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Other Execution Paradigms

« Dataflow (at the ISA level)
« Superscalar Execution

= VLIW

l SW/HW Interface l

= Systolic Arrays

=« Decoupled Access Execute

(o s

« Graphics Processing Units (GPUs)




Readings for this Week

Required

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,” IEEE Micro 2008.

Recommended

a2 Peleg and Weiser, "MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.
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SIMD Processing:
Exploiting Regular (Data) Parallelism




Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of
IEEE, 1966

SISD: Single instruction operates on single data element

SIMD: Single instruction operates on multiple data elements
a Array processor

a2 Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor
MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

a2 Multiprocessor

o Multithreaded processor



Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of

IEEE, 1966

Very High-Speed Computing Systems

MICHAEL J. FLYNN, MEMBER, IEEE

Abstract—Very high-speed computers may be classified as follows:

1) Single Instruction Stream-Single Data Stream (SISD)

2) Single Instruction Stream—Maultiple Data Stream (SIMD)

3) Multiple Instruction Stream—Single Data Stream (MISD)

4) Multiple Instruction Stream—Maultiple Data Stream (MIMD).

“Stream,” as used here, refers to the sequence of data or instructions as seen
by the machine during the execution of a program.

The constituents of a system : storage, execution, and instruction handling
(branching) are discussed with regard to recent developments and/or systems
limitations. The constituents are discussed in terms of concurrent SISD

Manuscript received June 30, 1966; revised August 16, 1966. This work
was performed under the auspices of the U. S. Atomic Energy Commission.

The author is with Northwestern University, Evanston, Ill., and
Argonne National Laboratory, Argonne, Ill.

systems (CDC 6600 series and, in particular, IBM Model 90 series), since
multiple stream organizations usually do not require any more elaborate
components.

Representative organizations are selected from each class and the
arrangement of the constituents is shown.

INTRODUCTION

ANY SIGNIFICANT scientific problems require
M the use of prodigious amounts of computing time.

In order to handle these problems adequately, the
large-scale scientific computer has been developed. This
computer addresses itself to a class of problems character-
ized by having a high ratio of computing requirement to
input/output requirements (a partially de facto situation

7



MISD Example from Flynn
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Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 1966 8



Lecture 19b: Systolic Array Architectures

An Example Modern Systolic Array: TPU (1I)

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy
by reducing reads and writes of the Unified Buffer [Kun80][Ram91 |[Ovt15b]. Figure 4 shows that data flows in from the left
and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a
diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new
block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update
one location of each of 256 accumulators. From a correctness perspective, software is unaware of the systolic nature of the

matrix unit, but for performance, it does worry about the latency of the unit
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Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
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SIMD Example trom Flynn
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Similar to an “array processor”

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 1966 10



Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of
IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

a Array processor

a2 Vector processor

: Multiple Instructions operate on single data elemen
o Closest form: systolic array processor, streaming processor
MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

a2 Multiprocessor

o Multithreaded processor

11



Data Parallelism

Concurrency arises from performing the same operation on
different pieces of data

a Single instruction multiple data (SIMD)

a2 E.g., dot product of two vectors

Contrast with data flow

a Concurrency arises from executing different operations in parallel (in
a data driven manner)

Contrast with thread (“control”) parallelism

a2  Concurrency arises from executing different threads of control in
parallel

SIMD exploits operation-level parallelism on different data
a2 Same operation concurrently applied to different pieces of data
a2 A form of ILP where instruction happens to be the same across data

12



SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements (PEs), i.e., execution units
Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces (PES)

o Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space (PE)

13



Storing Multiple Data |

Each vector data register holds N M-bit values

o Each register stores a vector

o Not a (single) scalar value as we saw before

V0,0
V0,1

VO,N-1

M-bit wide

Vo0

V1,N-1

M-bit wide

VA1

V2

PE

Hlements: Vector Registers

14



Array vs. Vector Processors

ARRAY PROCESSOR VECTOR PROCESSOR
Instruction Stream Same op @ same time
Diff i
LD VR O A[3:0] LDo| LD1 |LD2 LD3| ferent ops @ fime
ADD VR [l VR, 1 | ‘
’ ADO| AD1 |AD2 AD
MUL VR (1 VR, 2 0 3 LD1] ADO
ST A[3:0] [ VR MUO| MU1 |IMU2 MUS3 LD2 | AD1 |MUO
STO | ST1 [ST2 ST3 [LD3 AD2 (MU1 STO]
——
Different ops @ same space AD3 MUZ ST1
\4 MU3 ST2
Time Same op @ space ST3

<«——S§ pace—> <« pace——>

15



SIMD Array Processing vs. VLIW

VLIW: Multiple independent operations packed together into a “long inst.”

addr1r2.r3 | load r4.r5+4 mul r7.r8.r9

Instruction
Execution

16



SIMD Array Processing vs. VLIW

Array processor: Single operation on multiple (different) data elements

Progra
ounter

| VLEN = 4]

add VR[0],VR[0],1 add VR[1],VR[1],1 add VR[2],VR[2],1 add VR[3],VR[3],1

Instruction

Execution . . .
PE PE PE PE

17



Lecture 19a: VLIW Architectures

VLIW Concept

Memory
Program
COUgnter add r1.r2.r3 I load r4,r5+4 I mov r6,r2 l mul r7,r8.r9 .
Instruction
Execution
PE PE PE PE

= Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.
___ o ELI: Enormously longword instructions (512 bits)
| ’»I ) 406/1:30:37 o S
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https://youtu.be/1SSqV7Y75oU

Vector Processors (1)

A vector is a one-dimensional array of numbers

Many scientific/commercial programs use vectors
for (i = 0; i<=49; i++)

Cli] = (Ali] + B[i]) / 2

A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

Basic requirements
a2 Need to load/store vectors [ vector registers (contain vectors)

a2 Need to operate on vectors of different lengths [ vector length
register (VLEN)

o Elements of a vector might be stored apart from each other in
memory [ vector stride register (VSTR)

Stride: distance in memory between two elements of a vector

19



Vector Stride Example: Matrix Multiply

A and B matrices, both stored in memory in row-major order ~-nearMemory

P
>

A 0
Alo|1]2]|s]4a]s Bolo|1]|2|a]|a|s]|e|7]8]o9 1
6|7 |8 |9]10]11 10 |11 {1213 |14 ] 15|16 |17 | 18| 19 2
3
20
4
30 S
40 6
H )
A4X6 B6X1 0 C4X1 0 ! 50

Dot product of each row vector of
A with each column vector of B

Load A’s row 0 (A, through A ,) into vector register V,
o Each time, increment address by 1 to access the next column
o Accesses have a stride of 1

Load B’s column 0 (B, through B, ) into vector register V,
o Each time, increment address by 10 to access the next row
a2 Accesses have a stride of 10

w
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Vector Processors (11)

A vector instruction performs an operation on each element
in consecutive cycles

o Vector functional units are pipelined

Qg

Each pipeline stage operates on a different data element

Vector instructions allow deeper pipelines

a

No intra-vector dependencies L1 no hardware interlocking
needed within a vector

No control flow within a vector

Known stride allows easy address calculation for all vector
elements

Enables easy loading (or even early loading, i.e., prefetching) of
vectors into registers/cache/memory

21



Vector Processor Advantages

+ No dependencies within a vector
o Pipelining & parallelization work really well
a2 Can have very deep pipelines (without the penalty of deep pipelines)

+ Each instruction generates a lot of work (i.e., operations)
a Reduces instruction fetch bandwidth requirements

a Amortizes instruction fetch and control overhead over many data
--> Leads to high energy efficiency per operation

+ No need to explicitly code loops
a Fewer branches in the instruction sequence

+ Highly regular memory access pattern

22



Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
low-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 23



Recommended Paper: VLIW

VERY LONG INSTRUCTION WORD
ARCHITECTURES
AND THE ELI-512

JOSEPH A. FISHER
YALE UNIVERSITY
NEW HAVEN, CONNECTICUT 06520

ABSTRACT

By compiling ordinary scientific applications programs with a
radical technique called trace scheduling, we are generating
code for a parallel machine that will run these programs faster
than an equivalent sequential machine — we expect 10 to 30

times faster.

Trace scheduling generates code for machines called Very
Long Instruction Word architectures. In Very Long Instruction
Word machines, many statically scheduled, tightly coupled,
fine-grained operations execute in parallel within a single
instruction stream. VLIWs are more parallel extensions of

several current architectures.

These current architectures have never cracked a
fundamental barrier. The speedup they get from parallelism is
never more than a factor of 2 to 3. Not that we couldn’t build
more parallel machines of this type; but until trace scheduling
we didn't know how to generate code for them. Trace
scheduling finds sufficient parallelism in ordinary code to
justify thinking about a highly parallel VLIW.

At Yale we are actually building one. Our machine, the
ELI-512, has a horizontal instruction word of over 500 bits and

MY sA L A MIOA Y o alae e acll IDodbnenan 00)

are presented in this paper. How do we put enough tests in
each cycle without making the machine too big? How do we
put enough memory references in each cycle without making
the machine too slow?

WHAT Is A VLIW?

Everyone wants to use cheap hardware in parallel to speed
up computation. One obvious approach would be to take your
favorite Reduced Instruction Set Computer, let it be capable of
executing 10 to 30 RISC-level operations per cycle controlled by
a very long instruction word. (In fact, call it a VLIW.) A
VLIW looks like very parallel horizontal microcode.

More formally, VLIW architectures have the following
properties:

There is one central control unit issuing a single long

instruction per cycle.

Each long instruction consists of many tightly coupled
independent operations.

Each operation requires a small, statically predictable
number of cycles to execute.

Operations can be pipelined. These properties distinguish

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

24



Amdahl’s Law

Amdahl’s Law
o f: Parallelizable fraction of a program
a2 N: Number of processors

Speedup =

f
N

1-f +

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

All parallel machines “suffer from” the serial bottleneck

25



Recommended Paper: Amdahl’s Law

Validity of the single processor
approach to achieving large scale

computing capabilities

by DR. GENE M. AMDAHL

International  Business Machines Corporation
Sunnyvale, California

INTRODUCTION

For over a decade prophets have voiced the con-
tention that the organization of a single computer
has reached its limits and that truly significant
advances can be made only by interconnection of a
multiplicity of computers in such a manner as to
permit cooperative solution. Variously the proper
direction has been pointed out as general purpose
computers with a generalized interconnection of
memories, or as specialized computers with geo-
metrically related memory interconnections and con-
trolled by one or more instruction streams.

