Digital Desigh & Computer Arch.
Lecture 17b: Branch Prediction 1

Prof. Onur Mutlu

ETH Zurich
Spring 2022
29 April 2022

Roadmap for Today (and Past 2-3 Weeks)

= Prior to last week: Microarchitecture Fundamentals
o Single-cycle Microarchitectures
o Multi-cycle Microarchitectures

= Last week: Pipelining & Precise Exceptions System Software
SW/HW Interface

o Pipelining
o Pipelined Processor Design
= Control & Data Dependence Handling
= Precise Exceptions: State Maintenance & Recovery

= This+next week: Out-of-Order & Superscalar Execution
o Out-of-Order Execution

o Dataflow & Superscalar Execution
o_Branch Prediction

Readings

= This week

o Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o H&H Chapters 7.8 and 7.9

o McFarling, “"Combining Branch Predictors,” DEC WRL Technical
Report, 1993.

a Optional: Kessler, “The Alpha 21264 Microprocessor,” IEEE
Micro 1999.

Control Dependence Handling

Recall: Control Dependence

Question: What should the fetch PC be in the next cycle?
Answer: The address of the next instruction
a All instructions are control dependent on previous ones. Why?

If the fetched instruction is a non-control-flow instruction:
o Next Fetch PC is the address of the next-sequential instruction
o Easy to determine if we know the size of the fetched instruction

If the instruction that is fetched is a control-flow instruction:
o How do we determine the next Fetch PC?

In fact, how do we even know whether or not the fetched
instruction is a control-flow instruction?

Lecture 14, DDCA Sprlng 2022 ttps:iwww.youtube comiwatch?v=xaW_09nKPe0alist=PL5Q250XY2Zi97Ya5DEUpMpO2bbA0aG7cB&index=15

https://www.youtube.com/watch?v=XaW_O9nKPe0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=15

Branch Types

Type Direction at Number of When is next
fetch time possible next fetch address
fetch addresses? | resolved?
Conditional Unknown 2 Execution (register
dependent)
Unconditional Always taken 1 Decode (PC +
offset)
Call Always taken 1 Decode (PC +
offset)
Return Always taken Many Execution (register
dependent)
Indirect Always taken Many Execution (register
dependent)

Different branch types can be handled differently

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address

Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

Stall Fetch Until Next PC 1s Known: Good Idea?

Inst, [IF][ID][ALU][MEM][WB
Inst R F ALU|[MEM][wB

Inst; |F ID|[ALU
Inst, - |F
Inst,

Stall for 50% of the cycles!
This is the case with non-control-flow and unconditional br instructions
Much worse stalling for conditional branch instructions!

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

Lecture 14, DDCA Sprlng 2022 ttps:iwww.youtube comiwatch?v=xaW_09nKPe0alist=PL5Q250XY2Zi97Ya5DEUpMpO2bbA0aG7cB&index=15 9

https://www.youtube.com/watch?v=XaW_O9nKPe0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=15

Recall: Fine-Grained Multithreading: Basic Idea

InstrD

PCPlus4F

CLK CLK CLK
/~—\ |RegWriteD % RegWriteE 6 RegWriteM 6 RegWriteW
C?Jnt.:m MemtoRegD MemtoRegE MemtoRegM MemtoRegW
ni
MemWriteD MemWriteE MemWriteM
BranchD BranchE BranchM
31:26
Op ALUControlD| [ALUControlE,,, PCSrcM
20 {Funct | |ALUSrcD ALUSICE
RegDstD RegDstE
\) ALUOuUtW
] CLK
|
WE3 SrcAE ZeroM WE
21 A1 RD1 i i
>3 ALUOuUtM A rRD H ReadDataW 1
He A2 RD2 H [Vsreee[< Data
A3 . 1) Memory
WD3 Reg_'Ster WriteDataE WriteDataM WD
File
- RE L . ' .
- 0 WriteRegE,., WriteRegM,., WriteRegW,,.,
15:11 RdE
1
L—
150 [~ SignExtend [| [Sommme \ 2
1on =xten eJrilir N PCBranchM
PCPlus4D PCPIlus4E
ResultW

Each pipeline stage has an instruction from a different, completely-independent thread

No need to perform any control and data dependence handling

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address

Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)
Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

11

The Branch Problem

Control flow instructions (branches) are frequent
a 15-25% of all instructions

Problem: Next fetch address after a control-flow instruction
IS not determined after N cycles in a pipelined processor

o N cycles: (minimum) branch resolution latency

If we are fetching W instructions per cycle (i.e., if the
pipeline is W wide)
a A branch misprediction leads to N x W wasted instruction slots

12

Importance of The Branch Problem

Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)
Assume: 1 out of 5 instructions is a branch
Assume: Each 5 instruction-block ends with a branch

How long does it take to fetch 500 instructions?

o 100% accuracy

100 cycles (all instructions fetched on the correct path)
No wasted work; IPC = 500/100

o 99% accuracy

100 (correct path) + 20 * 1 (wrong path) = 120 cycles
20% extra instructions fetched; IPC = 500/120

o 90% accuracy
100 (correct path) + 20 * 10 (wrong path) = 300 cycles
200% extra instructions fetched; IPC = 500/300

o 60% accuracy

100 (correct path) + 20 * 40 (wrong path) = 900 cycles
800% extra instructions fetched; IPC = 500/900

13

Branch Prediction

14

Branch Prediction: Guess the Next Instruction to Fetch

PC 0)@305

-$

0x0001

LD R1, MEM[RO]

0x0002
Stall fetch

0x0003

DEC

BRzero 0x0001

0x0004

\ 4

RF

\ 4

»ld

ADD R3, R2, #1

\ 4

D-$

A 4

WEH

0x0005

MUL R1, R2, R3

0x0006

Branch prediction

0x0007

LD RO, MEM[R2]

12 cycles

y

8 cycles

y

Misprediction Penalty

A 4

wsh

PC

* ,,

I-$ RF >
0x0007 0x0006 0x0005 0x0004 | 0x0003
D3|

0x0001

0x0002

0x0003 BRzero 0x0001

0x0004

0x0005

MUL R1, R2, R3

0x0006

X071 | b RO, MEM[R2]

Simplest: Always Guess NextPC = PC + 4

Always predict the next sequential instruction is the next
instruction to be executed

This is a form of next fetch address prediction (and branch
prediction)

How can you make this more effective?

Idea: Maximize the chances that the next sequential
instruction is the next instruction to be executed
o Software: Lay out the control flow graph such that the “likely
next instruction” is on the not-taken path of a branch
Profile guided code positioning - Pettis & Hansen, PLDI 1990.
o Hardware: ??? (how can you do this in hardware...)

Cache traces of executed instructions = Trace cache
17

Guessing NextPC = PC + 4

= How else can you make this more effective?

= Idea: Get rid of control flow instructions (or minimize their
occurrence)

= How?

1. Get rid of unnecessary control flow instructions =2
combine predicates (predicate combining) and test only once

2. Convert control dependences into data dependences -
predicated execution (aka if-conversion)

18

Branch Prediction: Always PC+4

nsty, |16 1D ALU || MEM

nst. UE et B—ATU |
nst, _Ee=—m_ |

nst, IFiorgee
nst,

When a branch resolves
- branch target (Inst,) is fetched
- all instructions fetched since
inst, (so called “wrong-path”
Inst, is a branch instructions) must be flushed

Pipeline Flush on a Misprediction

Inst;,
Inst;
Inst;
Inst,
Inst,

tO t1 t5
IFe. ||ID
IFec..
IFuge J|ID__ |JALU ||WB
IF__|lID__||ALU
IF__|lID
IF

Inst, is a branch

Performance Analysis

correct guess = no penalty ~86% of the time
incorrect guess = 2 bubbles

Assume
o no data dependency related stalls
o 20% control flow instructions
a 70% of control flow instructions are taken
a CPI=[1+ *2 1=
=[1+ *21=1.28

7N

probability of penalty for
a Wrong guess a wrong guess

T A\

Can we reduce either of the two penalty terms?

21

Reducing the Branch Misprediction Penalty

= Resolve branch condition and target address early

I_IiX/MEM
e I_IVI'EM/WB
L M WB
| ||

Is this a good idea

TN
RimANG

Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] CPI - [1 + (0_ 2 k 0.7) % 1] - 1 . 14 22

Recall: Pipeline with Early Branch Resolution

Idea: Calculate branch target and condition in the Decode Stage

oR

Dependence Detection Logic

Lecture 14 , DDCA S P rin g 2022 ttps:wwwyoutube.comiwatch?v=xaW_09nKPe08list=PL5Q250XY2Zi97Ya5DEUpMpO2bbA0aGTcBaindex=15

https://www.youtube.com/watch?v=XaW_O9nKPe0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=15

(Enhanced) Branch Prediction

Branch Prediction (A Bit More Enhanced)

Idea: Predict the next fetch address (to be used in the
next cycle) 2> no wasted cycle(s) on correct prediction

Requires three things to be predicted at fetch stage:
‘ a Whether the fetched instruction is a branch ‘

a (Conditional) branch direction
‘ o Branch target address (if taken) ‘

Observation: Target address remains the same for a
conditional direct branch across dynamic instances

o Idea: Store the target address from previous instance and access
it with the PC

o Called Branch Target Buffer (BTB) or Branch Target Address

Cache
25

Fetch Stage with BTB and Direction Prediction

Direction predictor (taken?)

s

taken?

