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Roadmap for Today (and Past 2-3 Weeks)

= Prior to last week: Microarchitecture Fundamentals
o Single-cycle Microarchitectures
o Multi-cycle Microarchitectures

= Last week: Pipelining & Precise Exceptions System Software
SW/HW Interface

o Pipelining
o Pipelined Processor Design
= Control & Data Dependence Handling
= Precise Exceptions: State Maintenance & Recovery

= This+next week: Out-of-Order & Superscalar Execution
o Out-of-Order Execution

o Dataflow & Superscalar Execution
o_Branch Prediction




Readings

= This week

o Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o H&H Chapters 7.8 and 7.9

o McFarling, “"Combining Branch Predictors,” DEC WRL Technical
Report, 1993.

a Optional: Kessler, “The Alpha 21264 Microprocessor,” IEEE
Micro 1999.




Out-of-Order Execution
(Restricted Datatlow)
Wrap Up




Recall: OoO Execution w/ Precise Exceptions

Most modern processors use the following

Reorder buffer to support in-order retirement of instructions
A single register file (physical RF) to store all registers

o Both speculative and architectural registers

o INT and FP are still separate

Two register maps store pointers to the physical RF
o Future/frontend register map - used for renaming
o Architectural register map = used for maintaining precise state

This design avoids value replication in RSs, ROB, etc.



Recall: OoO Execution w/ Precise Exceptions (I1)
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Recall: OoO Execution w/ Precise Exceptions (I11)

At Decode/Rename: Allocate DestPR to Architectural DestReg (RS, ROB)
At Decode/Rename: Read and Update Frontend Register Map

RS for ADD Unit RS for MUL Unit

Source 1 || Source 2 Source 1 | Source 2

PR PR PR PR

Q | o T |w
Q| o T |w

Before Execution: Access Physical Register File to Get Source Values

DestPR Value DestPR Value

After Execution: Access Physical Register File to Write Result Values

At Retirement: Update Architectural Register Map with DestPR




Recall: Examples from Modern Processors
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Boggs et al., "The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001. 8



Intel Penttum Pro (1995)
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Intel Penttum 4 (2000)

On-chip Level 2 Cache

https://www.anandtech.com/show/1621/3



Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
o Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

o Wakeup and select/schedule the instruction

11



Summary of OOO Execution Concepts

Register renaming eliminates false dependences, enables
linking of producer to consumers

Buffering in reservation stations enables the pipeline to
move (i.e., not stall) for independent instructions

Tag broadcast enables communication (of readiness of
produced value) between instructions

Wakeup and select enables out-of-order dispatch
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OO0 Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?

o In other words, how can we have a large instruction window?
o Why would we like to?

Can we do it efficiently with Tomasulo’s algorithm?

13



Recall: State of RAT and RS 1n Cycle 7

Slightly harder tasks for you:
1. Draw the dataflow graph for the executing code

2. Provide the executing code in sequential order

Register
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Recall: Reverse Engineered Datatlow Graph
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We can “easily” reverse-engineer the dataflow graph of the executing code!



Questions to Ponder

Why is Oo0 execution beneficial?

o Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

o What if all operations take a single cycle?

What if an instruction takes 1000 cycles?

o How large of an instruction window do we need to continue
decoding?

o How many cycles of latency can OoO tolerate?

o What limits the latency tolerance scalability of Tomasulo’ s
algorithm?

Instruction window size: how many decoded but not yet retired
instructions you can keep in the machine

16



General Organization of an OOQO Processor
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Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.
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Intel Penttum Pro (1995)
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Intel Penttum 4 (2000)

On-chip Level 2 Cache

https://www.anandtech.com/show/1621/3



A Modern OoO Design: Intel Pentium 4
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Figure 4: Pentium® 4 processor microarchitecture

Boggs et al., "The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, ZOOT.J



Intel Penttum 4 Simplified
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Alpha 21264
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Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.
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MIPS R10000
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IBM POWER4

= Tendler et al.,
“POWER4 system
microarchitecture,”
IBM J R&D, 2002.




