
Digital Design & Computer Arch.
Lecture 20: SIMD Processors

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Spring 2022
12 May 2022

Other Execution Paradigms
■ Dataflow (at the ISA level)

■ Superscalar Execution

■ VLIW

■ Systolic Arrays

■ Decoupled Access Execute

■ SIMD Processing (Vector and Array processors)

■ Graphics Processing Units (GPUs)

2

Micro-architecture

SW/HW Interface

Program/Languag
e

Algorithm

Problem

Logic

Devices

System Software

Electrons

Readings for this Week
■ Required

■ Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

■ Recommended
❑ Peleg and Weiser, “MMX Technology Extension to the Intel

Architecture,” IEEE Micro 1996.

3

Exploiting Data Parallelism:
SIMD Processors and GPUs

SIMD Processing:
Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy of Computers
■ Mike Flynn, “Very High-Speed Computing Systems,” Proc. of

IEEE, 1966

■ SISD: Single instruction operates on single data element
■ SIMD: Single instruction operates on multiple data elements

❑ Array processor
❑ Vector processor

■ MISD: Multiple instructions operate on single data element
❑ Closest form: systolic array processor, streaming processor

■ MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
❑ Multiprocessor
❑ Multithreaded processor

6

Flynn’s Taxonomy of Computers
■ Mike Flynn, “Very High-Speed Computing Systems,” Proc. of

IEEE, 1966

7

MISD Example from Flynn

8Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 1966

Similar to a “generalized” systolic array

Lecture 19b: Systolic Array Architectures

9https://youtu.be/1SSqV7Y75oU?t=2316

https://youtu.be/1SSqV7Y75oU?t=2316

SIMD Example from Flynn

10Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 1966

Similar to an “array processor”

Flynn’s Taxonomy of Computers

■ Mike Flynn, “Very High-Speed Computing Systems,” Proc. of
IEEE, 1966

■ SISD: Single instruction operates on single data element
■ SIMD: Single instruction operates on multiple data elements

❑ Array processor
❑ Vector processor

■ MISD: Multiple instructions operate on single data element
❑ Closest form: systolic array processor, streaming processor

■ MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
❑ Multiprocessor
❑ Multithreaded processor

11

Data Parallelism
■ Concurrency arises from performing the same operation on

different pieces of data
❑ Single instruction multiple data (SIMD)
❑ E.g., dot product of two vectors

■ Contrast with data flow
❑ Concurrency arises from executing different operations in parallel (in

a data driven manner)

■ Contrast with thread (“control”) parallelism
❑ Concurrency arises from executing different threads of control in

parallel

■ SIMD exploits operation-level parallelism on different data
❑ Same operation concurrently applied to different pieces of data
❑ A form of ILP where instruction happens to be the same across data

12

SIMD Processing
■ Single instruction operates on multiple data elements

❑ In time or in space
■ Multiple processing elements (PEs), i.e., execution units

■ Time-space duality

❑ Array processor: Instruction operates on multiple data
elements at the same time using different spaces (PEs)

❑ Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space (PE)

13

Storing Multiple Data Elements: Vector Registers

■ Each vector data register holds N M-bit values
❑ Each register stores a vector
❑ Not a (single) scalar value as we saw before

14

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

V0

M-bit wide

V1 V2

M-bit wide

PE

Array vs. Vector Processors

15

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR 🡨 A[3:0]
ADD VR 🡨 VR, 1
MUL VR 🡨 VR, 2
ST A[3:0] 🡨 VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

SIMD Array Processing vs. VLIW
■ VLIW: Multiple independent operations packed together into a “long inst.”

