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Other Execution Paradigms

= Dataflow (at the ISA level)

= Superscalar Execution

. VLIW et |

= Systolic Arrays

= Decoupled Access Execute

= SIMD Processing (Vector and Array processors)

= Graphics Processing Units (GPUs)




Readings for this Week

Required

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

Recommended

o Peleg and Weiser, "MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.



Exploiting Data Para

lelism:

SIMD Processors anc

GPUs




SIMD Processing:
Exploiting Regular (Data) Parallelism




Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor




Recall: SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements (PEs), i.e., execution units

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces (PESs)

o Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space (PE)



Recall: Array vs. Vector Processors

Instruction Stream

LD VR €< A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR VECTOR PROCESSOR

Same op @ same time

Different ops @ time

po| b1 [LD2 b3 LDO
S
ADO| AD1 |AD2 AD3 LD1| ADO
MUO| MU1 [MU2 MU3 LD2 | AD1 |MUO
STO| ST1 |ST2 ST3 [LDS AD2 MUl STO]
—
Different ops @ same space AD3 MU2 ST1
v MU3 ST2
Time Same op @ space ST3

«<——Space——> «<——Space——>



Recall: Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N concurrent accesses if all N go to different banks

Bank Bank Bank | .sssssssssssssssssssssss Bank

0 1 2 15

MDR|| MAR || MDR|| MAR || MDR|| MAR MDR| | MAR
Data bus

A

Address bus

CPU

Picture credit: Derek Chiou



Recall: Vector Instruction Execution

Execution using
one pipelined
functional unit

VADD A,B > C

Execution using
four pipelined
functional units

A[6] B[6]
A[5] B[5]
Al4] B[4]
A[3] B[3]
’ ’
Cvy
| cl21
RO
Time T

C[0]

Slide credit: Krste Asanovic

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
b b b b

> TR ] ] ] ] 1

\ C[8] / \ C[9] / \C[lO] / \C[ll] /
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C[0] C[1] C[2] C[3]

< Space >
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Recall: Vector Unit Structure

Functional Unit
/

(T

/

/

Partitiongd\_ |

—4

Vector 1 1 1
Registers
~L_ Elements O, Elements 1, Elements 2, Elements 3,
4,8, .. 6, 10, ... 7,11, ..

Lane

Memory Subsystem

Slide credit: Krste Asanovic
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Recall: Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o Example machine has 32 elements per vector register and 8 lanes
o Completes 24 operations/cycle while issuing 1 vector instruction/cycle
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Slide credit: Krste Asanovic 12



Recall: Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built intc the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
Jow-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 13



Automatic Code Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + B[i]; .
Scalar Sequential Code Vectorized Code

1 2 Vector Instruction

: Vectorization is a compile-time reordering of
: operation sequencing
: = requires extensive loop dependence analysis

Slide credit: Krste Asanovic 14



Vector/SIMD Processing Summary

Vector/SIMD machines are good at exploiting regular data-
level parallelism

o Same operation performed on many data elements

o Improve performance, simplify design (no intra-vector
dependencies)

Performance improvement limited by vectorizability of code
o Scalar operations limit vector machine performance

o Remember Amdahl’s Law

o CRAY-1 was the fastest SCALAR machine at its time!

Many existing ISAs include (vector-like) SIMD operations
o Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

15



Recall: Amdahl’s L.aw

Amdahl’s Law

a f: Parallelizable fraction of a program
a N: Number of processors

Speedup =

1-f + L

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

All parallel machines “suffer from” the serial bottleneck

16



SIMD Operations in Modern ISAs




SIMD ISA Extensions

Single Instruction Multiple Data (SIMD) extension
instructions

o Single instruction acts on multiple pieces of data at once
o Common application: graphics

o Perform short arithmetic operations (also called packed
arithmetic)

For example: add four 8-bit numbers
Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, Ssl

32 24 23 16 15 87 0  Bit position

L a, $s0

b, $s1

a;+b, | a,+b, | a,+b, | a;+b, | $s2

18



Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

2 A /aarray processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

63 8 7

0

(@

63 16 15

(b)

63 . -32 31

(c)
63

(d)

Figure 1. MMX technology data types: packed byte (a),

packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.
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MMX Example: Image Overlaying (1)

= Goal: Overlay the human in image X on top of the background in image y

Image new_image

Blue
backgrou

Figure 8. Chroma keying: image overlay using a background color. o f[?r (=0, i<image HR l+.+} { .
if (xli] == Blue) new _imagclil =ylil;

clse new imageii] = x[i;

PCMPEQB MM1, MM3

MM1| Blue | Blue | Blue Blue | Blue | Biue Blue Blue
_ _ ~
Image X[ | MM3 | X7!=blue | X6!=blue | X5=blue | X4=blue | X3l=blue|X2!=blue | X1=blue | XO=blue | ™.
Bit mask MM1 | 0x0000 | 0x0000 | OXFFFF | OxFFFF | 0x0000 | 0x0000 | OXFFFF | OxFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 20



MMX Example: Image Overlaying (1I)

PAND MM4, MM1 _ Y = Blossom image PANDN MM1, MM3 X =Woman’s image
Mva [@ Y, a[@Y, df v dle Yl YEP YEP Y,@F V.8 MM1[0x0000]0x0000]0xFFFF [0xFFFF [0x0000]0~0000]0xFFFFJ0xFFFF|
MM1 [0x0000 | 0x0000[0xFFFF[OxFFFF [0x0000]0x0000[OxFFFFJOXFFFF] MM3] Xz | Xo [ X5 | Xa [ X [ X | X ] X |
MM4 [0x0000[0<0000]F Y5 9% Y, 410-0000[0>0000(% Y49 Yo& MM1| X, | Xg [0x00000x0000] X3 | X, [0x000d|0x000b|

POR MM4, MM |
MMa[ X, | Xe [PY P Yal] X | Xo [PV, Yoo

rode oporation s

for (i=0; i<image size; i++) ]
if (xli] == Blue) new_imagclil =v[il;
clse new imageli] = x[il;

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.

| Movg B ~mm3, mem1.* /" Load .éighl pixels from
‘Movg ~~ mm4,mem2 /" Load eight pixels from the

o _ ‘blossom image
- Pcmpegb. mm1, mm3 ' -

Pand  mmd, mmi.
Pandn  mm1, mm3

Por - mmé4,mmt .