Demonstration is made of the continued validity
of the single processor approach and of the weak-
nesses of the multiple processor approach in terms
of application to real problems and their attendant
irregularities.

‘The arguments presented are based on statistical
characteristics of computation on computers over
the last decade and upon the operational requirements
within problems of physical interest. An additional

cessing rate, even if the housekeeping were done in
a separate processor. The non-housekeeping part
of the problem could exploit at most a processor of
performance three to four times the performance of
the housekeeping processor. A fairly obvious con-
clusion which can be drawn at this point is that the
effort expended on achieving high parallel processing
rates is wasted unless it is accompanied by achieve-
ments in sequential processing rates of very nearly
the same magnitude.

Data management housekeeping is not the only
problem to plague oversimplified approaches to high
speed computation. The physical problems which are
of practical interest tend to have rather significant
complications. Examples of these complications
are as follows: boundaries are likely to be irregular;
interiors are likely to be inhomogeneous; computa-
tions required may be dependent on the states of
the variables at each point; propagation rates of
different physical effects may be quite different; the

il

26



Lecture on Parallelism & Heterogeneity I

Caveats of Parallelism

Amdahl’ s Law
o f: Parallelizable fraction of a program
o N: Number of processors

Speedup =

f
N

-

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck
Parallel portion is usually not perfectly parallel

o Synchronization overhead (e.g., updates to shared data)

o Load imbalance overhead (imperfect parallelization)

Computer Architecture - Lecture 17: Parallelism & Heterogeneity (Fall 2021)
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Lecture on Parallelism & Heterogeneity 11

EMz0rich S/ |

Bottleneck Acceleration

Small Core 1 Large Core 0
BottleneckCall x4600

)
== ==

bid=x4600, twc=100

Small Core 2 bid=x4700, twc=100Q0

Bottleneck
Table (BT)

Computer Architecture - Lecture 18: Parallelism & Heterogeneity Il (Fall 2021)
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https://youtu.be/P8l3SMAbyYw

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if
1. compute/memory operation balance is not maintained
2. data is not mapped appropriately to memory banks

29



Vector Processing in More Depth




Vector Registers

Each vector data register holds N M-bit values
Vector control registers: VLEN, VSTR, VMASK

Maximum VLEN can be N
2 Maximum number of elements stored in a vector register
Vector Mask Register (VMASK)
o Indicates which elements of vector to operate on
o Set by vector test instructions
e.g., VMASK[i] = (V,[i] == 0)

M-bit wide M-bit wide
V0,0 V1,0
V0,1 V1,1

VO,N-1 V1,N-1

31



Vector Functional Units

Use a deep pipeline to execute
element operations

[ fast clock cycle

Control of deep pipeline is
simple because elements in
vector are independent

Six stage multiply pipeline

Slide credit: Krste Asanovic
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Vector Machine Organization (CRAY-1)
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Scalar and vector modes

8 64-element vector
registers

64 bits per element

16 memory banks

8 64-bit scalar registers
8 24-bit address registers
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Recommended Paper

Russell,
“The CRAY-1 computer system,”
CACM 1978.

The CRAY-1
Computer System

Richard M. Russell
Cray Research, Inc.

This paper describes the CRAY-1, discusses the
evolution of its architecture, and gives an account of
some of the problems that were overcome during its
manufacture.

The CRAY-1 is the only computer to have been
built to date that satisfies ERDA’s Class VI
requirement (a computer capable of processing from
20 to 60 million floating point operations per second)
[1].

The CRAY-1’s Fortran compiler (cFr) is designed
to give the scientific user immediate access to the
benefits of the CRAY-1’s vector processing
architecture. An optimizing compiler, cFr,
“vectorizes” innermost DO loops. Compatible with
the ans1 1966 Fortran Standard and with many
commonly supported Fortran extensions, CFT does not
require any source program modifications or the use
of additional nonstandard Fortran statements to
achieve vectorization. Thus the user’s investment of
hundreds of man months of effort to develop Fortran
programs for other contemporary computers is
protected.

Key Words and Phrases: architecture, computer
systems
CR Categories: 1.2, 6.2, 6.3

Introduction

Vector processors are not yet commonplace ma-
chines in the larger-scale computer market. At the
time of this writing we know of only 12 non-CRAY-1
vector processor installations worldwide. Of these 12,
the most powerful processor is the ILLIAC IV (1
installation), the most populous is the Texas Instru-
ments Advanced Scientific Computer (7 installations)
and the most publicized is Control Data’s STAR 100

34



CRAY X-MP-28 @ ETH (CAB, E Floot)




CRAY X-MP System Organization

CRAY X-MP system organization

CPU1

V registers
8 registers
64 84-bit
elemenis per
N regisier
- 14
CPUS
[ S——
cPu4

units
Add/subtract
Shift

Logical (2)

Population
(84-bit arithmatic)

Floating point
func

Vector
section

Sealar
section

Address
saction

Instruciion
section

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985
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CRAY X-MP Design Detail

CRAY X-MP design detail

Mainframe

CRAY X-MP single- ard
multiprocessor systems are
designed to offer users outstandirg
performance on large-scale,
compute-intensive and I/0-bounc
jobs.

CRAY X-MP mainframes consist of
six (X-MP/1), eight (X-MP/2) or
twelve (X-MIP/4) vertical columns
arranged in an arc. Power supplies
and cooling are clustered around the
base and extend outward.

