
Digital Design & Computer Arch.

Lecture 21: Graphics Processing Units

Dr. Juan Gómez Luna

Prof. Onur Mutlu

ETH Zürich

Spring 2022

13 May 2022

Other Execution Paradigms

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ Systolic Arrays

◼ Decoupled Access Execute

◼ SIMD Processing (Vector and Array processors)

◼ Graphics Processing Units (GPUs)

2

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Readings for this Week

◼ Required

◼ Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

◼ Recommended

❑ Peleg and Weiser, “MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.

3

Exploiting Data Parallelism:

SIMD Processors and GPUs

SIMD Processing:

Exploiting Regular (Data) Parallelism

Recall: Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor

6

Recall: SIMD Processing

◼ Single instruction operates on multiple data elements

❑ In time or in space

◼ Multiple processing elements (PEs), i.e., execution units

◼ Time-space duality

❑ Array processor: Instruction operates on multiple data
elements at the same time using different spaces (PEs)

❑ Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space (PE)

7

Recall: Array vs. Vector Processors

8

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR  A[3:0]

ADD VR  VR, 1

MUL VR  VR, 2

ST A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Recall: Memory Banking
◼ Memory is divided into banks that can be accessed independently;

banks share address and data buses (to minimize pin cost)

◼ Can start and complete one bank access per cycle

◼ Can sustain N concurrent accesses if all N go to different banks

9

Bank

0

Bank

1

MDR MAR

Bank

2

Bank

15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Picture credit: Derek Chiou

Recall: Vector Instruction Execution

10

VADD A,B → C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

Recall: Vector Unit Structure

11

Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

Slide credit: Krste Asanovic

Recall: Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
❑ Example machine has 32 elements per vector register and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 vector instruction/cycle

12

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

Recall: Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations

-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

13Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Automatic Code Vectorization

14

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

Vector/SIMD Processing Summary

◼ Vector/SIMD machines are good at exploiting regular data-
level parallelism

❑ Same operation performed on many data elements

❑ Improve performance, simplify design (no intra-vector
dependencies)

◼ Performance improvement limited by vectorizability of code

❑ Scalar operations limit vector machine performance

❑ Remember Amdahl’s Law

❑ CRAY-1 was the fastest SCALAR machine at its time!

◼ Many existing ISAs include (vector-like) SIMD operations

❑ Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

15

Recall: Amdahl’s Law

◼ Amdahl’s Law

❑ f: Parallelizable fraction of a program

❑ N: Number of processors

❑ Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

◼ Maximum speedup limited by serial portion: Serial bottleneck

◼ All parallel machines “suffer from” the serial bottleneck

16

Speedup =
1

+1 - f
f

N

SIMD Operations in Modern ISAs

SIMD ISA Extensions

◼ Single Instruction Multiple Data (SIMD) extension
instructions

❑ Single instruction acts on multiple pieces of data at once

❑ Common application: graphics

❑ Perform short arithmetic operations (also called packed
arithmetic)

◼ For example: add four 8-bit numbers

◼ Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a
0

0781516232432 Bit position

$s0a
1

a
2

a
3

b
0

$s1b
1

b
2

b
3

a
0
 + b

0
$s2a

1
 + b

1
a

2
 + b

2
a

3
 + b

3

+

18

Intel Pentium MMX Operations

◼ Idea: One instruction operates on multiple data elements
simultaneously

❑ À la array processing (yet much more limited)

❑ Designed with multimedia (graphics) operations in mind

19

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

MMX Example: Image Overlaying (I)

◼ Goal: Overlay the human in image x on top of the background in image y

20Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Image x[]

Image y[] Image new_image[]

Blue

background

Image x[]

Bit mask

Blossom

background

MMX Example: Image Overlaying (II)

21Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image

From MMX to AMX in x86 ISA

◼ MMX

❑ 64-bit MMX registers for integers

◼ SSE (Streaming SIMD Extensions)

❑ SSE-1: 128-bit XMM registers for integers and single-precision
floating point

❑ SSE-2: Double-precision floating point

❑ SSE-3, SSSE-3 (supplemental): New instructions

❑ SSE-4: New instructions (not multimedia specific), shuffle operations

◼ AVX (Advanced Vector Extensions)

❑ AVX: 256-bit floating point

❑ AVX2: 256-bit floating point with FMA (Fused Multiply Add)

❑ AVX-512: 512-bit

◼ AMX (Advanced Matrix Extensions)

❑ Designed for AI/ML workloads

❑ 2-dimensional registers

❑ Tiled matrix multiply unit (TMUL)

