
Digital Design & Computer Arch.
Lecture 18: Branch Prediction II

Prof. Onur Mutlu

ETH Zürich
Spring 2022
5 May 2022

We Are Almost Done w/ This
n Microarchitecture Fundamentals

q Single-cycle Microarchitectures
q Multi-cycle Microarchitectures

n Pipelining & Precise Exceptions
q Pipelining
q Pipelined Processor Design

n Control & Data Dependence Handling
n Precise Exceptions: State Maintenance & Recovery

n Out-of-Order & Superscalar Execution
q Out-of-Order Execution
q Dataflow & Superscalar Execution
q Branch Prediction

2

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Readings

q Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

q H&H Chapters 7.8 and 7.9

q McFarling, “Combining Branch Predictors,” DEC WRL Technical
Report, 1993.

q Optional: Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

3

Recall: How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of

dynamic instructions.

n Potential solutions if the instruction is a control-flow
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses

of both possible paths) (multipath execution)
4

Recall: Importance of The Branch Problem
n Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)
n Assume: 1 out of 5 instructions is a branch
n Assume: Each 5 instruction-block ends with a branch

n How long does it take to fetch 500 instructions?
q 100% accuracy

n 100 cycles (all instructions fetched on the correct path)
n No wasted work; IPC = 500/100

q 99% accuracy
n 100 (correct path) + 20 * 1 (wrong path) = 120 cycles
n 20% extra instructions fetched; IPC = 500/120

q 90% accuracy
n 100 (correct path) + 20 * 10 (wrong path) = 300 cycles
n 200% extra instructions fetched; IPC = 500/300

q 60% accuracy
n 100 (correct path) + 20 * 40 (wrong path) = 900 cycles
n 800% extra instructions fetched; IPC = 500/900

5

6

target address

Recall: Fetch Stage with BTB and Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current branch

Simple Branch Direction Prediction Schemes

n Compile time (static)
q Always not taken
q Always taken
q BTFN (Backward taken, forward not taken)
q Profile based (likely direction)

n Run time (dynamic)
q Last time prediction (single-bit)

7

More Sophisticated Direction Prediction
n Compile time (static)

q Always not taken
q Always taken
q BTFN (Backward taken, forward not taken)
q Profile based (likely direction)
q Program analysis based (likely direction)

n Run time (dynamic)
q Last time prediction (single-bit)
q Two-bit counter based prediction
q Two-level prediction (global vs. local)
q Hybrid
q Advanced algorithms (e.g., using perceptrons, geometric history)

8

Static Branch Prediction (I)
n Always not-taken

q Simple to implement: no need for BTB, no direction prediction
q Low accuracy: ~30-40% (for conditional branches)
q Remember: Compiler can layout code such that the likely path

is the “not-taken” path à more effective prediction

n Always taken
q No direction prediction
q Better accuracy: ~60-70% (for conditional branches)

n Backward branches (i.e., loop branches) are usually taken
n Backward branch: target address lower than branch PC

n Backward taken, forward not taken (BTFN)
q Predict backward (loop) branches as taken, others not-taken

9

Static Branch Prediction (II)
n Profile-based

q Idea: Compiler determines likely direction for each branch using
a profile run. Encodes that direction as a hint bit in the branch
instruction format.

+ Per branch prediction (more accurate than schemes in
previous slide) à accurate if profile is representative!

-- Requires hint bits in the branch instruction format
-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN à 50% accuracy
TNTNTNTNTNTNTNTNTNTN à 50% accuracy

-- Accuracy depends on representativeness of profile input set
TTTTTTTTTTTTTTTTTTNN à 90% accuracy (or 10%?)

10

Static Branch Prediction (III)
n Program-based (or, program analysis based)

q Idea: Use heuristics based on program analysis to determine statically-
predicted direction

q Example opcode heuristic: Predict BLEZ as NT (negative integers used
as error values in many programs)

q Example loop heuristic: Predict a branch guarding a loop execution as
taken (i.e., execute the loop)

q Pointer and FP comparisons: Predict not equal

+ Does not require profiling
-- Heuristics might be not representative or good
-- Requires compiler analysis and ISA support (ditto for other static methods)

n Ball and Larus, ”Branch prediction for free,” PLDI 1993.
q 20% misprediction rate

11

Static Branch Prediction (IV)
n Programmer-based

q Idea: Programmer provides the statically-predicted direction
q Via pragmas in the programming language that qualify a branch as

likely-taken versus likely-not-taken

+ Does not require profiling or program analysis
+ Programmer may know some branches and their program better than

other analysis techniques
-- Requires programming language, compiler, ISA support
-- Burdens the programmer?

12

Pragmas
n Idea: Keywords that enable a programmer to convey hints

to lower levels of the transformation hierarchy

n if (likely(x)) { ... }
n if (unlikely(error)) { … }

n Many other hints and optimizations can be enabled with
pragmas
q E.g., whether a loop can be parallelized
q #pragma omp parallel
q Description

n The omp parallel directive explicitly instructs the compiler to
parallelize the chosen segment of code.