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 21




From MMX to AMX 1n x86 ISA

MMX
o 64-bit MMX registers for integers

SSE (Streaming SIMD Extensions)

o SSE-1: 128-bit XMM registers for integers and single-precision
floating point

o SSE-2: Double-precision floating point

o SSE-3, SSSE-3 (supplemental): New instructions

o SSE-4: New instructions (not multimedia specific), shuffle operations
AVX (Advanced Vector Extensions)

o AVX: 256-bit floating point

o AVX2: 256-bit floating point with FMA (Fused Multiply Add)
o AVX-512: 512-bit

AMX (Advanced Matrix Extensions)

o Designed for AI/ML workloads

o 2-dimensional registers

o Tiled matrix multiply unit (TMUL)

https://www.intel.sg/content/dam/www/public/apac/xa/en/pdfs/ssa/Intel _Processor_Architecture SIMD _Instructions.pdf 22
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14 AVX-512 Vector ISA Kirill Yukhin 20140711.pdf



https://www.intel.sg/content/dam/www/public/apac/xa/en/pdfs/ssg/Intel_Processor_Architecture_SIMD_Instructions.pdf
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf

SIMD Operations 1n
Modern (Machine Learning) Accelerators




Cerebras’s Water Scale Engine (2019)

= The largest ML
accelerator chip (2019

= 400,000 cores

J £}
T TAIWAN 1723A1

PFBY82.M00 &t

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/ 24



https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Water Scale Engine-2 (2021)

= The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54.2 Billion transistors
46,225 mm?2 826 mm?

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-bhig-chips-for-deep-learning/ 25



https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Size, Place, and Route in Cerebras’s WSE

Neural network mapping onto the whole wafer is a

Cha”enge An example mapping

Kernel graph with layers

Multiple possible mappings
LT L

o~ o~
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| x | x % x <
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| | "
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:

Different dies of the wafer work
on different layers of the neural
network: MIMD machine

Layers mapped on Wafer Scale Engine

James et al., “ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning Accelerator.” 26



Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

27



A MIMD Machine with SIMD Processors (1)

MIMD machine
o Distributed memory (no shared memory)
o 2D-mesh interconnection fabric

Single tile Single die Wafer Scale Engine
A
[ = ] ------------- 1
! :
|
| DSR
1| Control | ; ) !
: 1| file . :
Router : ,[l], :
! X _{Memory|
e T :
| =
I FMAC " o
: Scheduler] ')_/\ | © \
1
| -
| y !
! |
l l Core | —1
o 51 tiles = 12 dies g
4539 tiles 84 dies

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

7 dies

28



A MIMD Machine with SIMD Processors (II)

SIMD processors
o 4-way SIMD for 16-bit floating point operands
o 48 KB of local SRAM

NSEW

M Single tile

”II[T ____________ | Address registers

Control | ;

Router

~ ___—| Local memory
n_qMemory L=
W

1 FMAC
IScheduler]

|

|

|

|

|

|

|

|

I X
| |—b
|

|

|

|

|

|

|

|

|

4-way SIMD fused-multiply

I Core accumulate (FMAC) units.
AXPY.y=a*x+y

NSEW

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020. 29



More on the Cerebras WSE

https:/ /www.youtube.com/watch?v=x2-gB0J7KHw

Thinking Outside the Die:

Architecting the ML Accelerator of the Future

Sean Lie
Co-founder & Chief HW Architect, Cerebras

SAFARI Live Seminar - Thinking Outside the Die: Architecting the ML Accelerator of the Future
i cheduled for Feb 28, 2022

wait
e Onur Mutlu Lectures
&> 22.6K subscribers



https://www.youtube.com/watch?v=x2-qB0J7KHw

Fine-Grained Multithreading




Fine-Grained Multithreading

= Idea: Fetch from a different thread every cycle such that no
two instructions from a thread are in the pipeline concurrently
o Hardware has multiple thread contexts (PC+registers per thread)
o Threads are completely independent

o No instruction is fetched from the same thread until the prior
branch/instruction from the thread completes

Instruction Operands

¥

+ No logic needed for handling control and Stream 8 Instruction
data dependences within a thread Strg;g'r:;gsggﬁgﬁim
+ High thread-level throughput T
-- Single thread performance suffers e tion Phase
-- Extra logic for keeping thread contexts
-- Throughput loss when there are not Stream 4 Instruction
Result Store

enough threads to keep the pipeline full

Each pipeline stage has an instruction from a different, completely-independent thread




Fine-Grained Multithreading: Basic Idea

InstrD

Unit

31:26

Op

20 | Funct

Al

PCPIlus4F

A2
A3
WD3

)
Control

1ol Sign Extend I

PCPIlus4D

CLK CLK CLK
RegWriteD 67 RegWriteE 6 RegWriteM 67 RegWriteWw
MemtoRegD MemtoRegE MemtoRegM MemtoRegW
MemWriteD MemWriteE MemWriteM
BranchD BranchE BranchM
ALUControlD ALUControlE,,, PCSrcM
ALUSrcD ALUSIcE
RegDstD RegDstE
] ALUOuUtW
| CLK
|
WE3 SrcAE ZeroM WE
RD1
- ALUOUtM ReadDataW
~ ~>_| = A RDH
RD2 0)sreee| < Data
; 1 _ Memory
Register WriteDataE WriteDataM o~
File
RtE ~_ ) ) _
— 0 WriteRegE, WriteRegM, WriteRegW,,
1
L —
: <2
Signimme PCBranchM
+
PCPIlus4E

ResultW

Each pipeline stage has an instruction from a different, completely-independent thread

We need a PC and a register file for each thread + muxes and control




Fine-Grained Multithreading (1)

Idea: Fetch from a different thread every cycle such that no
two instructions from a thread are in the pipeline concurrently

Tolerates control and data dependence resolution latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Improves thread-level throughput but sacrifices per-thread
throughput & latency