Hardware features:

O ¢.5 nsec clock

1 One,two or four CPUs,each
with its own computation and
control sections

O Large multiport central memory

0 Memory bank cycle time ot 38
nsccon X-MP/4 systems, 76
nsecon X-MP/1 and X-MPJ2
models

O Memory bandwidth of 25-100
gigabits, depending or model

O 1O secticn

[ Proven cooling and packaging
technologies

Memory size

(millions of Number
Model Number of CPUs 64-bit words) of banks
CRAY X-MP/46 4 16 64
CRAY X-MP/48 4 8 32
CRAY X-MP/2:6 2 16 32
CRAY X-MP/28 2 8 32
CRAY X-MP/24 2 4 16
CRAY X-MP/18 1 8 32
CRAY X-MP/14 1 4 16
CRAY X-MP/12 1 2 16
CRAY X-MP/11 1 1 16

A description of the major system
components and their functions
follows.

CPU computation section

Within the computation section of
each CPU are operating registers,
functional units and an instruction
control network — harcware
elements that cooperate in executing
secuences of instructions. The
instruction control network makes all
decisions related to instruction issue
as well as coordinating the three
types of processing within each
CPU: vectoer, scalar and address.
Each of the processing modes has
its asscciated registers and
functional units.

The block diagram of a CRAY
X-MP/4 (opposite page) illustrates
the relationship of the registers to the
functional units, instruction buffers,
1/0 channel control registers,
interprocessor communications
section and memory. For
multiple-processor CRAY X-MP
models, the interprocessor

communiceations section coordinates
processing between CPUs,and
central memory is shared.

Registers
The basic set of programmable
registers is composed of:

Eight 24-bit address (A) registers
Sixty-four 24-bit intermediate address
(B) registers
Eight 64-bit scalar (S) registers
Sixty-tour 64-bit scalar-save
(T) registers
Eight 64-element (4096-bit) vector (V)
registers with 64 bits per element

The 24-oit A recisters are generally
used for addressing and counting
operations. Associated with them are
64 B registers, also 24 bits wide.
Since the transfer between an A and
a B register takes only one clock
period, the B registers assume the
role of data cache, storing
information for fast access without
tying up the A registers for relatively
long periods.

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985
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CRAY X-MP CPU Functional Units

CRAY X-MP CPU functional units

Register Timein
usage clock periods
Address functional units
Addition A 2
Multiplication A 4
Scalar functional units
Addition S 3
Shift-single 8 2
Shift-double 5 3
Logical S 1
Population, parity and leading zero S 3o0r4
Vector functional units
Addition \ 3
Shift vV 3oréd

Euillvinmtar Inninal \/ 2

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985
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CRAY X-MP System Contiguration

System configuration options

X-MP/1 X-MP/2 X-MP/4

Mainframe

CPUs 1 2 4
Bipolar memory (64-bit words) N/A N/A 8 or 16M
MOS memory (64-bit words) 1,2,4 or 8M 4,8 0r 16M N/A
8-Mbyte channels 2014 4 4
100-Mbyte channels 1or2 2 4
1000-Mbyte channels 1 1 2
1/0 Subsystem

I/Q processors 2,30r4 2,30r4 4
Disk storage units 2-32 2-32 2-32
Magnetic tape channels 1-8 1-8 1-8
Front-end interfaces 1-7 1-7 1-7
Buffer memory (Mbytes) 8,32 0r 64 8,32 or 684 64

Solid-state Storage Device
Memory size (Mbytes)

N/A signifies option is not available on the madel

256, 5120r 1024

256, 5120r 1024

256, 512 0or 1024

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985
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Seymour Cray, Leader in Supercomputer Design

"If you were plowing a field, which would you
rather use: Two strong oxen or 1024
chickens?"

By -

© Scott Sinklier / Corbis. http://america.aljazeera.com/articles/2015/2/20/the—short—brutal—lif—of—ma—chickens.htI )

https://en.wikipedia.org/wiki/Seymour_Cray 40



Vector Machine Organization (CRAY-1)
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Scalar and vector modes

8 64-element vector
registers

64 bits per element

8 24-bit address registers

41



Loading/Storing Vectors from/to Memory

Requires loading/storing multiple elements

Elements separated from each other by a constant distance
(stride)
o Assume stride = 1 for now

Elements can be loaded in consecutive cycles if we can
start the load of one element per cycle
o Can sustain a throughput of one element per cycle

Question: How do we achieve this with a memory that
takes more than 1 cycle to access?

Answer: Bank the memory; interleave the elements across

banks
42



Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N concurrent accesses if all N go to different banks

Bank Bank Bank

0 1 2

MD MD MD

R MAR || o MAR || o MAR

u ] | | | ] | | | ] | | | ] n Bank
15

Data bus

Picture credit: Derek Chiou

A

Address bus

CPU
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Vector Memory System

Next address = Previous address + Stride

If (stride == 1) && (consecutive elements interleaved
across banks) && (number of banks >= bank latency), then

a2 we can sustain 1 element/cycle throughput

. B .
Vector Registers ase l SfI/de
[ 3 3

Address ] I

Generator \ + /

N —

Memorny
Banks
Picture credit: Krste Asanovic 44




Scalar Code Example: Element-Wise Avg.

