prediction, early branch resolution, forwarding, stall logic

Dependence Detection Logic

Carnegie Mellon

39

Doing Better: Smarter Branch Prediction
¢ Guess whether or not branch will be taken

§ Backward branches are usually taken (loops iterate many times)
§ History of whether branch was previously taken can improve the guess

¢ Accurate branch prediction reduces the fraction of branches
requiring a flush

¢ Many sophisticated techniques are employed in modern
processors
§ Including simple machine learning methods (perceptrons)
§ We will see them in Branch Prediction lectures

More on Branch Prediction (I)

https://www.youtube.com/watch?v=h6l9yYSyZHM&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=22

https://www.youtube.com/watch?v=h6l9yYSyZHM&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=22

More on Branch Prediction (II)

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23

More on Branch Prediction (III)

https://www.youtube.com/watch?v=yDjsr-jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

https://www.youtube.com/watch?v=yDjsr-jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

Lectures on Branch Prediction
n Digital Design & Computer Architecture, Spring 2020, Lecture 16b

q Branch Prediction I (ETH Zurich, Spring 2020)
q https://www.youtube.com/watch?v=h6l9yYSyZHM&list=PL5Q2soXY2Zi_FRrloMa2fU

YWPGiZUBQo2&index=22

n Digital Design & Computer Architecture, Spring 2020, Lecture 17
q Branch Prediction II (ETH Zurich, Spring 2020)
q https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fU

YWPGiZUBQo2&index=23

n Computer Architecture, Spring 2015, Lecture 5
q Advanced Branch Prediction (CMU, Spring 2015)
q https://www.youtube.com/watch?v=yDjsr-

jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

43https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Pipelined Performance Example

44

Carnegie Mellon

45

Pipelined Performance Example
¢ An important program consists of:

§ 25% loads
§ 10% stores
§ 11% branches
§ 2% jumps
§ 52% R-type

¢ Suppose:
§ 40% of loads used by next instruction
§ 25% of branches mispredicted

¢ All jumps flush the next instruction fetched

¢ What is the average CPI?

Carnegie Mellon

46

Pipelined Performance Example: CPI
¢ Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.

Thus:
§ CPIlw = 1(0.6) + 2(0.4) = 1.4 Average CPI for load
§ CPIbeq = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch

¢ And
§ Average CPI =

Carnegie Mellon

47

Pipelined Performance Example: CPI
¢ Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush.

Thus:
§ CPIlw = 1(0.6) + 2(0.4) = 1.4 Average CPI for load
§ CPIbeq = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch

¢ And
§ Average CPI = (0.25)(1.4) + load

(0.1)(1) + store
(0.11)(1.25) + beq
(0.02)(2) + jump
(0.52)(1) r-type

= 1.15

Carnegie Mellon

48

Pipelined Performance Example: Cycle Time
¢ There are 5 stages, and 5 different timing paths:

Tc = max {
tpcq + tmem + tsetup fetch
2(tRFread + tmux + teq + tAND + tmux + tsetup) decode
tpcq + tmux + tmux + tALU + tsetup execute
tpcq + tmemwrite + tsetup memory
2(tpcq + tmux + tRFwrite) writeback
}

¢ The clock cycle depends on the slowest stage

¢ Decode and Writeback use register file and have only half a
clock cycle to complete à that is why there is a 2 in front of them

Carnegie Mellon

49

Final Pipelined MIPS Processor (H&H)

Includes always-taken br prediction, early branch resolution, forwarding, stall logic

Dependence Detection Logic

Carnegie Mellon

50

Pipelined Performance Example: Cycle Time
Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Equality comparator teq 40

AND gate tAND 15

Memory write Tmemwrite 220

Register file write tRFwrite 100

Tc = 2(tRFread + tmux + teq + tAND + tmux + tsetup)
= 2[150 + 25 + 40 + 15 + 25 + 20] ps
= 550 ps

Carnegie Mellon

51

Pipelined Performance Example: Exec Time
¢ For a program with 100 billion instructions executing on a

pipelined MIPS processor:
§ CPI = 1.15
§ Tc = 550 ps

¢ Execution Time = (# instructions) × CPI × Tc
= (100 × 109)(1.15)(550 × 10-12)
= 63 seconds

Carnegie Mellon

52

Performance Summary for 3 MIPS microarch.

