Digital Desigh & Computer Arch.

Lecture 17a: Datatlow &
Superscalar Execution

Prof. Onur Mutlu

ETH Zurich
Spring 2022
29 April 2022



Roadmap for Today (and Past 2-3 Weeks)

= Prior to last week: Microarchitecture Fundamentals
o Single-cycle Microarchitectures
o Multi-cycle Microarchitectures

= Last week: Pipelining & Precise Exceptions System Software
SW/HW Interface

o Pipelining
o Pipelined Processor Design
= Control & Data Dependence Handling
= Precise Exceptions: State Maintenance & Recovery

= This+next week: Out-of-Order & Superscalar Execution
o Out-of-Order Execution

o Dataflow & Superscalar Execution
o_Branch Prediction




Readings

= This week

o Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o H&H Chapters 7.8 and 7.9

o McFarling, “"Combining Branch Predictors,” DEC WRL Technical
Report, 1993.

a Optional: Kessler, “The Alpha 21264 Microprocessor,” IEEE
Micro 1999.




Out-of-Order Execution
(Restricted Datatlow)
Wrap Up




Recall: OoO Execution w/ Precise Exceptions

Most modern processors use the following

Reorder buffer to support in-order retirement of instructions
A single register file (physical RF) to store all registers

o Both speculative and architectural registers

o INT and FP are still separate

Two register maps store pointers to the physical RF
o Future/frontend register map - used for renaming
o Architectural register map = used for maintaining precise state

This design avoids value replication in RSs, ROB, etc.



Recall: OoO Execution w/ Precise Exceptions (I1)

e Reorder Buffer (ROB)
PR 2 Entry O
PR3 3 Entry 1
oRa p Entry 2
PR5 5
Pointers PR6 6 Pointers
to PRF 7 || 7 to PRF
Registe EEE : Entry 8 Registe
R1 R1
- PR10 10 R2
3 PR11 11 R3
o PR12 12 R4
R5 PR13 13 Entry 13 RS
R6 PRI ) 1 Entry 14 R6
R7 PR15 15 Entry 15 R7
28 PR16 || 16 RS
=9 PR17 || 17 RO
PR18 18
R10 =0 || 1o ||Physical Centralized i
" 20 || 20 || Register  value i
Frontend PR21 || 21 File Storage Architectural
Register Map PR22 I| 22 (PRF) Register Map




Recall: OoO Execution w/ Precise Exceptions (I11)

At Decode/Rename: Allocate DestPR to Architectural DestReg (RS, ROB)
At Decode/Rename: Read and Update Frontend Register Map

RS for ADD Unit RS for MUL Unit

Source 1 || Source 2 Source 1 | Source 2

PR PR PR PR

Q | o T |w
Q| o T |w

Before Execution: Access Physical Register File to Get Source Values

DestPR Value DestPR Value

After Execution: Access Physical Register File to Write Result Values

At Retirement: Update Architectural Register Map with DestPR




Recall: Examples from Modern Processors

Pentium III ;5 NetBurst RF ROB

Data Status Data Status

Frontend RAT
E e V'V
E BV'V
ECX
EDX
RAT 0,
1 EDI
EBX Enp
EEX ERP
_E e A ———— —— B e N N -

Ty g0 paelBe Dok

EDI Retirement R T s

ESP X ....-.-_':,-:.'.\.--' """""

3% _Eﬁ'u ...............................
T N
EDX o s LT .
ESI ""'""""::_-.w-’f:::: ................. &
Lol e W > -

——IRRF e
S EBP I == T
............................. > N

Boggs et al., "The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001. 8



Intel Penttum Pro (1995)

O X

O 0 .0

> 90 B0 DO OO OO 06 © 6 € € €
50 D0 000 (K

| Processor chip - Level 2 cache?

i

‘;
b {11

DO ODO OO
os8em00006060006

AA2PPPP00000E

.i.opnn‘ané@pabmm
ol N NN N

By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471



Intel Penttum 4 (2000)

On-chip Level 2 Cache

https://www.anandtech.com/show/1621/3



Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
o Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

o Wakeup and select/schedule the instruction

11



Summary of OOO Execution Concepts

Register renaming eliminates false dependences, enables
linking of producer to consumers

Buffering in reservation stations enables the pipeline to
move (i.e., not stall) for independent instructions

Tag broadcast enables communication (of readiness of
produced value) between instructions

Wakeup and select enables out-of-order dispatch

12



OO0 Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?

o In other words, how can we have a large instruction window?
o Why would we like to?