13

Static Branch Prediction
n All previous techniques can be combined

q Profile based
q Program based
q Programmer based

n How would you do that?

n What is the common disadvantage of all three techniques?
q Cannot adapt to dynamic changes in branch behavior

n This can be mitigated by a dynamic compiler, but not at a fine
granularity (and a dynamic compiler has its overheads…)

n What is a Dynamic Compiler?
q A compiler that generates code at runtime
q Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime)

14

Recall: Rosetta 2 Binary Translator

15https://en.wikipedia.org/wiki/Rosetta_(software)#Rosetta_2

https://en.wikipedia.org/wiki/Rosetta_(software)

Recall: NVIDIA Denver Dynamic Code Optimizer

16https://www.anandtech.com/show/8701/the-google-nexus-9-review/4
https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1

More Sophisticated Direction Prediction
n Compile time (static)

q Always not taken
q Always taken
q BTFN (Backward taken, forward not taken)
q Profile based (likely direction)
q Program analysis based (likely direction)

n Run time (dynamic)
q Last time prediction (single-bit)
q Two-bit counter based prediction
q Two-level prediction (global vs. local)
q Hybrid
q Advanced algorithms (e.g., using perceptrons, geometric history)

17

Dynamic Branch Prediction
n Idea: Predict branches based on dynamic information

(collected at run-time)

n Advantages
+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior
+ No need for static profiling: input set representativeness

problem goes away

n Disadvantages
-- More complex (requires additional hardware)

18

Last Time Predictor
n Last time predictor

q Idea: Guess branch will take the same direction as its last instance
q Single bit per branch (stored in BTB)

n Indicates which direction branch went last time it executed
TTTTTTTTTTNNNNNNNNNN à 90% accuracy

n Always mispredicts the last iteration and the first iteration of a
loop branch
q Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large N (number of iterations)
~100% accuracy

-- Loop branches for loops will small N (number of iterations)
TNTNTNTNTNTNTNTNTNTN à 0% accuracy

19

target address

Implementing the Last-Time Predictor (I)

Direction predictor (taken last time?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current branch

Implementing the Last-Time Predictor (II)

21

BTB: one target
address per entry

BTB index

N-bit
tag
table

1 0

PC+4

nextPC

=

The 1-bit BHT (Branch History Table) entry is updated with
the correct outcome after each execution of a branch

tag

BHT:
One
Bit
per
entry

taken?

Program Counter

State Machine for Last-Time Prediction

22

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Improving the Last Time Predictor
n Problem: A last-time predictor changes its prediction from

TàNT or NTàT too quickly
q even though the branch may be mostly taken or mostly not

taken

n Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome
q Use two bits to track the history of predictions for a branch

instead of a single bit
q Can have 2 states each for T or NT instead of 1 state for each

n Smith, “A Study of Branch Prediction Strategies,” ISCA 1981.
23

Two-Bit Counter Based Prediction
n Each branch associated with a two-bit counter (2BC)
n One more bit provides hysteresis
n A strong prediction does not change with one single

different outcome

n Also called bimodal prediction

24

State Machine for 2-bit Saturating Counter
n Counter using saturating arithmetic

q Arithmetic with maximum and minimum values

25

pred
taken

11

pred
taken

10

pred
!taken

01

pred
!taken

00

actually
taken

actually
taken

actually
!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Hysteresis Using a 2-bit Counter

26

pred
taken

pred
taken

pred
!taken

actually
taken

actually
taken

actually
!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Change prediction after 2 consecutive mistakes

“weakly
taken”

“strongly
taken”

“weakly
!taken”

“strongly
!taken”

pred
!taken

Two-Bit Counter Based Prediction
n Each branch associated with a two-bit counter (stored in BTB)
n One more bit provides hysteresis
n A strong prediction does not change with one single different

outcome

n Accuracy for a loop with N iterations = (N-1)/N
TTTTTTTTTTTTTTTTTTTN à 95% accuracy
TNTNTNTNTNTNTNTNTNTN à 50% accuracy

(assuming counter initialized to weakly taken)

+ Better prediction accuracy
-- More hardware cost (but counter can be part of a BTB entry)

27

Is This Good Enough?
n ~85-90% accuracy for many programs with 2-bit counter

based prediction (also called bimodal prediction)

n Is this good enough?

n How big is the branch problem?

28

Let’s Do the Exercise Again
n Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)
n Assume: 1 out of 5 instructions is a branch
n Assume: Each 5 instruction-block ends with a branch

n How long does it take to fetch 500 instructions?
q 100% accuracy

n 100 cycles (all instructions fetched on the correct path)
n No wasted work; IPC = 500/100

q 90% accuracy
n 100 (correct path) + 20 * 10 (wrong path) = 300 cycles
n 200% extra instructions fetched; IPC = 500/300

q 85% accuracy
n 100 (correct path) + 20 * 15 (wrong path) = 400 cycles
n 300% extra instructions fetched; IPC = 500/400

q 80% accuracy
n 100 (correct path) + 20 * 20 (wrong path) = 500 cycles
n 400% extra instructions fetched; IPC = 500/500

29

Can We Do Better: Two-Level Prediction
n Last-time and 2BC predictors exploit “last-time”

predictability

n Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes
q Global branch correlation

n Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)
q Local branch correlation

30Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

Global Branch Correlation (I)
n Recently executed branch outcomes in the execution path

are correlated with the outcome of the next branch

n If first branch not taken, second also not taken

n If first branch taken, second definitely not taken

31

Global Branch Correlation (II)

n If Y and Z both taken, then X also taken
n If Y or Z not taken, then X also not taken

32

Global Branch Correlation (III)
n Eqntott, SPEC’92 workload

q Generates truth table from Boolean expression

if (aa==2) ;; B1
aa=0;

if (bb==2) ;; B2
bb=0;

if (aa!=bb) { ;; B3
….