Processor
Execution Time
(seconds)

Speedup
(single-cycle is baseline)

Single-cycle 95 1
Multicycle 133 0.71
Pipelined 63 1.51

¢ Pipelined implementation is the fastest of 3 implementations

¢ Even though we have a 5-stage pipeline, speedup is not 5X
over the single-cycle or the multi-cycle system!

Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle

q write to the destination only in last stage and in program order

n Flow dependences are more interesting

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
53

Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle

q write to the destination only in last stage and in program order

n Flow dependences are more interesting

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
54

Question to Ponder: Hardware vs. Software
n What is the role of the hardware vs. the software in data

dependence handling?
q Software based interlocking
q Hardware based interlocking
q Who inserts/manages the pipeline bubbles?
q Who finds the independent instructions to fill “empty” pipeline

slots?
q What are the advantages/disadvantages of each?

n Think of the performance equation as well

55

Question to Ponder: Hardware vs. Software
n What is the role of the hardware vs. the software in the

order in which instructions are executed in the pipeline?
q Software based instruction scheduling à static scheduling
q Hardware based instruction scheduling à dynamic scheduling

n How does each impact different metrics?
q Performance (and parts of the performance equation)
q Complexity
q Power consumption
q Reliability
q Cost
q …

56

More on Software vs. Hardware
n Software based scheduling of instructions à static scheduling

q Hardware executes the instructions in the compiler-dictated order
q Contrast this with dynamic scheduling: hardware can execute

instructions out of the compiler-specified order
q How does the compiler know the latency of each instruction?

n What information does the compiler not know that makes
static scheduling difficult?
q Answer: Anything that is determined at run time

n Variable-length operation latency, memory address, branch direction

n How can the compiler alleviate this (i.e., estimate the
unknown)?
q Answer: Profiling (done statically or dynamically)

57

More on Static Instruction Scheduling

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18

Lectures on Static Instruction Scheduling

n Computer Architecture, Spring 2015, Lecture 16
q Static Instruction Scheduling (CMU, Spring 2015)
q https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JC

L1TWybTDtKq&index=18

n Computer Architecture, Spring 2013, Lecture 21
q Static Instruction Scheduling (CMU, Spring 2013)
q https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59RE

og9jDnPDTG6IJ&index=21

59https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures

Harder mapping of HLL to ISA
More work for software designer
Less work for hardware designer
Optimization burden on SW

Recall: Semantic Gap
n How close instructions & data types & addressing modes

are to high-level language (HLL)

HLL

HW
Control
Signals

HLL

HW
Control
Signals

ISA with
Complex Inst
& Data Types
& Addressing Modes ISA with

Simple Inst
& Data Types
& Addressing Modes

Small Semantic Gap

Large Semantic Gap

Easier mapping of HLL to ISA
Less work for software designer
More work for hardware designer
Optimization burden on HW

Recall: How to Change the Semantic Gap Tradeoffs

n Translate from one ISA into a different “implementation” ISA

61

HLL

HW
Control
Signals

Small Semantic Gap

Implementation ISA with
Simple Inst
& Data Types
& Addressing Modes

Software or Hardware Translator

ISA with
Complex Inst
& Data Types
& Addressing Modes

X86-64

ARM v8.4

SW, translator, and HW can all perform operation re-ordering

An Example: Rosetta 2 Binary Translator

62https://en.wikipedia.org/wiki/Rosetta_(software)#Rosetta_2

https://en.wikipedia.org/wiki/Rosetta_(software)

An Example: Rosetta 2 Binary Translator

63Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Another Example: NVIDIA Denver

64https://www.anandtech.com/show/8701/the-google-nexus-9-review/4 https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1
https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=boggs_ieeemicro_2015.pdf

More on NVIDIA Denver Code Optimizer

65
https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=boggs_ieeemicro_2015.pdf

https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=boggs_ieeemicro_2015.pdf

Transmeta: x86 to VLIW Translation

66
Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

X86

Proprietary VLIW ISA

X86

https://www.wikiwand.com/en/Transmeta_Efficeon
https://classes.engineering.wustl.edu/cse362/images/c/c7/Paper_aklaiber_19jan00.pdf

More on Static Instruction Scheduling

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18

Lectures on Static Instruction Scheduling

n Computer Architecture, Spring 2015, Lecture 16
q Static Instruction Scheduling (CMU, Spring 2015)
q https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JC