Can we do it efficiently with Tomasulo’s algorithm?

13



Recall: State of RAT and RS 1n Cycle 7

Slightly harder tasks for you:
1. Draw the dataflow graph for the executing code

2. Provide the executing code in sequential order

Register

Valid

Tag

Value

R1

R2

R3

RS for ADD Unit

Source 1

Source 2

R4

RS for MUL Unit

Source 1

Source 2

\"

Tag Value

Vv

Tag Value

~n

1

~n

2

R5

0

b

0

C

R6

V  Tag Value| V Tag Value
al O X 1 ~ 4
b 1 ~ 2 1 ~ 6
c| 1 ~ 8 1 ~ 9
d| O a 0 y

—+ N < x

R7

R8

R9

R10

C

R11

o|lo|l~r|—,r|lO|lRr]|O|R,R|O|RL|H

y

Register Alias Table

14



Recall: Reverse Engineered Datatlow Graph

[Datafions oo
MUL- BRI, R2.—3 R (X) s
AOO R3 Ry —> rG (o) Ncdee: ppotioms pofomed =y e
A DD R, RE — R (b) MmsHughsen
Acs : fuss i Temesol's algefbvg

AL R8,R9 — RI10 ()
mol. R3F RI0 — R &)

AOD RS, RAY — RS (d) RE g
)

We can “easily” reverse-engineer the dataflow graph of the executing code!



Questions to Ponder

Why is Oo0 execution beneficial?

o Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

o What if all operations take a single cycle?

What if an instruction takes 1000 cycles?

o How large of an instruction window do we need to continue
decoding?

o How many cycles of latency can OoO tolerate?

o What limits the latency tolerance scalability of Tomasulo’ s
algorithm?

Instruction window size: how many decoded but not yet retired
instructions you can keep in the machine

16



General Organization of an OOQO Processor

pre- Instr.
decode cache

4

floating pt.

register ]
file
floating pt. . .
instruction functional units
— i
buffers o
) | memory
— instr. |1 decode, i terf
= =1 interface
=1 buffer }= {31,13111?1 =
== =] &Xdispatcin g g -
|| L) integer/address functional units
mstruction and
buffers data cache |
integer M
register
file
L=~ . ||
—) re-order and commit

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.

17



Intel Penttum Pro (1995)

O X

O 0 .0

> 90 B0 DO OO OO 06 © 6 € € €
50 D0 000 (K

| Processor chip - Level 2 cache?

i

‘;
b {11

DO ODO OO
os8em00006060006

AA2PPPP00000E

.i.opnn‘ané@pabmm
ol N NN N

By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471



Intel Penttum 4 (2000)

On-chip Level 2 Cache

https://www.anandtech.com/show/1621/3



A Modern OoO Design: Intel Pentium 4

Front-End BTB Instruction IRETETR
(4K Entries) TLB/Prefetcher Sy
¥ ™
Instruction Decoder Microcode
¥ ROM
Trace CachEe BTB Trace Cache B pe— Quad
(512 Entries) (12K pops) Pumped
¥
I Allocator / Register Re‘namer | 3.2 GBIs
[ Memory uop Queue | | Integer/Floating Point uop Queue . Bus
[Memory Scheduler | [ _Fast | [ Slow/General FP Scheduler |  [Simple FP Interface
Unit
| Integer Register File / Bypass Network [e=> FP Register / Bypass | I l
v 4 f 'Y ! 1 . .L‘ [ [
l F F I
o -
AGU AGU 2x ALU ||| 2x ALU | | | Stow ALU FP L2 Cache
MMX FP (256K Byte
Load Store Simple Simple Complex SSE Move 8-wa )
Address | | Address Instr. Instr. Instr. SSE2 y
I 1 |
! ! g A 4 48GBIS

L1 Data Cache (8Kbyte 4-way) 256 bits

T

Figure 4: Pentium® 4 processor microarchitecture

Boggs et al., "The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, ZOOT.J



Intel Penttum 4 Simplified

Mutlu+, “Runahead Execution,”