}

If B1 is taken (i.e., aa=0@B3) and B2 is taken (i.e. bb=0@B3)
then B3 is not taken

33

Capturing Global Branch Correlation
n Idea: Associate branch outcomes with “global T/NT history”

of all branches
n Make a prediction based on the outcome of the branch the

last time the same global branch history was encountered

n Implementation:
q Keep track of the “global T/NT history” of all branches in a

register à Global History Register (GHR)
q Use GHR to index into a table that recorded the outcome that

was seen for each GHR value in the recent past à Pattern
History Table (table of 2-bit counters)

n Global history/branch predictor
n Uses two levels of history (GHR + history at that GHR)

34Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

Two Level Global Branch Prediction
n First level: Global branch history register (N bits)

q The direction of last N branches
n Second level: Table of saturating counters for each history entry

q The direction the branch took the last time the same history was
seen

35

1 1 ….. 1 0

GHR
(global
history
register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous
branch’s
direction

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

How Does the Global Predictor Work?

n McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

36

This branch tests i
Last 3 branches test j
History: TTTN
Predict taken for i
Next history: TTNT
(shift in last outcome)

Intel Pentium Pro Branch Predictor
n Two-level global branch predictor
n 4-bit global history register
n Multiple pattern history tables (of 2-bit counters)

q Which pattern history table to use is determined by lower
order bits of the branch address

n First widely commercially successful out-of-order execution
machine
q Out-of-order + superscalar + 2-level branch prediction +

precise exceptions using reorder buffer

37

Intel Pentium Pro (1995)

38
By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471

Processor chip Level 2 cache chip

Multi-chip module package

Aside: Global Branch Correlation Analysis

n If Y and Z both taken, then X also taken
n If Y or Z not taken, then X also not taken

n Only 3 past branches’ directions
really matter

n Evers et al., “An Analysis of
Correlation and Predictability:
What Makes Two-Level Branch
Predictors Work,” ISCA 1998.

39

Improving Global Predictor Accuracy
n Idea: Add more context information to the global predictor to take into

account which branch is being predicted
q Gshare predictor: GHR hashed with the Branch PC
+ More context information used for prediction
+ Better utilization of the two-bit counter array
-- Increases access latency

n McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
40

41

target address

Review: One-Level Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current instruction

42

target address

Two-Level Global History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the
current instruction

43

target address

Two-Level Gshare Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR
PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the
current instruction

Can We Do Better: Two-Level Prediction
n Last-time and 2BC predictors exploit only “last-time”

predictability for a given branch

n Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes
q Global branch correlation

n Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (in addition to the
outcome of the branch “last-time” it was executed)
q Local branch correlation

44Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

Local Branch Correlation

n McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

45

More Motivation for Local History
n To predict a loop

branch “perfectly”, we
want to identify the
last iteration of the
loop

n By having a separate
PHT entry for each
local history, we can
distinguish different
iterations of a loop

n Works for “short”
loops

46

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

11

11

11

00

11101110111011101110
PHTLoop closing branch’s history

Capturing Local Branch Correlation
n Idea: Have a per-branch history register

q Associate the predicted outcome of a branch with “T/NT history”
of the same branch

n Make a prediction based on the outcome of the branch the
last time the same local branch history was encountered

n Called the local history/branch predictor
n Uses two levels of history

q per-branch history register + history at that history register value

47

Two Level Local Branch Prediction
n First level: A set of local history registers (N bits each)

q Select the history register based on the PC of the branch
n Second level: Table of saturating counters for each history entry

q The direction the branch took the last time the same history was
seen

48

1 1 ….. 1 0

Local history
registers

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

49

target address

Two-Level Local History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current instruction

Which directions earlier instances of *this branch* went

Aside: Two-Level Predictor Taxonomy
n BHR can be global (G), per set of branches (S), or per branch (P)
n PHT counters can be adaptive (A) or static (S)
n PHT can be global (g), per set of branches (s), or per branch (p)

n Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,”
MICRO 1991.

50

Can We Do Better?

51

Can We Do Even Better?
n Predictability of branches varies

n Some branches are more predictable using local history
n Some branches are more predictable using global
n For others, a simple two-bit counter is enough
n Yet for others, a single bit is enough

n Observation: There is heterogeneity in predictability
behavior of branches
q No one-size fits all branch prediction algorithm for all branches

n Idea: Exploit that heterogeneity by designing
heterogeneous (hybrid) branch predictors

52

Hybrid Branch Predictors
n Idea: Use more than one type of predictor (i.e., multiple

algorithms) and select the “best” prediction
q E.g., hybrid of 2-bit counters and global predictor

n Advantages:
+ Better accuracy: different predictors are better for different branches
+ Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor warms up)

n Disadvantages:
-- Need “meta-predictor” or “selector” to decide which predictor to use
-- Longer access latency
-- More hardware & complexity

McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993. 53

Alpha 21264 Tournament Predictor

n Minimum branch penalty: 7 cycles
n Typical branch penalty: 11+ cycles
n 48K bits of target addresses stored in I-cache
n Predictor tables are reset on a context switch

n Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
54

Biased Branches and Branch Filtering
n Observation: Many branches are biased in one direction

(e.g., 99% taken)

n Problem: These branches pollute the branch prediction
structures à make the prediction of other branches difficult
by causing “interference” in branch prediction tables and
history registers

n Solution: Detect such biased branches, and predict them
with a simpler predictor (e.g., last time, static, …)

n Chang et al., “Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

55

Are We Done w/ Branch Prediction?
n Hybrid branch predictors work well

q E.g., 90-97% prediction accuracy on average

n Some “difficult” workloads still suffer a lot, though!
q E.g., gcc
q Max IPC with tournament prediction: 9
q Max IPC with perfect prediction: 35

56

Some Other Branch Predictor Types
n Loop branch detector and predictor

q Loop iteration count detector/predictor
q Works well for loops with small number of iterations, where

iteration count is predictable
q Used in Intel Pentium M

n Perceptron branch predictor
q Learns the direction correlations between individual branches
q Assigns weights to correlations using simple machine learning
q Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,”

HPCA 2001.
n Hybrid history-length based predictor

q Uses different tables with different history lengths
q Seznec, “Analysis of the O-Geometric History Length Branch

Predictor,” ISCA 2005.
57

Intel Pentium M Predictors: Loop and Jump

58

Gochman et al.,
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.