L1TWybTDtKq&index=18

n Computer Architecture, Spring 2013, Lecture 21
q Static Instruction Scheduling (CMU, Spring 2013)
q https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59RE

og9jDnPDTG6IJ&index=21

68https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures

Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle

q write to the destination only in last stage and in program order

n Flow dependences are more interesting

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
69

Fine-Grained Multithreading

70

Fine-Grained Multithreading
n Idea: Fetch from a different thread every cycle such that no

two instructions from a thread are in the pipeline concurrently
q Hardware has multiple thread contexts (PC+registers per thread)
q Threads are completely independent
q No instruction is fetched from the same thread until the prior

branch/instruction from the thread completes

+ No logic needed for handling control and
data dependences within a thread

+ High thread-level throughput
-- Single thread performance suffers
-- Extra logic for keeping thread contexts
-- Throughput loss when there are not

enough threads to keep the pipeline full
Each pipeline stage has an instruction from a different, completely-independent thread

Fine-Grained Multithreading: Basic Idea

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4EPCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

ZeroM

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

BranchE BranchM

RegDstE

ALUSrcE

WriteRegE4:0

Each pipeline stage has an instruction from a different, completely-independent thread

We need a PC and a register file for each thread + muxes and control

Fine-Grained Multithreading (II)
n Idea: Fetch from a different thread every cycle such that no

two instructions from a thread are in the pipeline concurrently

n Tolerates control and data dependence resolution latencies by
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple
threads

n Improves thread-level throughput but sacrifices per-thread
throughput & latency

n Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
n Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

73

Fine-Grained Multithreading: History
n CDC 6600’s peripheral processing unit is fine-grained

multithreaded
q Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
q Processor executes a different I/O thread every cycle
q An operation from the same thread is executed every 10 cycles

n Denelcor HEP (Heterogeneous Element Processor)
q Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
q 120 threads/processor
q Available queue vs. unavailable (waiting) queue for threads
q Each thread can have only 1 instruction in the processor pipeline
q Each thread independent
q To each thread, processor looks like a non-pipelined machine
q System throughput vs. single thread performance tradeoff

74

Fine-Grained Multithreading in HEP
n Cycle time: 100ns

n 8 stages à 800 ns to
complete an
instruction
q assuming no memory

access

n No control and data
dependence checking

75

Burton Smith
(1941-2018)

Multithreaded Pipeline Example

76Slide credit: Joel Emer

Sun Niagara Multithreaded Pipeline

77
Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-Grained Multithreading
n Advantages

+ No need for dependence checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic
+ Otherwise-bubble cycles used for executing useful instructions from

different threads
+ Improved system throughput, latency tolerance, pipeline utilization

n Disadvantages
- Extra hardware complexity: multiple hardware contexts (PCs, register

files, …), thread selection logic
- Reduced single thread performance (one instruction fetched every N

cycles from the same thread)
- Resource contention between threads in caches and memory
- Dependence checking logic between threads may be needed (load/store)

78

Modern GPUs are
FGMT Machines

79

NVIDIA GeForce GTX 285 “core”

…

= instruction stream decode= data-parallel (SIMD) func. unit,
control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage
for thread contexts
(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

…
64 KB of storage
for thread contexts
(registers)

n Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

n Up to 32 warps are interleaved in an FGMT manner
n Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 (~2009)

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian

Further Reading for the Interested (I)

83

Burton Smith
(1941-2018)

Further Reading for the Interested (II)

84

More on Multithreading (I)

https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=51

https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=51

More on Multithreading (II)

https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=52

https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=52

More on Multithreading (III)

https://www.youtube.com/watch?v=7vkDpZ1-hHM&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=53

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23

More on Multithreading (IV)

https://www.youtube.com/watch?v=-hbmzIDe0sA&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=54

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23

Lectures on Multithreading
n Parallel Computer Architecture, Fall 2012, Lecture 9

q Multithreading I (CMU, Fall 2012)
q https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY

_tGtUlynnyV6D&index=51

n Parallel Computer Architecture, Fall 2012, Lecture 10
q Multithreading II (CMU, Fall 2012)
q https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_

tGtUlynnyV6D&index=52

n Parallel Computer Architecture, Fall 2012, Lecture 13
q Multithreading III (CMU, Fall 2012)
q https://www.youtube.com/watch?v=7vkDpZ1-

hHM&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=53
n Parallel Computer Architecture, Fall 2012, Lecture 15

q Speculation I (CMU, Fall 2012)
q https://www.youtube.com/watch?v=-

hbmzIDe0sA&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=54

89https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=51
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Digital Design & Computer Arch.
Lecture 14: Pipelined Processor Design