ForI = 0 to 49
o C[i] = (A[i] + B[i]) / 2

Scalar code (instruction and its latency)

MOVI RO = 50 1
MOVAR1 = A 1 304 dynamic instructions
MOVAR2 =B 1
MOVAR3 =C 1

X: LD R4 = MEM[R1++] 11 ;autoincrement addressing
LD R5 = MEM[R2++] 11
ADDR6=R4 +R5 4
SHFR R7 = R6 >> 1 1
ST MEM[R3++] = R7 11
DECBNZ RO, X 2 :decrement and branch if NZ
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Scalar Code Execution Time (In Order)

Scalar execution time on an in-order processor with 1 bank

o First two loads in the loop cannot be pipelined: 2*11 cycles
2 4 + 50%40 = 2004 cycles

Scalar execution time on an in-order processor with 16
banks (word-interleaved: consecutive words are stored in
consecutive banks)

o First two loads in the loop can be pipelined
2 4+ 50*30 = 1504 cycles

Why 16 banks?

a2 11-cycle memory access latency

o Having 16 (>11) banks ensures there are enough banks to
overlap enough memory operations to cover memory latency
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Vectorizable Loops

A loop is vectorizable if each iteration is independent of any
other

For I =0 to 49
a C[i] = (A[i] + B[i]) / 2
Vectorized loop (each instruction and its latency):

MOVI VLEN = 50 1

MOVI VSTR = 1 1 7 dynamic instructions
VLD VO = A 11 + VLEN — 1

VLD V1 = B 11 + VLEN - 1

VADD V2 = V0 + V1 4 + VLEN -1

VSHFRV3 =V2 >> 1 1+ VLEN -1

VST C=V3 11 + VLEN -1
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Basic Vector Code Performance

Assume no chaining (no vector data forwarding)

o i.e., output of a vector functional unit cannot be used as the
direct input of another

a The entire vector register needs to be ready before any
element of it can be used as part of another operation

One memory port (one address generator)
16 memory banks (word-interleaved)

1 1 11 49 11 49 4 49 1 49 11 49
L o - | ] |
N o ] ] L |

| V0=A0.49] | V1=B[0.49 ADD . SHIFT STORE |
VLD VO=A VLD V1=B VADD V2=V0+V1 VSHFR V3=V2>>1 VST C=V3

285 cycles
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Vector Chaining

Vector chaining: Data forwarding from one vector functional
unit to another

V1 V ||V V V

LV v1\ 2 3 4 5
MULV v3,vl,v2
ADDV v5\v3 v4 1

Load A\

Unit I |

Mult.
* ult Add
Memory

Slide credit: Krste Asanovic 49



Vector Code Performance - Chaining

= Vector chaining: Data forwarding from one vector functional
unit to another

1 1 11 49 11 49

Each memory bank
has a single port
i | (memory bandwidth
vibo va=vosd | bottleneck)

] T l Strict assumption:

These two VLDs cannot be
pipelined. WHY? ‘

11 49

« 182 cycles VLD and VST cannot be — |
pipelined. WHY?
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Vector Code Performance — Multiple Memory Ports

Chaining and 2 load ports, 1 store port in each bank

1 1 11 49
| | \
N
1 11 49

4 49

VADD V2=V0+V1 ’
1 49

VSI-JFRV3=V2>>1 ‘
/9 cycles 11 49
19X perf. improvement! ‘

| vsTevs
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Questions (1)

What if # data elements > # elements in a vector register?
o Idea: Break loops so that each iteration operates on #
elements in a vector register
E.g., 527 data elements, 64-element VREGS
8 iterations where VLEN = 64
1 iteration where VLEN = 15 (need to change value of VLEN)

o Called vector stripmining
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(Vector) Stripmining

Surface mining, including strip mining,
open-pit mining and mountaintop removal
mining, is a broad category of mining in
which soil and rock overlying the mineral
deposit (the overburden) are removed, in
contrast to underground mining, in which
the overlying rock is left in place, and the
mineral removed through shafts or tunnels.

Surface mining began in the mid-sixteenth
century“] and is practiced throughout the

world, although the majority of surface coal , »
mining occurs in North America.l?! It gained ~ Coal strip mine in Wyoming =

Source: https://en.wikipedia.org/wiki/Surface mining 53



https://en.wikipedia.org/wiki/Surface_mining

Questions (1I)

What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

o Idea: Use indirection to combine/pack elements into vector
registers

o Called scatter/gather operations

a2 Doing so also helps with avoiding useless computation on
sparse vectors (i.e., vectors where many elements are 0)
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Gather/Scatter Operations

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, D # Load indices in D vector
[LVI vC, rC, vD # Load indirect from xC base]
LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add
SV vA, rA # Store result
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Gather/Scatter Operations

Gather/scatter operations often implemented in hardware
to handle sparse vectors (matrices) or indirect indexing

Vector loads and stores use an index vector which is added
to the base register to generate the addresses

Scatter example

Index Vector Data Vector (to Store)

3.14
6.5
71.2
2.71
Baset+4
Base+5
Base+6
Base+7

N OO

Base+0
Base+1
Base+2
Base+3
X
X
71.2
2.71

Stored Vector (in Memory)

3.14
X
6.5
X
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Conditional Operations in a L.oop

What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)
if (a[i] '= 0) then b[i]=al[i]*bli]