Intel Pentium M (2003)

59https://www.anandtech.com/show/1083/3

https://www.anandtech.com/show/1083/3

More Advanced Branch Prediction

60

Perceptrons for Learning Linear Functions

n A perceptron is a simplified model of a biological neuron
n It is also a simple binary classifier

n A perceptron maps an input vector X to a 0 or 1
q Input = Vector X
q Perceptron learns the linear function (if one exists) of how

each element of the vector affects the output (stored in an
internal Weight vector)

q Output = Weight.X + Bias > 0

n In the branch prediction context
q Vector X: Branch history register bits
q Output: Prediction for the current branch

Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962

Perceptron Branch Predictor (I)
n Idea: Use a perceptron to learn the correlations between branch history

register bits and branch outcome
n A perceptron learns a target Boolean function of N inputs

n Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.
n Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962

Each branch associated with a perceptron

A perceptron contains a set of weights wi
à Each weight corresponds to a bit in

the GHR
à Represents how much the bit is correlated

with the direction of the branch
à Positive correlation: large positive + weight
à Negative correlation: large negative - weight

Prediction:
à Express GHR bits as 1 (T) and -1 (NT)
à Take dot product of GHR and weights
à If output > 0, predict taken

Perceptron Branch Predictor (II)

63

Bias weight
(bias of branch, independent of
the history)

Dot product of GHR
and perceptron weights

Output
compared
to 0

Prediction function:

Training function:

Perceptron Branch Predictor (III)
n Advantages

+ More sophisticated learning mechanism à better accuracy
+ Enables long branch history lengths à better accuracy

n Disadvantages
-- Complexity (adder tree to compute perceptron output)
-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history
bits and branch outcome

64

A successful example of use of machine learning in processor design

See, e.g., Grayson+, “Evolution of the Samsung Exynos CPU Microarchitecture,” ISCA 2020.

Recommended Reading

65Grayson+, “Evolution of the Samsung Exynos CPU Microarchitecture,” ISCA 2020.

AMD Piledriver/Zen/Zen2 (2012-Present)
n These processors employ a perceptron branch predictor

66https://fuse.wikichip.org/news/2458/a-look-at-the-amd-zen-2-core/

AMD Zen2 Perceptron Predictor (2019)

67
https://fuse.wikichip.org/news/2458/a-look-at-the-amd-zen-2-core/

Another Idea: TAGE

68

Prediction Using Multiple History Lengths
n Observation: Different

branches require
different history lengths
for better prediction
accuracy

n Idea: Have multiple
PHTs indexed with
GHRs with different
history lengths and
intelligently allocate
PHT entries to different
branches

69

Seznec and Michaud, “A case for (partially) tagged Geometric History Length
Branch Prediction,” JILP 2006.

Different Branches: Different History Lengths

70https://fuse.wikichip.org/news/2458/a-look-at-the-amd-zen-2-core/

TAGE Branch Predictor
n Advantages

+ Chooses the “best” history length to predict each branch à
better accuracy

+ Enables long branch history lengths à better accuracy

n Disadvantages
-- Hardware (design) complexity is not low
-- Need to choose good hash functions and table sizes to

maximize accuracy and minimize latency

71

A successful recent idea that is used in many modern processor designs

AMD Zen2 Perceptron + TAGE (2019)
n A multi-level branch predictor

q Perceptron (L1)
q TAGE (L2)

72https://fuse.wikichip.org/news/2458/a-look-at-the-amd-zen-2-core/
https://www.amd.com/en/technologies/zen-core

AMD Zen2 TAGE Predictor (2019)

73https://fuse.wikichip.org/news/2458/a-look-at-the-amd-zen-2-core/

Can We Do Better?

74

State of the Art in Branch Prediction
n See the Branch Prediction Championship

q https://www.jilp.org/cbp2016/program.html

75

Andre Seznec,
“TAGE-SC-L branch predictors,”
CBP 2014.

https://www.jilp.org/cbp2016/program.html

Branch Confidence Estimation
n Idea: Estimate if the prediction is likely to be correct

q i.e., estimate how “confident” you are in the prediction

n Why?
q Could be very useful in deciding how to speculate:

n What predictor/PHT/table to choose/use
n Whether to keep fetching on this path
n Whether to switch to some other way of handling the branch,

e.g. dual-path execution (eager execution) or predicated
execution

n …

n Jacobsen et al., “Assigning Confidence to Conditional Branch
Predictions,” MICRO 1996.

76

How to Estimate Confidence
n An example estimator:

q Keep a record of correct/incorrect outcomes for the past N
instances of the “branch”

q Based on the correct/incorrect patterns, guess if the curent
prediction will likely be correct/incorrect

77Jacobsen et al., “Assigning Confidence to Conditional Branch Predictions,” MICRO 1996.