16

SIMD Array Processing vs. VLIW
■ Array processor: Single operation on multiple (different) data elements

17

Lecture 19a: VLIW Architectures

18https://youtu.be/1SSqV7Y75oU

https://youtu.be/1SSqV7Y75oU

Vector Processors (I)
■ A vector is a one-dimensional array of numbers
■ Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)
C[i] = (A[i] + B[i]) / 2

■ A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

■ Basic requirements
❑ Need to load/store vectors 🡪 vector registers (contain vectors)
❑ Need to operate on vectors of different lengths 🡪 vector length

register (VLEN)
❑ Elements of a vector might be stored apart from each other in

memory 🡪 vector stride register (VSTR)
■ Stride: distance in memory between two elements of a vector

19

■ A and B matrices, both stored in memory in row-major order

■ Load A’s row 0 (A00 through A05) into vector register V1
❑ Each time, increment address by 1 to access the next column
❑ Accesses have a stride of 1

■ Load B’s column 0 (B00 through B50) into vector register V2
❑ Each time, increment address by 10 to access the next row
❑ Accesses have a stride of 10

Vector Stride Example: Matrix Multiply

A4x6 B6x10 → C4x10

Dot product of each row vector of
A with each column vector of B

A

Linear Memory

B

0
1
2
3
4
5
6

0
1
2
3
4
5
6
7
8
9

10

Vector Processors (II)
■ A vector instruction performs an operation on each element

in consecutive cycles
❑ Vector functional units are pipelined
❑ Each pipeline stage operates on a different data element

■ Vector instructions allow deeper pipelines
❑ No intra-vector dependencies 🡪 no hardware interlocking

needed within a vector
❑ No control flow within a vector
❑ Known stride allows easy address calculation for all vector

elements
■ Enables easy loading (or even early loading, i.e., prefetching) of

vectors into registers/cache/memory

21

Vector Processor Advantages
+ No dependencies within a vector

❑ Pipelining & parallelization work really well
❑ Can have very deep pipelines (without the penalty of deep pipelines)

+ Each instruction generates a lot of work (i.e., operations)
❑ Reduces instruction fetch bandwidth requirements
❑ Amortizes instruction fetch and control overhead over many data

--> Leads to high energy efficiency per operation

+ No need to explicitly code loops
❑ Fewer branches in the instruction sequence

+ Highly regular memory access pattern

22

Vector Processor Disadvantages
-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
 -- Very inefficient if parallelism is irregular

 -- How about searching for a key in a linked list?

23Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Recommended Paper: VLIW

24Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Amdahl’s Law
■ Amdahl’s Law

❑ f: Parallelizable fraction of a program
❑ N: Number of processors

❑ Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

■ Maximum speedup limited by serial portion: Serial bottleneck

■ All parallel machines “suffer from” the serial bottleneck

25

Speedup =
1

+1 - f f
N

Recommended Paper: Amdahl’s Law

26

Lecture on Parallelism & Heterogeneity I

27https://youtu.be/GLzG_rEDn9A?t=7211

https://youtu.be/GLzG_rEDn9A?t=7211

Lecture on Parallelism & Heterogeneity II

28https://youtu.be/P8l3SMAbyYw

https://youtu.be/P8l3SMAbyYw

Vector Processor Limitations
-- Memory (bandwidth) can easily become a bottleneck,

especially if
1. compute/memory operation balance is not maintained
2. data is not mapped appropriately to memory banks

29

Vector Processing in More Depth

Vector Registers
■ Each vector data register holds N M-bit values
■ Vector control registers: VLEN, VSTR, VMASK
■ Maximum VLEN can be N

❑ Maximum number of elements stored in a vector register
■ Vector Mask Register (VMASK)

❑ Indicates which elements of vector to operate on
❑ Set by vector test instructions

■ e.g., VMASK[i] = (Vk[i] == 0)

31

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Vector Functional Units
■ Use a deep pipeline to execute

element operations
🡪 fast clock cycle

■ Control of deep pipeline is
simple because elements in
vector are independent

32

V
1

V
2

V
3

V1 * V2 🡪 V3

Six stage multiply pipeline

Slide credit: Krste Asanovic

Vector Machine Organization (CRAY-1)
■ CRAY-1
■ Russell, “The CRAY-1

computer system,”
CACM 1978.