Idea: Masked operations

o VMASK register is a bit mask determining which data element
should not be acted upon

VLD VO = A
VLDV1 =B
VMASK = (VO !'= 0)
VMUL V1 = V0 * V1
VST B = V1
o This is predicated execution. Execution is predicated on mask bit.
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Another Example with Masking

for (i=0;i < 64; ++i)

if (a[i] >= b[i])

else

DWN 2>

@Oc'n

c[i] = ali]
c[i] = bli]
B VMASK
2 0
2 1

2 1
10 O
-4 0
-3 1

) 1
-8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get
VMASK

2. Masked store of Ainto C
3. Complement VMASK

4. Masked store of B into C
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Masked Vector Instructions

Simple Implementation

— execute all N operations, turn off
result writeback according to mask

M[7]=1
M[6]=0
M[5]=1
M[4]=1
M[3]=0

M[2]=0
M[1]=1

M[0]=0

A[7] B[7]
A[6] B[6]
A[5] B[5]
A[4] B[4]
A[3] B[3]

) )

S VA
<0 ]

| \C[]_] /<|—
C[O0]

Write Enable

Slide credit: Krste Asanovic

Write data port

Density-Time Implementation
— scan mask vector and only execute

elements with non-zero masks

M[7]=1

M[5]=1 l l
M[4]=1\ VA
M[3]=0\\ <51

M[2]=0 | |l /G
M[1]=1 | -
M[01=0\ C[1]

Write data port

Which one is better?

Tradeoffs?
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Some Issues

Stride and banking

o As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

Storage format of a matrix
2 Row major: Consecutive elements in a row are laid out
consecutively in memory

a2 Column major: Consecutive elements in a column are laid out
consecutively in memory

a2 You need to change the stride when accessing a row versus
column
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Bank Conflicts in Matrix Multiplication

« A and B matrices, both stored in memory in row-major order

1

12113 |14 | 15|16 | 17 | 18 | 19

A Bexio ™ C4x10

Dot product of each row vector of
A with each column vector of B

= Load A's row 0 into vector register V,
o Each time, increment address by 1 to access the next column

o Accesses have a stride of 1 ’

Different strides can lead
to bank conflicts

= Load B’s column 0 into vector register
o Each time, increment address by 1
a2 Accesses have a stride of 10

[ How do we minimize them? J
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Minimizing Bank Conftlicts

More banks
More ports in each bank

Better data layout to match the access pattern
o Is this always possible?

Better mapping of address to bank
o E.g., randomized mapping
o Rau, “"Pseudo-randomly interleaved memory,” ISCA 1991.
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PSEUDO-RANDOMLY INTERLEAVED MEMORY

B. Ramakrishna Rau
Hewlett Packard Laboratories
1501 Page Mill Road

Palo Alto,

ABSTRACT

Interleaved memories are often used to provide the high
bandwidth needed by multiprocessors and high performance
uniprocessors such as vector and VLIW processors. The manner
in which memory locations are distributed across the memory
modules has a significant influence on whether, and for which
types of reference patterns, the full bandwidth of the memory
system is achieved. The most common interleaved memory
architecture is the sequentially interleaved memory in which
successive memory locations are assigned to successive
memory modules. Although such an architecture is the simplest
to implement and provides good performance with strides that
are odd integers, it can degrade badly in the face of even strides,
especially strides that are a power of two.

In a pseudo-randomly interleaved memory architecture,
memory locations are assigned to the memory modules in some
pseudo-random fashion in the hope that those sequences of
references, which are likely to occur in practice, will end up
being evenly distributed across the memory modules. The
notion of polynomial interleaving modulo an irreducible
polynomial is introduced as a way of achieving pseudo-random
interleaving with certain attractive and provable properties.
The theory behind this scheme is developed and the results of
simulations are presented.

Keywords: supercomputer memory, parallel memory,

interleaved memory, hashed memory, pseudo-random
interleaving, memory buffering.

CA 94303

The conventional solution is to provide each processor
with a data cache constructed out of SRAM. The problem is
maintaining cache coherency, at high request rates, across
multiple private caches in a multiprocessor system. The
alternative is to use a shared cache if the additional delay
incurred in going through the processor-cache interconnect is
acceptable. The problem here is that the bandwidth, even with
SRAM chips, is inadequate unless some form of interleaving is
employed in the cache. So once again, the interleaving scheme
used is an issue. Furthermore, data caches are susceptible to
problems arising out of the lack of spatial and/or data locality
in the data reference pattern of many applications. This
phenomenon has been studied and reported elsewhere, e.g., in
[4,5]. Since data caches are essential to achieving good
performance on scalar computations with little parallelism, the
right compromise is to provide a data cache that can be
bypassed when referencing data structures with poor locality.
This is the solution employed in various recent products such
as the Convex C-1 and Intel's i860.

Interleaved memory systems. Whether or not a data
cache is present, it is important to provide a memory system
with bandwidth to match the processors. This is done by
organizing the memory system as multiple memory modules
which can operate in parallel. The manner in which memory
locations are distributed across the memory modules has a
significant influence on whether, and for which types of
reference patterns, the full bandwidth of the memory system is
achieved.

Engineering and scientific applications include

Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.