What to Do With Confidence Estimation?
n An example application: Pipeline Gating

78

Manne et al., “Pipeline Gating: Speculation Control for Energy Reduction,” ISCA 1998.

We Covered Until Here in Lecture.
Remaining Slides Are for Your Benefit.

79

Other Ways of Handling
Branches

80

How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of

dynamic instructions.

n Potential solutions if the instruction is a control-flow
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses

of both possible paths) (multipath execution)
81

Delayed Branching (I)
n Change the semantics of a branch instruction

q Branch after N instructions
q Branch after N cycles

n Idea: Delay the execution of a branch. N instructions (delay
slots) that come after the branch are always executed
regardless of branch direction.

n Problem: How do you find instructions to fill the delay
slots?
q Branch must be independent of delay slot instructions

n Unconditional branch: Easier to find instructions to fill the delay slot
n Conditional branch: Condition computation should not depend on

instructions in delay slots à difficult to fill the delay slot
82

Delayed Branching (II)

83

A
B
C
BC X
D
E
F

if ex

A
AB
BC

CBC
BC

GX:
--

A

B

C
BC X

D
E
F
GX:

if ex

A
AC
CBC

BCB
BG

--G

Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles

Fancy Delayed Branching (III)
n Delayed branch with squashing

q In SPARC ISA
q Semantics: If the branch falls through (i.e., it is not taken),

the delay slot instruction is not executed
q Why could this help?

84

A
B
C
BC X
D
E

X:

Normal code: Delayed branch code:

A
B
C
BC X

D
E

X:

NOP

Delayed branch w/ squashing:

A
B
C
BC X

D
E

X:

A

Delayed Branching (IV)
n Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming
1. Number of delay slots == number of instructions to keep the pipeline

full before the branch resolves
2. All delay slots can be filled with useful instructions

n Disadvantages:
-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar
execution width

2. Number of delay slots should be variable with variable latency
operations. Why?

-- Ties ISA semantics to hardware implementation
-- SPARC, MIPS, HP-PA: 1 delay slot
-- What if pipeline implementation changes with the next design?

85

An Aside: Filling the Delay Slot

86

a. From before b. From target c. From fall through
sub $t4, $t5, $t6

…

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

if $s2 = 0 then

 add $s1, $s2, $s3

within same
basic block

For correctness:
add a new instruction
to the not-taken path?

For correctness:
add a new instruction
to the taken path?

Safe?

reordering
independent
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

Lecture on Static Instruction Scheduling

87https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Lectures on Static Instruction Scheduling

n Computer Architecture, Spring 2015, Lecture 16
q Static Instruction Scheduling (CMU, Spring 2015)
q https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JC

L1TWybTDtKq&index=18

n Computer Architecture, Spring 2013, Lecture 21
q Static Instruction Scheduling (CMU, Spring 2013)
q https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59RE

og9jDnPDTG6IJ&index=21

88https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures

How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of

dynamic instructions.

n Potential solutions if the instruction is a control-flow
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses

of both possible paths) (multipath execution)
89

Other Branch Solutions Covered in This Lecture…

90https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

n Computer Architecture, Spring 2015, Lecture 5
q Advanced Branch Prediction (CMU, Spring 2015)
q https://www.youtube.com/watch?v=yDjsr-

jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

n See Backup Slides

91https://www.youtube.com/onurmutlulectures

Other Branch Solutions Covered in This Lecture…

https://www.youtube.com/watch?v=yDjsr-jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4
https://www.youtube.com/onurmutlulectures

Digital Design & Computer Arch.
Lecture 18: Branch Prediction II

Prof. Onur Mutlu

ETH Zürich
Spring 2022
5 May 2022

Backup Slides
(These are for Your Further Study)

93

Other Branch Solutions Covered in This Lecture…

94https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

n Computer Architecture, Spring 2015, Lecture 5
q Advanced Branch Prediction (CMU, Spring 2015)
q https://www.youtube.com/watch?v=yDjsr-

jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

n See Backup Slides

95https://www.youtube.com/onurmutlulectures

Other Branch Solutions Covered in This Lecture…

https://www.youtube.com/watch?v=yDjsr-jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4
https://www.youtube.com/onurmutlulectures

How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of

dynamic instructions.

n Potential solutions if the instruction is a control-flow
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses

of both possible paths) (multipath execution)
96

Predicate Combining (not Predicated Execution)

n Complex predicates are converted into multiple branches
q if ((a == b) && (c < d) && (a > 5000)) { … }

n 3 conditional branches
n Problem: This increases the number of control

dependencies
n Idea: Combine predicate operations to feed a single branch

instruction instead of having one branch for each
q Predicates stored and operated on using condition registers
q A single branch checks the value of the combined predicate

+ Fewer branches in code à fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
n Condition registers exist in IBM RS6000 and the POWER architecture

97

Predication (Predicated Execution)
n Idea: Convert control dependence to data dependence

n Simple example: Suppose we had a Conditional Move
instruction…
q CMOV condition, R1 ß R2
q R1 = (condition == true) ? R2 : R1
q Employed in most modern ISAs (x86, Alpha)

n Code example with branches vs. CMOVs
if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;
CMOV condition, b ß 4;
CMOV !condition, b ß 3;

98

D D

Predication (Predicated Execution)
n Idea: Compiler converts control dependence into data dependence

à branch is eliminated
q Each instruction has a predicate bit set based on the predicate computation
q Only instructions with TRUE predicates are committed (others become NOPs)

99

(normal branch code)

C B

D

A
T N

p1 = (cond)
branch p1, TARGET

mov b, 1
jmp JOIN

TARGET:
mov b, 0

A

B

C

B
C
D

A

(predicated code)

A

B

C

if (cond) {
b = 0;

}
else {

b = 1;
} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0
add x, b, 1add x, b, 1

Predicated Execution References
n Allen et al., “Conversion of control dependence to data

dependence,” POPL 1983.

n Kim et al., “Wish Branches: Combining Conditional
Branching and Predication for Adaptive Predicated
Execution,” MICRO 2005.

n Kim et al., “Diverge-Merge Processor (DMP): Dynamic
Predicated Execution of Complex Control-Flow Graphs
Based on Frequently Executed Paths,” MICRO 2006.

