
Digital Design & Computer Arch.
Lecture 17a: Dataflow &
Superscalar Execution

Prof. Onur Mutlu

ETH Zürich
Spring 2022
29 April 2022

Roadmap for Today (and Past 2-3 Weeks)
n Prior to last week: Microarchitecture Fundamentals

q Single-cycle Microarchitectures
q Multi-cycle Microarchitectures

n Last week: Pipelining & Precise Exceptions
q Pipelining
q Pipelined Processor Design

n Control & Data Dependence Handling
n Precise Exceptions: State Maintenance & Recovery

n This+next week: Out-of-Order & Superscalar Execution
q Out-of-Order Execution
q Dataflow & Superscalar Execution
q Branch Prediction

2

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Readings
n This week

q Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

q H&H Chapters 7.8 and 7.9

q McFarling, “Combining Branch Predictors,” DEC WRL Technical
Report, 1993.

q Optional: Kessler, “The Alpha 21264 Microprocessor,” IEEE
Micro 1999.

3

Out-of-Order Execution
(Restricted Dataflow)

Wrap Up

Recall: OoO Execution w/ Precise Exceptions

n Most modern processors use the following

n Reorder buffer to support in-order retirement of instructions

n A single register file (physical RF) to store all registers
q Both speculative and architectural registers
q INT and FP are still separate

n Two register maps store pointers to the physical RF
q Future/frontend register map à used for renaming
q Architectural register map à used for maintaining precise state

n This design avoids value replication in RSs, ROB, etc.
5

Recall: OoO Execution w/ Precise Exceptions (II)

Register PR
R1 18
R2 13
R3 10
R4 22
R5 14
R6 19
R7 17
R8 20
R9 3
R10 4
R11 1

Frontend
Register Map

Architectural
Register Map

Entry 0
Entry 1
Entry 2

Entry 8

Entry 14
Entry 15

Entry 13

Reorder Buffer (ROB)

Register PR
R1 12
R2 2
R3 10
R4 22
R5 5
R6 9
R7 11
R8 20
R9 7
R10 6
R11 1

Physical
Register

File
(PRF)

PR Value
PR1 1
PR2 2
PR3 3
PR4 4
PR5 5
PR6 6
PR7 7
PR8 8
PR9 9
PR10 10
PR11 11
PR12 12
PR13 13
PR14 14
PR15 15
PR16 16
PR17 17
PR18 18
PR19 19
PR20 20
PR21 21
PR22 22

Centralized
Value

Storage

Pointers
to PRF

Pointers
to PRF

Recall: OoO Execution w/ Precise Exceptions (III)

+ ∗

Source 1 Source 2

PR PR

a

b

c

d

DestPR ValueDestPR Value

RS for ADD Unit RS for MUL Unit
Source 1 Source 2

PR PR

a

b

c

d

Before Execution: Access Physical Register File to Get Source Values

After Execution: Access Physical Register File to Write Result Values
At Retirement: Update Architectural Register Map with DestPR

At Decode/Rename: Allocate DestPR to Architectural DestReg (RS, ROB)
At Decode/Rename: Read and Update Frontend Register Map

Recall: Examples from Modern Processors

8
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001.

Intel Pentium Pro (1995)

9
By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471

Processor chip Level 2 cache chip

Multi-chip module package

Intel Pentium 4 (2000)

10https://www.anandtech.com/show/1621/3

On-chip Level 2 Cache

Enabling OoO Execution, Revisited
1. Link the consumer of a value to the producer

q Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
q Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
q Broadcast the “tag” when the value is produced
q Instructions compare their “source tags” to the broadcast tag

à if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

q Wakeup and select/schedule the instruction

11

Summary of OOO Execution Concepts
n Register renaming eliminates false dependences, enables

linking of producer to consumers

n Buffering in reservation stations enables the pipeline to
move (i.e., not stall) for independent instructions

n Tag broadcast enables communication (of readiness of
produced value) between instructions

n Wakeup and select enables out-of-order dispatch

12

OOO Execution: Restricted Dataflow
n An out-of-order engine dynamically builds the dataflow

graph of a piece of the program

n The dataflow graph is limited to the instruction window
q Instruction window: all decoded but not yet retired

instructions

n Can we do it for the whole program?
q In other words, how can we have a large instruction window?
q Why would we like to?

n Can we do it efficiently with Tomasulo’s algorithm?