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
34



Multithreaded Pipeline Example

select

Slide credit: Joel Emer

:x >
15 —|IR— GpPR1 =
A > >
Y
N
[ - [1
N "2 W

35



Sun Niagara Multpresded Pipeline

Crosshar
Interface

Instruction type

Kongetira et al., "Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

36




Fine-Grained Multithreading

Advantages

+ No need for dependence checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, pipeline utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, ...), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Dependence checking logic between threads may be needed (load/store)
37



Lecture on Fine-Grained Multithreading

Fine-Grained Multithreading -
Idea: Fetch from a different thread every cycle such that ndiSs *
two instructions from a thread are in the pipeline concurrently
2 Hardware has multiple thread contexts (PC+registers per thread)
2 Threads are completely independent

2 No instruction is fetched from the same thread until the prior
branch/instruction from the thread completes

Instruction Operands

¥
+ No logic needed for handling control and  [Stream 3 nstruction

Instruction Fetch

data dependences within a thread ot bl
+ High thread-level throughput A I
-- Single thread performance suffers Riicn Phase
-- Extra logic for keeping thread contexts :
-- Throughput loss when there are not tream 4 Instruction
Result Store

enough threads to keep the pipeline full

> M =

Digital Design & Computer Architecture - Lecture 14: Pipelined Processor Design (Spring 2022)

1,066 views * Streamed live on Apr 8, 2022 [ﬁ 51 93 DISLIKE A> SHARE % CLIP =% SAVE

E\ Onfjr Mutlu Lectures oA A
&> 24.5K subscribers -

Digital Design and Computer Architecture, ETH Ziirich, Spring 2022 (
https://safari.ethz.ch/digitaltechnik...)

Lecture 14: Pipelined Processor Design
Lecturer: Professor Onur Mutlu (https:/people.inf.ethz.ch/omutlu/)
Date: April 8,2022

https://youtu.be/XaW 0O9nKPe0?t=5070



https://youtu.be/XaW_O9nKPe0?t=5070

Lectures on Fine-Grained Multithreading

= Digital Design & Computer Architecture, Spring 2022, Lecture 14

o Pipelined Processor Design (ETH, Spring 2022)
o https://youtu.be/XaW Q9nKPe0?t=5070

= Digital Design & Computer Architecture, Spring 2020, Lecture 18c

o Fine-Grained Multithreading (ETH, Spring 2020)

o https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL50Q2s0XY2Zi FRrloMa2fU
YWPGIiZUBQo2&index=26

https:/ /www.youtube.com/onurmutlulectures 39



https://youtu.be/XaW_O9nKPe0?t=5070
https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=26
https://www.youtube.com/onurmutlulectures

GPUs (Graphics Processing Units)




GPUs are SIMD Engines Underneath

= The instruction pipeline operates like a SIMD pipeline (e.q.,
an array processor)

= However, the programming is done using threads, NOT
SIMD instructions

= To understand this, let's go back to our parallelizable code
example

= But, before that, let’s distinguish between
a Programming Model (Software)
VS.
o Execution Model (Hardware)

41



Programming Model vs. Hardware Execution Model

Programming Model refers to how the programmer expresses
the code

o E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), ...

Execution Model refers to how the hardware executes the
code underneath

o E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, ...

Execution Model can be very different from the Programming
Model

o E.g., von Neumann model implemented by an OoO processor
o E.g., SPMD model implemented by a SIMD processor (a GPU)

42



How Can You Exploit Parallelism Here?

for (i=0; i < N; i++)
Scalar Sequential Code  C[1l = A[1] + B[1];

Let's examine three programming
options to exploit instruction-level
parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

43



Prog. Model 1: Sequential (SISD) ™ &1} = atsy « a4,

Scalar Sequential Code ™ Can be executed on a:

= Pipelined processor

= Out-of-order execution processor

o Independent instructions executed
when ready

a Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

o In other words, the loop is dynamically
unrolled by the hardware

= Superscalar or VLIW processor

o Can fetch and execute multiple
instructions per cycle

44



Prog. Model 2: Data Parallel (SIMDJ™ i) = ati) + ati1;

Vectorized Code

Scalar Sequential Code

VLD A->V1

VLD B—>V2

VADD V1+V2->V3

VST V3->C

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)
45




for (i=0; i < N; i++)

Prog. Model 3: Multithreaded = crar'= asr + a1

Sca/ar Sequential Code

" Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

46



i < N; i++)

Prog. Model 3: Multithreaded T ola) = ati) + BEA1;

1 > Realization: Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine

Single Instruction Multiple Thread




A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

o A warp is essentially a SIMD operation formed by hardware!

48



. for (i=0; i < N; i++)
SPMD on SIMT Machme C[i] = A[i] + B[i];

Vs

~N

(i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:

Single Instruction Multiple Thread




Graphics Processing Units

SIMD not |

“xposed to Programmer (SIMT)




SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

5 [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently (on any type of scalar pipeline) > MIMD processing

o Can group threads Into warps flexibly - I.e., can group threads
that are supposed to fruly execute the same instruction >

dynamically obtain and maximize benefits of SIMD processing
51



Fine-Grained Multithreading of = for (i=0; 1 < 57 144
C[i] = A[i] + B[i];

Warps
= Assume a warp consists of 32 threads

= If you have 32K iterations, and 1 iteration/thread - 1K warps

= Warps can be interleaved on the same pipeline - Fine grained
multithreading of warps

Warp 20 at PC X+2

Iter. Iter.
29*32 + 1 20*32 + 2

52



Warps and Warp-Level FGMT

Warp: A set of threads that execute the same instruction
(on different data elements) > SIMT (Nvidia-speak)

All threads run the same code
Warp: The threads that run lengthwise in a woven fabric ...

-~ | Thread Warp 3

- ‘I Thread Warp 8
)4
Thread Warp Common PC 7 :
Scalan Scalar| Scalar Scalan ! Thread Warp 7
ThreadThread Thread+ ¢ ¢ |Threag ' ¢
W X Y Z . .
SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.




