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Roadmap for Today (and Past 2-3 Weeks)
n Prior to last week: Microarchitecture Fundamentals

q Single-cycle Microarchitectures
q Multi-cycle Microarchitectures

n Last week: Pipelining & Precise Exceptions
q Pipelining
q Pipelined Processor Design

n Control & Data Dependence Handling
n Precise Exceptions: State Maintenance & Recovery

n This+next week: Out-of-Order & Superscalar Execution
q Out-of-Order Execution
q Dataflow & Superscalar Execution
q Branch Prediction
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Readings
n This week

q Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

q H&H Chapters 7.8 and 7.9

q McFarling, “Combining Branch Predictors,” DEC WRL Technical 
Report, 1993.

q Optional: Kessler, “The Alpha 21264 Microprocessor,” IEEE 
Micro 1999. 

3



Out-of-Order Execution
(Restricted Dataflow)

Wrap Up



Recall: OoO Execution w/ Precise Exceptions

n Most modern processors use the following

n Reorder buffer to support in-order retirement of instructions

n A single register file (physical RF) to store all registers 
q Both speculative and architectural registers
q INT and FP are still separate

n Two register maps store pointers to the physical RF
q Future/frontend register map à used for renaming
q Architectural register map à used for maintaining precise state

n This design avoids value replication in RSs, ROB, etc.
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Recall: OoO Execution w/ Precise Exceptions (II)

Register PR
R1 18
R2 13
R3 10
R4 22
R5 14
R6 19
R7 17
R8 20
R9 3
R10 4
R11 1

Frontend 
Register Map

Architectural 
Register Map

Entry 0
Entry 1
Entry 2

Entry 8

Entry 14
Entry 15

Entry 13

Reorder Buffer (ROB)

Register PR
R1 12
R2 2
R3 10
R4 22
R5 5
R6 9
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R8 20
R9 7
R10 6
R11 1
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File
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PR6 6
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PR8 8
PR9 9
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PR13 13
PR14 14
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PR16 16
PR17 17
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PR22 22
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Recall: OoO Execution w/ Precise Exceptions (III)

+ ∗

Source 1 Source 2

PR PR

a

b

c

d

DestPR ValueDestPR Value

RS for ADD Unit RS for MUL Unit
Source 1 Source 2

PR PR

a

b

c

d

Before Execution: Access Physical Register File to Get Source Values

After Execution: Access Physical Register File to Write Result Values
At Retirement: Update Architectural Register Map with DestPR

At Decode/Rename: Allocate DestPR to Architectural DestReg (RS, ROB)
At Decode/Rename: Read and Update Frontend Register Map



Recall: Examples from Modern Processors

8
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” 
Intel Technology Journal, 2001.



Intel Pentium Pro (1995)

9
By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471

Processor chip Level 2 cache chip

Multi-chip module package



Intel Pentium 4 (2000)

10https://www.anandtech.com/show/1621/3

On-chip Level 2 Cache



Enabling OoO Execution, Revisited
1. Link the consumer of a value to the producer

q Register renaming: Associate a “tag” with each data value 

2. Buffer instructions until they are ready
q Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
q Broadcast the “tag” when the value is produced
q Instructions compare their “source tags” to the broadcast tag 

à if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

q Wakeup and select/schedule the instruction
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Summary of OOO Execution Concepts
n Register renaming eliminates false dependences, enables 

linking of producer to consumers

n Buffering in reservation stations enables the pipeline to 
move (i.e., not stall) for independent instructions

n Tag broadcast enables communication (of readiness of 
produced value) between instructions

n Wakeup and select enables out-of-order dispatch
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OOO Execution: Restricted Dataflow
n An out-of-order engine dynamically builds the dataflow 

graph of a piece of the program

n The dataflow graph is limited to the instruction window
q Instruction window: all decoded but not yet retired 

instructions

n Can we do it for the whole program? 
q In other words, how can we have a large instruction window?
q Why would we like to?

