
Digital Design & Computer Arch.
Lecture 16b: Handling Out-of-Order 

Execution of Loads and Stores

Prof. Onur Mutlu

ETH Zürich
Spring 2022
28 April 2022



Handling Out-of-Order Execution 
of Loads and Stores



Registers versus Memory
n So far, we considered mainly registers as part of state

n What about memory?

n What are the fundamental differences between registers 
and memory?
q Register dependences known statically – memory 

dependences determined dynamically
q Register state is small – memory state is large
q Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a 
shared memory multiprocessor)

3



Memory Dependence Handling (I)
n Need to obey memory dependences in an out-of-order 

machine 
q and need to do so while providing high performance

n Observation and Problem: Memory address is not known until 
a load/store executes

n Corollary 1: Renaming memory addresses is difficult
n Corollary 2: Determining dependence or independence of 

loads/stores has to be handled after their (partial) execution
n Corollary 3: When a load/store has its address ready, there 

may be older/younger stores/loads with unknown addresses 
in the machine

4



Memory Dependence Handling (II)
n When do you schedule a load instruction in an OOO engine?

q Problem: A younger load can have its address ready before an 
older store’s address is known

q Known as the memory disambiguation problem or the unknown 
address problem

n Approaches
q Conservative: Stall the load until all previous stores have 

computed their addresses (or even retired from the machine)
q Aggressive: Assume load is independent of unknown-address 

stores and schedule the load right away
q Intelligent: Predict (with a more sophisticated predictor) if the 

load is dependent on any unknown address store

5



Handling of Store-Load Dependences
n A load’s dependence status is not known until all previous store 

addresses are available. 

n How does the OOO engine detect dependence of a load instruction on a 
previous store?
q Option 1: Wait until all previous stores committed (no need to check 

for address match) 
q Option 2: Keep a list of pending stores in a store buffer and check 

whether load address matches a previous store address

n How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?
q Option 1: Assume load dependent on all previous stores
q Option 2: Assume load independent of all previous stores
q Option 3: Predict the dependence of a load on an outstanding store

6



Memory Disambiguation (I)
n Option 1: Assume load is dependent on all previous stores

+ No need for recovery 
-- Too conservative: delays independent loads unnecessarily

n Option 2: Assume load is independent of all previous stores
+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

n Option 3: Predict the dependence of a load on an 
outstanding store
+ More accurate. Load store dependences persist over time
-- Still requires recovery/re-execution on misprediction
q Alpha 21264 : Initially assume load independent, delay loads found to be dependent
q Moshovos et al., “Dynamic speculation and synchronization of data dependences,”

ISCA 1997.
q Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

7



Memory Disambiguation (II)
n Chrysos and Emer, “Memory Dependence Prediction Using Store 

Sets,” ISCA 1998.

n Predicting store-load dependences important for performance
n Simple predictors (based on past history) can achieve most of 

the potential performance 

8



Data Forwarding Between Stores and Loads
n We cannot update memory out of program order

à Need to buffer all store and load instructions in instruction window

n Even if we know all addresses of past stores when we 
generate the address of a load, two questions still remain:
1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

n Modern processors use a LQ (load queue) and a SQ for this
q Can be combined or separate between loads and stores
q A load searches the SQ after it computes its address. Why?
q A store searches the LQ after it computes its address. Why?

9



Out-of-Order Completion of Memory Ops 
n When a store instruction finishes execution, it writes its 

address and data in its reorder buffer entry (or SQ entry)

n When a later load instruction generates its address, it:
q searches the SQ with its address
q accesses memory with its address
q receives the value from the youngest older instruction that 

wrote to that address (either from ROB or memory)

n This is a complicated “search logic” implemented as a 
Content Addressable Memory
q Content is “memory address” (but also need size and age)
q Called store-to-load forwarding logic

10



Store-Load Forwarding Complexity

n Content Addressable Search (based on Load Address)

n Range Search (based on Address and Size of both the Load 
and earlier Stores)

n Age-Based Search (for last written values)

n Load data can come from a combination of multiple places
q One or more stores in the Store Buffer (SQ)
q Memory/cache

11



12



Digital Design & Computer Arch.
Lecture 16b: Handling Out-of-Order 

Execution of Loads and Stores

Prof. Onur Mutlu

ETH Zürich
Spring 2022
28 April 2022