‘ Program
._Counter

>

]
PC + inst size ——— Next Fetch
Address
hit? >

Address of the
current branch

)
\

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

20

More Sophisticated Branch Direction Prediction

Which direction earlier Direction predictor (taken?)

branches went taken?
e aken” T
Global branch - l
history PC + inst size —» Next Fetch
. XOR Address
Program b hit?
_ Counter It >

Address of the
current branch

)
D

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

2/

Three Things to Be Predicted
Requires three things to be predicted at fetch stage:
1. Whether the fetched instruction is a branch \
2. (Conditional) branch direction
3. Branch target address (if taken)

Third (3.) can be accomplished using a BTB

o Remember target address computed last time branch was
executed

First (1.) can be accomplished using a BTB

o If BTB provides a target address for the program counter, then it
must be a branch

o Or, we can store “branch metadata” bits in instruction
cache/memory - partially decoded instruction stored in I-cache

Second (2.): How do we predict the direction?

28

Simple Branch Direction Prediction Schemes

Compile time (static)

o Always not taken

o Always taken

o BTFN (Backward taken, forward not taken)
o Profile based (likely direction)

Run time (dynamic)
o Last time prediction (single-bit)

29

More Sophisticated Direction Prediction

Compile time (static)

o Always not taken

Always taken

BTFN (Backward taken, forward not taken)
Profile based (likely direction)

Program analysis based (likely direction)

Run time (dynamic)

o Last time prediction (single-bit)
o Two-bit counter based prediction

o Two-level prediction (global vs. local)

o Hybrid

o Advanced algorithms (e.g., using perceptrons, geometric history)

30

We Stopped Here in Lecture.
We Will Continue with Remaining
Slides in Next Lecture.

Digital Desigh & Computer Arch.
Lecture 17b: Branch Prediction 1

Prof. Onur Mutlu

ETH Zurich
Spring 2022
29 April 2022

Static Branch Prediction (I)

Always not-taken
a Simple to implement: no need for BTB, no direction prediction
o Low accuracy: ~30-40% (for conditional branches)

o Remember: Compiler can layout code such that the likely path
is the “not-taken” path > more effective prediction

Always taken
o No direction prediction

o Better accuracy: ~60-70% (for conditional branches)

Backward branches (i.e., loop branches) are usually taken
Backward branch: target address lower than branch PC

Backward taken, forward not taken (BTFN)

o Predict backward (loop) branches as taken, others not-taken
33

Static Branch Prediction (1)

Profile-based

o Idea: Compiler determines likely direction for each branch using
a profile run. Encodes that direction as a hint bit in the branch

instruction format.

+ Per branch prediction (more accurate than schemes in
previous slide) > accurate if profile is representative!

-- Requires hint bits in the branch instruction format
-- Accuracy depends on dynamic branch behavior:

[TTTTTTTTTNNNNNNNNNN = 50% accuracy
TNTNTNTNTNTNTNTNTNTN = 50% accuracy

-- Accuracy depends on representativeness of profile input set
[TTTTTTTTTTTTITTITTTNN = 90% accuracy (or 10%?)

34

Static Branch Prediction (I11)

Program-based (or, program analysis based)

o Idea: Use heuristics based on program analysis to determine statically-
predicted direction

o Example opcode heuristic: Predict BLEZ as NT (negative integers used
as error values in many programs)

o Example loop heuristic: Predict a branch guarding a loop execution as
taken (i.e., execute the loop)

o Pointer and FP comparisons: Predict not equal

+ Does not require profiling
-- Heuristics might be not representative or good
-- Requires compiler analysis and ISA support (ditto for other static methods)

Ball and Larus, "Branch prediction for free,” PLDI 1993.

o 20% misprediction rate
35

Static Branch Prediction (IV)

Programmer-based
o Idea: Programmer provides the statically-predicted direction

o Via pragmas in the programming language that qualify a branch as
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than
other analysis techniques

-- Requires programming language, compiler, ISA support
-- Burdens the programmer?

36

Pragmas

Idea: Keywords that enable a programmer to convey hints
to lower levels of the transformation hierarchy

if (likely(x)) { ... }
if (unlikely(error)) { ... }

Many other hints and optimizations can be enabled with
pragmas

o E.g., whether a loop can be parallelized

o #pragma omp parallel

o Description

The omp parallel directive explicitly instructs the compiler to
parallelize the chosen segment of code.

37

Static Branch Prediction

All previous techniques can be combined
o Profile based

o Program based

o Programmer based

How would you do that?

What is the common disadvantage of all three techniques?
o Cannot adapt to dynamic changes in branch behavior
This can be mitigated by a dynamic compiler, but not at a fine
granularity (and a dynamic compiler has its overheads...)
What is a Dynamic Compiler?
0 A compiler that generates code at runtime

o Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime)
38

Recall: Rosetta 2 Binary Translator

Rosetta 2 [edit]

In 2020, Apple announced Rosetta 2 would be bundled with macOS Big Mac transition to

Apple silicon

Sur, to aid in the Mac transition to Apple silicon. The software permits

In addition to the just-in-time (JIT) translation support, Rosetta 2 offers
ahead-of-time compilation (AOT), with the x86-64 code fully translated,
just once, when an application without a universal binary is installed on an
Apple silicon Mac.[®!

Rosetta 2's performance has been praised greatly.['%l"] |n some
benchmarks, x86-64-only programs performed better under Rosetta 2 on
a Mac with an Apple M1 SOC than natively on a Mac with an Intel x86-64 Apple silicon - ARM architecture
processor. One of the key reasons why Rosetta 2 provides such high level Universal 2 binary - Rosetta 2 -

Devel T ition Kit
of translation efficiency is the support of x86-64 memory ordering in Apple SRR

M1 soc.['2]

Although Rosetta 2 works for most software, some software doesn't work

at alll'3! or is reported to be "sluggish".l'#] A lot of software can be made compatible with the new Macs by the vendor
recompiling the software, often a simple task; while for some software (such as software that includes assembly
language code, or that generates machine code), the changes to make them work aren't simple and cannot be
automated.

Similar to the first version, Rosetta 2 does not normally require user intervention. When a user attempts to launch an
x86-64-only application for the first time, macOS prompts them to install Rosetta 2 if it is not already available.
Subsequent launches of x86-64 programs will execute via translation automatically. An option also exists to force a
universal binary to run as x86-64 code through Rosetta 2, even on an ARM-based machine.['5]

https://en.wikipedia.org/wiki/Rosetta (software)#Rosetta 2

https://en.wikipedia.org/wiki/Rosetta_(software)

Recall: NVIDIA Denver Dynamic Code Optimizer

The Secret of Denver: Binary Translation & Code Optimization

As we alluded to earlier, NVIDIA's decision to forgo a traditional out-of-order design for Denver means that
much of Denver’s potential is contained in its software rather than its hardware. The underlying chip itself,
though by no means simple, is at its core a very large in-order processor. So it falls to the software stack to
make Denver sing.

Accomplishing this task is NVIDIA's dynamic code optimizer (DCO). The purpose of the DCO is to accomplish
two tasks: to translate ARM code to Denver’s native format, and to optimize this code to make it run better ¢
Denver. With no out-of-order hardware on Denver, it is the DCO'’s task to find instruction level parallelism
within a thread to fill Denver’s many execution units, and to reorder instructions around potential stalls,
something that is no simple task.

DYNAMIC CODE OPTIMIZATION
OPTIMIZE ONCE, USE MANY TIMES

5
2

Instructions

Dynamic
Profile

Units
Denver Hardware

https://www.anandtech.com/show/8701/the-google-nexus-9-review/4 40
https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1

More Sophisticated Direction Prediction

Compile time (static)

o Always not taken

Always taken

BTFN (Backward taken, forward not taken)
Profile based (likely direction)

a
a
a
o Program analysis based (likely direction)

‘ Run time (dynamic) ‘
o Last time prediction (single-bit)
Two-bit counter based prediction
Two-level prediction (global vs. local)
Hybrid
Advanced algorithms (e.g., using perceptrons, geometric history)

Q
Q
Q
Q

41

Dynamic Branch Prediction

Idea: Predict branches based on dynamic information
(collected at run-time)

Advantages
+ Prediction based on history of the execution of branches
+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness
problem goes away

Disadvantages
-- More complex (requires additional hardware)

42

Last Time Predictor

Last time predictor
o Single bit per branch (stored in BTB)

o Indicates which direction branch went last time it executed
[TTTTTTTTTNNNNNNNNNN -> 90% accuracy

Always mispredicts the last iteration and the first iteration
of a loop branch

o Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large N (number of iterations)
~100% accuracy

-- Loop branches for loops will small N (number of iterations)
TNTNTNTNTNTNTNTNTNTN = 0% accuracy

43

Implementing the Last-Time Predictor (I)

Direction predictor (taken last time?)

s

taken?

‘ Program
._Counter

>

vV Vv

hit?

Damn
PC + inst size — Next Fetch
Address

A 4

Address of the
current branch

)
\

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

44

Implementing the Last-Time Predictor (II)

tag BTB index Program Counter
\§ A J
~
N-bit/ gHT:
ne
| tag Bit BTB: one target
| table address per entry
per
entry

)\ taken? — PC+4

nextPC
The 1-bit BHT (Branch History Table) entry is updated with

the correct outcome after each execution of a branch

45

State Machine for Last-Time Prediction

actually
taken
actually predict predict actually
not taken not taken taken
taken
actually

not taken

46

Improving the LLast Time Predictor

Problem: A last-time predictor changes its prediction from
T->NT or NT->T too quickly

o even though the branch may be mostly taken or mostly not
taken

Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome

o Use two bits to track the history of predictions for a branch
instead of a single bit

o Can have 2 states each for T or NT instead of 1 state for each

Smith, “A Study of Branch Prediction Strategies,” ISCA 1981.