n Can we do it efficiently with Tomasulo’s algorithm?
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Recall: State of RAT and RS in Cycle 7
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+ ∗

Register Valid Tag Value
R1 1 1
R2 1 2
R3 0 x
R4 1 4
R5 0 a
R6 1 6
R7 0 b
R8 1 8
R9 1 9
R10 0 c
R11 0 y

Source 1 Source 2

V Tag Value V Tag Value

a 0 x 1 ~ 4
b 1 ~ 2 1 ~ 6
c 1 ~ 8 1 ~ 9
d 0 a 0 y

0 d

Source 1 Source 2

V Tag Value V Tag Value

x 1 ~ 1 1 ~ 2
y 0 b 0 c
z

t

Slightly harder tasks for you: 
1. Draw the dataflow graph for the executing code
2. Provide the executing code in sequential order 

RS for ADD Unit RS for MUL Unit

Register Alias Table



Recall: Reverse Engineered Dataflow Graph 

We can “easily” reverse-engineer the dataflow graph of the executing code!



Questions to Ponder
n Why is OoO execution beneficial?

q Latency tolerance: OoO execution tolerates the latency of 
multi-cycle operations by executing independent operations 
concurrently

q What if all operations take a single cycle?

n What if an instruction takes 1000 cycles?
q How large of an instruction window do we need to continue 

decoding?
q How many cycles of latency can OoO tolerate?
q What limits the latency tolerance scalability of Tomasulo’s 

algorithm?
n Instruction window size: how many decoded but not yet retired 

instructions you can keep in the machine
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General Organization of an OOO Processor

n Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.
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Intel Pentium Pro (1995)
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By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471

Processor chip Level 2 cache chip

Multi-chip module package



Intel Pentium 4 (2000)

19https://www.anandtech.com/show/1621/3

On-chip Level 2 Cache



A Modern OoO Design: Intel Pentium 4

20Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.



Intel Pentium 4 Simplified

21

Mutlu+, “Runahead Execution,”
HPCA 2003.



Alpha 21264

22Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.



MIPS R10000

23Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996



IBM POWER4
n Tendler et al., 
“POWER4 system 
microarchitecture,”
IBM J R&D, 2002.
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IBM POWER4
n 2 cores, out-of-order execution
n 100-entry instruction window in each core
n 8-wide instruction fetch, issue, execute
n Large, local+global hybrid branch predictor
n 1.5MB, 8-way L2 cache
n Aggressive stream based prefetching
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IBM POWER5
n Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 

Micro 2004.
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AMD Zen/Zen2? (2019)

27https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
https://courses.engr.illinois.edu/cs433/fa2020/slides/mini-project-amd-zen.pdf



Apple M1 Firestorm? (2020)

28
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2


Out-of-Order Execution Tradeoffs
n Advantages

q Latency tolerance: Allows independent instructions to execute 
and complete in the presence of long-latency operations
à Higher performance than in-order execution

q Irregular parallelism: Dynamically finds and exploits parallel 
operations in a program
à Difficult to find/exploit such parallelism statically

n Disadvantages
q Higher complexity

n Potentially lengthens critical path delay à clock cycle time
q More hardware resources needed

n Recall: Execution time of an entire program
q {# of instructions}  x  {Average CPI}  x  {clock cycle time}
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Other Approaches to Concurrency 
(or Instruction Level Parallelism)



Approaches to (Instruction-Level) Concurrency

n Pipelining
n Fine-Grained Multithreading
n Out-of-order Execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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Review: Data Flow:
Exploiting Irregular Parallelism



Recall: OOO Execution: Restricted Dataflow
n An out-of-order engine dynamically builds the dataflow 

graph of a piece of the program

n The dataflow graph is limited to the instruction window
q Instruction window: all decoded but not yet retired 

instructions

n Can we do it for the whole program? 
q In other words, how can we have a large instruction window?

n Can we do it efficiently with Tomasulo’s algorithm?
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Recall: State of RAT and RS in Cycle 7
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+ ∗