High-Level View ot a GPU

;’ (PC, Mask) H

' I-Cache

Shader| |Shader| |Shader| ,,, | Shader *

Core Core Core Core
Decode

b4 |
Interconnection Network '1.1 g Q| [ :
3 3 o e e |e
L |
Memory | | Memory Memory | | :_;_u -:au' -;,—q .;,—':! |
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Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction ;

Y .
(on different data elements) N o scheduling
Warp 7/ .
Fine-grained multithreading l Threadi L] s pipeine
2 One instruction per thread in | MRgen
pipeline at a time (No | Decode |
interlocking) )l X
o Interleave warp execution to vy ¥ Y | Warps accessing
hide latencies % %E %2 memory hierarchy
Register values of all threads stay [ D-Cache Thread'Wam 1
in register file AlHIR] o] i Thread Warp 2
tFﬁgflrgnecréables long latency —Wiiback ] | [Thread Warp6]

o Millions of pixels

Slide credit: Tor Aamodt 55



Warp Execution (Recall the Slide)

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

32-thread warp executing ADD A[tid],B[tid] = CJ[tid]

A[6] B[6]
A[5] B[5]
Al4] B[4]
A[3] B[3]
’ ’
Cvy
| cl21
RO
Time T

C[0]

Slide credit: Krste Asanovic

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
b b b b

> TR ] ] ] ] 1

\ C[8] / \ C[9] / \C[lO] / \C[ll] /

| aw as o ae ) an
C[0] C[1] C[2] C[3]

< Space >
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SIMD Execution Unit Structure

Registers
for each
Thread

Functional Unit
/

\_ !

(T

[
Y

Lane

\

1 1 1 (—
Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,4,8, .. 1,5,9, .. 2, 6,10, ... 3,7, 11, ..

‘\ A 4 V</,7 ‘\ A 4 <]/7 ‘\ A 4 V</,7 ‘\ A 4 V</,7

L[ L L L L[

SRR N I R AR
j — . . .

Memory Subsystem

Slide credit: Krste Asanovic




Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
00 0 e A A A A A
time oo o000 AAAAAVYZ fammmEEEE
00 0 e AAAAAAA A EEEEEE
0100 |0|0 A A A A AAAANEEEEEEDE
0100 |0|0 AAAAAM A \|HEEEEEEENE
O|0|0|0|0 AAAAALVE_IIIIIIIII
0100 |0|0 AAAAAAA A EEE EEEE
A A AAAAAAINEEEEEEDE
H EEEENENEN

| Warp issue >

Slide credit: Krste Asanovic 58



SIMT Memory Access

= Same instruction in different threads uses thread id to
index and access different data elements

Let's assume N=16, 4 threads per warp - 4 warps

10 11 12 13 14 15 Threads

10 11 12 13 14 15 Data elements

Slide credit: Hyesoon Kim 59



Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU

o Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. SOUSSUNTSY BYOOIMOIMHY OO OO
Parallel Kernel (device)
(Ll Ll Ll 7{ccccccl
KernelA<<<nBlk , nThr>>> (args) ; ) )()()) DD >3 >>>>>>> > > )())) DD
Serial Code (host)
. DI BYOOIMMOMHY OO YOOI
Parallel Kernel (device)
Ll Ll Ll 7{ccccccl
KernelB<<<nBlk , nThr>>> (args) ; 2 OSSSSSSSSSS OO SSSSSSSSSSS

Slide credit: Hwu & Kirk
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Sample GPU SIMT Code (Simplified)

CPU code
[for (il = 0; ii < 100000; +-+ii)

{
Clii] = A[ii] + BI[ii];

¥
CUDA code I

f// there are 100000 threads \
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];

—

C[tid] = varA + varB;

J J

Slide credit: Hyesoon Kim
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Sample GPU Program (Less Simplified)

CPU Program GPU Program

__global __ add_matrix

( float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int ] = blockldx.y * blockDim.y + threadldx.y;
int index =1+ j*N;
if(1<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock( blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>( a, b, c, N);

}

Slide credit: Hyesoon Kim 62



Lecture on GPU Programming

Data Reuse: Tiling

To take advantage of data reu:::e, we divide the input into tiles
that can be loaded into shared memory

__shared _ int 1 _data[(L_SIZE+2)*(L_SIZE+2)];

Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][j] * 1_data[(i+l_row-1)*(L_SIZE+2)+j+l col-1];

1:27:42 / 2:33:03

© ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 25: GPU Programming (ETH Ziirich, Fall 2020)

2,497 views * Dec 29, 2020 [6 46 gl DISLIKE A} SHARE =+ SAVE
@ Onur MutIu.Lectures SUBSCRIBED Q
20.8K subscribers =

>

https://youtu.be/AkYnuqVpCug
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Heterogeneous Systems Course (Spring 2022)

'\,"“;“ W SAFARI Project & Seminars Courses

= Short weekly lectures 5 oo 202

Trace: + _in_memory + _systems

| H a n d S- O n p rOJ eCtS :::” Hands-on Acceleration on Heterogeneous "::.:c:::;::m on

SoftMC

iy Computing Systems T g

= Accelerating Genomics Edit Course Description

= Mobile Genomics Course Description Mentors

* Processing-in-Memory Lecture Video Playlists on

* Heterogeneous Systems The increasing difficulty of scaling the performance and efficiency of YouTube

* Modem SSDs CPUs every year has created the need for turning computers into Spring eDicE eatinga Fichedtde

Learning Materials
Assignments.

Hardware/Software Co-design heterogeneous sy Jie., of multiple types of

processors that can suit better different types of workloads or parts of

them. More than a decade ago, Graphics Processing Units (GPUs)

became general-purpose parallel processors, in order to make their outstanding processing capabilities

available to many workloads beyond graphics. GPUs have been critical key to the recent rise of Machine

. Learning and Atrtificial Intelligence, which took unrealistic training times before the use of GPUs. Field-

ey ko v L ﬁ Onur Mutlu Lectures Programmable Gate Arrays (FPGAs) are another example computing device that can deliver impressive
— benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of

specialized accelerators (e.g., Tensor Processing Units for neural networks), and (2) near-data processing

HetSys Course: Lecture 2: SIMD Processing and GPUs (Spring 2022) architectures (i.e., placing compute capabilities near or inside memory/storage).