Checkpointed
H PCA 2003 . R | Architectural
Register Fil
- P egister File
FP = PHYSICAL|f— EXEC
REORDER
= BUFFER
TRACE Frontend INT ’ z INT
(é.;fél}[f op Queue RAT Int Uop Queue -l e A .
UNIT PHYSICAL [| [UNITS
RENAMER / REG. FILE e )
! T E
: | em Uop Queu MEM Al | GEN > \
1 3 SCHEDULER UNITS Dk;A
I o --‘
o CACHE - e
| emmiomms I ek vt Bt e e e e A T e e o] Selectiop
3 | Stream—based ! P—— e  ogit
: ) : Hardware  [®------ : ! i —
nstruction I I
Prefetcher ] 1
Decoder : ¢ . . ! | .| STORE
| | : ! BUFFER
I ‘ ! 1 i
I : | | |
i ---» L2 Access Queue el e ! !
| |
| 5 e
! ¥ ! RUNAHEAD
ol CACHE
From memory
L2 CACHE S S S S e =i i
Front Side Bus To memory
--------------- - RESEI et 2
Access Queue




Alpha 21264

Rename Issue Register read Execute i Memory
Bt 5 s . 4 5 6
Integer
: Integer | integer execution
| Branch Integer | issue | | register - Addr
predictor register Bl queue T file Integer : »
rename | : (20 : (80) execution | :
AR B D entries)
ey Level-
: : Data
- Gl Integer cache | th _
R S : :: d execution | (64 Kbytes,[™** cache
: ‘Lpmi regisier : ~+ . land system|
: ; file _Addr| two-way) interface |
: 5 Integer | . o
PO R M (80) execution |
Line/set | | ! A
prediction [~ i i<
Init;zcrzltéon g Floating- F'gzz;;g' Floating- Floating-point
i int : ! : iol 3
(64 Kbytes, rgg(;::er = I repg;)i:;ter TP oo
two-way) [~ e qaes“;e file Floating-point
; (72) add execution

Figure 2. Stages of the Alpha 21264 instruction pipelin

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

22




MIPS R10000

External interface Data cache refill and write-back
e - — ! -
Syslem ! B-bit physical register numbers ' 6-bit data paths
interface et ” A s s
| [64 blts, ) f;"l\tftr
%53 e m_ :P i A T e YR "J’_HE‘Y.‘
; i : FP adder 5
. N ~I e A ':‘ - . - R
2ag0ndey FP ] %S |l Align | Add/N | Pack i}
C.dC e C I - e queue * '. .,- ... TR s v-Tu_.,_-J T \..W' k]
| (128 blts) (1 6 (64)(64\] 54 X --"".Z:—-"‘F—’I;('—M;‘La;;'i CI.JIF'S-."-'LM:;- - A
' ' entries) = 5 read o ALllz Ly :
Register renaming ) z r?‘f‘d I Mult | Sum N _Packj
3 write s s
Ac::it;.le Free L Bus;ll-bit
('32 — register tables
! = lists Load
Lentries) P {r®™ Store
b y | | . —‘\\ L | Address |*| ™| Load |
Instr. ! ngge :" : Instr. Regis‘tor — queue | Store
e B =T S BN IR AT e
3 f : B 2 g |S Y ‘,{?' |.'-..;
cecode | Kbytes) | | Branch | hahies fle [ TRL.cale [y
Instruction o o : =,r:,§x";l k5 Ty
cache refill : I . (64294" ) 1"7 1 Integer [yl
instruction fetch Instruction decode | Integer 7reaq | | b :
. . L] queue 3 write
‘ S (16 |
5-bit logical register numbers entrics) |_g,|
(a) ; : Instruction issue 5 plpelmed execution units

Yeager, “The MIPS R10000 Superscalar Mlcroprocessor" IEEE Mlcro Apr|I 1996 23



IBM POWER4

= Tendler et al.,
“POWER4 system
microarchitecture,”
IBM J R&D, 2002.




IBM POWERA4

2 cores, out-of-order execution

100-entry instruction window in each core
8-wide instruction fetch, issue, execute
Large, local+global hybrid branch predictor
1.5MB, 8-way L2 cache

Aggressive stream based prefetching

25



IBM POWERDS5

= Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

e Dynamic
§ Branch prediction J instruction
t selection
Shared Sharqd
Program Branch| || Return| | Target e execution
counter nistory | | stack | | cache queues units
tables LSUO Data Data
< z Alternate [Fxuol Translation Cache
Instruction LSU1
- buffer 0 Group formation
MiSicioR Insm:gion decode [ . . ¢ — xu_2 Group Store
cache 3 . . . . completion queue
Dispatch FPUOD!
Instruction
translation IFBZL:}]
Th_road CRL Data Data
priority Shared- Read Write translation | |cache
reqister shared- shared- fies
mappers register files reqister files L2
cache
[—)Shared by two threads [Z0) Thread 0 resources [l Thread 1 resources

Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).