Register Valid Tag Value
R1 1 1
R2 1 2
R3 0 x
R4 1 4
R5 0 a
R6 1 6
R7 0 b
R8 1 8
R9 1 9
R10 0 c
R11 0 y

Source 1 Source 2

V Tag Value V Tag Value

a 0 x 1 ~ 4
b 1 ~ 2 1 ~ 6
c 1 ~ 8 1 ~ 9
d 0 a 0 y

0 d

Source 1 Source 2

V Tag Value V Tag Value

x 1 ~ 1 1 ~ 2
y 0 b 0 c
z

t

Slightly harder tasks for you: 
1. Draw the dataflow graph for the executing code
2. Provide the executing code in sequential order 

RS for ADD Unit RS for MUL Unit

Register Alias Table



Recall: Reverse Engineered Dataflow Graph 

We can “easily” reverse-engineer the dataflow graph of the executing code!



Data Flow Summary
n Availability of data determines order of execution
n A data flow node fires when its sources are ready
n Programs represented as data flow graphs (of nodes)

n Data Flow at the ISA level has not been (as) successful

n Data Flow implementations at the microarchitecture 
level (while preserving von Neumann model semantics) 
have been very successful
q Out of order execution is the prime example

n Data Flow mapping of programs to reconfigurable hardware 
substrates (FPGAs) has also been successful
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Recall: ISA-level Tradeoff: Program Counter

n Do we want a Program Counter (PC or IP) in the ISA?
q Yes: Control-driven, sequential execution

n An instruction is executed when the PC points to it
n PC automatically changes sequentially (except for control flow 

instructions) à sequential
q No: Data-driven, parallel execution

n An instruction is executed when all its operand values are 
available à dataflow

n Tradeoffs: MANY high-level ones
q Ease of programming (for average programmers)?
q Ease of compilation?
q Performance: Extraction of parallelism?
q Hardware complexity?

Lecture 11, DDCA Spring 2022 https://www.youtube.com/watch?v=A5Uq5COaEG4&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=12

https://www.youtube.com/watch?v=A5Uq5COaEG4&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=12


Pure Data Flow Advantages/Disadvantages
n Advantages

q Very good at exploiting irregular parallelism
n Only real dependences constrain processing
n More parallelism can be exposed than Von Neumann model

n Disadvantages
q No precise state semantics

n Debugging very difficult
n Interrupt/exception handling is difficult (what is precise state 

semantics?)
q Too much parallelism? (Parallelism control needed)
q High bookkeeping overhead (tag matching, data storage)
q How to enable mutable data structures
q …
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Recall: ISA vs. Microarchitecture Level Tradeoff
n A similar tradeoff (control vs. data-driven execution) can be 

made at the microarchitecture level

n ISA: Specifies how the programmer sees the instructions to 
be executed
q Programmer sees a sequential, control-flow execution order vs.
q Programmer sees a dataflow execution order

n Microarchitecture: How the underlying implementation 
actually executes instructions 
q Microarchitecture can execute instructions in any order as long 

as it obeys the semantics specified by the ISA when making the 
instruction results visible to software
n Programmer should see the order specified by the ISA

Lecture 11, DDCA Spring 2022 https://www.youtube.com/watch?v=A5Uq5COaEG4&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=12

https://www.youtube.com/watch?v=A5Uq5COaEG4&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=12


Readings & Lectures on Data Flow Model

n Dennis and Misunas, “A preliminary architecture for a basic 
data-flow processor,” ISCA 1974.

n Gurd et al., “The Manchester prototype dataflow 
computer,” CACM 1985.

n More detailed Lecture Video & Slides on DataFlow:
q http://www.youtube.com/watch?v=D2uue7izU2c
q http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi

a=onur-740-fall13-module5.2.1-dataflow-part1.ppt

40

http://www.youtube.com/watch?v=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt


Lecture Video on Dataflow

41http://www.youtube.com/watch?v=D2uue7izU2c

http://www.youtube.com/watch?v=D2uue7izU2c


Approaches to (Instruction-Level) Concurrency

n Pipelining
n Fine-Grained Multithreading
n Out-of-order Execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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Superscalar Execution



Superscalar Execution
n Idea: Fetch, decode, execute, retire multiple instructions 

per cycle 
q N-wide superscalar à N instructions per cycle

n Need to add the hardware resources for doing so

n Hardware performs the dependence checking between 
concurrently-fetched instructions

n Superscalar execution and out-of-order execution are 
orthogonal concepts
q Can have all four combinations of processors:

[in-order, out-of-order] x [scalar, superscalar]
44



Carnegie Mellon

45

In-Order Superscalar Processor Example
¢ Multiple copies of datapath: Can fetch/decode/execute multiple 

instructions per cycle

¢ Dependences make it tricky to dispatch multiple instructions in 
the same cycle
§ Need dependence detection between concurrently-fetched instructions

CLK CLK CLK CLK

A
RD A1

A2
RD1A3

WD3
WD6

A4
A5
A6

RD4

RD2
RD5

Instruction
Memory

Register
File Data

Memory
AL
U
s

PC

CLK

A1
A2

WD1
WD2

RD1
RD2

Here: Ideal IPC = 2



Carnegie Mellon
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In-Order Superscalar Performance Example
lw $t0, 40($s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lw

add

lw  $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or  $t4, $s1, $s5

sw  $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DMIM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DMIM

or

sw
80

$s0

+ $s5

Ideal IPC = 2

Actual IPC = 2 (6 instructions issued in 3 cycles)



Carnegie Mellon
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Superscalar Performance with Dependences
lw $t0, 40($s0)
add $t1, $t0, $s1
sub $t0, $s2, $s3
and $t2, $s4, $t0
or $t3, $s5, $s6
sw $s7, 80($t3)

Stall

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lwlw  $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw  $s7, 80($t3)

RF
$s1

$t0
add

RF
$s1

$t0

RF

$t1
+

DM

RF
$t0

$s4

RF

$t2
&

DMIM

and

IM
or

and

sub

|$s6

$s5
$t3

RF
80

$t3

RF
+

DM
sw

IM

$s7

9

$s3

$s2

$s3

$s2
-

$t0

oror  $t3, $s5, $s6

IM

Ideal IPC = 2

Actual IPC = 1.2 (6 instructions issued in 5 cycles)

Can you reorder the instructions to get IPC = 2?



Review: How to Handle Data Dependences

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect

n Can employ all these in superscalar processors
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Superscalar Execution Tradeoffs
n Advantages

q Higher instruction throughput 
q Higher IPC: instructions per cycle (i.e., lower CPI)

n Disadvantages
q Higher complexity for dependence checking

n Requires dependence checking between concurrent instructions
n Register renaming becomes more complex in an OoO processor
n Potentially lengthens critical path delay à clock cycle time

q More hardware resources needed

n Recall: Execution time of an entire program
q {# of instructions}  x  {Average CPI}  x  {clock cycle time}
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General Organization of a Superscalar+OoO Processor

n Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.
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Intel Pentium Pro (1995)

51
By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471

Processor chip Level 2 cache chip

Multi-chip module package



Intel Pentium 4 (2000)

52https://www.anandtech.com/show/1621/3

On-chip Level 2 Cache



Alpha 21264

53Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.