47

Two-Bit Counter Based Prediction

Each branch associated with a two-bit counter (2BC)
One more bit provides hysteresis

A strong prediction does not change with one single
different outcome

Also called bimodal prediction

48

State Machine for 2-bit Saturating Counter

= Counter using saturating arithmetic
o Arithmetic with maximum and minimum values

actually /,,——"actuany T~

taken preoc Itaken
taken
11 actually
taken

actually
ltaken

actually
taken

actually actually

Itaken 49

taken

Hysteresis Using a 2-bit Counter

actually actually “weakly
taken ltaken taken”
“strongly
taken actually
taken
actually actually
taken !taken »
strongly
actually ltaken”
ltaken
“weakly actually
Itaken” actually Itaken

taken

Change prediction after 2 consecutive mistakes

Two-Bit Counter Based Prediction

Each branch associated with a two-bit counter (stored in BTB)

One more bit provides hysteresis

A strong prediction does not change with one single different
outcome

Accuracy for a loop with N iterations = (N-1)/N
TNTNTNTNTNTNTNTNTNTN = 50% accuracy

(assuming counter initialized to weakly taken)

+ Better prediction accuracy
-- More hardware cost (but counter can be part of a BTB entry)

51

Is This Good Enough?

~85-90% accuracy for many programs with 2-bit counter
based prediction (also called bimodal prediction)

Is this good enough?

How big is the branch problem?

52

Let’s Do the Exercise Again

Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)
Assume: 1 out of 5 instructions is a branch
Assume: Each 5 instruction-block ends with a branch

How long does it take to fetch 500 instructions?

o 100% accuracy
100 cycles (all instructions fetched on the correct path)
No wasted work; IPC = 500/100

o 90% accuracy
100 (correct path) + 20 * 10 (wrong path) = 300 cycles
200% extra instructions fetched; IPC = 500/300

o 85% accuracy
100 (correct path) + 20 * 15 (wrong path) = 400 cycles
300% extra instructions fetched; IPC = 500/400

o 80% accuracy

100 (correct path) + 20 * 20 (wrong path) = 500 cycles
400% extra instructions fetched; IPC = 500/500

Can We Do Better: Two-Level Prediction

Last-time and 2BC predictors exploit “last-time”
predictability

Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

o Global branch correlation

Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

o Local branch correlation

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. >4

Global Branch Correlation (I)

Recently executed branch outcomes in the execution path
are correlated with the outcome of the next branch

if (condl)
if (condl AND cond2)

If first branch not taken, second also not taken

1f(X<1) o branch Y: if (condl)a = 2;

if (X>1) ¥ S branch X: if (a == 0)

If first branch taken, second definitely not taken

55

Global Branch Correlation (1)

branch Y: if (condl)
branch Z: if (cond?2)

branch X: if (cond1 AND cond?2)

If Y and Z both taken, then X also taken
If Y or Z not taken, then X also not taken

56

Global Branch Correlation (111)

= Eqgntott, SPEC'92 workload
o Generates truth table from Boolean expression

if (aa==2) Bl
aa=0;
if (bb==2) B2
bb=0;
if (aa!'=bb) { ;7 B3
)

If B1 is taken (i.e., aa=0@B3) and B2 is taken (i.e. bb=0@B3)

then B3 is not taken

57

Capturing Global Branch Correlation

Idea: Associate branch outcomes with “global T/NT history”
of all branches

Make a prediction based on the outcome of the branch the
last time the same global branch history was encountered

Implementation:

o Keep track of the “global T/NT history” of all branches in a
register - Global History Register (GHR)

o Use GHR to index into a table that recorded the outcome that
was seen for each GHR value in the recent past = Pattern
History Table (table of 2-bit counters)

Global history/branch predictor
Uses two levels of history (GHR + history at that GHR)

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 58

Two Level Global Branch Prediction

= First level: Global branch history register (N bits)
o The direction of last N branches
= Second level: Table of saturating counters for each history entry
o The direction the branch took the last time the same history was

seen
Pattern History Table (PHT)
0000
11... 00 01 " ;
?II_(IJIEaI previous 00....10
9 branch’s
history directi
register) rection .
index
0 1
11 11

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

How Does the Global Predictor Work?

for (1=0; 1i<100; i++)
for (j=0; j<3; j*++)

After the initial startup time, the conditional branches have the following behavior,
assuming GR 1is shifted to the left:

test | value | GR result
1<3 j=1 | 1101 taken
<3 | =2 | 1011 taken

<3 | j=3 [0111 | nottaken | This branch tests i
i<100 1110 | usually taken | Last 3 branches test |
' History: TTTN

Predict taken for i
Next history: TTNT
(shift in last outcome)

= McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

60

Intel Pentium Pro Branch Predictor

= Two-level global branch predictor
= 4-bit global history register

= Multiple pattern history tables (of 2-bit counters)

o Which pattern history table to use is determined by lower
order bits of the branch address

= First widely commercially successful out-of-order execution
machine

o Out-of-order + superscalar + 2-level branch prediction +
precise exceptions using reorder buffer

61

Intel Penttum Pro (1995)

O X

O 0 .0

> 90 B0 DO OO OO 06 © 6 € € €
50 D0 000 (K

| Processor chip - Level 2 cache?

i

‘;
b {11

DO ODO OO
os8em00006060006

AA2PPPP00000E

.i.opnn‘ané@pabmm
ol N NN N

By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471

Aside: Global Branch Correlation Analysis

branch Y:if (condl) [IF 1-Branch Selective History

e | IF 2-Branch Selective History
branch Z: if (cond2) 0l IF 3-Branch Selective History

i [JIF Gshare
branch X: if (cond1 AND cond2) Il Gshare

100

= If Y and Z both taken, then X also taken
= IfY or Z not taken, then X also not taken

95

90 —

= Only 3 past branches’ directions
really matter

= Evers et al., “An Analysis of _
Correlation and Predictability: | |
What Makes Two-Level Branch o B B s o
Predictors Work,” ISCA 1998.

Prediction Accuracy

85

03

Improving Global Predictor Accuracy

Idea: Add more context information to the global predictor to take into
account which branch is being predicted

o Gshare predictor: GHR hashed with the Branch PC

+ More context information used for prediction

+ Better utilization of the two-bit counter array

-- Increases access latency Pattern History Table

Branch Address /
XOR

Branch History Register

vy

McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

04

Review: One-Level Branch Predictor

Direction predictor (2-bit counters)

taken?

s

‘ Program
._Counter

>

hit?

vV Vv

Damn
PC + inst size — Next Fetch
Address

A 4

Address of the
current instruction

)
\

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

65

Two-Level Global History Branch Predictor

Which direction earlier

branches went

Direction predictor (2-bit counters)

t?
— taken” .
Global branch
history
" Program .
2
@GS

—
|

PC + inst size ——»

A 4

Address of the
current instruction

)
\

target address

Next Fetch
Address

Cache of Target Addresses (BTB: Branch Target Buffer)

66

Two-Level Gshare Branch Predictor

Which direction earlier DPirection predictor (2-bit counters)

branches went taken?
e aken” T
Global branch - l
history PC + inst size —» Next Fetch
. XOR Address
Program b hit?
_ Counter It >

Address of the
current instruction

)
D

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

67

Can We Do Better: Two-Level Prediction

Last-time and 2BC predictors exploit only “last-time”
predictability for a given branch

Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

o Global branch correlation

Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (in addition to the
outcome of the branch “last-time” it was executed)

o Local branch correlation

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 68

Local Branch Correlation

for (i=1; i<=4; i++) { }

If the loop.test is done at the end of the body, the corresponding branch will execute
the patte where 1 and 0 represent taken and not taken respectively, and n is the
number of times the loop is executed. Clearly, if we knew the direction this branch had

gone on the previous three executions, then we could always be able to predict the next
branch direction.

McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

09

More Motivation tor L.ocal History

To predict a loop
branch “perfectly”, we
want to identify the
last iteration of the
loop

By having a separate
PHT entry for each
local history, we can
distinguish different
iterations of a loop

Works for “short”
loops

Loop closing branch’s history
111011101110111 01110

0000
0001
0010
0011
0100
0101
0110

> 0111
1000
1001
1010

> 1011
1100

> 1101
> 1110

1111

11

11

11

PHT

70

Capturing Local Branch Correlation

Idea: Have a per-branch history register

o Associate the predicted outcome of a branch with “T/NT history”
of the same branch

Make a prediction based on the outcome of the branch the
last time the same local branch history was encountered

Called the local history/branch predictor

Uses two levels of history
o per-branch history register + history at that history register value

71

Two Level LLocal Branch Prediction

= First level: A set of local history registers (N bits each)
o Select the history register based on the PC of the branch
= Second level: Table of saturating counters for each history entry
o The direction the branch took the last time the same history was

seen
Pattern History Table (PHT)
00....00
11..... 10
2 3
0 1

Local history
registers

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 72

11 ... 1

Two-Level Local History Branch Predictor

Which directions earlier instances of *this branch® went

/ Direction predictor (2-bit counters)
/
t?
// — taken” _
- (I l
\‘ PC + inst size —— Next Fetch
o Address
(N
_ Counter [: >

Address of the
current instruction

)
\

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

/4S)

Aside: Two-Level Predictor Taxonomy

BHR can be global (G), per set of branches (S), or per branch (P)

PHT counters can be adaptive (A) or static (S)
PHT can be global (g), per set of branches (s), or per branch (p)

GAg
Per-adros

Fattorn
B ey
Tuivkes
o 23]

//’F_

an

[~ <%
Ll " Y
BHictery
Tubis
aorem

24‘

jHIE
i J

Hi
i

i

r-t
i

-

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,”
MICRO 1991.