Heterogencous Lomputing Systems

HetSys Course: Lecture 1: Hands-on Acceleration on Heterogeneous Computing Systems (Spring 2022)

= The and of Moo creatnd T ated for PaterogeneoLs
iy

2
PLAY ALL Erm e = Despite the great advances in the adoption of t in recent years, there are still many
ct to tackle, for
Livestream - P&S Hands-on i . - HetSys Course: Lecture 3: GPU Software Hierarchy (Spring 2022) « Heterogeneous implementations (using GPUs, FPGAs, TPUs) of modern applications from
A I ti 3 3 4] important fields such as bioinformatics, machine learning, graph processing, medical imaging,
cceleration on Ceefls 'm Onur Mutly Lectures personalized medicine, robotics, virtual reality, etc.
Heterogenec)us cOmputing = Scheduling techniques for heterogeneous systems with different general-purpose processors and
) accelerators, e.g., kernel offloading, memory scheduling, etc.
Systems (Spl'lng 2022) a Ej" :"_4 HetSys Course: Lecture 4: GPU Memory Hierarchy (Spring 2022) « Workload characterization and programming tools that enable easier and more efficient use of
8 videos - 396 views + Updated 4 days ago 4 - Onur Mutlu Lectures heterogeneous gystams;
= y‘: ~ = If you are enthusiastic about working hands-on with different software, hardware, and architecture
projects for heterogeneous systems, this is your P&S. You will have the opportunity to program
HetSys Course: Lecture 5: GPU Performance Considerations (Spring 2022) heterogeneous systems with different types of devices (CPUs, GPUs, FPGAs, TPUs), propose
5 R Taciines algorithmic changes to important applications to better leverage the compute power of heterogeneous

systems, understand different workloads and identify the most suitable device for their execution, design
optimized scheduling techniques, etc. In general, the goal will be to reach the highest performance

E f:::m'" SUBSCRIBED [
ures reported for a given important application.

=
- HetSys Course: Lecture 6: Parallel Patterns: Reduction (Spring 2022)
Onur Mutly Lectures Prerequisites of the course:

« Digital Design and Computer Architecture (or equivalent course).
Familiarity with C/C++ programming and strong coding skills.

Interest in future i sres and puti i

Interest in discovering why things do or do not work and solving problems
Interest in making systems efficient and usable

HetSys Course: Lecture 7: Parallel Patterns: Histogram (Spring 2022)

Onur Mutlu Lectures

N . The course is conducted in English.
HetSys Course: Lecture 8: Parallel Patterns: Convolution (Spring 2022)

Onur Mutlu Lectures The course has two main parts:
1. Short weekly lectures on GPU and heterogeneous programming.
2. Hands-on project: Each student develops his/her own project.

https://youtube.com/playlist?list=PL5Q2s0XY2Zi9XrgXR38IM FTimY6h7Gzm https://safari.ethz.ch/projects and seminars/spring2022/doku.php
?id=heterogeneous _systems
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From Blocks to Warps

= GPU cores: SIMD pipelines
o Streaming Multiprocessors (SM)
o Streaming Processors (SP)

= Blocks are divided into warps

o SIMD unit (32 threads)

Block O’s warps
]

Block 1’s warps

t0tlt2.. 131
NNNNNNNNAN

Block 2’s warps

tOtlt2..1t31
NNNNNNNNAN
)

tOtlt2 .. 131
NN

@
©
=
c
=
IS}
o
®
»
(%2
o
=

Warp Scheduler || Warp Scheduler

Dispatch Unit || Dispatch Unit

P
D
S
wn
o)
T
o

NVIDIA Fermi architecture

(@)
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Warp-based SIMD vs. Traditional SIMD

Traditional SIMD contains a single thread

o Sequential instruction execution; lock-step operations in a SIMD instruction

o Programming model is SIMD (no extra threads) - SW needs to know
vector length

o ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different warp)
- programming model not SIMD

SW does not need to know vector length
Enables multithreading and flexible dynamic grouping of threads
o ISA is scalar > SIMD operations can be formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD

hardware
66



SPMD

Single procedure/program, multiple data
a This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

67



SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

5 [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

a Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction >

dynamically obtain and maximize benefits of SIMD processing




Threads Can Take Different Paths in Warp-based SIMD

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Slide credit: Tor Aamodt

Thread Warp

Common PC

Thread

1

Thread
2

Thread
3

Thread
4

09



Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1 1 1

o Groups scalar threads v

into warps SRV 1 1 1 1 1 1 1 1
Path A
Branch divergence i ; 1 1 1 1
occurs when threads Patﬂ 1 1 1 1

inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

Slide credit: Tor Aamodt 70



Remember: Each Thread Is Independent

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction =2

dynamically obtain and maximize benefits of SIMD processing

If we have many threads
We can find individual threads that are at the same PC
And, group them together into a single warp dynamically

This reduces “divergence” - improves SIMD utilization

a SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)
71



Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

Form new warps from warps that are waiting

o Enough threads branching to each path enables the creation
of full new warps

WarpX 4 ¥ 4 \ - Vidd e v Wwapz
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Dynamic Warp Formation/Merging

= Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

RN
RN
RN
EERRNER
TXIE RN
e oy T } !

Path B

= Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.
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Dynamic Warp Formation Example

x/1111
A y/1111
Legend
x/1110 A_ A
B y/0011 Ir__:l Execu'Fion of Warp x Ir_’| Execu'Fion of Warp y
I_>| at Basic Block A I_>| at Basic Block A
¢ %1000] [ 5 x/0110] [ = x/0001 = =
y/0010 y/0001 y/1100 D
A new warp created from scalar
x/1110 3| threads of both Warp x and y
—» | executing at Basic Block D
p—

E
: I
Baseline °*°° |_>|
>,
. >
Dynamic G
5 5 > > > >l
Warp oool"II_VI > nd | nd > |—>I
: i< idld| s E< E<lg |—>|
Formation > 1> |> >ll> >fll >,

Slide credit: Tor Aamodt



Hardware Constraints Limit Flexibility of Warp Grouping

/ Functional Unit
[f I — B B 1)
[ [ [ [
[\ [ [\ [\

Registers \/T T\ i /T T\ v /T T\ v /T T\ v
for each
Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0, 4,8, .. 1,5,9, .. 2, 6,10, .. 3,7,11, ...

A A A A A A A A
\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4

| \ | \ | \ |
4

<= I <= I <= I

" Can you move any thread \é
Al flexibly to any lane?