13

Recall: State of RAT and RS in Cycle 7

14

+ ∗

Register Valid Tag Value
R1 1 1
R2 1 2
R3 0 x
R4 1 4
R5 0 a
R6 1 6
R7 0 b
R8 1 8
R9 1 9
R10 0 c
R11 0 y

Source 1 Source 2

V Tag Value V Tag Value

a 0 x 1 ~ 4
b 1 ~ 2 1 ~ 6
c 1 ~ 8 1 ~ 9
d 0 a 0 y

0 d

Source 1 Source 2

V Tag Value V Tag Value

x 1 ~ 1 1 ~ 2
y 0 b 0 c
z

t

Slightly harder tasks for you:
1. Draw the dataflow graph for the executing code
2. Provide the executing code in sequential order

RS for ADD Unit RS for MUL Unit

Register Alias Table

Recall: Reverse Engineered Dataflow Graph

We can “easily” reverse-engineer the dataflow graph of the executing code!

Questions to Ponder
n Why is OoO execution beneficial?

q Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

q What if all operations take a single cycle?

n What if an instruction takes 1000 cycles?
q How large of an instruction window do we need to continue

decoding?
q How many cycles of latency can OoO tolerate?
q What limits the latency tolerance scalability of Tomasulo’s

algorithm?
n Instruction window size: how many decoded but not yet retired

instructions you can keep in the machine
16

General Organization of an OOO Processor

n Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.

17

Intel Pentium Pro (1995)

18
By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471

Processor chip Level 2 cache chip

Multi-chip module package

Intel Pentium 4 (2000)

19https://www.anandtech.com/show/1621/3

On-chip Level 2 Cache

A Modern OoO Design: Intel Pentium 4

20Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.

Intel Pentium 4 Simplified

21

Mutlu+, “Runahead Execution,”
HPCA 2003.

Alpha 21264

22Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

MIPS R10000

23Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996

IBM POWER4
n Tendler et al.,
“POWER4 system
microarchitecture,”
IBM J R&D, 2002.

24

IBM POWER4
n 2 cores, out-of-order execution
n 100-entry instruction window in each core
n 8-wide instruction fetch, issue, execute
n Large, local+global hybrid branch predictor
n 1.5MB, 8-way L2 cache
n Aggressive stream based prefetching

25

IBM POWER5
n Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE

Micro 2004.

26

AMD Zen/Zen2? (2019)

27https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
https://courses.engr.illinois.edu/cs433/fa2020/slides/mini-project-amd-zen.pdf

Apple M1 Firestorm? (2020)

28
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

Out-of-Order Execution Tradeoffs
n Advantages

q Latency tolerance: Allows independent instructions to execute
and complete in the presence of long-latency operations
à Higher performance than in-order execution

q Irregular parallelism: Dynamically finds and exploits parallel
operations in a program
à Difficult to find/exploit such parallelism statically

n Disadvantages
q Higher complexity

n Potentially lengthens critical path delay à clock cycle time
q More hardware resources needed

n Recall: Execution time of an entire program
q {# of instructions} x {Average CPI} x {clock cycle time}

29

Other Approaches to Concurrency
(or Instruction Level Parallelism)

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Fine-Grained Multithreading
n Out-of-order Execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

31

Review: Data Flow:
Exploiting Irregular Parallelism

Recall: OOO Execution: Restricted Dataflow
n An out-of-order engine dynamically builds the dataflow

graph of a piece of the program

n The dataflow graph is limited to the instruction window
q Instruction window: all decoded but not yet retired

instructions

n Can we do it for the whole program?
q In other words, how can we have a large instruction window?

n Can we do it efficiently with Tomasulo’s algorithm?