74

Can We Do Better?

75

Can We Do Even Better?

Predictability of branches varies

Some branches are more predictable using local history
Some branches are more predictable using global

For others, a simple two-bit counter is enough

Yet for others, a single bit is enough

Observation: There is heterogeneity in predictability
behavior of branches

o No one-size fits all branch prediction algorithm for all branches

Idea: Exploit that heterogeneity by designing

heterogeneous (hybrid) branch predictors
76

Hybrid Branch Predictors

Idea: Use more than one type of predictor (i.e., multiple
algorithms) and select the “best” prediction

o E.g., hybrid of 2-bit counters and global predictor

Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor warms up)

Disadvantages:

-- Need “meta-predictor” or “selector” to decide which predictor to use
-- Longer access latency

McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
77

Alpha 21264 Tournament Predictor

Program Clobal History
Counter —
Global I
Predict |
4,096 [*
X
................. 2 hits

Global
Prediction

Final Prediction

= Minimum branch penalty: 7 cycles
= Typical branch penalty: 11+ cycles
= 48K bits of target addresses stored in I-cache
= Predictor tables are reset on a context switch

= Kessler, "The Alpha 21264 Microprocessor,” IEEE Micro 1999.

78

Biased Branches and Branch Filtering

Observation: Many branches are biased in one direction
(e.g., 99% taken)

Problem: These branches po/lute the branch prediction
structures = make the prediction of other branches difficult
by causing “interference” in branch prediction tables and
history registers

Solution: Detect such biased branches, and predict them
with a simpler predictor (e.g., last time, static, ...)

Chang et al., "Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

79

Are We Done w/ Branch Prediction?

Hybrid branch predictors work well
o E.g., 90-97% prediction accuracy on average

Some “difficult” workloads still suffer a lot, though!
o E.g., gcc

a Max IPC with tournament prediction: 9

o Max IPC with perfect prediction: 35

80

Some Other Branch Predictor Types

Loop branch detector and predictor
o Loop iteration count detector/predictor

o Works well for loops with small number of iterations, where
iteration count is predictable

o Used in Intel Pentium M

Perceptron branch predictor

o Learns the direction correlations between individual branches
o Assigns weights to correlations

o Jimenez and Lin, “"Dynamic Branch Prediction with
Perceptrons,” HPCA 2001.

Hybrid history length based predictor
o Uses different tables with different history lengths

o Seznec, “Analysis of the O-Geometric History Length branch
predictor,” ISCA 2005.

81

Intel Pentium M Predictors: LLoop and Jump

The advanced branch prediction in the Pentium M
processor is based on the Intel Pentium” 4 processor’s
[6] branch predictor. On top of that, two additional
predictors to capture special program flows. were added:

a Loop Detector and an Indirect Branch Predictor. Instruction Global
Pointer History
T L L
Count | Limit | Prediction
"'j | = Target : type : hit target : hit
Vv =
0
L | R
v hit target
Figure 2: The Loop Detector logic Figure 3: The Indirect Branch Predictor logic

Gochman et al.,
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.

82

Intel Penttum M (2003)

UL U
e - D € e
. U
e
O g D U
! i
' 1
: L EEER
HITHERE
| i
s I HitH

https://www.anandtech.com/show/1083/3

83

https://www.anandtech.com/show/1083/3

More Advanced Branch Prediction

Perceptrons for Learning Linear Functions

A perceptron is a simplified model of a biological neuron
It is also a simple binary classifier

A perceptron maps an input vector Xtoa O or 1
o Input = Vector X

o Perceptron learns the linear function (if one exists) of how
each element of the vector affects the output (stored in an
internal Weight vector)

o Output = Weight.X + Bias > 0

In the branch prediction context
o Vector X: Branch history register bits

o Output: Prediction for the current branch

Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962 85

Perceptron Branch Predictor (I)

Idea: Use a perceptron to learn the correlations between branch history
register bits and branch outcome

A perceptron learns a target Boolean function of N inputs
Each branch associated with a perceptron

A perceptron contains a set of weights wi
- Each weight corresponds to a bit in
the GHR
- Represents how much the bit is correlated
with the direction of the branch
-> Positive correlation: large positive + weight
- Negative correlation: large negative - weight

Prediction:
- Express GHR bits as 1 (T) and -1 (NT)
- Take dot product of GHR and weights

- If output > 0, predict taken

Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.
Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962
86

Perceptron Branch Predictor (IT)

Branch Address

History Register Branch Outcome

Prediction

»(Training

é

\ Selected Pe1cept10n B

Y

Table

&Q}\ of
Entry /™" [Perceptrons

Prediction function:

Dot product of GHR
and perceptron weights

&)

Output _ _
compared Bias weight
to 0 (bias of branch, independent of

the history)

Training function:

if sign(yout) # tor your < 0 then
fori::=0ton do
w; =gl
end for
end if

87

Perceptron Branch Predictor (I11)

Advantages

+ More sophisticated learning mechanism - better accuracy
+ Enables long branch history lengths = better accuracy

Disadvantages

-- Complexity (adder tree to compute perceptron output)
-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history
bits and branch outcome

A successful example of use of machine learning in processor design

See, e.g., Grayson+, “Evolution of the Samsung Exynos CPU Microarchitecture,” ISCA 2020.

88

Recommended Reading

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

Evolution of the Samsung Exynos CPU
Microarchitecture

Industrial Product

Brian Grayson*, Jeff RupleyT, Gerald Zuraski Jr.¥, Eric Quinnell$, Daniel A. Jiménez¥, Tarun Nakra®,
Paul Kitchin**, Ryan Hensley'!, Edward Brekelbaum*, Vikas Sinha**, and Ankit Ghiya$

bgrayson @ieee.org, jrupley @austin.rr.com, gzuraskijr@ gmail.com, eric.quinnell@gmail.com,
djimenez@acm.org, Tarun.Nakra@amd.com, pkitchin@gmail.com, ryan.hensley @ieee.org,
nedbrek @ gmail.com, sinhavk @ gmail.com, and mascot26 @gmail.com

*Sifive TCentaur ¥Independent Consultant SARM

Abstract—The Samsung Exynos family of cores are high-
performance “big” processors developed at the Samsung Austin
Research & Design Center (SARC) starting in late 2011. This
paper discusses selected aspects of the microarchitecture of these
cores - specifically perceptron-based branch prediction, Spectre
v2 security enhancements, micro-operation cache algorithms,
prefetcher advancements, and memory latency optimizations.
Each micro-architecture item evolved over time, both as part
of continuous yearly improvement, and in reaction to changing
mobile workloads.

Index Terms—microprocessor, superscalar, branch prediction,
prefetching

YTexas A&M University

HAMD **Nuvia TGoodix

o Deep technical details within the microarchitecture.

The remainder of this paper discusses several aspects of
front-end microarchitecture (including branch prediction mi-
croarchitecture, security mitigations, and instruction supply)
as well as details on the memory subsystem, in particular
with regards to prefetching and DRAM latency optimization.
The overall generational impact of these and other changes is
presented in a cross-workload view of IPC.

II. METHODOLOGY

Grayson+, “Evolution of the Samsung Exynos CPU Microarchitecture,” ISCA 2020.

AMD Piledriver/Zen/Zen2 (2012-Present)

Employ a perceptron branch predictor

FETCH

* |mproved branch prediction
« New TAGE branch predictor
« Larger BTBs
« |0 BTB. 16 entries
« L1BTB, 512 entries (up from 256)
. 1.2 BTB 7K entries (up from 4K)
« | areer 1K indirect tareet arrav (ITA)
« ~30% lower mispredict rate target
= Optimized 32KB, 8-way L1l cache
« Higher associativity
« Improved prefetching

« |mproved utilization

[l

Next PC

|
v
LO/L1/L2TLB
L1Hashed Perceptron
> 1/L2 BTB, Return Stack. ITA L2 TAGE
1 v
Prediction ..
Queue ICIOSIa8S | e 7|
¥ ¥

32K L1l Cache

b

328 to Decode

https://fuse.wikichip.org/news/2458/a-look-at-the-amd-zen-2-core/

Another Idea: TAGE

Prediction Using Multiple E

1story Lengths

= Observation: Different
branches require
different history lengths
for better prediction
accuracy

Idea: Have multiple
PHTs indexed with
GHRs with different
history lengths and
intelligently allocate
PHT entries to different
branches

pc, h[0:L(1)] pc, h[0:L(2)] pc, h[0:L(3)] pc, h[0:L(4)]
(hash) (has (hash) (has (hash) (has (hash) (has
T0 T1 12 13 T4

g : : : : : : : :

—g pred, tag |u pred, tag |u pred, tag |u pred, tag |u

g L L L L

g‘: ' : : : : : : :
GD— ED— ED— ED—

N -

prediction | ‘

Figure 1: A 5-component TAGE predictor synopsis: a base predictor is backed with several
tagged predictor components indexed with increasing history lengths

Seznec and Michaud, “A case for (partially) tagged Geometric History Length
Branch Prediction,” JILP 2006.