100

Conditional Move Operations
n Very limited form of predicated execution

n CMOV R1 ß R2
q R1 = (ConditionCode == true) ? R2 : R1
q Employed in most modern ISAs (x86, Alpha)

101

Predicated Execution (II)
n Predicated execution can be high performance and energy-

efficient

102

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

nop

Fetch Decode Rename Schedule RegisterRead Execute

AB AC B AC BD AD C BE AE D CF B AF E D C B A AF BCDEF E D ABCF E ABCDF E D C B AF E D C ABE D C B AF AF BCDE

Predicated Execution
n Eliminates branches à enables straight line code (i.e.,

larger basic blocks in code)

n Advantages
q Eliminates hard-to-predict branches
q Always-not-taken prediction works better (no branches)
q Compiler has more freedom to optimize code (no branches)

n control flow does not hinder inst. reordering optimizations
n code optimizations hindered only by data dependencies

n Disadvantages
q Useless work: some instructions fetched/executed but

discarded (especially bad for easy-to-predict branches)
q Requires additional ISA (and hardware) support
q Can we eliminate all branches this way?

103

Predicated Execution vs. Branch Prediction
+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

-- Causes useless work for branches that are easy to predict
-- Reduces performance if misprediction cost < useless work
-- Adaptivity: Static predication is not adaptive to run-time branch
behavior. Branch behavior changes based on input set, program
phase, control-flow path.

104

Predicated Execution in Intel Itanium
n Each instruction can be separately predicated
n 64 one-bit predicate registers

each instruction carries a 6-bit predicate field
n An instruction is effectively a NOP if its predicate is false

105

cmp
br
else1
else2
br
then1
then2
join1
join2

p1 p2 ¬cmp

join1

join2

else1p2

then2p1
else2p2

then1p1

Conditional Execution in the ARM ISA
n Almost all ARM instructions could include an optional

condition code
q Prior to ARM v8

n An instruction with a condition code is executed only if
q the condition code flags in the CPSR (Current Program Status

Register) meet the specified condition

106

Conditional Execution in ARM ISA

107

Conditional Execution in ARM ISA

108

Conditional Execution in ARM ISA

109

Conditional Execution in ARM ISA

110

Conditional Execution in ARM ISA

111

How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of

dynamic instructions.

n Potential solutions if the instruction is a control-flow
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses

of both possible paths) (multipath execution)
112

Multi-Path Execution
n Idea: Execute both paths after a conditional branch

q For all branches: Riseman and Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, 1972.

q For a hard-to-predict branch: Use dynamic confidence estimation

n Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

n Disadvantages:
-- What happens when the machine encounters another hard-to-predict

branch? Execute both paths again?
-- Paths followed quickly become exponential

-- Each followed path requires its own context (registers, PC, GHR)
-- Wasted work (and reduced performance) if paths merge

113

Dual-Path Execution versus Predication

114

Hard to predict

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2

C

D

E

F

B

path 1 path 2

Dual-path Predicated Execution

CFMergeCFMerge

Handling Other Types of
Branches

115

Remember: Branch Types
Type Direction at

fetch time
Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

116

How can we predict an indirect branch with many target addresses?

Call and Return Prediction
n Direct calls are easy to predict

q Always taken, single target
q Call marked in BTB, target predicted by BTB

n Returns are indirect branches
q A function can be called from many points in code
q A return instruction can have many target addresses

n Next instruction after each call point for the same function
q Observation: Usually a return matches a call
q Idea: Use a stack to predict return addresses (Return Address Stack)

n A fetched call: pushes the return (next instruction) address on the stack
n A fetched return: pops the stack and uses the address as its predicted

target
n Accurate most of the time: 8-entry stack à > 95% accuracy

117

Call X
…
Call X

…
Call X
…
Return

Return
Return

Indirect Branch Prediction (I)
n Register-indirect branches have multiple targets

n Used to implement
q Switch-case statements
q Virtual function calls
q Jump tables (of function pointers)
q Interface calls

118

TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]
branch R1

Indirect Branch Prediction (II)
n No direction prediction needed
n Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address
-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch

between different targets

n Idea 2: Use history based target prediction
q E.g., Index the BTB with GHR XORed with Indirect Branch PC
q Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses

119

Intel Pentium M Indirect Branch Predictor

120

Gochman et al.,
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.

Issues in Branch Prediction (I)
n Need to identify a branch before it is fetched

n How do we do this?
q BTB hit à indicates that the fetched instruction is a branch
q BTB entry contains the “type” of the branch
q Pre-decoded “branch type” information stored in the

instruction cache identifies type of branch

n What if no BTB?
q Bubble in the pipeline until target address is computed
q E.g., IBM POWER4

121

Latency of Branch Prediction
n Latency: Prediction is latency critical

q Need to generate next fetch address for the next cycle
q Bigger, more complex predictors are more accurate but slower

122

PC + inst size

Next Fetch
Address

BTB target
Return Address Stack target

Indirect Branch Predictor target
Resolved target from Backend

???