IBM POWERA4

2 cores, out-of-order execution

100-entry instruction window in each core
8-wide instruction fetch, issue, execute
Large, local+global hybrid branch predictor
1.5MB, 8-way L2 cache

Aggressive stream based prefetching

25



IBM POWERDS5

= Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.
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Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).
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AMD Zen/Zen2? (2019)
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https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

https://courses.engr.illinois.edu/cs433/fa2020/slides/mini-project-amd-zen.pdf
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Apple M1 Firestorm? (2020)
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Out-of-Order Execution Tradeoffs

= Advantages

o Latency tolerance: Allows independent instructions to execute
and complete in the presence of long-latency operations

- Higher performance than in-order execution

o Irregular parallelism: Dynamically finds and exploits parallel
operations in a program

- Difficult to find/exploit such parallelism statically

= Disadvantages
o Higher complexity
= Potentially lengthens critical path delay - clock cycle time
a More hardware resources needed

= Recall: Execution time of an entire program
o {# of instructions} x {Average CPI} x {clock cycle time}
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Other Approaches to Concurrency

(or Instruction Level Parallelism)




Approaches to (Instruction-Level) Concurrency

= Pipelining

» Fine-Grained Multithreading

s Out-of-order Execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= SIMD Processing (Vector and array processors, GPUS)
= Decoupled Access Execute

= Systolic Arrays

31



Review: Data Flow:
Exploiting Irregular Parallelism




Recall: OOO Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?
o In other words, how can we have a large instruction window?
Can we do it efficiently with Tomasulo’s algorithm?

33



Recall: State of RAT and RS 1n Cycle 7

Slightly harder tasks for you:
1. Draw the dataflow graph for the executing code

2. Provide the executing code in sequential order
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Recall: Reverse Engineered Datatlow Graph

[Datafions oo
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We can “easily” reverse-engineer the dataflow graph of the executing code!



Data Flow Summary

= Availability of data determines order of execution
= A data flow node fires when its sources are ready

= Programs represented as data flow graphs (of nodes)
= Data Flow at the ISA level has not been (as) successful

= Data Flow implementations at the microarchitecture
level (while preserving von Neumann model semantics)
have been very successful

o Out of order execution is the prime example

= Data Flow mapping of programs to reconfigurable hardware
substrates (FPGAS) has also been successful
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Recall: ISA-level Tradeott: Program Counter

Do we want a Program Counter (PC or IP) in the ISA?
a Yes: Control-driven, sequential execution
An instruction is executed when the PC points to it

PC automatically changes sequentially (except for control flow
instructions) - sequential

a No: Data-driven, parallel execution

An instruction is executed when all its operand values are
available = dataflow

Tradeoffs: MANY high-level ones

o Ease of programming (for average programmers)?
o Ease of compilation?

o Performance: Extraction of parallelism?

o Hardware complexity?

Lecture 11, DDCA Sprlng 2022 1tips:mwwyoutube.comiwatch?v=A5Ug5COAE G4list=PL5Q2s0XY2Zi97Ya5DEUpMpO2bbA0aGTc6aindex=12



https://www.youtube.com/watch?v=A5Uq5COaEG4&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=12

Pure Data Flow Advantages/Disadvantages

Advantages

a Very good at exploiting irregular parallelism
Only real dependences constrain processing
More parallelism can be exposed than Von Neumann model

Disadvantages

o No precise state semantics
Debugging very difficult

Interrupt/exception handling is difficult (what is precise state
semantics?)

Too much parallelism? (Parallelism control needed)
High bookkeeping overhead (tag matching, data storage)
How to enable mutable data structures

o O O 0O
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Recall: ISA vs. Microarchitecture Level Tradeoff

A similar tradeoff (control vs. data-driven execution) can be
made at the microarchitecture level

ISA: Specifies how the programmer sees the instructions to
be executed

o Programmer sees a sequential, control-flow execution order vs.
o Programmer sees a dataflow execution order

Microarchitecture: How the underlying implementation
actually executes instructions
a Microarchitecture can execute instructions in any order as long

as it obeys the semantics specified by the ISA when making the
instruction results visible to software

Programmer should see the order specified by the ISA

Lecture 11, DDCA Sprlng 2022 1tips:mwwyoutube.comiwatch?v=A5Ug5COAE G4list=PL5Q2s0XY2Zi97Ya5DEUpMpO2bbA0aGTc6aindex=12



https://www.youtube.com/watch?v=A5Uq5COaEG4&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=12

Readings & Lectures on Data Flow Model

= Dennis and Misunas, “A preliminary architecture for a basic
data-flow processor,” ISCA 1974.

= Gurd et al., "The Manchester prototype dataflow
computer,” CACM 1985.