92

TAGE Branch Predictor

Advantages

+ Chooses the "“best” history length to predict each branch >
better accuracy

+ Enables long branch history lengths = better accuracy
Disadvantages

-- Hardware (design) complexity is not low

-- Need to choose good hash functions and table sizes to
maximize accuracy and minimize latency

A successful recent idea that is used in many modern processor designs

93

AMD Zen2 (2019)

A multi-level branch predictor

a Perceptron (L1)
a TAGE (L2)

FETCH

* |mproved branch prediction

‘_’l Next PC s Hodirect from
« New TAGE branch predictor v [i
« Lareer BTBs X
' LO/LI/L2TLB
« |0 BTB 16 entries
« |1BTB, 512 entries (up from 256) ‘
« |2 BTB 7K entries (up from 4K) L1 Hashed Perceptron
G gy 1/L2 BTB, Return Stack. ITA | L2 TAGE
« Lareer 1K indirect tareet array (ITA)
« ~30% lower misoredict rate taroet l v
. Prediction i :
= Optimized 32KB, 8-way L1l cache Queue S | —> To Op Cac
« Higher associativity X y
32B/cycle .
« |mproved nrpcp*rhinq from L2 FELY Cade
« |mproved utilization l
328 to Decode

https://fuse.wikichip.org/news/2458/a-look-at-the-amd-zen-2-core/

State of the Art in Branch Prediction

= See the Branch Prediction Championship
a https://www.jilp.org/cbp2016/program.html

Global, local,
skeleton histories

Prediction +
Confidence

Andre Seznec,
“TAGE-SC-L branch predictors,”
CBP 2014.

Figure 1. The TAGE-SC-L predictor: a TAGE
predictor backed with a Statistical Corrector
predictor and a loop predictor 95

https://www.jilp.org/cbp2016/program.html

Branch Confidence Estimation

Idea: Estimate if the prediction is likely to be correct
o i.e., estimate how “confident” you are in the prediction

Why?
o Could be very useful in deciding how to speculate:
What predictor/PHT/table to choose/use

Whether to keep fetching on this path

Whether to switch to some other way of handling the branch,
e.g. dual-path execution (eager execution) or predicated
execution

Jacobsen et al., “Assigning Confidence to Conditional Branch
Predictions,” MICRO 1996.

96

How to Estimate Confidence

An example estimator:

o Keep a record of correct/incorrect outcomes for the past N
instances of the “branch”

o Based on the correct/incorrect patterns, guess if the curent
prediction will likely be correct/incorrect

Table of CIRs

Branch address

XOR)

Global BHR

, A A OB | Y
(Reduction function >—> COI’I!I('?I’ICC
prediction

Jacobsen et al., “Assigning Confidence to Conditional Branch Predictions,” MICRO 1996. 97

What to Do With Confidence Estimation?

= An example application: Pipeline Gating

Current Value of

If Counter (M) Low Confidence |[~—
-
Branch Counter
M>N
If Low Conf Branch, If Low Confidence Branch
l Gate Fetch Increment Counter Resolved, Decrement Counter
I 1
Instructions ! ! ;
- Fetch Decppde Issue Writeback| Commit
| |
-t P - L T - P - P - P - T~
1 Y. 3 4 = [4
2 Cycle Backward Edge Latency for Branch Misprediction

ICache |=

Manne et al., “Pipeline Gating: Speculation Control for Energy Reduction,” ISCA 1998.

98

Other Ways of Handling

Branches

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot) ‘

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

100

Delayed Branching (I)

Change the semantics of a branch instruction

o Branch after N instructions

o Branch after N cycles

Idea: Delay the execution of a branch. N instructions (delay

slots) that come after the branch are always executed
regardless of branch direction.

Problem: How do you find instructions to fill the delay
slots?

o Branch must be independent of delay slot instructions

Unconditional branch: Easier to find instructions to fill the delay slot

Conditional branch: Condition computation should not depend on

instructions in delay slots - difficult to fill the delay slot
101

Delayed Branching (1)

Normal code:

Timeline:

if

ex

6 cycles

Delayed branch code:

A
BC X

Timeline:
if | ex
A

C A
BC C
B BC
G B
S cycles

102

Fancy Delayed Branching (11I)

Delayed branch with squashing
o In SPARC ISA

o Semantics: If the branch falls through (i.e., it is not taken),
the delay slot instruction is not executed

o Why could this help?

Normal code: Delayed branch code: Delayed branch w/ squashing:
XA X A A)
B B X |B
C C C %
BC X BC X BC X
D NOP A
E D D

103

Delayed Branching (IV)

Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming

1. Number of delay slots == number of instructions to keep the pipeline
full before the branch resolves

2. All delay slots can be filled with useful instructions

Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar
execution width

2. Number of delay slots should be variable with variable latency
operations. Why?

-- Ties ISA semantics to hardware implementation
-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
104

An Aside: Filling the Delay Slot

a. From before b. From target

c. From fall through

add $s1, $s2, $s3 sub $t4, 315, 316 add $s1, $s2, $s3
. if $s2 = 0 then —— if $s1 = 0 then
reordermg add $s1, $s2, $s3
|ndependent | Delayslot | | Delay slot |
. . if $s1 =0 th —
instructions 31 =0 then
does not change | | EEEETE sub $14, 815, 316
program semantics
Becomes Becomes Becomes
add $s1, $s2, $s3
if $s2 = 0 then — if $s1 = 0 then ——

add $s1, $s2, $s3

ladd $s1, $s2, $s3 |

if $s1 = 0 then ——

| sub $t4, $t5, $t6 |

[sub $t4, $t5, $t6 |

Safe?

within same For correctness:

basic block

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

add a new instruction
to the not-taken path?

correctness:
add a new instruction
to the take

105

Lecture on Static Instruction Scheduling

> Pl o) 5818/1:4117

Lecture 16. Static Instruction Scheduling - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu

7,136 views * Feb 26,2015 ifpsc &lo) SHARE =i SAVE

Carnegie Mellon Computer Architecture 7
@ 23K subscribers SUBSCRIBED ‘A

Lecture 16: Static Instruction Scheduling
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: Feb 23rd, 2015

Lecture 16 slides (pdf): http://www.ece.cmu.edu/~ece447/s15/li...

https:/ /www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Lectures on Static Instruction Scheduling

= Computer Architecture, Spring 2015, Lecture 16

o Static Instruction Scheduling (CMU, Spring 2015)

o https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHmM2jkkXmi5CxxI7b3]C
L1TWybTDtKg&index=18

= Computer Architecture, Spring 2013, Lecture 21

o Static Instruction Scheduling (CMU, Spring 2013)

o https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHmM2jkkXmidJOd59RE
0g9iDnPDTG6IJ&index=21

SAFARI https://www.youtube.com/onurmutlulectures 107

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution) ‘

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

108

Other Branch Solutions Covered in This Lecture...

Superblock Code Optimization Fxample

pr: mul r1 é-rgg

99 pr: add r2<-r2,1 ‘ 1dd r2<-r2,1
- = T : v wl r3<-r2,

= 9
opC: mul r3<—r2,a : ppC: mul r3<—r2,3‘

Original Code

opA: mul r1<-r2,3

ra

ggl :bpB: add r2<-r2,1
9pC’: mul r3<-12,3

RC: mov r3<-ﬂ

Code After Common
Subexpression Elimination

< P Pl RN) 1:27:19/1:4376

18-740 Computer Architecture - Advanced Branch Prediction - Lecture 5

4,696 views - Sep 23,2015 i 41 10) SHARE SAVE
= Carnegie Mellon Computer Architecture
@ 23K subscribers EESCRIEED
=

Lecture 5: Advanced Branch Prediction
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: September 16,2014.

Lecture 5 slides (pdf): http://www.ece.cmu.edu/~ece740/f15/li...
Lecture 5 slides (ppt): http://www.ece.cmu.edu/~ece740/f15/Ii...

https://www.youtube.com/onurmutlulectures 109

https://www.youtube.com/onurmutlulectures

Other Branch Solutions Covered in This Lecture...

= Computer Architecture, Spring 2015, Lecture 5

o Advanced Branch Prediction (CMU, Spring 2015)

o https://www.youtube.com/watch?v=yDjsr-
jTOtk&list=PL5PHM2jkkXmgVhh8CHAU9N76TSh]qgfYDt&index=4

= See Backup Slides

SAFARI https://www.youtube.com/onurmutlulectures 110

https://www.youtube.com/watch?v=yDjsr-jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4
https://www.youtube.com/onurmutlulectures

Backup Slides
(These are for Your Further Study)

Other Branch Solutions Covered in This Lecture...

Superblock Code Optimization Fxample

pr: mul r1 é-rgg

99 pr: add r2<-r2,1 ‘ 1dd r2<-r2,1
- = T : v wl r3<-r2,

= 9
opC: mul r3<—r2,a : ppC: mul r3<—r2,3‘

Original Code

opA: mul r1<-r2,3

ra

ggl :bpB: add r2<-r2,1
9pC’: mul r3<-12,3

RC: mov r3<-ﬂ

Code After Common
Subexpression Elimination

< P Pl RN) 1:27:19/1:4376

18-740 Computer Architecture - Advanced Branch Prediction - Lecture 5

4,696 views - Sep 23,2015 i 41 10) SHARE SAVE
= Carnegie Mellon Computer Architecture
@ 23K subscribers EESCRIEED
=

Lecture 5: Advanced Branch Prediction
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: September 16,2014.

Lecture 5 slides (pdf): http://www.ece.cmu.edu/~ece740/f15/li...
Lecture 5 slides (ppt): http://www.ece.cmu.edu/~ece740/f15/Ii...

https://www.youtube.com/onurmutlulectures 112

https://www.youtube.com/onurmutlulectures

Other Branch Solutions Covered in This Lecture...