26




AMD Zen/Zen2? (2019)

64K I-Cache
4 way

Decode

Micro-op Queue
4 instructions/cycle

6 ops dispatched

INTEGER

Integer Rename

Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

Integer Physical Register File

2 loads + 1 store

per cycle Load/Store

Queues

32K D-Cache

Branch Prediction

Op Cache

Micro-ops

FLOATING POINT

Floating Point Rename

Scheduler

FP Register File

512K
L2 (1+D) Cache
8 Way

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

https://courses.engr.illinois.edu/cs433/fa2020/slides/mini-project-amd-zen.pdf

Front End

EX

LS

Next Address Logic I

L1 Hashed Perceptron
L2 TAGE

L1/L2 BTB, Return Stack, ITA |

Lo/L1/L2 ITLB

L1:64. 12: 512 entries

L1 BTB: 512, L2 BTB: 7168. RAS: 32. ITA: 1024 entries

Instruction Cache 3
KB. 8 64 Blline

Prediction
Queue

Instruction Byte Queue
20x 168

1 7 |

=2 mops (< 4 x86 instr)

<8 mops (< 8 x86 instr)

OC/IC mode =\

Micro-OP Queue

Retire Queue
224 entries

Rename/Allocate

RCU

84 entries.

ALQo|[ALQr1 |[ALQ2 ||ALQS AGQ
Toermes, 2B enites
=1 =1

Schedulers

2 Bloyck
from L2

Non-Scheduling Queue

Physical Register File
180 entries

Forwarding Muxes

O waemarked

Load Queue - Statically paritioned

44 entries

LDO Pick || LD1 Pick

Store Queue
48 entries

L1/L2 DTLB,
DC Tags

L1 Data Cache

32 KB. 64 Blline

. Competitively shared between threads

32 Btoffrom L2

27



Apple M1 Firestorm? (2020)

Front-end

>=192KB L1I

(Here be dragons)

8-Wide Decode

Dispatch / Commit
~630 Reorder-Buffer

INT Rename
PRF ~354?? Entries

ALU § ALU § ALU § ALU

~154¢e LDQ J§ ~106e STQ

256pg 3072pg
L1-DTLB L2-TLB

128KB L1D

FIANANDIECH

Apple Aié
Firestorm

FP Rename
PRF~3847?? Entries

FP/SIMD + fDIV

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

28


https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

Out-of-Order Execution Tradeoffs

= Advantages

o Latency tolerance: Allows independent instructions to execute
and complete in the presence of long-latency operations

- Higher performance than in-order execution

o Irregular parallelism: Dynamically finds and exploits parallel
operations in a program

- Difficult to find/exploit such parallelism statically

= Disadvantages
o Higher complexity
= Potentially lengthens critical path delay - clock cycle time
a More hardware resources needed

= Recall: Execution time of an entire program
o {# of instructions} x {Average CPI} x {clock cycle time}

29



Other Approaches to Concurrency

(or Instruction Level Parallelism)




Approaches to (Instruction-Level) Concurrency

= Pipelining

» Fine-Grained Multithreading

s Out-of-order Execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= SIMD Processing (Vector and array processors, GPUS)
= Decoupled Access Execute

= Systolic Arrays

31



Review: Data Flow:
Exploiting Irregular Parallelism




Recall: OOO Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?
o In other words, how can we have a large instruction window?
Can we do it efficiently with Tomasulo’s algorithm?