Issues in Fast & Wide Fetch
Engines

123

These Issues Covered in This Lecture…

124https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

These Issues Covered in This Lecture…
n Computer Architecture, Spring 2015, Lecture 5

q Advanced Branch Prediction (CMU, Spring 2015)
q https://www.youtube.com/watch?v=yDjsr-

jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

125https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Interference in Branch Predictors

126

An Issue: Interference in the PHTs
n Sharing the PHTs between histories/branches leads to interference

q Different branches map to the same PHT entry and modify it
q Interference can be positive, negative, or neutral

n Interference can be eliminated by dedicating a PHT per branch
-- Too much hardware cost

n How else can you eliminate or reduce interference?
127

Reducing Interference in PHTs (I)
n Increase size of PHT

n Branch filtering
q Predict highly-biased branches separately so that they do not

consume PHT entries
q E.g., static prediction or BTB based prediction

n Hashing/index-randomization
q Gshare
q Gskew

n Agree prediction

128

Biased Branches and Branch Filtering
n Observation: Many branches are biased in one direction

(e.g., 99% taken)

n Problem: These branches pollute the branch prediction
structures à make the prediction of other branches difficult
by causing “interference” in branch prediction tables and
history registers

n Solution: Detect such biased branches, and predict them
with a simpler predictor (e.g., last time, static, …)

n Chang et al., “Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

129

Reducing Interference: Gshare
n Idea 1: Randomize the indexing function into the PHT such that

probability of two branches mapping to the same entry reduces
q Gshare predictor: GHR hashed with the Branch PC
+ Better utilization of PHT + More context information
- Increases access latency

q McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

130

Reducing Interference: Agree Predictor
n Idea 2: Agree prediction

q Each branch has a “bias” bit associated with it in BTB
n Ideally, most likely outcome for the branch

q High bit of the PHT counter indicates whether or not the prediction
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)
-- Requires determining bias bits (compiler vs. hardware)

131

Sprangle et al., “The Agree Predictor:
A Mechanism for Reducing Negative
Branch History Interference,” ISCA
1997.

Why Does Agree Prediction Make Sense?
n Assume two branches have taken rates of 85% and 15%.
n Assume they conflict in the PHT

n Let’s compute the probability they have opposite outcomes
q Baseline predictor:

n P (b1 T, b2 NT) + P (b1 NT, b2 T)
= (85%*85%) + (15%*15%) = 74.5%

q Agree predictor:
n Assume bias bits are set to T (b1) and NT (b2)
n P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree)

= (85%*15%) + (15%*85%) = 25.5%

n Works because most branches are biased (not 50% taken)
132

Reducing Interference: Gskew
n Idea 3: Gskew predictor

q Multiple PHTs
q Each indexed with a different type of hash function
q Final prediction is a majority vote
+ Distributes interference patterns in a more randomized way

(interfering patterns less likely in different PHTs at the same time)
-- More complexity (due to multiple PHTs, hash functions)

133

Seznec, “An optimized
2bcgskew branch
predictor,” IRISA Tech
Report 1993.

Michaud, “Trading conflict
and capacity aliasing in
conditional branch
predictors,” ISCA 1997

Branch Address

Global BHR

f0

f1

f2

Majority

Final Prediction

PHT0 PHT1 PHT2

More Techniques to Reduce PHT Interference
n The bi-mode predictor

q Separate PHTs for mostly-taken and mostly-not-taken branches
q Reduces negative aliasing between them
q Lee et al., “The bi-mode branch predictor,” MICRO 1997.

n The YAGS predictor
q Use a small tagged “cache” to predict branches that have experienced

interference
q Aims to not to mispredict them again
q Eden and Mudge, “The YAGS branch prediction scheme,” MICRO 1998.

n Alpha EV8 (21464) branch predictor
q Seznec et al., “Design tradeoffs for the Alpha EV8 conditional

branch predictor,” ISCA 2002.
134

Another Direction: Helper Threading
n Idea: Pre-compute the outcome of the branch with a

separate, customized thread (i.e., a helper thread)

n Chappell et al., “Difficult-Path Branch Prediction Using Subordinate
Microthreads,” ISCA 2002.

n Chappell et al., “Simultaneous Subordinate Microthreading,” ISCA 1999.
135

Issues in Wide & Fast Fetch

136

I-Cache Line and Way Prediction
n Problem: Complex branch prediction can take too long (many

cycles)
n Goal

q Quickly generate (a reasonably accurate) next fetch address
q Enable the fetch engine to run at high frequencies
q Override the quick prediction with more sophisticated prediction

n Idea: Get the predicted next cache line and way at the time
you fetch the current cache line

n Example Mechanism (e.g., Alpha 21264)
q Each cache line tells which line/way to fetch next (prediction)
q On a fill, line/way predictor points to next sequential line
q On branch resolution, line/way predictor is updated
q If line/way prediction is incorrect, one cycle is wasted

137

Alpha 21264 Line & Way Prediction

138Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Alpha 21264 Line & Way Prediction

139Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Issues in Wide Fetch Engines
n Wide Fetch: Fetch multiple instructions per cycle

n Superscalar
n VLIW
n SIMT (GPUs’ single-instruction multiple thread model)

n Wide fetch engines suffer from the branch problem:
q How do you feed the wide pipeline with useful instructions in a

single cycle?
q What if there is a taken branch in the “fetch packet”?
q What is there are “multiple (taken) branches” in the “fetch

packet”?