■ Scalar and vector modes
■ 8 64-element vector

registers
■ 64 bits per element
■ 16 memory banks
■ 8 64-bit scalar registers
■ 8 24-bit address registers

33

Recommended Paper

Russell,
“The CRAY-1 computer system,”
CACM 1978.

34

CRAY X-MP-28 @ ETH (CAB, E Floor)

35

CRAY X-MP System Organization

36

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

CRAY X-MP Design Detail

37

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

CRAY X-MP CPU Functional Units

38

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

CRAY X-MP System Configuration

39

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

Seymour Cray, Leader in Supercomputer Design

40

"If you were plowing a field, which would you
rather use: Two strong oxen or 1024
chickens?"

© amityrebecca / Pinterest. https://www.pinterest.ch/pin/473018767088408061/

© Scott Sinklier / Corbis. http://america.aljazeera.com/articles/2015/2/20/the-short-brutal-life-of-male-chickens.html

https://en.wikipedia.org/wiki/Seymour_Cray

Vector Machine Organization (CRAY-1)
■ CRAY-1
■ Russell, “The CRAY-1

computer system,”
CACM 1978.

■ Scalar and vector modes
■ 8 64-element vector

registers
■ 64 bits per element
■ 16 memory banks
■ 8 64-bit scalar registers
■ 8 24-bit address registers

41

Loading/Storing Vectors from/to Memory
■ Requires loading/storing multiple elements

■ Elements separated from each other by a constant distance
(stride)
❑ Assume stride = 1 for now

■ Elements can be loaded in consecutive cycles if we can
start the load of one element per cycle
❑ Can sustain a throughput of one element per cycle

■ Question: How do we achieve this with a memory that
takes more than 1 cycle to access?

■ Answer: Bank the memory; interleave the elements across
banks

42

Memory Banking
■ Memory is divided into banks that can be accessed independently;

banks share address and data buses (to minimize pin cost)
■ Can start and complete one bank access per cycle
■ Can sustain N concurrent accesses if all N go to different banks

43

Bank
0

Bank
1

MD
R MAR

Bank
2

Bank
15

MD
R MAR MD

R MAR MD
R MAR

Data bus

Address bus

CPU
Picture credit: Derek Chiou

Vector Memory System
■ Next address = Previous address + Stride
■ If (stride == 1) && (consecutive elements interleaved

across banks) && (number of banks >= bank latency), then
❑ we can sustain 1 element/cycle throughput

44

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base StrideVector Registers

Memory
Banks

Address
Generator

Picture credit: Krste Asanovic

Scalar Code Example: Element-Wise Avg.
■ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

■ Scalar code (instruction and its latency)
 MOVI R0 = 50 1
 MOVA R1 = A 1
 MOVA R2 = B 1
 MOVA R3 = C 1
X: LD R4 = MEM[R1++] 11 ;autoincrement addressing
 LD R5 = MEM[R2++] 11
 ADD R6 = R4 + R5 4
 SHFR R7 = R6 >> 1 1
 ST MEM[R3++] = R7 11
 DECBNZ R0, X 2 ;decrement and branch if NZ

45

304 dynamic instructions

Scalar Code Execution Time (In Order)

46

■ Scalar execution time on an in-order processor with 1 bank
❑ First two loads in the loop cannot be pipelined: 2*11 cycles
❑ 4 + 50*40 = 2004 cycles

■ Scalar execution time on an in-order processor with 16
banks (word-interleaved: consecutive words are stored in
consecutive banks)
❑ First two loads in the loop can be pipelined
❑ 4 + 50*30 = 1504 cycles