AMD Zen/Zen2? (2019)

54https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
https://courses.engr.illinois.edu/cs433/fa2020/slides/mini-project-amd-zen.pdf



Apple M1 Firestorm? (2020)

55
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2


Backup Slides & Optional Video for:
Handling Out-of-Order Execution 

of Loads and Stores



Lecture on Load-Store Handling in OoO

https://www.youtube.com/watch?v=vulgJ3N1rlg&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=18

https://www.youtube.com/watch?v=vulgJ3N1rlg&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=18
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Handling Out-of-Order Execution 
of Loads and Stores



Registers versus Memory
n So far, we considered mainly registers as part of state

n What about memory?

n What are the fundamental differences between registers 
and memory?
q Register dependences known statically – memory 

dependences determined dynamically
q Register state is small – memory state is large
q Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a 
shared memory multiprocessor)
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Memory Dependence Handling (I)
n Need to obey memory dependences in an out-of-order 

machine 
q and need to do so while providing high performance

n Observation and Problem: Memory address is not known until 
a load/store executes

n Corollary 1: Renaming memory addresses is difficult
n Corollary 2: Determining dependence or independence of 

loads/stores has to be handled after their (partial) execution
n Corollary 3: When a load/store has its address ready, there 

may be older/younger stores/loads with unknown addresses 
in the machine

61



Memory Dependence Handling (II)
n When do you schedule a load instruction in an OOO engine?

q Problem: A younger load can have its address ready before an 
older store’s address is known

q Known as the memory disambiguation problem or the unknown 
address problem

n Approaches
q Conservative: Stall the load until all previous stores have 

computed their addresses (or even retired from the machine)
q Aggressive: Assume load is independent of unknown-address 

stores and schedule the load right away
q Intelligent: Predict (with a more sophisticated predictor) if the 

load is dependent on any unknown address store
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Handling of Store-Load Dependences
n A load’s dependence status is not known until all previous store 

addresses are available. 

n How does the OOO engine detect dependence of a load instruction on a 
previous store?
q Option 1: Wait until all previous stores committed (no need to check 

for address match) 
q Option 2: Keep a list of pending stores in a store buffer and check 

whether load address matches a previous store address

n How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?
q Option 1: Assume load dependent on all previous stores
q Option 2: Assume load independent of all previous stores
q Option 3: Predict the dependence of a load on an outstanding store
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Memory Disambiguation (I)
n Option 1: Assume load is dependent on all previous stores

+ No need for recovery 
-- Too conservative: delays independent loads unnecessarily

n Option 2: Assume load is independent of all previous stores
+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

n Option 3: Predict the dependence of a load on an 
outstanding store
+ More accurate. Load store dependences persist over time
-- Still requires recovery/re-execution on misprediction
q Alpha 21264 : Initially assume load independent, delay loads found to be dependent
q Moshovos et al., “Dynamic speculation and synchronization of data dependences,”

ISCA 1997.
q Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.
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Memory Disambiguation (II)
n Chrysos and Emer, “Memory Dependence Prediction Using Store 

Sets,” ISCA 1998.

n Predicting store-load dependences important for performance
n Simple predictors (based on past history) can achieve most of 

the potential performance 
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Data Forwarding Between Stores and Loads
n We cannot update memory out of program order

à Need to buffer all store and load instructions in instruction window

n Even if we know all addresses of past stores when we 
generate the address of a load, two questions still remain:
1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

n Modern processors use a LQ (load queue) and a SQ for this
q Can be combined or separate between loads and stores
q A load searches the SQ after it computes its address. Why?
q A store searches the LQ after it computes its address. Why?

66



Out-of-Order Completion of Memory Ops 
n When a store instruction finishes execution, it writes its 

address and data in its reorder buffer entry (or SQ entry)

n When a later load instruction generates its address, it:
q searches the SQ with its address
q accesses memory with its address
q receives the value from the youngest older instruction that 

wrote to that address (either from ROB or memory)

n This is a complicated “search logic” implemented as a 
Content Addressable Memory
q Content is “memory address” (but also need size and age)
q Called store-to-load forwarding logic
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Store-Load Forwarding Complexity

n Content Addressable Search (based on Load Address)

n Range Search (based on Address and Size of both the Load 
and earlier Stores)

n Age-Based Search (for last written values)

n Load data can come from a combination of multiple places
q One or more stores in the Store Buffer (SQ)
q Memory/cache
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