= Computer Architecture, Spring 2015, Lecture 5

o Advanced Branch Prediction (CMU, Spring 2015)

o https://www.youtube.com/watch?v=yDjsr-
jTOtk&list=PL5PHM2jkkXmgVhh8CHAU9N76TSh]qgfYDt&index=4

= See Backup Slides

SAFARI https://www.youtube.com/onurmutlulectures 113

https://www.youtube.com/watch?v=yDjsr-jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4
https://www.youtube.com/onurmutlulectures

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution) ‘

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

114

Predicate Combining (7of Predicated Execution)

Complex predicates are converted into multiple branches
o if (@ ==Db) && (c < d) && (a > 5000)) { ...}
3 conditional branches

Problem: This increases the number of control
dependencies

Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

o Predicates stored and operated on using condition registers
o A single branch checks the value of the combined predicate

+ Fewer branches in code - fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
Condition registers exist in IBM RS6000 and the POWER architecture

115

Predication (Predicated Execution)
Idea: Convert control dependence to data dependence

Simple example: Suppose we had a Conditional Move
instruction...

o CMOV condition, R1 €« R2
o R1 = (condition == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

Code example with branches vs. CMOVs
if (@==05){b=4;}else {b=3;}

CMPEQ condition, a, 5;
CMOV condition, b < 4;
CMOQV !condition, b < 3;

116

Predication (Predicated Execution)

Idea: Compiler converts control dependence into data dependence
—> branch is eliminated

o Each instruction has a predicate bit set based on the predicate computation

o Only instructions with TRUE predicates are committed (others become NOPSs)

if (cond) {

b=0;

b

else {

b

(normal branch code)

A

T/ N
ol
N
D

pl = (cond)
branch pl, TARGET

(predicated code)

A
B
C
D

mov b, 1
imp JOIN

pl = (cond)

TARGET:
mov b, 0

(!pl1) mov b, 1

(p1) mov b, 0

add x, b, 1

add x, b, 1

117

Predicated Execution References

= Allen et al., "Conversion of control dependence to data
dependence,” POPL 1983.

= Kim et al., "Wish Branches: Combining Conditional
Branching and Predication for Adaptive Predicated
Execution,” MICRO 2005.

= Kim et al., "Diverge-Merge Processor (DMP): Dynamic
Predicated Execution of Complex Control-Flow Graphs
Based on Frequently Executed Paths,” MICRO 2006.

118

Conditional Move Operations

Very limited form of predicated execution
CMOV R1 €« R2

o R1 = (ConditionCode == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

119

Predicated Execution (11)

= Predicated execution can be high performance and energy-
efficient

Predicated Execution

A Fetch Decode Rename Schedule RegisterRead Execute
C B ’70,0
Branch Prediction
D Fetch Decode Rename Schedule RegisterRead Execute
- L] felele]s]a]
v Pipeline flush!!
F

120

Predicated Execution

Eliminates branches - enables straight line code (i.e.,
larger basic blocks in code)

Advantages
o Eliminates hard-to-predict branches
o Always-not-taken prediction works better (no branches)

o Compiler has more freedom to optimize code (no branches)
control flow does not hinder inst. reordering optimizations
code optimizations hindered only by data dependencies

Disadvantages

o Useless work: some instructions fetched/executed but
discarded (especially bad for easy-to-predict branches)

o Requires additional ISA (and hardware) support

o Can we eliminate all branches this way?
121

Predicated Execution vs. Branch Prediction

+ Eliminates mispredictions for hard-to-predict branches
+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

-- Causes useless work for branches that are easy to predict
-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch
behavior. Branch behavior changes based on input set, program
phase, control-flow path.

122

Predicated Execution in Intel Itanium

Each instruction can be separately predicated
64 one-bit predicate registers

each instruction carries a 6-bit predicate field
An instruction is effectively a NOP if its predicate is false

cmp pl p2 <cmp
br p2 elsel
~Teol plthenl
o3 joinl
] ‘ oThen?
Tenl D:!.el_sez
e~ [0in2
» joinl
join2

123

Conditional Execution in the ARM ISA

Almost all ARM instructions could include an optional
condition code

o Prior to ARM v8

An instruction with a condition code is executed only if

o the condition code flags in the CPSR (Current Program Status
Register) meet the specified condition

124

Conditional Execution in ARM ISA

31 2827 1615 87 0 Instruction type
Cond 0 ¢ Opcode | S Rn Rd Operand2 Data processing / PSR Transfer
Cond 00 0 0| Al S Rd Rn Rs 1 5e8) N | R | Rm Multiply
Cond 00 1l u| A] S| RdHi RdLo Rs 100 1| Rm Long Multiply (v3M / v4 only)
Cond 00 0| BI 00 Rn Rd 0 00O1001 Rm Swap
Cond 0]" UI BI Wl L Rn Rd Offset Load/Store Byte/Word
Cond 10 UI S| W| L Rn Register List Load/Store Multiple
Cond 00 U 1 WI L Rn Rd Offsetl| 1| S| H| 1| Offset2 | Halfword transfer : Immediate offset (v4 only)
Cond 0 0 0 W" L Rn Rd 0 0 0 0O]1s|H|1 Rm Halfword transfer: Register offset (v4 only)
Cond 0 offset Branch
cond |0 00430233 332 23 ¥ 43330003 Rn Branch Exchange (v4T only)
cond 1 4| NI WL Rn CRd CPNum offset Coprocessor data transfer
cond 1 opl CRn CRd CPNum [op2 | 0| CRm Coprocessor data operation
Cond 1 opl |L] CRn Rd cPNum | op2 |1| CRm Coprocessor register transfer
Cond 33 SWI Number Software interrupt

125

Conditional Execution in ARM ISA

31 28 24 20 16 12 8 4 0
-yttt rrr -ttt Tt
Cond I
S
I
0000 = EQ - Z set (equal) 1001 =LS - C clear or Z (set unsigned

lower or same)

1010 =GE - N set and V set, or N clear
and V clear (>or =)

1011 =LT - N setand V clear, or N clear
and V set (>)

1100 = GT - Z clear. and either N set and
V set, or N clear and V set (>)

1101 =LE - Z set, or N set and V clear.or
N clear and V set (<, or =)

1110 = AL - always
1111 =NV - reserved.

0001 = NE - Z clear (not equal)

0010 =HS /CS - C set (unsigned
higher or same)

0011 =LO/ CC - C clear (unsigned

lower)
0100 = MI -N set (negative)

0101 = PL - N clear (positive or
Zero)

0110 =VS -V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear

The ARM Instruction Set - ARM University Program - V1.0

Conditional Execution in ARM ISA

* To execute an instruction conditionally, simply postfix it with the
appropriate condition:

* For example an add instruction takes the form:
— AN Tl ri.el r T = ¥l = 2 (RODAL)

* To execute this only if the zero flag 1s set:

— ADDEQ r0O,rl,xr2 ; If zero flag set then...
- | Rl M ol 7

* By default, data processing operations do not affect the condition flags
(apart from the comparisons where this is the only effect). To cause the
condition flags to be updated, the S bit of the instruction needs to be set
by postfixing the instruction (and any condition code) with an *“S”.

* For example to add two numbers and set the condition flags:

— ADDS r0O,rl1,xr2 ¢ o 1 oo R I
; ... and set flags

The ARM Instruction Set - ARM University Program - V1.0

127

Conditional Execution in ARM ISA

A
No
Yes @\ No
ro=r0-ri r=r1-r0
<

The ARM Instruction Set - ARM University Program - V1.0

* Convert the GCD
algorithm given in this
flowchart into

1) “Normal” assembler,

where only branches can
be conditional.

2) ARM assembler, where
all instructions are
conditional, thus
improving code density.

* The only instructions you
need are CMP, B and SUB.

o 24

128

Conditional Execution in ARM ISA

“Normal’ Assembler

gcd cmp r0O, ril ;reached the end?
beq stop
blt less sif »0 > rl
sub r0, r0, rl ;subtract rl from roO
bal gecd

less sub rl, rl, rO0 ;subtract r0O from ri
bal gecd

stop

ARM Conditional Assembler

gcd

cmp

r0O, rl

;if rO0 > ri

subgt r0, r0, rl ;subtract rl from roO
sublt rl, rl, rO ;else subtract r0 from rl

bne gcd ;reached the end?

The ARM Instruction Set - ARM University Program - V1.0

129

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

130

Multi-Path Execution

Idea: Execute both paths after a conditional branch

o For all branches: Riseman and Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, 1972.

o For a hard-to-predict branch: Use dynamic confidence estimation

Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

Disadvantages:

-- What happens when the machine encounters another hard-to-predict
branch? Execute both paths again?

-- Paths followed quickly become exponential
-- Each followed path requires its own context (registers, PC, GHR)
-- Wasted work (and reduced performance) if paths merge
131

Dual-Path

Dual-path
A | Hard to predict palth 1 palth 2
C B C B
> o] [o
: : :
. . .

Hxecution versus Predication

Predicated Execution

path 1

l

C

l

CFMerge

O

l

B

l

path 2

CFMerge

132

Handling Other Types of

Branches

Remember: Branch Types

Direction at
fetch time

Type

Number of
possible next
fetch addresses?

Conditional Unknown 2
Unconditional Always taken 1
Call Always taken 1
Return Always taken Many
Indirect Always taken Many

When is next
fetch address
resolved?

Execution (register
dependent)

Decode (PC +
offset)

Decode (PC +
offset)

Execution (register
dependent)

Execution (register
dependent)

How can we predict an indirect branch with many target addresses?