■ Why 16 banks?
❑ 11-cycle memory access latency
❑ Having 16 (>11) banks ensures there are enough banks to

overlap enough memory operations to cover memory latency

Vectorizable Loops
■ A loop is vectorizable if each iteration is independent of any

other

■ For I = 0 to 49
❑ C[i] = (A[i] + B[i]) / 2

■ Vectorized loop (each instruction and its latency):
MOVI VLEN = 50 1
MOVI VSTR = 1 1
VLD V0 = A 11 + VLEN – 1
VLD V1 = B 11 + VLEN – 1
VADD V2 = V0 + V1 4 + VLEN – 1
VSHFR V3 = V2 >> 1 1 + VLEN – 1
VST C = V3 11 + VLEN – 1

47

7 dynamic instructions

Basic Vector Code Performance
■ Assume no chaining (no vector data forwarding)

❑ i.e., output of a vector functional unit cannot be used as the
direct input of another

❑ The entire vector register needs to be ready before any
element of it can be used as part of another operation

■ One memory port (one address generator)
■ 16 memory banks (word-interleaved)

■ 285 cycles

48

VLD V0=A VLD V1=B VADD V2=V0+V1 VSHFR V3=V2>>1 VST C=V3

Vector Chaining
■ Vector chaining: Data forwarding from one vector functional

unit to another

49

Memory

V1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1
MULV v3,v1,v2
ADDV v5, v3, v4

Slide credit: Krste Asanovic

Vector Code Performance - Chaining
■ Vector chaining: Data forwarding from one vector functional

unit to another

■ 182 cycles

50

These two VLDs cannot be
pipelined. WHY?

VLD and VST cannot be
pipelined. WHY?

Strict assumption:
Each memory bank
has a single port
(memory bandwidth
bottleneck)

VLD V0=A VLD V1=B

VADD V2=V0+V1

VSHFR V3=V2>>1

VST C=V3

Vector Code Performance – Multiple Memory Ports

■ Chaining and 2 load ports, 1 store port in each bank

■ 79 cycles
■ 19X perf. improvement!

51

VLD V0=A

VLD V1=B

VADD V2=V0+V1

VSHFR V3=V2>>1

VST C=V3

Questions (I)
■ What if # data elements > # elements in a vector register?

❑ Idea: Break loops so that each iteration operates on #
elements in a vector register
■ E.g., 527 data elements, 64-element VREGs
■ 8 iterations where VLEN = 64
■ 1 iteration where VLEN = 15 (need to change value of VLEN)

❑ Called vector stripmining

52

(Vector) Stripmining

53Source: https://en.wikipedia.org/wiki/Surface_mining

https://en.wikipedia.org/wiki/Surface_mining

Questions (II)
■ What if vector data is not stored in a strided fashion in

memory? (irregular memory access to a vector)
❑ Idea: Use indirection to combine/pack elements into vector

registers
❑ Called scatter/gather operations

❑ Doing so also helps with avoiding useless computation on
sparse vectors (i.e., vectors where many elements are 0)

54

Gather/Scatter Operations

55

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
 A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector
ADDV.D vA,vB,vC # Do add
SV vA, rA # Store result

Gather/Scatter Operations
■ Gather/scatter operations often implemented in hardware

to handle sparse vectors (matrices) or indirect indexing
■ Vector loads and stores use an index vector which is added

to the base register to generate the addresses

■ Scatter example

56

Index Vector Data Vector (to Store) Stored Vector (in Memory)

 0 3.14 Base+0 3.14
 2 6.5 Base+1 X
 6 71.2 Base+2 6.5
 7 2.71 Base+3 X

Base+4 X
 Base+5 X

 Base+6 71.2
Base+7 2.71

Conditional Operations in a Loop
■ What if some operations should not be executed on a vector

(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)
if (a[i] != 0) then b[i]=a[i]*b[i]

■ Idea: Masked operations
❑ VMASK register is a bit mask determining which data element

should not be acted upon
VLD V0 = A
VLD V1 = B
VMASK = (V0 != 0)
VMUL V1 = V0 * V1
VST B = V1

❑ This is predicated execution. Execution is predicated on mask bit.
57

Another Example with Masking

58

for (i = 0; i < 64; ++i)
if (a[i] >= b[i])

 c[i] = a[i]
else

 c[i] = b[i]

A B VMASK
1 2 0
2 2 1
3 2 1
4 10 0
-5 -4 0
0 -3 1
6 5 1
-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get
VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C

Masked Vector Instructions

59

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

 Density-Time Implementation
– scan mask vector and only execute

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

 Simple Implementation
– execute all N operations, turn off

result writeback according to mask

Slide credit: Krste Asanovic

Which one is better?