33



Recall: State of RAT and RS 1n Cycle 7

Slightly harder tasks for you:
1. Draw the dataflow graph for the executing code

2. Provide the executing code in sequential order

Register

Valid

Tag

Value

R1

R2

R3

RS for ADD Unit

Source 1

Source 2

R4

RS for MUL Unit

Source 1

Source 2

\"

Tag Value

Vv

Tag Value

~n

1

~n

2

R5

0

b

0

C

R6

V  Tag Value| V Tag Value
al O X 1 ~ 4
b 1 ~ 2 1 ~ 6
c| 1 ~ 8 1 ~ 9
d| O a 0 y

—+ N < x

R7

R8

R9

R10

C

R11

o|lo|l~r|—,r|lO|lRr]|O|R,R|O|RL|H

y

Register Alias Table

34



Recall: Reverse Engineered Datatlow Graph

[Datafions oo
MUL- BRI, R2.—3 R (X) s
AOO R3 Ry —> rG (o) Ncdee: ppotioms pofomed =y e
A DD R, RE — R (b) MmsHughsen
Acs : fuss i Temesol's algefbvg

AL R8,R9 — RI10 ()
mol. R3F RI0 — R &)

AOD RS, RAY — RS (d) RE g
)

We can “easily” reverse-engineer the dataflow graph of the executing code!



Data Flow Summary

= Availability of data determines order of execution
= A data flow node fires when its sources are ready

= Programs represented as data flow graphs (of nodes)
= Data Flow at the ISA level has not been (as) successful

= Data Flow implementations at the microarchitecture
level (while preserving von Neumann model semantics)
have been very successful

o Out of order execution is the prime example

= Data Flow mapping of programs to reconfigurable hardware
substrates (FPGAS) has also been successful

36



Recall: ISA-level Tradeott: Program Counter

Do we want a Program Counter (PC or IP) in the ISA?
a Yes: Control-driven, sequential execution
An instruction is executed when the PC points to it

PC automatically changes sequentially (except for control flow
instructions) - sequential

a No: Data-driven, parallel execution

An instruction is executed when all its operand values are
available = dataflow

Tradeoffs: MANY high-level ones

o Ease of programming (for average programmers)?
o Ease of compilation?

o Performance: Extraction of parallelism?

o Hardware complexity?

Lecture 11, DDCA Sprlng 2022 1tips:mwwyoutube.comiwatch?v=A5Ug5COAE G4list=PL5Q2s0XY2Zi97Ya5DEUpMpO2bbA0aGTc6aindex=12



https://www.youtube.com/watch?v=A5Uq5COaEG4&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=12

Pure Data Flow Advantages/Disadvantages

Advantages

a Very good at exploiting irregular parallelism
Only real dependences constrain processing
More parallelism can be exposed than Von Neumann model

Disadvantages

o No precise state semantics
Debugging very difficult

Interrupt/exception handling is difficult (what is precise state
semantics?)

Too much parallelism? (Parallelism control needed)
High bookkeeping overhead (tag matching, data storage)
How to enable mutable data structures

o O O 0O

38



Recall: ISA vs. Microarchitecture Level Tradeoff

A similar tradeoff (control vs. data-driven execution) can be
made at the microarchitecture level

ISA: Specifies how the programmer sees the instructions to
be executed

o Programmer sees a sequential, control-flow execution order vs.
o Programmer sees a dataflow execution order

Microarchitecture: How the underlying implementation
actually executes instructions
a Microarchitecture can execute instructions in any order as long

as it obeys the semantics specified by the ISA when making the
instruction results visible to software

Programmer should see the order specified by the ISA

Lecture 11, DDCA Sprlng 2022 1tips:mwwyoutube.comiwatch?v=A5Ug5COAE G4list=PL5Q2s0XY2Zi97Ya5DEUpMpO2bbA0aGTc6aindex=12



https://www.youtube.com/watch?v=A5Uq5COaEG4&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=12

Readings & Lectures on Data Flow Model

= Dennis and Misunas, “A preliminary architecture for a basic
data-flow processor,” ISCA 1974.

= Gurd et al., "The Manchester prototype dataflow
computer,” CACM 1985.

= More detailed Lecture Video & Slides on DataFlow:
o http://www.youtube.com/watch?v=D2uue’izU2c

o http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi
a=onur-740-fall13-module5.2.1-dataflow-partl.ppt

40


http://www.youtube.com/watch?v=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt

Lecture Video on Dataflow

> »l o) 4227/1:2500

Carnegie Mellon - Parallel Computer Architecture 2012-Onur Mutlu - Lec 22 - Dataflow |