134

Call and Return Prediction

. . Call X
Direct calls are easy to predict
o Always taken, single target Call X
o Call marked in BTB, target predicted by BTB Call X
I.?“eturn
Returns are indirect branches ReturF;eturn

o A function can be called from many points in code
o A return instruction can have many target addresses
Next instruction after each call point for the same function
o Observation: Usually a return matches a call
o Idea: Use a stack to predict return addresses (Return Address Stack)

A fetched call: pushes the return (next instruction) address on the stack

A fetched return: pops the stack and uses the address as its predicted
target

Accurate most of the time: 8-entry stack 2> > 95% accuracy

135

Indirect Branch Prediction (I)

Register-indirect branches have multiple targets

A br.cond TARGET A R1 = MEM[R2]
‘y \NA 2 branch R1
TARG A+1 e
o Bjlojp
Conditional (Direct) Branch Indirect Jump

Used to implement

o Switch-case statements

o Virtual function calls

o Jump tables (of function pointers)
o Interface calls

136

Indirect Branch Prediction (1)

No direction prediction needed

Idea 1: Predict the last resolved target as the next fetch address
+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

Idea 2: Use history based target prediction
o E.g., Index the BTB with GHR XORed with Indirect Branch PC
a Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB
-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses

137

Intel Pentium M Indirect Branch Predictor

The advanced branch prediction in the Pentium M
processor is based on the Intel Pentium” 4 processor’s
[6] branch predictor. On top of that, two additional
predictors to capture special program flows. were added:

a Loop Detector and an Indirect Branch Predictor. Instruction Global
Pointer History
T L L
Count | Limit | Prediction
"'j | = Target : type : hit target : hit
Vv =
0
L | R
v hit target
Figure 2: The Loop Detector logic Figure 3: The Indirect Branch Predictor logic

Gochman et al.,
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.

138

Issues 1n Branch Prediction (I)

Need to identify a branch before it is fetched

How do we do this?
o BTB hit = indicates that the fetched instruction is a branch
o BTB entry contains the “type” of the branch

o Pre-decoded “branch type” information stored in the
instruction cache identifies type of branch

What if no BTB?
o Bubble in the pipeline until target address is computed
o E.g., IBM POWER4

139

Latency of Branch Prediction

Latency: Prediction is latency critical
o Need to generate next fetch address for the next cycle
o Bigger, more complex predictors are more accurate but slower

PC + inst size —
BTB target Next Fetch
Return Address Stack target > > Address

Indirect Branch Predictor target ———
Resolved target from Backend —

?7?

140

Issues 1in Fast & Wide Fetch
Engines

These Issues Covered in This Lecture...

- - = - N v
EQLl[)c:rl)l()(:L; Code Optimization ltl(;lrl][)lL

pr: mul r1 é-rgg

A : ' — S = A
- pr it r2<—|’2_1i ¢ 1dd I'2<—l’2,1
L e : Li wul r3<-r2,

———= il
opC: mul r3<—r2,a : ppC: mul r3<—r2,3‘

Original Code

opPA: mul r1<-r2,3

ra

ggl :bpB: add r2<-r2,1
9pC’: mul r3<-12,3

RC: mov r3<-ﬂ

Code After Common
Subexpression Elimination

Pl N) 1:27:19/1:43:16

18-740 Computer Architecture - Advanced Branch Prediction - Lecture 5

4,696 views - Sep 23,2015 i 41 10, SHARE SAVE

ia—'

Carnegie Mellon Computer Architecture
23K subscribers SUBSCRIBED

Lecture 5: Advanced Branch Prediction
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: September 16,2014.

Lecture 5 slides (pdf): http://www.ece.cmu.edu/~ece740/f15/li...
Lecture 5 slides (ppt): http://www.ece.cmu.edu/~ece740/f15/Ii...

https:/ /www.youtube.com/onurmutlulectures

9]

142

https://www.youtube.com/onurmutlulectures

These Issues Covered in This Lecture...

= Computer Architecture, Spring 2015, Lecture 5

o Advanced Branch Prediction (CMU, Spring 2015)

o https://www.youtube.com/watch?v=yDjsr-
jTOtk&list=PL5PHM2jkkXmgVhh8CHAU9N76TSh]qgfYDt&index=4

SAFARI https://www.youtube.com/onurmutlulectures 143

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Interference in Branch Predictors

144

An Issue: Interference in the PHT's

Sharing the PHTs between histories/branches leads to interference
o Different branches map to the same PHT entry and modify it
o Interference can be positive, negative, or neutral

Instroction Stream

[]
[]
[Pattern Hissory Table (PHT)
Branch As Index ,ED
- St comat o
s =]
Rl 20t cowrter -
= ————— ™
Brach A 5 '..-"" 20 conntet
- Prediction of Branch B
Py [] may be altered due 1o
e cutcome of Dranch A
° L]
Branch B's Index ®
-~ Kl
Brinch B o
-
®
[J

Interference can be eliminated by dedicating a PHT per branch
-- Too much hardware cost

How else can you eliminate or reduce interference?
145

Reducing Interference in PHTs (I)

Increase size of PHT

Branch filtering

o Predict highly-biased branches separately so that they do not
consume PHT entries

o E.g., static prediction or BTB based prediction

Hashing/index-randomization
o Gshare
o Gskew

Agree prediction

146

Biased Branches and Branch Filtering

Observation: Many branches are biased in one direction
(e.g., 99% taken)

Problem: These branches po/lute the branch prediction
structures = make the prediction of other branches difficult
by causing “interference” in branch prediction tables and
history registers

Solution: Detect such biased branches, and predict them
with a simpler predictor (e.g., last time, static, ...)

Chang et al., "Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

147

Reducing Interference: Gshare

Idea 1: Randomize the indexing function into the PHT such that
probability of two branches mapping to the same entry reduces

o Gshare predictor: GHR hashed with the Branch PC
+ Better utilization of PHT + More context information
- Increases access latency

Pattern History Table

— /

Branch Address

vy

Branch History Register

o McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

148

Reducing Interference: Agree Predictor

= Idea 2: Agree prediction

o Each branch has a “bias” bit associated with it in BTB
= Ideally, most likely outcome for the branch

o High bit of the PHT counter indicates whether or not the prediction
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)
-- Requires determining bias bits (compiler vs. hardware)

PaeaHetory Tad ke CRT)

20t commte

B0 conphey

2.0 comber

LR I \ >

Brazch Hisotry Regiseter (BHE)

Blashg BE Storage (st of BTB)
Bm&m& ==
Iy
Ty
T

L

rrrlr

Sprangle et al., “The Agree Predictor:
A Mechanism for Reducing Negative
Branch History Interference,” ISCA
1997.

149

Why Does Agree Prediction Make Sense?

Assume two branches have taken rates of 85% and 15%.
Assume they conflict in the PHT

Let’s compute the probability they have opposite outcomes
o Baseline predictor:

P (b1 T, b2NT)+P (bl NT,b2T)

= (85%*85%) + (15%*15%) = 74.5%
o Agree predictor:

Assume bias bits are set to T (b1) and NT (b2)

P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree)

= (85%*15%) + (15%*85%) = 25.5%

Works because most branches are biased (not 50% taken)

150

Reducing Interference: Gskew

o

Global BHR >

Idea 3: Gskew predictor

o Multiple PHTs

o Each indexed with a different type of hash function
o Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTSs, hash functions)

puT, PHT, PHT, Seznec, “An optimized

A A 4
BN

2bcgskew branch

| predictor,” IRISA Tech
Report 1993.

- Michaud, “Trading conflict
1 and capacity aliasing in
Majority conditional branch
predictors,” ISCA 1997

L Final Prediction

151

More Techniques to Reduce PHT Interference

The bi-mode predictor

o Separate PHTs for mostly-taken and mostly-not-taken branches
o Reduces negative aliasing between them

o Lee et al., "The bi-mode branch predictor,” MICRO 1997.

The YAGS predictor

o Use a small tagged “cache” to predict branches that have experienced
interference

o Aims to not to mispredict them again
o Eden and Mudge, “"The YAGS branch prediction scheme,” MICRO 1998.

Alpha EV8 (21464) branch predictor

o Seznec et al., "Design tradeoffs for the Alpha EV8 conditional
branch predictor,” ISCA 2002.

152

Another Direction: Helper Threading

= Idea: Pre-compute the outcome of the branch with a
separate, customized thread (i.e., a helper thread)

—

From Retired Promotion
Instr. Stream Logic

Microthread
* %m Construction
Buffer
youngest

BR oo
}

Optimized routine
sent to MicroRAM

Post—
Retirement Scanner
Buffer ‘ -

'

oldest —{_

Figure 3. The Microthread Builder

= Chappell et al., “Difficult-Path Branch Prediction Using Subordinate
Microthreads,” ISCA 2002.

= Chappell et al., "Simultaneous Subordinate Microthreading,” ISCA 1999.

153

Issues in Wide & Fast Fetch

[-Cache Line and Way Prediction

Problem: Complex branch prediction can take too long (many
cycles)

Goal
o Quickly generate (a reasonably accurate) next fetch address

o Enable the fetch engine to run at high frequencies
o Override the quick prediction with more sophisticated prediction

Idea: Get the predicted next cache line and way at the time
you fetch the current cache line

Example Mechanism (e.qg., Alpha 21264)

o Each cache line tells which line/way to fetch next (prediction)
o On afill, line/way predictor points to next sequential line

o On branch resolution, line/way predictor is updated
d

If line/way prediction is incorrect, one cycle is wasted
155

Alpha 21264 Line & Way Prediction

Program
counter (PC) Learn dynamic]umps
S generation
-+ Instruction No branch penalty

0 1 Cached Line Way [| @
instructions prediction prediction | § -

f--..:’j Compare | Compare

HRes/wey s Instructions (4) Next line pimway ...:,f:;‘s

Figure 3. Alpha 21264 mstmctlon Thelin
around path on the right side) provides
avoids common fetch stalls. when fh :_;

UOﬂS are correct.