33

Recall: State of RAT and RS in Cycle 7

34

+ ∗

Register Valid Tag Value
R1 1 1
R2 1 2
R3 0 x
R4 1 4
R5 0 a
R6 1 6
R7 0 b
R8 1 8
R9 1 9
R10 0 c
R11 0 y

Source 1 Source 2

V Tag Value V Tag Value

a 0 x 1 ~ 4
b 1 ~ 2 1 ~ 6
c 1 ~ 8 1 ~ 9
d 0 a 0 y

0 d

Source 1 Source 2

V Tag Value V Tag Value

x 1 ~ 1 1 ~ 2
y 0 b 0 c
z

t

Slightly harder tasks for you:
1. Draw the dataflow graph for the executing code
2. Provide the executing code in sequential order

RS for ADD Unit RS for MUL Unit

Register Alias Table

Recall: Reverse Engineered Dataflow Graph

We can “easily” reverse-engineer the dataflow graph of the executing code!

Data Flow Summary
n Availability of data determines order of execution
n A data flow node fires when its sources are ready
n Programs represented as data flow graphs (of nodes)

n Data Flow at the ISA level has not been (as) successful

n Data Flow implementations at the microarchitecture
level (while preserving von Neumann model semantics)
have been very successful
q Out of order execution is the prime example

n Data Flow mapping of programs to reconfigurable hardware
substrates (FPGAs) has also been successful

36

Recall: ISA-level Tradeoff: Program Counter

n Do we want a Program Counter (PC or IP) in the ISA?
q Yes: Control-driven, sequential execution

n An instruction is executed when the PC points to it
n PC automatically changes sequentially (except for control flow

instructions) à sequential
q No: Data-driven, parallel execution

n An instruction is executed when all its operand values are
available à dataflow

n Tradeoffs: MANY high-level ones
q Ease of programming (for average programmers)?
q Ease of compilation?
q Performance: Extraction of parallelism?
q Hardware complexity?

Lecture 11, DDCA Spring 2022 https://www.youtube.com/watch?v=A5Uq5COaEG4&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=12

https://www.youtube.com/watch?v=A5Uq5COaEG4&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=12

Pure Data Flow Advantages/Disadvantages
n Advantages

q Very good at exploiting irregular parallelism
n Only real dependences constrain processing
n More parallelism can be exposed than Von Neumann model

n Disadvantages
q No precise state semantics

n Debugging very difficult
n Interrupt/exception handling is difficult (what is precise state

semantics?)
q Too much parallelism? (Parallelism control needed)
q High bookkeeping overhead (tag matching, data storage)
q How to enable mutable data structures
q …

38

Recall: ISA vs. Microarchitecture Level Tradeoff
n A similar tradeoff (control vs. data-driven execution) can be

made at the microarchitecture level

n ISA: Specifies how the programmer sees the instructions to
be executed
q Programmer sees a sequential, control-flow execution order vs.
q Programmer sees a dataflow execution order

n Microarchitecture: How the underlying implementation
actually executes instructions
q Microarchitecture can execute instructions in any order as long

as it obeys the semantics specified by the ISA when making the
instruction results visible to software
n Programmer should see the order specified by the ISA

Lecture 11, DDCA Spring 2022 https://www.youtube.com/watch?v=A5Uq5COaEG4&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=12

https://www.youtube.com/watch?v=A5Uq5COaEG4&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=12

Readings & Lectures on Data Flow Model

n Dennis and Misunas, “A preliminary architecture for a basic
data-flow processor,” ISCA 1974.

n Gurd et al., “The Manchester prototype dataflow
computer,” CACM 1985.

n More detailed Lecture Video & Slides on DataFlow:
q http://www.youtube.com/watch?v=D2uue7izU2c
q http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi

a=onur-740-fall13-module5.2.1-dataflow-part1.ppt

40

http://www.youtube.com/watch?v=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt

Lecture Video on Dataflow

41http://www.youtube.com/watch?v=D2uue7izU2c

http://www.youtube.com/watch?v=D2uue7izU2c

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Fine-Grained Multithreading
n Out-of-order Execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

42

Superscalar Execution

Superscalar Execution
n Idea: Fetch, decode, execute, retire multiple instructions

per cycle
q N-wide superscalar à N instructions per cycle

n Need to add the hardware resources for doing so

n Hardware performs the dependence checking between
concurrently-fetched instructions

n Superscalar execution and out-of-order execution are
orthogonal concepts
q Can have all four combinations of processors:

[in-order, out-of-order] x [scalar, superscalar]
44

Carnegie Mellon

45

In-Order Superscalar Processor Example
¢ Multiple copies of datapath: Can fetch/decode/execute multiple

instructions per cycle

¢ Dependences make it tricky to dispatch multiple instructions in
the same cycle
§ Need dependence detection between concurrently-fetched instructions

CLK CLK CLK CLK

A
RD A1

A2
RD1A3

WD3
WD6

A4
A5
A6

RD4

RD2
RD5

Instruction
Memory

Register
File Data

Memory
AL
U
s

PC

CLK

A1
A2

WD1
WD2

RD1
RD2

Here: Ideal IPC = 2

Carnegie Mellon

46

In-Order Superscalar Performance Example
lw $t0, 40($s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DMIM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DMIM

or

sw
80

$s0

+ $s5

Ideal IPC = 2

Actual IPC = 2 (6 instructions issued in 3 cycles)

Carnegie Mellon

47

Superscalar Performance with Dependences
lw $t0, 40($s0)
add $t1, $t0, $s1
sub $t0, $s2, $s3
and $t2, $s4, $t0
or $t3, $s5, $s6
sw $s7, 80($t3)

Stall

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw $s7, 80($t3)

RF
$s1

$t0
add

RF
$s1

$t0

RF

$t1
+

DM

RF
$t0

$s4

RF

$t2
&

DMIM

and

IM
or

and

sub

|$s6

$s5
$t3

RF
80

$t3

RF
+

DM
sw

IM

$s7

9

$s3

$s2

$s3

$s2
-

$t0

oror $t3, $s5, $s6

IM

Ideal IPC = 2

Actual IPC = 1.2 (6 instructions issued in 5 cycles)

Can you reorder the instructions to get IPC = 2?

Review: How to Handle Data Dependences

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect

n Can employ all these in superscalar processors

48

Superscalar Execution Tradeoffs
n Advantages

q Higher instruction throughput
q Higher IPC: instructions per cycle (i.e., lower CPI)

n Disadvantages
q Higher complexity for dependence checking

n Requires dependence checking between concurrent instructions
n Register renaming becomes more complex in an OoO processor
n Potentially lengthens critical path delay à clock cycle time

q More hardware resources needed

n Recall: Execution time of an entire program
q {# of instructions} x {Average CPI} x {clock cycle time}

49

General Organization of a Superscalar+OoO Processor

n Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.

50

Intel Pentium Pro (1995)

51
By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471

Processor chip Level 2 cache chip

Multi-chip module package

Intel Pentium 4 (2000)

52https://www.anandtech.com/show/1621/3

On-chip Level 2 Cache

Alpha 21264

53Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

AMD Zen/Zen2? (2019)

54https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
https://courses.engr.illinois.edu/cs433/fa2020/slides/mini-project-amd-zen.pdf

Apple M1 Firestorm? (2020)

55
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

Backup Slides & Optional Video for:
Handling Out-of-Order Execution

of Loads and Stores

Lecture on Load-Store Handling in OoO

https://www.youtube.com/watch?v=vulgJ3N1rlg&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=18

https://www.youtube.com/watch?v=vulgJ3N1rlg&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=18