3,627 views + Apr 21,2013 iy 24

# % Carnegie Mellon Computer Architecture
1.79K subscribers

http://www.youtube.com/watch?v=D2uue7izU2c

o @ & [ O

9o

A SHARE =} SAVE

SUBSCRIBED

ra
LJd

Q

41


http://www.youtube.com/watch?v=D2uue7izU2c

Approaches to (Instruction-Level) Concurrency

= Pipelining

» Fine-Grained Multithreading

= Out-of-order Execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= SIMD Processing (Vector and array processors, GPUs)
= Decoupled Access Execute

= Systolic Arrays

42



Superscalar Execution




Superscalar Execution

= Idea: Fetch, decode, execute, retire multiple instructions
per cycle

o N-wide superscalar = N instructions per cycle
= Need to add the hardware resources for doing so

= Hardware performs the dependence checking between
concurrently-fetched instructions

= Superscalar execution and out-of-order execution are
orthogonal concepts

o Can have all four combinations of processors:
[in-order, out-of-order] x [scalar, superscalar]

44



In-Order Superscalar Processor Example

m Multiple copies of datapath: Can fetch/decode/execute multiple
instructions per cycle

m Dependences make it tricky to dispatch multiple instructions in
the same cycle

= Need dependence detection between concurrently-fetched instructions

CLK CLK CLK CLK
CLK _
PC RD A1 L
- A A2
= A3 RD1 h

A4 RD4 8 A1 RD1

Instruction |: A5 Register % O A2 RD2 .
Memory A File ~ RD2 < Data
RD5
wes 1— Memory

WD1
wWD2

Here: Ideal IPC = 2



In-Order Superscalar Performance Example

lw  $t0, 40($s0) Ideal IPC = 2
add $t1, $s1, $s2

sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80(%$s0)

1 2 3 4 5 6 7 8
|
Time (cycles)
N SsOM Y M
lw  $t0, 40($s0) — 10 :B— —
M RF [ss1 DM ool
add $t1, $sl, S$s2 add 552 :B— ||
M —— S51N v Moo
sub $t2, $sl, $s3 o oo o —
M RF [ss3 DM - RF
and $t3, $s3, $s4 nd -[ Ss4 :B— -
M 5510 v Ve
or $td4, S$sl, $s5 -[ $s5 :D— — =
M RF 1ss0 E'Vé RF
S
sw $s5, 80($s0) SY -[ 80 :B— ||

Actual IPC = 2 (6 instructions issued in 3 cycles)



Superscalar Performance with Dependences

1w

or
SW

$t0, 40($s9)
add $t1,
sub $t0,
and $t2,

$to,
$s2,
$s4,

$t3, $s5,

$s1
$s3
$t0
$s6
$s7, 80($t3)

1w

add

sub

and

or

SW

$t0, 40($s0)

st1, , $s1

$t0, $s2, $s3

st

$t3, $s5, $s6

$s7, 80( )

Ideal IPC = 2

Can you reorder the instructions to get IPC = 2?

4 5 6 7 8 9
-
Time (cycles)
lw _v$t0
M DM RF
StOR M Mst1
Ssl DM_
RF 552 . RF
1D
andv $S4<7E v v$t2
ey |
M RF [s55 DM RF
r $t3
'[ $s6 E\ I —
sw V{ :;“ M $s7_§7
M RF DM RF

Actual IPC = 1.2 (6 instructions issued in 5 cycles)



Review: How to Handle Data Dependences

Six fundamental ways of handling flow dependences

Q

Q

Q

Detect and wait until value is available in register file
Detect and forward/bypass data to dependent instruction

Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence

Detect and move it out of the way for independent instructions
Predict the needed value(s), execute “speculatively”, and verify

Do something else (fine-grained multithreading)
No need to detect

Can employ all these in superscalar processors

48



Superscalar Execution Tradeoffs

Advantages

o Higher instruction throughput
Higher IPC: instructions per cycle (i.e., lower CPI)

Disadvantages

a Higher complexity for dependence checking
Requires dependence checking between concurrent instructions
Register renaming becomes more complex in an OoO processor
Potentially lengthens critical path delay - clock cycle time

2 More hardware resources needed

Recall: Execution time of an entire program
o {# of instructions} x {Average CPI} x {clock cycle time}

49



General Organization of a Superscalar+OoO Processor

pre-
decode

1nstr.
cache

4

floating pt.

register

file

ydyy

instr.
buffer

-
=
|
|

decode,
rename,
&dispatch

floating pt.
mstruction
buffers

functional units

=~

integer

register
file

integer/address
mstruction
buffers

functional units
and
data cache

)

memory

interface

Yy

re-order and commit

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.