Kessler, “The Alpha 21264 I\/Ilcroprocessor : IEEE Micro, March-April 1999. 156

Alpha 21264 Line & Way Prediction

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Fetch Slot Rename Issue ' Register read - Execute | Memory
e g 2 3 4 : 5 ? 6 Y
AR Integer g
: Integer | | Integer execet’.l%eon :
1 Branch Integer issue | | register .
| predictor register queue = file Integer | "0
i rename (20 : (80) execution | :
il . entries)
Sbthl X Level-
e Data
Integer cache i two
: Integer execution | (64 Kbytes cache =
Ly register ; two-way)’ and system|
i (80) execution |
Line/set i A
prediction : v . =
3. caone point ; | point multiply execution
(64 Kbytes, register Ssue 1™ register
| two-way) rename q:ﬁ-:’)e : file Floating-point
% e) (72) add execution
157

Issues in Wide Fetch Engines

Wide Fetch: Fetch multiple instructions per cycle

Superscalar
VLIW
SIMT (GPUSs’ single-instruction multiple thread model)

Wide fetch engines suffer from the branch problem:

o How do you feed the wide pipeline with useful instructions in a
single cycle?
o What if there is a taken branch in the “fetch packet™?

o What is there are "multiple (taken) branches” in the “fetch
packet”?

158

Fetching Multiple Instructions Per Cycle

Two problems

1. Alignment of instructions in I-cache

2 What if there are not enough (N) instructions in the cache line
to supply the fetch width?

2. Fetch break: Branches present in the fetch block
0 Fetching sequential instructions in a single cycle is easy
o What if there is a control flow instruction in the N instructions?

o Problem: The direction of the branch is not known but we
need to fetch more instructions

These can cause effective fetch width < peak fetch width

159

Wide Fetch Solutions: Alignment

Large cache blocks: Hope N instructions contained in the
block

Split-line fetch: If address falls into second half of the
cache block, fetch the first half of next cache block as well

o Enabled by banking of the cache
o Allows sequential fetch across cache blocks in one cycle
o Intel Pentium and AMD K5

160

Split Line Fetch

Cache Banking SO (S T
0100 1100 Cache
0100 1101 Block
0100 1110 A
0100 1111 B v
Memory Map 0101 0000 C !
0101 0001 D
0101 0010 £ Cache
0101 0011 E Block
0101 0111 l

Bank O Bank1

Cache Block 0100 AlB
Block 0101 [C[D [E[F| -1+

Need alignment logic:

161

Short Distance Predicted-Taken Branches

(\A Bank 0 Bank1
- Block 0100 AlB[C[D
| Block 0101 [E|F
B
N
|' ¢ \ First Iteration (Branch B taken to E)
A EF ABCD
‘l ¢ "" E/\éiﬁi//
D / -
|/ / ABEF
| | E Second lteration (Branch B fall through to C)
WY EF ABCD
\F A//;/;;/i—//‘<//

162

Techniques to Reduce Fetch Breaks

Compiler
o Code reordering (basic block reordering)
o Superblock

Hardware
o Trace cache

Hardware/software cooperative
o Block structured ISA

163

Basic Block Reordering

Not-taken control flow instructions not a problem: no fetch
break: make the likely path the not-taken path

Idea: Convert taken branches to not-taken ones
o i.e., reorder basic blocks (after profiling)
o Basic block: code with a single entry and single exit point

Control Flow Graph Code Layout 1 Code Layout2 Code Layout 3
99% - A 1% A A A
NG B C B
B C D D C
g1/ °
D C B

Code Layout 1 leads to the fewest fetch breaks

164

Basic Block Reordering

Pettis and Hansen, “Profile Guided Code Positioning,” PLDI
1990.

Advantages:

+ Reduced fetch breaks (assuming profile behavior matches
runtime behavior of branches)

+ Increased I-cache hit rate
+ Reduced page faults

Disadvantages:

-- Dependent on compile-time profiling
-- Does not help if branches are not biased

-- Requires recompilation

165

Superblock

Idea: Combine frequently executed basic blocks such that they form a
single-entry multiple exit larger block, which is likely executed as
straight-line code

) © o

+ Helps wide fetch : :

+ Enables aggressive
compiler optimizations
and code reordering
within the superblock

-- Increased code size
-- Profile dependent 3
-- Requires recompilation ©

Hwu et al. “The Superblock: An effective technique for VLIW

and superscalar compilation,” Journal of Supercomputing, 1993.
166

Superblock Formation (I)

Is this a superblock?

A
100
90 10
B C
90 10
‘y\gq 0
D E D
0 9 | /10 [og 0
N O
F
100

167

Superblock Formation (1)

Y
;g\o Tail duplication:
o0 10 dupllcatlpn of basic blocks
: 9'30 C after a side entrance to
0 90 10 eliminate side entrances
g gEo 10 - transforms
T a trace into a superblock.
: : [89.1
. |90
99 0Ngpgox
Z 10
|]o
10

168

Superblock Code Optimization Example

opA: mul r1<-r2,3

99 opB: add r2<-r2,1 99 : opB: add r2<-r2,1
Y 1 v E)pC’ : mul r3<-r2,!
opC: mul r3<-r2,3 opC: mul r3<-r2,3 :
Original Code CodeAfterSuperbIock Formation
5 opA: mul r1<-r2,3

99

A 4

opC: mov r3<-r1

opA: mul r1<-r2,3

N/

: ppB: add r2<-r2,1

EopC’ : mul r3<-r2,]

Code After Common
Subexpression Elimination

169

Techniques to Reduce Fetch Breaks

Compiler
o Code reordering (basic block reordering)
o Superblock

Hardware
o Trace cache

Hardware/software cooperative
o Block structured ISA

170

Trace Cache: Basic Idea

A trace is a sequence of executed instructions.

It is specified by a start address and the branch outcomes
of control transfer instructions.

Traces repeat: programs have frequently executed paths

Trace cache idea: Store the dynamic instruction sequence
in the same physical location.

D
(a - A|lB| C |D E

—D

AlBr™ C

(a) Instruction cache. (b) Trace cache.

171

Reducing Fetch Breaks: Trace Cache

Dynamically determine the basic blocks that are executed consecutively
Trace: Consecutively executed basic blocks

Idea: Store consecutively-executed basic blocks in physically-contiguous
internal storage (called trace cache)

fime —»

Dynamic Instruction Stream

Basic trace cache operation:

o Fetch from consecutively-stored basic blocks (predict next trace or branches)
o Verify the executed branch directions with the stored ones

o If mismatch, flush the remaining portion of the trace

Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996.

Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.
172

Trace Cache: Example

Instruction
Cache
n
' w - Vi
& 4 Instruction Latch
~1d :
3°BB | A To Instruction
+—> >
Fetch Address A > 1
Trace Cache
n
| _ /
y\ hit?
A Take ourpur from trace
cache if rrace cache hir;
T otherwise, take output from
instruction cache.
Line-Fill Buffer
T n
/

173

An Example Trace Cache Based Processor

7

Cache

1 (Fetch Address ‘f
Fill
Unit ~ Trace Cache
Multiple
Branch
J L 4 Predictor
A I
(" SselectionLogic ye—t2 —

7

1

l Next Fetch Address

Decoder

'

Register Rename

Y

Instruction |<—

Align/Merge

L
L

Execution Core

Level 2

Instruction
Cache

-

Level 2
Data
Cache

N

From Patel’ s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar

Processors,” University of Michigan, 1999.

174

Multiple Branch Predictor

= S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD
Thesis, University of Michigan, 1999.

Fetch Address Pattern
History

@ Table

Global History

Three 2-bit counters

]

pradiction for 2nd branch
prediction for Srd branch

175

What Does A Trace Cache Line Store?

e 16 slots for instructions. Instructions are stored in decoded form and occupy approxi-
mately five bytes for a typical ISA. Up to three branches can be stored per line. Each

instruction is marked with a two-bit tag indicating to which block it belongs.

e Four target addresses. With three basic blocks per segment and the ability to fetch
partial segments. there are four possible targets to a segment. The four addresses are
explicitly stored allowing immediate generation of the next fetch address, even for cases

where only a partial segment matches.

e Path information. This field encodes the number and directions of branches in the
segment and includes bits to identify whether a segment ends in a branch and whether
that branch is a return from subroutine instruction. In the case of a return instruction.

the return address stack provides the next fetch address.

= Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,
1997.

176

Trace Cache: Advantages/Disadvantages

D
C a - A|lB| C |D E

—

(a) Instruction cache. (b) Trace cache.

Al B C

+ Reduces fetch breaks (assuming branches are biased)
+ No need for decoding (instructions can be stored in decoded form)
+ Can enable dynamic optimizations within a trace
-- Requires hardware to form traces (more complexity) = called fill unit
-- Results in duplication of the same basic blocks in the cache
-- Can require the prediction of multiple branches per cycle
-- If multiple cached traces have the same start address
-- What if XYZ and XYT are both likely traces?

177

Intel Pentium 4 Trace Cache

A 12K-uop trace cache replaces the L1 I-cache

Trace cache stores decoded and cracked instructions
o Micro-operations (uops): returns 6 uops every other cycle
x86 decoder can be simpler and slower

A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized
Around Trace Segments Independent of Virtual Address Line", United States

Patent No. 5,381,533, Jan 10, 1995

| 178

