Digital Desigh & Computer Arch.
Lecture 16b: Handling Out-of-Order

Execution of I.oads and Stores

Prof. Onur Mutlu

ETH Zurich
Spring 2022
28 April 2022




Handling Out-of-Order Execution
of L.oads and Stores




Registers versus Memory

So far, we considered mainly registers as part of state
What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)



Memory Dependence Handling (I)

Need to obey memory dependences in an out-of-order
machine

o and need to do so while providing high performance

Observation and Problem: Memory address is not known until
a load/store executes

Corollary 1: Renaming memory addresses is difficult

Corollary 2: Determining dependence or independence of
loads/stores has to be handled after their (partial) execution

Corollary 3: When a load/store has its address ready, there
may be older/younger stores/loads with unknown addresses
in the machine




Memory Dependence Handling (1I)

When do you schedule a load instruction in an OOO engine?

o Problem: A younger load can have its address ready before an
older store’s address is known

o Known as the memory disambiguation problem or the unknown
address problem

Approaches

o Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

o Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

o Intelligent: Predict (with @ more sophisticated predictor) if the
load is dependent on any unknown address store



Handling of Store-lL.oad Dependences

A load’s dependence status is not known until all previous store
addresses are available.

How does the OO0 engine detect dependence of a load instruction on a
previous store?

o Option 1: Wait until all previous stores committed (no need to check
for address match)

o Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the OO0 engine treat the scheduling of a load instruction wrt
previous stores?

o Option 1: Assume load dependent on all previous stores
o Option 2: Assume load independent of all previous stores
o Option 3: Predict the dependence of a load on an outstanding store



Memory Disambiguation (I)

Option 1: Assume load is dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 2: Assume load is independent of all previous stores

+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependences persist over time

-- Still requires recovery/re-execution on misprediction
o Alpha 21264 : Initially assume load independent, delay loads found to be dependent

o Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

o Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.



Memory Disambiguation (II)

IPC
O = NWHA OGO N

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

3 @ 7} a ) o} o E ke . > o a
o a 7} a o (<] @ s = g S £ 5 > = o B
Foy © @ Q o Q. X = [e% Res = o 2 T 1) x
© a 2 = @ E = 5 Z £ = g S

o) € Q. o
bt

‘ano speculaﬁbﬁ B naive spéculatiOn [} berfect f

Predicting store-load dependences important for performance

Simple predictors (based on past history) can achieve most of
the potential performance



Data Forwarding Between Stores and Loads

We cannot update memory out of program order
- Need to buffer all store and load instructions in instruction window

Even if we know all addresses of past stores when we
generate the address of a load, two questions still remain:

1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

Modern processors use a LQ (load queue) and a SQ for this
o Can be combined or separate between loads and stores

o A load searches the SQ after it computes its address. Why?

o A store searches the LQ after it computes its address. Why?



Out-of-Order Completion of Memory Ops

When a store instruction finishes execution, it writes its
address and data in its reorder buffer entry (or SQ entry)

When a later load instruction generates its address, it:
o searches the SQ with its address
o accesses memory with its address

o receives the value from the youngest older instruction that
wrote to that address (either from ROB or memory)

This is a complicated “search logic” implemented as a
Content Addressable Memory

o Content is "memory address” (but also need size and age)
o Called store-to-load forwarding logic

10



Store-l.oad Forwarding Complexity

Content Addressable Search (based on Load Address)

Range Search (based on Address and Size of both the Load
and earlier Stores)

Age-Based Search (for last written values)

Load data can come from a combination of multiple places
o One or more stores in the Store Buffer (SQ)
o Memory/cache

11



COLEL

MUL RA,RL— RS
ADD R3,RL— RS
ADO R2L,RL-SRF
ADD R&,R9 = R10
MUL. R7,RA0 = R4
ADD RE RA{- RS

Regicle—Alias Table_

V Tag Value

3%

000 Q

SWRCE L

V Tag

Valve V Tag

SOURCLE 2.

VA'UC—

Tag \olve

&N(%

Sovrce L

SOURCE 2.

V Tag \ale V_Tag

\Jalve

Tay

\Ualve-




Digital Desigh & Computer Arch.
Lecture 16b: Handling Out-of-Order

Execution of I.oads and Stores

Prof. Onur Mutlu

ETH Zurich
Spring 2022
28 April 2022