140

Fetching Multiple Instructions Per Cycle

n Two problems

1. Alignment of instructions in I-cache
q What if there are not enough (N) instructions in the cache line

to supply the fetch width?

2. Fetch break: Branches present in the fetch block
q Fetching sequential instructions in a single cycle is easy
q What if there is a control flow instruction in the N instructions?
q Problem: The direction of the branch is not known but we

need to fetch more instructions

n These can cause effective fetch width < peak fetch width

141

Wide Fetch Solutions: Alignment
n Large cache blocks: Hope N instructions contained in the

block

n Split-line fetch: If address falls into second half of the
cache block, fetch the first half of next cache block as well
q Enabled by banking of the cache
q Allows sequential fetch across cache blocks in one cycle
q Intel Pentium and AMD K5

142

Split Line Fetch

143

Need alignment logic:

Short Distance Predicted-Taken Branches

144

Techniques to Reduce Fetch Breaks
n Compiler

q Code reordering (basic block reordering)
q Superblock

n Hardware
q Trace cache

n Hardware/software cooperative
q Block structured ISA

145

Basic Block Reordering
n Not-taken control flow instructions not a problem: no fetch

break: make the likely path the not-taken path
n Idea: Convert taken branches to not-taken ones

q i.e., reorder basic blocks (after profiling)
q Basic block: code with a single entry and single exit point

n Code Layout 1 leads to the fewest fetch breaks

146

A

B C

D

T NT
A

99% 1%
B
D

Control Flow Graph Code Layout 1 Code Layout 2

A
C
D

Code Layout 3

A
B
C
D

C B

Basic Block Reordering
n Pettis and Hansen, “Profile Guided Code Positioning,” PLDI

1990.

n Advantages:
+ Reduced fetch breaks (assuming profile behavior matches

runtime behavior of branches)
+ Increased I-cache hit rate
+ Reduced page faults

n Disadvantages:
-- Dependent on compile-time profiling
-- Does not help if branches are not biased
-- Requires recompilation

147

Superblock
n Idea: Combine frequently executed basic blocks such that they form a

single-entry multiple exit larger block, which is likely executed as
straight-line code

+ Helps wide fetch
+ Enables aggressive

compiler optimizations
and code reordering
within the superblock

-- Increased code size
-- Profile dependent
-- Requires recompilation

n Hwu et al. “The Superblock: An effective technique for VLIW
and superscalar compilation,” Journal of Supercomputing, 1993.

148

Superblock Formation (I)

149

Y

A
100

C
10

B
90

E
90

D
0

F
100

Z

1

90 10

900

0 90
10 99

1

Y

A
100

C
10

B
90

E
90

D
0

F
100

Z

1

90 10

900

0 90
10

99

1

Is this a superblock?

Superblock Formation (II)

150

Y

A
100

C
10

B
90

E
90

D
0

F
90

Z

1

90 10

900

0

90

10

89.1

0.9

Tail duplication:
duplication of basic blocks
after a side entrance to
eliminate side entrances
à transforms
a trace into a superblock.

F’
10

10

9.9

0.1

Superblock Code Optimization Example

151

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Code After Superblock Formation

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Code After Common
Subexpression Elimination

opC’: mul r3<-r2,3

Techniques to Reduce Fetch Breaks
n Compiler

q Code reordering (basic block reordering)
q Superblock

n Hardware
q Trace cache

n Hardware/software cooperative
q Block structured ISA

152

Trace Cache: Basic Idea
n A trace is a sequence of executed instructions.
n It is specified by a start address and the branch outcomes

of control transfer instructions.
n Traces repeat: programs have frequently executed paths
n Trace cache idea: Store the dynamic instruction sequence

in the same physical location.

153

Reducing Fetch Breaks: Trace Cache
n Dynamically determine the basic blocks that are executed consecutively
n Trace: Consecutively executed basic blocks
n Idea: Store consecutively-executed basic blocks in physically-contiguous

internal storage (called trace cache)

n Basic trace cache operation:
q Fetch from consecutively-stored basic blocks (predict next trace or branches)
q Verify the executed branch directions with the stored ones
q If mismatch, flush the remaining portion of the trace

n Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996.

n Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.
154

Trace Cache: Example

155

An Example Trace Cache Based Processor

n From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar
Processors,” University of Michigan, 1999.

156

Multiple Branch Predictor
n S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD

Thesis, University of Michigan, 1999.

157

What Does A Trace Cache Line Store?

n Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,
1997.

158

Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)
+ No need for decoding (instructions can be stored in decoded form)
+ Can enable dynamic optimizations within a trace
-- Requires hardware to form traces (more complexity) à called fill unit
-- Results in duplication of the same basic blocks in the cache
-- Can require the prediction of multiple branches per cycle

-- If multiple cached traces have the same start address
-- What if XYZ and XYT are both likely traces?

159

Intel Pentium 4 Trace Cache
n A 12K-uop trace cache replaces the L1 I-cache
n Trace cache stores decoded and cracked instructions

q Micro-operations (uops): returns 6 uops every other cycle
n x86 decoder can be simpler and slower
n A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized

Around Trace Segments Independent of Virtual Address Line", United States
Patent No. 5,381,533, Jan 10, 1995

160

Front End BTB
4K Entries

ITLB &
Prefetcher L2 Interface

x86 Decoder

Trace Cache
12K uop’s

Trace Cache BTB
512 Entries