Recommended Reading: Minimizing Bank Conflicts



Array vs. Vector Processors, Revisited

Array vs. vector processor distinction is a “purist’'s”
distinction

Most "modern” SIMD processors are a combination of both
a2 They exploit data parallelism in both time and space
o GPUs are a prime example we will cover in a bit more detail
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Recall: Array vs. Vector Processors

ARRAY PROCESSOR VECTOR PROCESSOR
Instruction Stream Same op @ same time
Diff t ti
LD VR [ A[3:0] lpo| b1 [Lp2 tpg)  Lpp TeeMors@fme
ADD VR [l VR, 1 | ‘
’ ADO| AD1 |AD2 AD
MUL VR (1 VR, 2 0 3 LD1] ADO
ST A[3:0] [ VR MUO| MU1 IMU2 MU3 LD2 | AD1 |MUO
STO | ST1 [ST2 ST3 [LD3 AD2 (MU1 STO]
——
Different ops @ same space AD3 MUZ ST1
\4 MU3 ST2
Time Same op @ space ST3

<«——S§ pace—> <« pace——>
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Vector Instruction Execution

Execution using
one pipelined
functional unit

A[6] B[6]
A[5] B[5]
A[4] B[4]
A[3] B[3]
) )
-
o
v o\
Time T

C[O0]

Slide credit: Krste Asanovic

VADD A,B I C

A[24]
A[20]
A[16]
A[12]

|
WY

B[24]
B[20]
B[16]
B[12]

|
/

\

CI8] f'

OV

Execution using
four pipelined
functional units

A[25]
A[21]
A[17]
A[13]

|
TV

B[25] A[26]
B[21] A[22]
B[17] A[18]
B[13] A[14]

| |
Y

B[26] A[27]
B[22] A[23]
B[18] A[19]
B[14] A[15]

| |
Y

B[27]
B[23]
B[19]
B[15]

|
/

Teer]

I\CHO]TF

'\cnl]fk

[T

[T

\T]

Tme [~ [ [ T

<€

C[O0]

C[1]

C[2]

C[3]

Space

>



Vector Unit Structure

Functional Unit
/

[fl . =N =N =N
L L L L
L) L) L) L)
Partitionaa\/ /\ \ [ /\ \ [ /\ \ [ /\ \
Vector v
Registers . . . .
t t t t
~~ o048, i > 6 10, .. 3.7 11, ..
—a— —a— —a— —a—
A A A A
A A A A
T | iy T | T | T |
Lane

Memory Subsystem

Slide credit: Krste Asanovic
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Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o Example machine has 32 elements per vector register and 8 lanes
o Completes 24 operations/cycle while issuing 1 vector instruction/cycle

Load Unit Multiply Unit Add Unit
ooooocr*-ﬁjﬂ

OOOOO@-@KAAAAA#A.

time ooo/oe/e/e/olajajalalallrdd fuTu(m(m[m[E[E[E

—No|o[o/e/e|e[eplaaaja[alalaklnmmnnnmnm

SICICIEIEI s NS CICICICICICICIE

OOOOO(L--c-gAAAAA+.L AO0O0000c

o|olo|o|o|o]o[O]alalalalald?dd /am[mm[E|E][B B

olololololololofalalalalalalall|nme|nen|n=

AlalalalalalalalemeennEE

Instruction peEmessa=

issue

Slide credit: Krste Asanovic 68



Automatic Code Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + B[il; _
Scalar Sequential Code Vectorized Code

1 2 Vector Instruction

. Vectorization is a compile-time reordering of
. operation sequencing
. = requires extensive loop dependence analysis

Slide credit: Krste Asanovic 69



Vector/SIMD Processing Summary

Vector/SIMD machines are good at exploiting regular
data-level parallelism

a2 Same operation performed on many data elements

a2 Improve performance, simplify design (no intra-vector
dependencies)

Performance improvement limited by vectorizability of code
o Scalar operations limit vector machine performance

2 Remember Amdahl’s Law

o CRAY-1 was the fastest SCALAR machine at its time!

Many existing ISAs include (vector-like) SIMD operations
o Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD
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Recall: Amdahl’s Law

Amdahl’s Law

o f: Parallelizable fraction of a program
a2 N: Number of processors

Speedup =

f
N

1-f +

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

All parallel machines “suffer from” the serial bottleneck
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SIMD Operations in Modern ISAs




SIMD ISA Extensions

Single Instruction Multiple Data (SIMD) extension
instructions

o Single instruction acts on multiple pieces of data at once
2 Common application: graphics

o Perform short arithmetic operations (also called packed
arithmetic)

For example: add four 8-bit numbers
Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $sl

32 24 23 16 15 8 7 0  Bit position
$s0

. $s1

a,+b, | a,+b, | a,+b, | a;+b, | $s2
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Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

o A la array processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

63

8

P

0

(@)

63

16 15

(b)
63

32 31

(¢)
63

(d)

Figure 1. MMX technology data types: packed byte (a),
packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.
Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
|IEEE Micro, 1996.
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MMX Example: Image Overlaying (I)

Goal: Overlay the human in image x on top of the background in

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

if (xli] ==

image y

“ode aporation 18

for (i=0; i<image size; i+
Iue) new_imagclil =vylil;
clae new imacelil = (il

MM1

Image x| | MM3

Bit mask  mm1

Blue Blue Blue Blue Blue | Blue Blue Blue
X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue |X2!=blue | X1=blue | XO=blue
0x0000 | Ox0000 | OxFFFF | OxFFFF | Ox0000 | Ox0000 | OxFFFF | OxFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.
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MMX Example: Image Overlaying (1I)