Digital Design & Computer Arch.
Lecture 17a: Dataflow &
Superscalar Execution

Prof. Onur Mutlu

ETH Zürich
Spring 2022
29 April 2022

Handling Out-of-Order Execution
of Loads and Stores

Registers versus Memory
n So far, we considered mainly registers as part of state

n What about memory?

n What are the fundamental differences between registers
and memory?
q Register dependences known statically – memory

dependences determined dynamically
q Register state is small – memory state is large
q Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a
shared memory multiprocessor)

60

Memory Dependence Handling (I)
n Need to obey memory dependences in an out-of-order

machine
q and need to do so while providing high performance

n Observation and Problem: Memory address is not known until
a load/store executes

n Corollary 1: Renaming memory addresses is difficult
n Corollary 2: Determining dependence or independence of

loads/stores has to be handled after their (partial) execution
n Corollary 3: When a load/store has its address ready, there

may be older/younger stores/loads with unknown addresses
in the machine

61

Memory Dependence Handling (II)
n When do you schedule a load instruction in an OOO engine?

q Problem: A younger load can have its address ready before an
older store’s address is known

q Known as the memory disambiguation problem or the unknown
address problem

n Approaches
q Conservative: Stall the load until all previous stores have

computed their addresses (or even retired from the machine)
q Aggressive: Assume load is independent of unknown-address

stores and schedule the load right away
q Intelligent: Predict (with a more sophisticated predictor) if the

load is dependent on any unknown address store

62

Handling of Store-Load Dependences
n A load’s dependence status is not known until all previous store

addresses are available.

n How does the OOO engine detect dependence of a load instruction on a
previous store?
q Option 1: Wait until all previous stores committed (no need to check

for address match)
q Option 2: Keep a list of pending stores in a store buffer and check

whether load address matches a previous store address

n How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?
q Option 1: Assume load dependent on all previous stores
q Option 2: Assume load independent of all previous stores
q Option 3: Predict the dependence of a load on an outstanding store

63

Memory Disambiguation (I)
n Option 1: Assume load is dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

n Option 2: Assume load is independent of all previous stores
+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

n Option 3: Predict the dependence of a load on an
outstanding store
+ More accurate. Load store dependences persist over time
-- Still requires recovery/re-execution on misprediction
q Alpha 21264 : Initially assume load independent, delay loads found to be dependent
q Moshovos et al., “Dynamic speculation and synchronization of data dependences,”

ISCA 1997.
q Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

64

Memory Disambiguation (II)
n Chrysos and Emer, “Memory Dependence Prediction Using Store

Sets,” ISCA 1998.

n Predicting store-load dependences important for performance
n Simple predictors (based on past history) can achieve most of

the potential performance

65

Data Forwarding Between Stores and Loads
n We cannot update memory out of program order

à Need to buffer all store and load instructions in instruction window

n Even if we know all addresses of past stores when we
generate the address of a load, two questions still remain:
1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

n Modern processors use a LQ (load queue) and a SQ for this
q Can be combined or separate between loads and stores
q A load searches the SQ after it computes its address. Why?
q A store searches the LQ after it computes its address. Why?

66

Out-of-Order Completion of Memory Ops
n When a store instruction finishes execution, it writes its

address and data in its reorder buffer entry (or SQ entry)

n When a later load instruction generates its address, it:
q searches the SQ with its address
q accesses memory with its address
q receives the value from the youngest older instruction that

wrote to that address (either from ROB or memory)

n This is a complicated “search logic” implemented as a
Content Addressable Memory
q Content is “memory address” (but also need size and age)
q Called store-to-load forwarding logic

67

Store-Load Forwarding Complexity

n Content Addressable Search (based on Load Address)

n Range Search (based on Address and Size of both the Load
and earlier Stores)

n Age-Based Search (for last written values)

n Load data can come from a combination of multiple places
q One or more stores in the Store Buffer (SQ)
q Memory/cache

68