50



Intel Penttum Pro (1995)

O X

O 0 .0

> 90 B0 DO OO OO 06 © 6 € € €
50 D0 000 (K

| Processor chip - Level 2 cache?

i

‘;
b {11

DO ODO OO
os8em00006060006

AA2PPPP00000E

.i.opnn‘ané@pabmm
ol N NN N

By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471



Intel Penttum 4 (2000)

On-chip Level 2 Cache

https://www.anandtech.com/show/1621/3



Alpha 21264

Rename Issue Register read Execute i Memory
Bt 5 s . 4 5 6
Integer
: Integer | integer execution
| Branch Integer | issue | | register - Addr
predictor register Bl queue T file Integer : »
rename | : (20 : (80) execution | :
AR B D entries)
ey Level-
: : Data
- Gl Integer cache | th _
R S : :: d execution | (64 Kbytes,[™** cache
: ‘Lpmi regisier : ~+ . land system|
: ; file _Addr| two-way) interface |
: 5 Integer | . o
PO R M (80) execution |
Line/set | | ! A
prediction [~ i i<
Init;zcrzltéon g Floating- F'gzz;;g' Floating- Floating-point
i int : ! : iol 3
(64 Kbytes, rgg(;::er = I repg;)i:;ter TP oo
two-way) [~ e qaes“;e file Floating-point
; (72) add execution

Figure 2. Stages of the Alpha 21264 instruction pipelin

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

53




AMD Zen/Zen2? (2019)

64K I-Cache
4 way

Decode

Micro-op Queue
4 instructions/cycle

6 ops dispatched

INTEGER

Integer Rename

Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

Integer Physical Register File

2 loads + 1 store

per cycle Load/Store

Queues

32K D-Cache

Branch Prediction

Op Cache

Micro-ops

FLOATING POINT

Floating Point Rename

Scheduler

FP Register File

512K
L2 (1+D) Cache
8 Way

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

https://courses.engr.illinois.edu/cs433/fa2020/slides/mini-project-amd-zen.pdf

Front End

EX

LS

Next Address Logic I

L1 Hashed Perceptron
L2 TAGE

L1/L2 BTB, Return Stack, ITA |

Lo/L1/L2 ITLB

L1:64. 12: 512 entries

L1 BTB: 512, L2 BTB: 7168. RAS: 32. ITA: 1024 entries

Instruction Cache
KB. 8 64 Blline

Prediction
Queue

Instruction Byte Queue
20x 168

]
< ? mops (< 4 x86 instr)

<8 mops (< 8 x86 instr)

OC/IC mode =\

Micro-OP Queue

32 Bleyck

from L2

3 I Rename/Allocate Retire Queue

[ 224 entries

© Non-Scheduling Queue
;; ALQo ((ALQ1 ||ALQ2 ||ALQ3 AGQ 84 entries

3 [reemes 2 enties

@

= 23 2

@

Physical Register File

180 entries

Forwarding Muxes

O waemarked

Load Queue - Statically paritioned

44 entries

LDO Pick || LD1 Pick

Store Queue
48 entries

L1/L2 DTLB,
DC Tags

L1 Data Cache

32 KB. 64 Blline

. Competitively shared between threads

32 Btoffrom L2

54



Apple M1 Firestorm? (2020)

Front-end

>=192KB L1I

(Here be dragons)

8-Wide Decode

Dispatch / Commit
~630 Reorder-Buffer

INT Rename
PRF ~354?? Entries

ALU § ALU § ALU § ALU

~154¢e LDQ J§ ~106e STQ

256pg 3072pg
L1-DTLB L2-TLB

128KB L1D

FIANANDIECH

Apple Aié
Firestorm

FP Rename
PRF~3847?? Entries

FP/SIMD + fDIV

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

55


https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

Backup Slides & Optional Video for:
Handling Out-of-Order Execution
of Loads and Stores




Lecture on Looad-Store Handling in OoO

Store-l.oad Forwarding (:()mplcxit_\'

Content Addressable Search (based on Load Address)

Range Search (based on Address and Size of both the Load
and earlier Stores)

Age-Based Search (for last written values)

Load data can come from a combination of multiple places
2 One or more stores in the Store Buffer (SQ)
2 Memory/cache