= More detailed Lecture Video & Slides on DataFlow:
o http://www.youtube.com/watch?v=D2uue’izU2c

o http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi
a=onur-740-fall13-module5.2.1-dataflow-partl.ppt
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Lecture Video on Dataflow

> »l o) 4227/1:2500

Carnegie Mellon - Parallel Computer Architecture 2012-Onur Mutlu - Lec 22 - Dataflow |

3,627 views + Apr 21,2013 iy 24

# % Carnegie Mellon Computer Architecture
1.79K subscribers

http://www.youtube.com/watch?v=D2uue7izU2c

o @ & [ O

9o

A SHARE =} SAVE

SUBSCRIBED

ra
LJd

Q

41


http://www.youtube.com/watch?v=D2uue7izU2c

Approaches to (Instruction-Level) Concurrency

= Pipelining

» Fine-Grained Multithreading

= Out-of-order Execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= SIMD Processing (Vector and array processors, GPUs)
= Decoupled Access Execute

= Systolic Arrays

42



Superscalar Execution




Superscalar Execution

= Idea: Fetch, decode, execute, retire multiple instructions
per cycle

o N-wide superscalar = N instructions per cycle
= Need to add the hardware resources for doing so

= Hardware performs the dependence checking between
concurrently-fetched instructions

= Superscalar execution and out-of-order execution are
orthogonal concepts

o Can have all four combinations of processors:
[in-order, out-of-order] x [scalar, superscalar]
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In-Order Superscalar Processor Example

m Multiple copies of datapath: Can fetch/decode/execute multiple
instructions per cycle

m Dependences make it tricky to dispatch multiple instructions in
the same cycle

= Need dependence detection between concurrently-fetched instructions

CLK CLK CLK CLK
CLK _
PC RD A1 L
- A A2
= A3 RD1 h

A4 RD4 8 A1 RD1

Instruction |: A5 Register % O A2 RD2 .
Memory A File ~ RD2 < Data
RD5
wes 1— Memory

WD1
wWD2

Here: Ideal IPC = 2



In-Order Superscalar Performance Example

lw  $t0, 40($s0) Ideal IPC = 2
add $t1, $s1, $s2

sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80(%$s0)

1 2 3 4 5 6 7 8
|
Time (cycles)
N SsOM Y M
lw  $t0, 40($s0) — 10 :B— —
M RF [ss1 DM ool
add $t1, $sl, S$s2 add 552 :B— ||
M —— S51N v Moo
sub $t2, $sl, $s3 o oo o —
M RF [ss3 DM - RF
and $t3, $s3, $s4 nd -[ Ss4 :B— -
M 5510 v Ve
or $td4, S$sl, $s5 -[ $s5 :D— — =
M RF 1ss0 E'Vé RF
S
sw $s5, 80($s0) SY -[ 80 :B— ||

Actual IPC = 2 (6 instructions issued in 3 cycles)



Superscalar Performance with Dependences

1w

or
SW

$t0, 40($s9)
add $t1,
sub $t0,
and $t2,

$to,
$s2,
$s4,

$t3, $s5,

$s1
$s3
$t0
$s6
$s7, 80($t3)

1w

add

sub

and

or

SW

$t0, 40($s0)

st1, , $s1

$t0, $s2, $s3

st

$t3, $s5, $s6

$s7, 80( )

Ideal IPC = 2

Can you reorder the instructions to get IPC = 2?

4 5 6 7 8 9
-
Time (cycles)
lw _v$t0
M DM RF
StOR M Mst1
Ssl DM_
RF 552 . RF
1D
andv $S4<7E v v$t2
ey |
M RF [s55 DM RF
r $t3
'[ $s6 E\ I —
sw V{ :;“ M $s7_§7
M RF DM RF

Actual IPC = 1.2 (6 instructions issued in 5 cycles)



Review: How to Handle Data Dependences

Six fundamental ways of handling flow dependences

Q

Q

Q

Detect and wait until value is available in register file
Detect and forward/bypass data to dependent instruction

Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence

Detect and move it out of the way for independent instructions
Predict the needed value(s), execute “speculatively”, and verify

Do something else (fine-grained multithreading)
No need to detect

Can employ all these in superscalar processors
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Superscalar Execution Tradeoffs

Advantages

o Higher instruction throughput
Higher IPC: instructions per cycle (i.e., lower CPI)

Disadvantages

a Higher complexity for dependence checking
Requires dependence checking between concurrent instructions
Register renaming becomes more complex in an OoO processor
Potentially lengthens critical path delay - clock cycle time

2 More hardware resources needed

Recall: Execution time of an entire program
o {# of instructions} x {Average CPI} x {clock cycle time}
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General Organization of a Superscalar+OoO Processor
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Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.