Prof. Onur Mutlu

ETH Zürich
Spring 2022
8 April 2022

Pipelining and Precise Exceptions:
Preserving Sequential Semantics

Multi-Cycle Execution
n Not all instructions take the same amount of time for

“execution”

n Idea: Have multiple different functional units that take
different number of cycles
q Can be pipelined or not pipelined
q Can let independent instructions start execution on a different

functional unit before a previous long-latency instruction
finishes execution

92

F D

E

?
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

Issues in Pipelining: Multi-Cycle Execute
n Instructions can take different number of cycles in EXECUTE

stage
q Integer ADD versus Integer DIVide

q What is wrong with this picture in a Von Neumann architecture?
n Sequential semantics of the ISA NOT preserved!
n What if DIV incurs an exception?

93

F D E W
F D E WE E E E E E EDIV R4 ß R1, R2

ADD R3 ß R1, R2

F D E W
F D E W

F D E W
F D E W

DIV R2 ß R5, R6
ADD R7 ß R5, R6

F D E WE E E E E E E

Exceptions and Interrupts
n “Unplanned” changes or interruptions in program execution

n Due to internal problems in execution of the program
à Exceptions

n Due to external events that need to be handled by the
processor
à Interrupts

n Both exceptions and interrupts require
q stopping of the current program
q saving the architectural state
q handling the exception/interrupt à switch to handler
q return back to program execution (if possible and makes sense)

94

Exceptions vs. Interrupts
n Cause

q Exceptions: internal to the running thread
q Interrupts: external to the running thread

n When to Handle
q Exceptions: when detected (and known to be non-speculative)
q Interrupts: when convenient

n Except for very high priority ones
q Power failure
q Machine check (error)

n Priority: process (exception), depends (interrupt)

n Handling Context: process (exception), system (interrupt)
95

Precise Exceptions/Interrupts
n The architectural state should be consistent (precise)

when the exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

96

Checking for and Handling Exceptions in Pipelining

n When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

q Ensures architectural state is precise (register file, PC, memory)

q Flushes all younger instructions in the pipeline

q Saves PC and registers (as specified by the ISA)

q Redirects the fetch engine to the appropriate exception
handling routine

97

Why Do We Want Precise Exceptions?
n Semantics of the von Neumann model ISA specifies it

q Remember von Neumann vs. Dataflow

n Aids software debugging

n Enables (easy) recovery from exceptions

n Enables (easily) restartable processes

n Enables traps into software (e.g., software implemented
opcodes)

98

Ensuring Precise Exceptions
n Easy to do in single-cycle and multi-cycle machines

n Single-cycle
q Instruction boundaries == Cycle boundaries

n Multi-cycle
q Add special states in the control FSM that lead to the

exception or interrupt handlers
q Switch to the handler only at a precise state à before fetching

the next instruction

99See H&H Section 7.7 for a treatment of exceptions in multi-cycle uarch

Precise Exceptions in Multi-Cycle FSM

100

Precise Exceptions in Multi-Cycle Datapath

101See H&H Section 7.7 for a treatment of exceptions in multi-cycle uarch

Multi-Cycle Execute: More Complications
n Instructions can take different number of cycles in EXECUTE

stage
q Integer ADD versus Integer DIVide

q What is wrong with this picture in a Von Neumann architecture?
n Sequential semantics of the ISA NOT preserved!
n What if DIV incurs an exception?

102

F D E W
F D E WE E E E E E EDIV R4 ß R1, R2

ADD R3 ß R1, R2

F D E W
F D E W

F D E W
F D E W

DIV R2 ß R5, R6
ADD R7 ß R5, R6

F D E WE E E E E E E

Ensuring Precise Exceptions in Pipelining
n Idea: Make each operation take the same amount of time

n Downside
q Worst-case instruction latency determines all instructions’ latency

n What about memory operations?
n Each functional unit takes worst-case number of cycles?