PAND MM4, MM1 _ Y = Blossom image PANDN MM1, MM3 X =Woman’s image
M4 (B Y, #[@Y, @ Y. e Vel YEP YEP Y,@F Y4 Mm1[0x0000]0x0000]0xFFFF |0xFFFF [0x0000]0~0000]0xFFFF J0xFFFF|
MM1 [0x0000]0x0000[0xFFFF [OxFFFF [0x0000[0x0000 [OxFFFFIOXFFFF] MM3[_ X7 | Xo [ X5 | X4 | X [ X [ X X% |
MM4 [0<0000]0x0000]® Y5 % Y, #0x0000[0x0000[% Y, Yo&| MM1[ X, | X [0x0000[0x0000] X5 [ X; [0x0000|0x0006|

g

POR MM4, MM1

MMA[ X, | X [PYs R Y8 X | X, [P YV49P Yo4

rode oparation 1s

for (i=0; i<image size; i++)
if (xli] == Blue) new_imagcli] =ylil:
clse new imaoelil = <[il:

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.

Movg ~ mm3, memi - /*Load eight pixels from
R woman’s image -
Movg ~~ mm4,mem2  /*Load eight pixels from the

o ' blossom image
Pcmpegb. mm1, mm3- '

Pand  mmd, mm1.
Pandn  mmi, mm3

Por - mmd4, mmt

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 76




From MMX to AMX in x86 ISA

MMX
a 64-bit MMX registers for integers
SSE (Streaming SIMD Extensions)

o SSE-1: 128-bit XMM registers for integers and single-precision
floating point

SSE-2: Double-precision floating point
o SSE-3, SSSE-3 (supplemental): New instructions

SSE-4: New instructions (not multimedia specific), shuffle
operations

AVX (Advanced Vector Extensions)

a  AVX: 256-bit floating point

a  AVX2: 256-bit floating point with FMA (Fused Multiply Add)
o AVX-512: 512-bit

AMX (Advanced Matrix Extensions)

o  Designed for AI/ML workloads

o 2-dimensional registers

a Tiled matrix multiply unit (TMUL)

https://www.intel.sa/content/dam/www/public/apac/xa/en/pdfs/ssa/lntel Processor_Architecture SIMD_Instructions.pdf
https://gcc.anu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512 Vector ISA_Kirill Yukhin_20140711.pdf
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SIMD Operations in
Modern (Machine Learning) Accelerators




Cerebras’s Water Scale Engine (2019)

Cerebras WSE
1.2 Trillion transistors
46,225 mm?

« The largest ML
accelerator chip (2019

= 400,000 cores

J JATS
T TAIWAN 1723A1

PFBY82.M00 et
Al

Largest GPU
21.1 Billion transistors

815 mm?
NVIDIA TITAN V

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
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https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Water Scale Engine-2 (2021)

. . = Thelargest ML
i accelerator chip (2021)
= 850,000 cores
Cerebras WSE-2 Largest GPU
2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm? 826 mm?

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/ 80



https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

(L]

Size, Place, and Route in Cerebras’s WSI

Neural network mapping onto the whole wafer is a

challenge
g An example mapping

Kernel graph with layers

3
o : il
x -
= 2 2
o
x|~ b 3 ~
o
z

Multiple possible mappings B -
[T LT

X5x1x32
e) 10

max

0 Blea ! EEES A Dl | Bl = e S e o B3

Input = 28x28x1

FCN (Dens
Soff

Convl =

;
I

Different dies of the wafer work
on different layers of the neural
network: MIMD machine

Layers mapped on Wafer Scale Engine

James et al., “ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning 81
Accelerator”



Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of
IEEE, 1966

SISD: Single instruction operates on single data element

SIMD: Single instruction operates on multiple data elements
a Array processor

a2 Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor
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A MIMD Machine with SIMD Processors (I)

MIMD machine
o Distributed memory (no shared memory)
o 2D-mesh interconnection fabric

Single tile Single die

Wafer Scale Engine

DSR

| tile

Router

I

|
|
|
|
|
|
|
| N
h_AMemory| | \
W |
t FMAGC :
|
ISchedule r)‘l\ | \
- i
y |
|
=t —}" i ——
l I Core /;/
r < 51 tiles g *
NSEW
4539 tiles

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

12 dies

84 dies

7 dies
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A MIMD Machine with SIMD Processors (1)

SIMD processors
o 4-way SIMD for 16-bit floating point operands
o 48 KB of local SRAM

NSEW

”” Single tile
HH — | Address registers
grieia Bemfs St St e S ]|
i — :
|
: Control | ; Dfﬁg :
: D i !
Router |85 I~ ! Local memo

: el .,,I\/Iemory,,:’/' ry
I W :

t I
| FMAC
: Scheduler ﬂy\ :
| - :
| Yy ;
| ) .
. : 4-way SIMD fused-multiply
[y e pp——— N p——— .

| Core accumulate (FMAC) units.

AXPY:y=a*x+y

y
NSEW

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020. 84



More on the Cerebras WSE

https://www.youtube.com/watch?v=x2-gB0J7KHw

Thinking Outside the Die:

Architecting the ML Accelerator of the Future

Sean Lie
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