Il

\ 4 \ 4 \ 4 \ 4

Memory Subsystem
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Large Warps and Two-Level Warp Scheduling

Two main reasons for GPU resources be underutilized
o Branch divergence

a Long latency operations

Core A” Warps Compute} ............................................................. [A” Warps Compute]
Req Warp 0 < >
Memory Req Warp 1 +— >
System *.
Reg Warp 15« >

»time

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp
Scheduling,” MICRO 2011. 76



Large Warp Microarchitecture Example

Reduce branch divergence by having large warps
Dynamically break down a large warp into sub-warps

Decode Stage

Sub-warp 0 mask
1({1]1(1

OIB|0|I0IB|IO0|O0|2
BIOB|I0|I0|I0|2|0
O|I0OIOIP|IO|I2|0 |0
OB2|0|I0|0|I2|(O0|2

Sub-warp 0 mask
1(1]1(1

Sub-warp 0 mask
1(1]1(1

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.



Two-Level Round Robin

Scheduling in two levels to deal with long latency operations

Core A” Warps Compute} ............................................................. [A” Warps Compute]
Req Warp 0 < > :
Memory Req Warp 1 +— >
System Y
Req Warp 15« >

=t‘§ime
Round Robin Scheduling, 16 total warps :

Group 0 Group 1 Group 0 Group 1 :
Core Computelcompute] .......................................... [Compute ComputeL :
5 Saved Cycles
Req Warp 0 < >
Req Warp 1 < o >
Req Warp 7 : >
Memory
System Req Warp 8 « >

Req Warp 9 < o

v

Req Warp 154 > »time
Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp
Scheduling,” MICRO 2011.




Large Warps and Two-Level Warp Scheduling

Veynu Narasiman, Chang Joo Lee, Michael Shebanow, Rustam
Miftakhutdinov, Onur Mutlu, and Yale N. Patt,

"Improving GPU Performance via Large Warps and Two-Level
Warp Scheduling”

Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December

2011. Slides (ppt)

A previous version as HPS Technical Report, TR-HPS-2010-006,
December 2010.

Improving GPU Performance via Large Warps
and Two-Level Warp Scheduling

Veynu Narasimani Michael Shebanowi Chang Joo Leegq
Rustam Miftakhutdinovi Onur Mutlu§ Yale N. Pattj

1The University of Texas at Austin fNvidia Corporation §Intel Corporation  §Carnegie Mellon University
{narasima, rustam, patt }@hps.utexas.edu mshebanow@nvidia.com chang.joo.lee@intel.com onur@cmu.edu
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An Example GPU




NVIDIA GeForce GTX 285

NVIDIA-speak:
o 240 stream processors
o “SIMT execution”

Generic speak:
o 30 cores
o 8 SIMD functional units per core

NVIDIA, "NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper,” 2008.

Slide credit: Kayvon Fatahalian 81



NVIDIA GeForce GTX 285 “core’’

64 KB of storage
for thread contexts

= multiply-add
= multiply

o = SIMD functional unit, control
shared across 8 units

(registers)

= instruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian
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NVIDIA GeForce GTX 285 “core’’

64 KB of storage
for thread contexts
(registers)

= Groups of 32 threads share instruction stream (each group is

a Warp)

= Up to 32 warps are simultaneously interleaved

= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian
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NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian
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Evolution of NVIDIA GPUs

H#HFunctional Units
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(2009) (2010) (2013) (2014)
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NVIDIA V100

NVIDIA-speak:
o 5120 stream processors
o “SIMT execution”

Generic speak:
o 80 cores
a 64 SIMD functional units per core

a Tensor cores for Machine Learning

NVIDIA, “"NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.
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NVIDIA V100 Block Diagram

PCI Express 3.0 Host Interface

Memory Controller
Joljonuoy Asowaw

Memory Controller
Jononuog Aowew

1olonu0n Loway

5
o
-]
[
-]
(&
2
§
=

Memory Controlier
Jojjonuos Aowonm

https://devblogs.nvidia.com/inside-volta/

80 cores on the V100




NVIDIA V100 Core

—————— 4 157 TFLOPS Single Precision

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit 7.8 TFLOPS Double Precision
Ly | v 125 TFLOPS for Deep Learning (Tensor cores)

INT FPa3 FPaz INT FP33 FP2
INT m: ¥Paz INT FPS PPR
i FARFES tensor TENSOR T, B2 PP TENSOR| TENSOR
- Fpaz vy CORE  CORE wt o3 i) | ‘CORE || | CORE
FRa3 PR32 INT FP33 PP
g faa ]
FF32 FEa2 Sum with
- - FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result

more products

Dispatch Uit (32 thread/cik) Dispatch Unit {32 thread/ctk) -_l_.. . -

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) -

INT INT s pea ) INT INT FPa2 PRE

INT FPa2 PR T EPa2 Fpad
Fraz e WT FPas Feal

PR EER TENSOR TENSOR INT| BER PP TENSOR TENSOR

FPO2 FPYI CORE CORE W PP Fead CORE CORE

FP33 PR32 Pt Fed D -

FP3Y FR3Z FP32 FP2

P32 7R3y P32 PN

FP16 or FP32

FP16 FP16 or FP32

Lo/ LD Lo/ Lo/
8T ST 57 ST SFU

Data Cache

https://devblogs.nvidia.com/inside-volta/
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Tensor Core Microarchitecture (Volta)

= Each warp utilizes two tensor cores
= Each tensor core contains two “octets”
o 16 SIMD units per tensor core (8 per octet)
o 4x4 matrix-multiply and accumulate each cycle per tensor core

FP16 Multiplier A
Pipeline .
\Y/ FP32 Adder Registers SIMD unit
% Accumulator Buffer v (Dot Fl’)eruct)
v | Register File —
g | - | - | |
= Operand Bus 1 — \ ]
<l‘: é — — Operand Bus 2 | ot ]
; - _ — : Imnerand Bus3 g g:i:: \\ N ]
X : TENsoaigc/ X_."/ 5 Vi N7 \\& Unlike conventional SIMD,
< 27 CORE ° s VRt T A VEIY: .
Hﬁ?ﬂ I*EFJH register contents are not
Octet 3 Octet 2 Octet 1 EERREE private to each thread, but
e e i B B ) R e e shared inside the warp
s Fab sl 5 esde—R z 5%
Writeback