103

F D E W
F D E WE E E E E E E

F D E W
F D E W

F D E W
F D E W

F D E W

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

DIV R3 ß R1, R2
ADD R4 ß R1, R2

Solutions
n Reorder buffer

n History buffer

n Future register file

n Checkpointing

n Suggested reading
q Smith and Plezskun, “Implementing Precise Interrupts in Pipelined

Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

104

We will not cover these
See suggested lecture videos from Spring 2015

Solution I: Reorder Buffer (ROB)
n Idea: Complete instructions out-of-order, but reorder them

before making results visible to architectural state
n When instruction is decoded, it reserves the next-sequential

entry in the ROB
n When instruction completes, it writes result into ROB entry
n When instruction oldest in ROB and it has completed

without exceptions, its result moved to reg. file or memory

105

Register
File

Func Unit

Func Unit

Func Unit

Reorder
Buffer

Instruction
Cache

Reorder Buffer

n Buffers information about all instructions that are decoded
but not yet retired/committed

106

What’s in a ROB Entry?

n Everything required to:
q correctly reorder instructions back into the program order
q update the architectural state with the instruction’s result(s), if

instruction can retire without any issues
q handle an exception/interrupt precisely, if an

exception/interrupt needs to be handled before retiring the
instruction

n Need valid bits to keep track of readiness of the result(s)
and find out if the instruction has completed execution

107

V DestRegID DestRegVal StoreAddr StoreData PC
Valid bits for reg/data
+ control bits Exception?

Reorder Buffer: Independent Operations
n Result first written to ROB on instruction completion
n Result written to register file at commit time

n What if a later instruction needs a value in the reorder buffer?
q One option: stall the operation à stall the pipeline
q Better: Read the value from the reorder buffer. How?

108

F D E W
F D E RE E E E E E E

F D E W
F D E R

F D E R
F D E R

F D E RE E E E E E E

W
R

R
W

W
W

W

Reorder Buffer: How to Access?
n A register value can be in the register file, reorder buffer,

(or bypass/forwarding paths)

109

Register
File

Func Unit

Func Unit

Func UnitReorder
Buffer

Instruction
Cache

bypass paths

Content
Addressable
Memory
(searched with
register ID,
which is part of the content of an entry)

Random Access Memory
(indexed with Register ID,
which is the address of an entry)

Simplifying Reorder Buffer Access
n Idea: Use indirection

n Access register file first (check if the register is valid)
q If register not valid, register file stores the ID of the reorder

buffer entry that contains (or will contain) the value of the
register

q Mapping of the register to a ROB entry: Register file maps the
register to a reorder buffer entry if there is an in-flight
instruction writing to the register

n Access reorder buffer next

n Now, reorder buffer does not need to be content addressable
110

Reorder Buffer in Intel Pentium III

111

Boggs et al., “The
Microarchitecture of the
Pentium 4 Processor,” Intel
Technology Journal, 2001.

Important: Register Renaming with a Reorder Buffer

n Output and anti dependences are not true dependences
q WHY? The same register refers to values that have nothing to

do with each other
q They exist due to lack of register ID’s (i.e. names) in

the ISA

n The register ID is renamed to the reorder buffer entry that
will hold the register’s value
q Register ID à ROB entry ID
q Architectural register ID à Physical register ID
q After renaming, ROB entry ID used to refer to the register

n This eliminates anti and output dependences
q Gives the illusion that there are a large number of registers

112

Recall: Data Dependence Types

113

True (flow) dependence
r3 ¬ r1 op r2 Read-after-Write
r5 ¬ r3 op r4 (RAW) -- True

Anti dependence
r3 ¬ r1 op r2 Write-after-Read
r1 ¬ r4 op r5 (WAR) -- Anti

Output-dependence
r3 ¬ r1 op r2 Write-after-Write
r5 ¬ r3 op r4 (WAW) -- Output
r3 ¬ r6 op r7

Renaming Example
n Assume

q Register file has a pointer to the reorder buffer entry that
contains or will contain the value, if the register is not valid

q Reorder buffer works as described before

n Where is the latest definition of R3 for each instruction
below in sequential order?