(o) Premieres in 25 hours

) ﬂ Set reminder
April 30 at 3:00 PM =

Digital Design & Comp. Arch. - Lecture 16b: Load-Store Handling in Out-of-Order Execution (S'22)

1 waiting * Premieres Apr 30, 2022 |‘ 3 9] DISLIKE A) SHARE =+ SAVE

@ Onur Mutlu Lectures ANALYTICS EDIT VIDEO
&> 24.3K subscribers

https://www.youtube.com/watch?v=vulgJ3N1rlg&list=PL5Q2s0XY2Zi97Ya5DEUpMpO2bbAo0aG7c6&index=18



https://www.youtube.com/watch?v=vulgJ3N1rlg&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=18

Digital Desigh & Computer Arch.

Lecture 17a: Datatlow &
Superscalar Execution

Prof. Onur Mutlu

ETH Zurich
Spring 2022
29 April 2022



Handling Out-of-Order Execution
of L.oads and Stores




Registers versus Memory

So far, we considered mainly registers as part of state
What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)

60



Memory Dependence Handling (I)

Need to obey memory dependences in an out-of-order
machine

o and need to do so while providing high performance

Observation and Problem: Memory address is not known until
a load/store executes

Corollary 1: Renaming memory addresses is difficult

Corollary 2: Determining dependence or independence of
loads/stores has to be handled after their (partial) execution

Corollary 3: When a load/store has its address ready, there
may be older/younger stores/loads with unknown addresses
in the machine

61



Memory Dependence Handling (1I)

When do you schedule a load instruction in an OOO engine?

o Problem: A younger load can have its address ready before an
older store’s address is known

o Known as the memory disambiguation problem or the unknown
address problem

Approaches

o Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

o Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

o Intelligent: Predict (with @ more sophisticated predictor) if the
load is dependent on any unknown address store

62



Handling of Store-lL.oad Dependences

A load’s dependence status is not known until all previous store
addresses are available.

How does the OO0 engine detect dependence of a load instruction on a
previous store?

o Option 1: Wait until all previous stores committed (no need to check
for address match)

o Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the OO0 engine treat the scheduling of a load instruction wrt
previous stores?

o Option 1: Assume load dependent on all previous stores
o Option 2: Assume load independent of all previous stores
o Option 3: Predict the dependence of a load on an outstanding store

03



Memory Disambiguation (I)

Option 1: Assume load is dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 2: Assume load is independent of all previous stores

+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependences persist over time

-- Still requires recovery/re-execution on misprediction
o Alpha 21264 : Initially assume load independent, delay loads found to be dependent

o Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

o Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.
64



Memory Disambiguation (II)

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

IPC

7
6
5
4
2 2 . i . 4
1 HE
0 s & 3
= o o ©
2 E 2 g 8§ & g § B £ 3 E % B 3 ¢ 8
=Y S o o o> & X g’ c = = 3] £ y = © =
© Q _— @ - E @ E o} Q =
£ e @ a s =
o) € Q. o
o

‘ano speculaﬁbﬁ B naive spéculatiOn [} berfect f

Predicting store-load dependences important for performance

Simple predictors (based on past history) can achieve most of
the potential performance

65



Data Forwarding Between Stores and Loads

We cannot update memory out of program order
- Need to buffer all store and load instructions in instruction window

Even if we know all addresses of past stores when we
generate the address of a load, two questions still remain:

1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

Modern processors use a LQ (load queue) and a SQ for this
o Can be combined or separate between loads and stores

o A load searches the SQ after it computes its address. Why?

o A store searches the LQ after it computes its address. Why?

06



Out-of-Order Completion of Memory Ops

When a store instruction finishes execution, it writes its
address and data in its reorder buffer entry (or SQ entry)

When a later load instruction generates its address, it:
o searches the SQ with its address
o accesses memory with its address

o receives the value from the youngest older instruction that
wrote to that address (either from ROB or memory)

This is a complicated “search logic” implemented as a
Content Addressable Memory

o Content is "memory address” (but also need size and age)
o Called store-to-load forwarding logic

67



Store-l.oad Forwarding Complexity

Content Addressable Search (based on Load Address)

Range Search (based on Address and Size of both the Load
and earlier Stores)

Age-Based Search (for last written values)

Load data can come from a combination of multiple places
o One or more stores in the Store Buffer (SQ)
o Memory/cache

068