50



Intel Penttum Pro (1995)
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By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471



Intel Penttum 4 (2000)

On-chip Level 2 Cache

https://www.anandtech.com/show/1621/3



Alpha 21264

Rename Issue Register read Execute i Memory
Bt 5 s . 4 5 6
Integer
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Figure 2. Stages of the Alpha 21264 instruction pipelin

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.
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AMD Zen/Zen2? (2019)

64K I-Cache
4 way

Decode

Micro-op Queue
4 instructions/cycle
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FLOATING POINT
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512K
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https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

https://courses.engr.illinois.edu/cs433/fa2020/slides/mini-project-amd-zen.pdf

Front End
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Apple M1 Firestorm? (2020)

Front-end

>=192KB L1I

(Here be dragons)

8-Wide Decode

Dispatch / Commit
~630 Reorder-Buffer

INT Rename
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https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
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Backup Slides & Optional Video for:
Handling Out-of-Order Execution
of Loads and Stores




Lecture on Looad-Store Handling in OoO

Store-l.oad Forwarding (:()mplcxit_\'

Content Addressable Search (based on Load Address)

Range Search (based on Address and Size of both the Load
and earlier Stores)

Age-Based Search (for last written values)

Load data can come from a combination of multiple places
2 One or more stores in the Store Buffer (SQ)
2 Memory/cache

(o) Premieres in 25 hours

) ﬂ Set reminder
April 30 at 3:00 PM =

Digital Design & Comp. Arch. - Lecture 16b: Load-Store Handling in Out-of-Order Execution (S'22)

1 waiting * Premieres Apr 30, 2022 |‘ 3 9] DISLIKE A) SHARE =+ SAVE

@ Onur Mutlu Lectures ANALYTICS EDIT VIDEO
&> 24.3K subscribers

https://www.youtube.com/watch?v=vulgJ3N1rlg&list=PL5Q2s0XY2Zi97Ya5DEUpMpO2bbAo0aG7c6&index=18



https://www.youtube.com/watch?v=vulgJ3N1rlg&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=18

Digital Desigh & Computer Arch.

Lecture 17a: Datatlow &
Superscalar Execution

Prof. Onur Mutlu

ETH Zurich
Spring 2022
29 April 2022



Handling Out-of-Order Execution
of L.oads and Stores




Registers versus Memory

So far, we considered mainly registers as part of state
What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)
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Memory Dependence Handling (I)

Need to obey memory dependences in an out-of-order
machine

o and need to do so while providing high performance

Observation and Problem: Memory address is not known until
a load/store executes

Corollary 1: Renaming memory addresses is difficult

Corollary 2: Determining dependence or independence of
loads/stores has to be handled after their (partial) execution

Corollary 3: When a load/store has its address ready, there
may be older/younger stores/loads with unknown addresses
in the machine
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Memory Dependence Handling (1I)

When do you schedule a load instruction in an OOO engine?

o Problem: A younger load can have its address ready before an
older store’s address is known

o Known as the memory disambiguation problem or the unknown
address problem

Approaches

o Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

o Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

o Intelligent: Predict (with @ more sophisticated predictor) if the
load is dependent on any unknown address store
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Handling of Store-lL.oad Dependences

A load’s dependence status is not known until all previous store
addresses are available.

How does the OO0 engine detect dependence of a load instruction on a
previous store?

o Option 1: Wait until all previous stores committed (no need to check
for address match)

o Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the OO0 engine treat the scheduling of a load instruction wrt
previous stores?

o Option 1: Assume load dependent on all previous stores
o Option 2: Assume load independent of all previous stores
o Option 3: Predict the dependence of a load on an outstanding store
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Memory Disambiguation (I)

Option 1: Assume load is dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 2: Assume load is independent of all previous stores

+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependences persist over time

-- Still requires recovery/re-execution on misprediction
o Alpha 21264 : Initially assume load independent, delay loads found to be dependent

o Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

o Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.
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Memory Disambiguation (II)

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.
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Predicting store-load dependences important for performance

Simple predictors (based on past history) can achieve most of
the potential performance
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Data Forwarding Between Stores and Loads

We cannot update memory out of program order
- Need to buffer all store and load instructions in instruction window

Even if we know all addresses of past stores when we
generate the address of a load, two questions still remain:

1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

Modern processors use a LQ (load queue) and a SQ for this
o Can be combined or separate between loads and stores

o A load searches the SQ after it computes its address. Why?

o A store searches the LQ after it computes its address. Why?
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Out-of-Order Completion of Memory Ops

When a store instruction finishes execution, it writes its
address and data in its reorder buffer entry (or SQ entry)

When a later load instruction generates its address, it:
o searches the SQ with its address
o accesses memory with its address

o receives the value from the youngest older instruction that
wrote to that address (either from ROB or memory)

This is a complicated “search logic” implemented as a
Content Addressable Memory

o Content is "memory address” (but also need size and age)
o Called store-to-load forwarding logic
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Store-l.oad Forwarding Complexity

Content Addressable Search (based on Load Address)

Range Search (based on Address and Size of both the Load
and earlier Stores)

Age-Based Search (for last written values)

Load data can come from a combination of multiple places
o One or more stores in the Store Buffer (SQ)
o Memory/cache
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