LD R0(0) à R3
LD R3, R1 à R10
MUL R1, R2 à R3
MUL R3, R4 à R11
ADD R5, R6 à R3
ADD R7, R8 à R12

114

In-Order Pipeline with Reorder Buffer
n Decode (D): Access regfile/ROB, allocate entry in ROB, check if

instruction can execute, if so dispatch instruction
n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer
n Retirement/Commit (W): Check for exceptions; if none, write result to

architectural register file or memory; else, flush pipeline and start from
exception handler

n In-order dispatch/execution, out-of-order completion, in-order retirement

115

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

R

Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing

116

We will not cover these
See suggested lecture videos from Spring 2015

More on State Maintenance & Precise Exceptions

117https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

More on State Maintenance & Precise Exceptions

118https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Lectures on State Maintenance & Recovery
n Computer Architecture, Spring 2015, Lecture 11

q Precise Exceptions, State Maintenance/Recovery (CMU, Spring 2015)
q https://www.youtube.com/watch?v=nMfbtzWizDA&list=PL5PHm2jkkXmi5CxxI7b3J

CL1TWybTDtKq&index=13

n Digital Design & Computer Architecture, Spring 2019, Lecture 15a
q Reorder Buffer (ETH Zurich, Spring 2019)
q https://www.youtube.com/watch?v=9yo3yhUijQs&list=PL5Q2soXY2Zi8J58xLKBNFQ

FHRO3GrXxA9&index=17

119https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=nMfbtzWizDA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=13
https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=52
https://www.youtube.com/onurmutlulectures

Suggested Readings for the Interested
n Smith and Plezskun, “Implementing Precise Interrupts in

Pipelined Processors,” IEEE Trans on Computers 1988 and
ISCA 1985.

n Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

n Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.

n Backup Slides

120

Backup Slides
on Precise Exceptions

121

Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing

122

Solution II: History Buffer (HB)
n Idea: Update the register file when instruction completes,

but UNDO UPDATES when an exception occurs

n When instruction is decoded, it reserves an HB entry
n When the instruction completes, it stores the old value of

its destination in the HB
n When instruction is oldest and no exceptions/interrupts, the

HB entry discarded
n When instruction is oldest and an exception needs to be

handled, old values in the HB are written back into the
architectural state from tail to head

123

History Buffer

n Advantage:
q Register file contains up-to-date values for incoming instructions

à History buffer access not on critical path
n Disadvantage:

q Need to read the old value of the destination register
q Need to unwind the history buffer upon an exception à

increased exception/interrupt handling latency
124

Register
File

Func Unit

Func Unit

Func Unit

History
Buffer

Instruction
Cache

Used only on exceptions

Comparison of Two Approaches
n Reorder buffer

q Pessimistic register file update
q Update only with non-speculative values (in program order)
q Leads to complexity/delay in accessing the new values

n History buffer
q Optimistic register file update
q Update immediately, but log the old value for recovery
q Leads to complexity/delay in logging old values

n Can we get the best of both worlds?
q Principle: Heterogeneity
q Idea: Have both types of register files

125

Solution III: Future File (FF) + ROB
n Idea: Keep two register files (speculative and architectural)

q Arch reg file: Updated in program order for precise exceptions
n Use a reorder buffer to ensure in-order updates

q Future reg file: Updated as soon as an instruction completes
(if the instruction is the youngest one to write to a register)

n Future file is used for fast access to latest register values
(speculative state)
q Frontend register file

n Architectural file is used for state recovery on exceptions
(architectural state)
q Backend register file

126

Future File

n Advantage
q No need to read the new values from the ROB (no CAM or

indirection) or the old value of destination register

n Disadvantage
q Multiple register files
q Need to copy arch. reg. file to future file on an exception

127

Future
File

Func Unit

Func Unit

Func Unit

Arch.
FileInstruction

Cache

Used only on exceptions

ROB

VData and Tag

In-Order Pipeline with Future File and Reorder Buffer

n Decode (D): Access future file, allocate entry in ROB, check if instruction
can execute, if so dispatch instruction

n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer and future file
n Retirement/Commit (W): Check for exceptions; if none, write result to

architectural register file or memory; else, flush pipeline, copy
architectural file to future file, and start from exception handler

n In-order dispatch/execution, out-of-order completion, in-order retirement

128

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

Can We Reduce the Overhead of Two Register Files?

n Idea: Use indirection, i.e., pointers to data in frontend and
retirement
q Have a single storage that stores register data values
q Keep two register maps (speculative and architectural); also

called register alias tables (RATs)

n Future map used for fast access to latest register values
(speculative state)
q Frontend register map

n Architectural map is used for state recovery on exceptions
(architectural state)
q Backend register map

129

Future Map in Intel Pentium 4

130

Boggs et al., “The
Microarchitecture of
the Pentium 4
Processor,” Intel
Technology Journal,
2001.