Proposed* tensor core microarchitecture

* M. A. Raihan, N. Goli and T. M. Aamodt, "Modeling Deep Learning Accelerator Enabled GPUs," ISPASS 2019. 89



Edge TPU: Baseline Accelerator

ML Model

SAFARI

TPU and Model Characterization
[ ]

\

— % —

Input
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Output
Parameter Activation

‘ Dataflow

PE Array

=mm

B EEm
e

4MB
on-chip buffer
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’/

v
64x64 array
2TFLOPI/s
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Research Lecture on Edge TPU

Root Cause of Accelerator Challenges

The key components of Google Edge TPU are completel
oblivious to layer heterogeneity

* Dataflow

w P E A"ay
bandwidth ‘

Edge accelerators typically take a monolithic approach:
equip the accelerator with an over-provisioned PE array and
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth

Computer Architecture - Lecture 15: Cutting-edge Research in Computer Architecture | (Fall 2021)

689 views * Streamed live on Nov 18, 2021 75 28 CJ DISLIKE A) SHARE =+ SAVE
@ Onur MutIu'Lectures SUBSCRIBED N
&> 20.8K subscribers =

https://youtu.be/KPPfRRPENQgQO?t=2999 N



https://youtu.be/KPPfRRPENgQ?t=2999

Lecture 19b: Systolic Array Architectures

An Example Modern Systolic Array: TPU (II)

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy
by reducing reads and writes of the Unified Buffer [Kun80|[Ram91 |[Ovt15b]. Figure 4 shows that data flows in from the left
and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a
diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new
block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update
one location of each of 256 accumulators. From a correctness perspective, software is unaware of the systolic nature of the

matrix unit, but for performance, it does worry about the latency of the unit

Y '

]]E Partial Sums

FENE

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA 2017.

Digital Design & Computer Arch. - Lecture 19: VLIW and Systolic Array Architectures (Spring 2022)

842 views * Premiered May 6, 2022 [ﬁ 35 g] DISLIKE > SHARE

A Onur Mutlu Lectures

l» 245K subscribers

Digital Design and Computer Architecture, ETH Ziirich, Spring 2022 (
https://safari.ethz.ch/digitaltechnik...)

Lecture 19a: VLIW Architectures
Lecture 19b: Systolic Array Architectures
Lecturer: Professor Onur Mutlu (https:/people.inf.ethz.ch/omutlu/)

https://youtu.be/1SSqV7Y750U?t=2316

Miniplayer (i)

¢ & O )

S CLIP =+ SAVE

SUBSCRIBED

Q
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https://youtu.be/1SSqV7Y75oU?t=2316

NVIDIA A100

= NVIDIA-speak:
0o 6912 stream processors
o “SIMT execution”

=3
NVIDIA. )
l

= Generic speak:
o 108 cores
a 64 SIMD functional units per core

a Tensor cores for Machine Learning
= Support for sparsity
= New floating point data type (TF32)

s https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ 93



https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

NVIDIA A100 Block Diagram

PCI Express 4.0 Host Interface

1l

Memory C

1l

Memory C

1l

Memory C

Memory C:

131]03u09 Aiowsyy | J3jj0u0g KlowRp

Memory C

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

108 cores on the A100

(Up to 128 cores in the full-blown chip)
40MB L2 cache




NVIDIA A100 Core

L1 Instruction Cache

19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)
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https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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Evolution of NVIDIA GPUs (Updated)
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NVIDIA H100 Block Diagram

PCI Express 5.0 Host Interface

Memory Controller
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https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA H100 Core

48 TFLOPS Single Precision*
—_— —— 24 TFLOPS Double Precision*

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)
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https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Food for Thought

Compare and contrast GPUs vs Systolic Arrays

o Which one is better for machine learning?
a Which one is better for image/vision processing?
o What types of parallelism each one exploits?

o What are the tradeoffs?

If you are interested in such questions and more...

o Bachelor’s Seminar in Computer Architecture (HS2022,
FS2023)

o Computer Architecture Master’s Course (H52022)
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Heterogeneous Systems Course (Spring 2022)

'\,"“;“ W SAFARI Project & Seminars Courses

= Short weekly lectures 5 oo 202

Trace: + _in_memory + _systems

| H a n d S- O n p rOJ eCtS :::” Hands-on Acceleration on Heterogeneous "::.:c:::;::m on

SoftMC

iy Computing Systems T g

= Accelerating Genomics Edit Course Description

= Mobile Genomics Course Description Mentors

* Processing-in-Memory Lecture Video Playlists on

* Heterogeneous Systems The increasing difficulty of scaling the performance and efficiency of YouTube

* Modem SSDs CPUs every year has created the need for turning computers into Spring eDicE eatinga Fichedtde

Learning Materials
Assignments.

Hardware/Software Co-design heterogeneous sy Jie., of multiple types of

processors that can suit better different types of workloads or parts of

them. More than a decade ago, Graphics Processing Units (GPUs)

became general-purpose parallel processors, in order to make their outstanding processing capabilities

available to many workloads beyond graphics. GPUs have been critical key to the recent rise of Machine

. Learning and Atrtificial Intelligence, which took unrealistic training times before the use of GPUs. Field-

ey ko v L ﬁ Onur Mutlu Lectures Programmable Gate Arrays (FPGAs) are another example computing device that can deliver impressive
— benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of

specialized accelerators (e.g., Tensor Processing Units for neural networks), and (2) near-data processing

HetSys Course: Lecture 2: SIMD Processing and GPUs (Spring 2022) architectures (i.e., placing compute capabilities near or inside memory/storage).