Tradeoffs?

Some Issues
■ Stride and banking

❑ As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

■ Storage format of a matrix
❑ Row major: Consecutive elements in a row are laid out

consecutively in memory
❑ Column major: Consecutive elements in a column are laid out

consecutively in memory
❑ You need to change the stride when accessing a row versus

column

60

■ A and B matrices, both stored in memory in row-major order

■ Load A’s row 0 into vector register V1
❑ Each time, increment address by 1 to access the next column
❑ Accesses have a stride of 1

■ Load B’s column 0 into vector register V2
❑ Each time, increment address by 10
❑ Accesses have a stride of 10

Bank Conflicts in Matrix Multiplication

61

A4x6 B6x10 → C4x10
Dot product of each row vector of
A with each column vector of B

Different strides can lead
to bank conflicts

How do we minimize them?

Minimizing Bank Conflicts
■ More banks

■ More ports in each bank

■ Better data layout to match the access pattern
❑ Is this always possible?

■ Better mapping of address to bank
❑ E.g., randomized mapping
❑ Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.

62

Recommended Reading: Minimizing Bank Conflicts

63Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.

Array vs. Vector Processors, Revisited
■ Array vs. vector processor distinction is a “purist’s”

distinction

■ Most “modern” SIMD processors are a combination of both
❑ They exploit data parallelism in both time and space
❑ GPUs are a prime example we will cover in a bit more detail

64

Recall: Array vs. Vector Processors

65

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR 🡨 A[3:0]
ADD VR 🡨 VR, 1
MUL VR 🡨 VR, 2
ST A[3:0] 🡨 VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Vector Instruction Execution

66

VADD A,B 🡪 C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

Vector Unit Structure

67

Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10, …

Elements
3, 7, 11, …

Slide credit: Krste Asanovic

Vector Instruction Level Parallelism
Can overlap execution of multiple vector instructions

❑ Example machine has 32 elements per vector register and 8 lanes
❑ Completes 24 operations/cycle while issuing 1 vector instruction/cycle

68

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

Automatic Code Vectorization

69

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
⇒ requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Ti
m

e

Slide credit: Krste Asanovic

Vector/SIMD Processing Summary
■ Vector/SIMD machines are good at exploiting regular

data-level parallelism
❑ Same operation performed on many data elements
❑ Improve performance, simplify design (no intra-vector

dependencies)

■ Performance improvement limited by vectorizability of code
❑ Scalar operations limit vector machine performance
❑ Remember Amdahl’s Law
❑ CRAY-1 was the fastest SCALAR machine at its time!

■ Many existing ISAs include (vector-like) SIMD operations
❑ Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

70

Recall: Amdahl’s Law
■ Amdahl’s Law

❑ f: Parallelizable fraction of a program
❑ N: Number of processors

❑ Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

■ Maximum speedup limited by serial portion: Serial bottleneck

■ All parallel machines “suffer from” the serial bottleneck

71

Speedup =
1

+1 - f f
N

SIMD Operations in Modern ISAs

SIMD ISA Extensions
■ Single Instruction Multiple Data (SIMD) extension

instructions
❑ Single instruction acts on multiple pieces of data at once
❑ Common application: graphics
❑ Perform short arithmetic operations (also called packed

arithmetic)
■ For example: add four 8-bit numbers
■ Must modify ALU to eliminate carries between 8-bit values

73

Intel Pentium MMX Operations
■ Idea: One instruction operates on multiple data elements

simultaneously
❑ À la array processing (yet much more limited)
❑ Designed with multimedia (graphics) operations in mind

74

Peleg and Weiser, “MMX Technology
Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register
Opcode determines data type:
8 8-bit bytes
4 16-bit words
2 32-bit doublewords
1 64-bit quadword

Stride is always equal to 1.