Many modern
processors
are similar:
- MIPS R10K
- Alpha 21264

Reorder Buffer vs. Future Map Comparison

131

Before We Get to Checkpointing …
n Let’s cover what happens on exceptions
n And branch mispredictions

132

Checking for and Handling Exceptions in Pipelining

n When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic
q Recovers architectural state (register file, IP, and memory)
q Flushes all younger instructions in the pipeline
q Saves IP and registers (as specified by the ISA)
q Redirects the fetch engine to the exception handling routine

n Vectored exceptions

133

Pipelining Issues: Branch Mispredictions
n A branch misprediction resembles an “exception”

q Except it is not visible to software (i.e., it is microarchitectural)

n What about branch misprediction recovery?
q Similar to exception handling except can be initiated before

the branch is the oldest instruction (not architectural)
q All three state recovery methods can be used

n Difference between exceptions and branch mispredictions?
q Branch mispredictions are much more common

à need fast state recovery to minimize performance impact of
mispredictions

134

How Fast Is State Recovery?
n Latency of state recovery affects

q Exception service latency
q Interrupt service latency
q Latency to supply the correct data to instructions fetched after

a branch misprediction

n Which ones above need to be fast?

n How do the three state maintenance methods fare in terms
of recovery latency?
q Reorder buffer
q History buffer
q Future file

135

Branch State Recovery Actions and Latency
n Reorder Buffer

q Flush instructions in pipeline younger than the branch
q Finish all instructions in the reorder buffer

n History buffer
q Flush instructions in pipeline younger than the branch
q Undo all instructions after the branch by rewinding from the

tail of the history buffer until the branch & restoring old values
one by one into the register file

n Future file
q Wait until branch is the oldest instruction in the machine
q Copy arch. reg. file to future file
q Flush entire pipeline

136

Can We Do Better?
n Goal: Restore the frontend state (future file) such that the

correct next instruction after the branch can execute right
away after the branch misprediction is resolved

n Idea: Checkpoint the frontend register state/map at the
time a branch is decoded and keep the checkpointed state
updated with results of instructions older than the branch
q Upon branch misprediction, restore the checkpoint associated

with the branch

n Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.

137

Checkpointing
n When a branch is decoded

q Make a copy of the future file/map and associate it with the
branch

n When an instruction produces a register value
q All future file/map checkpoints that are younger than the

instruction are updated with the value

n When a branch misprediction is detected
q Restore the checkpointed future file/map for the mispredicted

branch when the branch misprediction is resolved
q Flush instructions in pipeline younger than the branch
q Deallocate checkpoints younger than the branch

138

Checkpointing
n Advantages

q Correct frontend register state available right after checkpoint
restoration à Low state recovery latency

q …

n Disadvantages
q Storage overhead
q Complexity in managing checkpoints
q …

139

Many Modern Processors Use Checkpointing
n MIPS R10000
n Alpha 21264
n Pentium 4

n Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

n Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

n Boggs et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

140

Summary: Maintaining Precise State
n Reorder buffer

n History buffer

n Future register file

n Checkpointing

n Readings
q Smith and Plezskun, “Implementing Precise Interrupts in Pipelined

Processors,” IEEE Trans on Computers 1988 and ISCA 1985.
q Hwu and Patt, “Checkpoint Repair for Out-of-order Execution

Machines,” ISCA 1987.

141

Registers versus Memory
n So far, we considered mainly registers as part of state

n What about memory?

n What are the fundamental differences between registers
and memory?
q Register dependences known statically – memory

dependences determined dynamically
q Register state is small – memory state is large
q Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a
shared memory multiprocessor)

142

Maintaining Speculative Memory State: Stores

n Handling out-of-order completion of memory operations
q UNDOing a memory write more difficult than UNDOing a

register write. Why?
q One idea: Keep store address/data in reorder buffer

n How does a load instruction find its data?
q Store/write buffer: Similar to reorder buffer, but used only for

store instructions
n Program-order list of un-committed store operations
n When store is decoded: Allocate a store buffer entry
n When store address and data become available: Record in store

buffer entry
n When the store is the oldest instruction in the pipeline: Update

the memory address (i.e. cache) with store data

n We will get back to this!
143

Carnegie Mellon

144

Pipeline with Early Branch Resolution

EqualD

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

=

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdE

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Hazard Unit

Fl
us
hE

EN

EN

C
LR

C
LR

Need to calculate branch target and condition in the Decode Stage

Dependence Detection Logic