Heterogencous Lomputing Systems

HetSys Course: Lecture 1: Hands-on Acceleration on Heterogeneous Computing Systems (Spring 2022)

= The and of Moo creatnd T ated for PaterogeneoLs
iy

2
PLAY ALL Erm e = Despite the great advances in the adoption of t in recent years, there are still many
ct to tackle, for
Livestream - P&S Hands-on i . - HetSys Course: Lecture 3: GPU Software Hierarchy (Spring 2022) « Heterogeneous implementations (using GPUs, FPGAs, TPUs) of modern applications from
A I ti 3 3 4] important fields such as bioinformatics, machine learning, graph processing, medical imaging,
cceleration on Ceefls 'm Onur Mutly Lectures personalized medicine, robotics, virtual reality, etc.
Heterogenec)us cOmputing = Scheduling techniques for heterogeneous systems with different general-purpose processors and
) accelerators, e.g., kernel offloading, memory scheduling, etc.
Systems (Spl'lng 2022) a Ej" :"_4 HetSys Course: Lecture 4: GPU Memory Hierarchy (Spring 2022) « Workload characterization and programming tools that enable easier and more efficient use of
8 videos - 396 views + Updated 4 days ago 4 - Onur Mutlu Lectures heterogeneous gystams;
= y‘: ~ = If you are enthusiastic about working hands-on with different software, hardware, and architecture
projects for heterogeneous systems, this is your P&S. You will have the opportunity to program
HetSys Course: Lecture 5: GPU Performance Considerations (Spring 2022) heterogeneous systems with different types of devices (CPUs, GPUs, FPGAs, TPUs), propose
5 R Taciines algorithmic changes to important applications to better leverage the compute power of heterogeneous

systems, understand different workloads and identify the most suitable device for their execution, design
optimized scheduling techniques, etc. In general, the goal will be to reach the highest performance

E f:::m'" SUBSCRIBED [
ures reported for a given important application.

=
- HetSys Course: Lecture 6: Parallel Patterns: Reduction (Spring 2022)
Onur Mutly Lectures Prerequisites of the course:

« Digital Design and Computer Architecture (or equivalent course).
Familiarity with C/C++ programming and strong coding skills.

Interest in future i sres and puti i

Interest in discovering why things do or do not work and solving problems
Interest in making systems efficient and usable

HetSys Course: Lecture 7: Parallel Patterns: Histogram (Spring 2022)

Onur Mutlu Lectures

N . The course is conducted in English.
HetSys Course: Lecture 8: Parallel Patterns: Convolution (Spring 2022)

Onur Mutlu Lectures The course has two main parts:
1. Short weekly lectures on GPU and heterogeneous programming.
2. Hands-on project: Each student develops his/her own project.

https://youtube.com/playlist?list=PL5Q2s0XY2Zi9XrgXR38IM FTimY6h7Gzm https://safari.ethz.ch/projects and seminars/spring2022/doku.php
?id=heterogeneous _systems
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Heterogeneous Systems Course (Fall 2021)

= Short weekly lectures
= Hands-on projects

. mwumewestumhwvedmaﬂ
« Increased p ang energy

Livestream - P&S Hands-on
Acceleration on
Heterogeneous Computing
Systems (Fall 2021)

10 videos * 566 views * Updated 6 days ago

= I’) 2

@ OnurMutly g\ pccriBen
> Lectures

https://youtube.com/playlist?list=PL5Q2s0XY2Zi OwkTgEyA6tk3UsoPBH737
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Hetero. Computing Systems (Fal|21)

Onur Mutlu Lectures
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_in_memory *

_systems
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Table of Contents

Hands-on Acceleration on Heterogeneous

Hands-on Acceleration on

Computing Systems B neous LORAD
Edit Course Description
Course Description Mentors
Lecture Video Playlist on
The increasing difficulty of scaling the performance and efficiency of YouTube
CPUs every year has created the need for turning computers into Fal 2021 Mostinge/Sofiedily
heterogeneous ie., of multiple types of Laerning Materials

Assignments
processors that can suit better different types of workloads or parts of

them. More than a decade ago, Graphics Processing Units (GPUs)

became general-purpose parallel processors, in order to make their outstanding processing capabilities
available to many workloads beyond graphics. GPUs have been critical key to the recent rise of Machine
Learning and Artificial Intelligence, which took unrealistic training times before the use of GPUs. Field-
Programmable Gate Arrays (FPGAs) are another example computing device that can deliver impressive
benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of
specialized accelerators (e.g., Tensor Processing Units for neural ), and (2) r data pr
architectures (i.e., placing compute capabilities near or inside memory/storage).

Despite the great advances in the of heter )

challenges to tackle, for example:

in recent years, there are still many

« F i 1s (using GPUs, FPGAs, TPUs) of modern applications from
mponant fields such as bioinformatics, machine learning, graph processing, medical imaging,
personalized medicine, robotics, virtual reality, etc.

. ing i for systems with different general-purpose processors and
, e.9., kernel memory scheduling, etc.
. d ization and prog g tools that enable easier and more efficient use of

heterogeneous systems.

If you are enthusiastic about working hands-on with different software, hardware, and architecture
projects for heterogeneous systems, this is your P&S. You will have the opportunity to program
heterogeneous systems with different types of devices (CPUs, GPUs, FPGAs, TPUs), propose
algorithmic changes to important to better ge the power of heterogeneous
systems, understand different workloads and identify the most suitable device for their execution, design
optimized scheduling techniques, etc. In general, the goal will be to reach the highest performance
reported for a given important application.

Prerequisites of the course:

« Digital Design and Computer Architecture (or equivalent course).
Familiarity with C/C++ programming and strong codlng skills.

Interest in future computer i and i

Interest in discovering why things do or do not work and sclvmg problems
Interest in making systems efficient and usable

The course is conducted in English.

The course has two main parts:
1. Short weekly lectures on GPU and heterogeneous programming.
2. Hands-on project: Each student develops his/her own project.

https://safari.ethz.ch/projects and seminars/fall2021/doku.php?id

=heterogeneous systems
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Lecture 21: Graphics Processing Units
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Clarification of Some GPU Terms

Vector length

Pipelined
functional unit /
Scalar pipeline

SIMD functional
unit /
SIMD pipeline

GPU core

Warp size

Streaming
processor /
CUDA core

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Streaming
multiprocessor

Wavefront size

Vector ALU

Compute unit

Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Functional unit that executes instructions for one
GPU thread

SIMD functional unit that executes instructions for
an entire warp

It contains one or more warp schedulers and one
or several SIMD pipelines
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