MMX Example: Image Overlaying (I)
■ Goal: Overlay the human in image x on top of the background in image y

75Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Image x[]

Image y[] Image new_image[]

Blue
background

Image x[]

Bit mask

Blossom
background

MMX Example: Image Overlaying (II)

76Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image

From MMX to AMX in x86 ISA
■ MMX

❑ 64-bit MMX registers for integers
■ SSE (Streaming SIMD Extensions)

❑ SSE-1: 128-bit XMM registers for integers and single-precision
floating point

❑ SSE-2: Double-precision floating point
❑ SSE-3, SSSE-3 (supplemental): New instructions
❑ SSE-4: New instructions (not multimedia specific), shuffle

operations
■ AVX (Advanced Vector Extensions)

❑ AVX: 256-bit floating point
❑ AVX2: 256-bit floating point with FMA (Fused Multiply Add)
❑ AVX-512: 512-bit

■ AMX (Advanced Matrix Extensions)
❑ Designed for AI/ML workloads
❑ 2-dimensional registers
❑ Tiled matrix multiply unit (TMUL)

77https://www.intel.sg/content/dam/www/public/apac/xa/en/pdfs/ssg/Intel_Processor_Architecture_SIMD_Instructions.pdf
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf

https://www.intel.sg/content/dam/www/public/apac/xa/en/pdfs/ssg/Intel_Processor_Architecture_SIMD_Instructions.pdf
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf

SIMD Operations in
Modern (Machine Learning) Accelerators

Cerebras’s Wafer Scale Engine (2019)

79

Cerebras WSE
1.2 Trillion transistors

46,225 mm2

Largest GPU
21.1 Billion transistors

815 mm2

■ The largest ML
 accelerator chip (2019)

■ 400,000 cores

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Wafer Scale Engine-2 (2021)

80

Cerebras WSE-2
2.6 Trillion transistors

46,225 mm2

Largest GPU
54.2 Billion transistors

826 mm2

■ The largest ML
 accelerator chip (2021)

■ 850,000 cores

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Size, Place, and Route in Cerebras’s WSE
■ Neural network mapping onto the whole wafer is a

challenge

81 James et al., “ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning
Accelerator.”

Multiple possible mappings

An example mapping

Different dies of the wafer work
on different layers of the neural
network: MIMD machine

Recall: Flynn’s Taxonomy of Computers

■ Mike Flynn, “Very High-Speed Computing Systems,” Proc. of
IEEE, 1966

■ SISD: Single instruction operates on single data element
■ SIMD: Single instruction operates on multiple data elements

❑ Array processor
❑ Vector processor

■ MISD: Multiple instructions operate on single data element
❑ Closest form: systolic array processor, streaming processor

■ MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
❑ Multiprocessor
❑ Multithreaded processor

82

A MIMD Machine with SIMD Processors (I)
■ MIMD machine

❑ Distributed memory (no shared memory)
❑ 2D-mesh interconnection fabric

83Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

84 dies4539 tiles

A MIMD Machine with SIMD Processors (II)
■ SIMD processors

❑ 4-way SIMD for 16-bit floating point operands
❑ 48 KB of local SRAM

84Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

4-way SIMD fused-multiply
accumulate (FMAC) units.
AXPY: y = a * x + y

Address registers

Local memory

More on the Cerebras WSE
https://www.youtube.com/watch?v=x2-qB0J7KHw

85

https://www.youtube.com/watch?v=x2-qB0J7KHw

Digital Design & Computer Arch.
Lecture 20: SIMD Processors

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Spring 2022
12 May 2022