22https://www.intel.sg/content/dam/www/public/apac/xa/en/pdfs/ssg/Intel_Processor_Architecture_SIMD_Instructions.pdf

https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf

https://www.intel.sg/content/dam/www/public/apac/xa/en/pdfs/ssg/Intel_Processor_Architecture_SIMD_Instructions.pdf
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf

SIMD Operations in

Modern (Machine Learning) Accelerators

Cerebras’s Wafer Scale Engine (2019)

24

Cerebras WSE

1.2 Trillion transistors

46,225 mm2

Largest GPU

21.1 Billion transistors

815 mm2

◼ The largest ML

accelerator chip (2019)

◼ 400,000 cores

NVIDIA TITAN V

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Wafer Scale Engine-2 (2021)

25

Cerebras WSE-2

2.6 Trillion transistors

46,225 mm2

Largest GPU

54.2 Billion transistors

826 mm2

◼ The largest ML

accelerator chip (2021)

◼ 850,000 cores

NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Size, Place, and Route in Cerebras’s WSE

◼ Neural network mapping onto the whole wafer is a
challenge

26James et al., “ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning Accelerator.”

Multiple possible mappings

An example mapping

Different dies of the wafer work
on different layers of the neural
network: MIMD machine

Recall: Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor

27

A MIMD Machine with SIMD Processors (I)

◼ MIMD machine

❑ Distributed memory (no shared memory)

❑ 2D-mesh interconnection fabric

28Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

84 dies4539 tiles

A MIMD Machine with SIMD Processors (II)

◼ SIMD processors

❑ 4-way SIMD for 16-bit floating point operands

❑ 48 KB of local SRAM

29Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

4-way SIMD fused-multiply

accumulate (FMAC) units.
AXPY: y = a * x + y

Address registers

Local memory

More on the Cerebras WSE

https://www.youtube.com/watch?v=x2-qB0J7KHw

30

https://www.youtube.com/watch?v=x2-qB0J7KHw

Fine-Grained Multithreading

31

Fine-Grained Multithreading
◼ Idea: Fetch from a different thread every cycle such that no

two instructions from a thread are in the pipeline concurrently

❑ Hardware has multiple thread contexts (PC+registers per thread)

❑ Threads are completely independent

❑ No instruction is fetched from the same thread until the prior
branch/instruction from the thread completes

+ No logic needed for handling control and

data dependences within a thread

+ High thread-level throughput

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Throughput loss when there are not
enough threads to keep the pipeline full

Each pipeline stage has an instruction from a different, completely-independent thread

Fine-Grained Multithreading: Basic Idea

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM
4:0

ResultW

PCPlus4EPCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

ZeroM

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW
4:0

ALUControlE
2:0

A
L
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

BranchE BranchM

RegDstE

ALUSrcE

WriteRegE
4:0

Each pipeline stage has an instruction from a different, completely-independent thread

We need a PC and a register file for each thread + muxes and control

Fine-Grained Multithreading (II)

◼ Idea: Fetch from a different thread every cycle such that no
two instructions from a thread are in the pipeline concurrently

◼ Tolerates control and data dependence resolution latencies by
overlapping the latency with useful work from other threads

◼ Improves pipeline utilization by taking advantage of multiple
threads

◼ Improves thread-level throughput but sacrifices per-thread
throughput & latency

◼ Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

◼ Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

34

Multithreaded Pipeline Example

35Slide credit: Joel Emer

Sun Niagara Multithreaded Pipeline

36

Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-Grained Multithreading

◼ Advantages

+ No need for dependence checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, pipeline utilization

◼ Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Dependence checking logic between threads may be needed (load/store)

37

Lecture on Fine-Grained Multithreading

38https://youtu.be/XaW_O9nKPe0?t=5070

https://youtu.be/XaW_O9nKPe0?t=5070

Lectures on Fine-Grained Multithreading

◼ Digital Design & Computer Architecture, Spring 2022, Lecture 14

❑ Pipelined Processor Design (ETH, Spring 2022)

❑ https://youtu.be/XaW_O9nKPe0?t=5070

◼ Digital Design & Computer Architecture, Spring 2020, Lecture 18c

❑ Fine-Grained Multithreading (ETH, Spring 2020)

❑ https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fU
YWPGiZUBQo2&index=26

39https://www.youtube.com/onurmutlulectures

https://youtu.be/XaW_O9nKPe0?t=5070
https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=26
https://www.youtube.com/onurmutlulectures

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath

◼ The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

◼ However, the programming is done using threads, NOT
SIMD instructions

◼ To understand this, let’s go back to our parallelizable code
example

◼ But, before that, let’s distinguish between

❑ Programming Model (Software)

vs.

❑ Execution Model (Hardware)

41

Programming Model vs. Hardware Execution Model

◼ Programming Model refers to how the programmer expresses
the code

❑ E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), …

◼ Execution Model refers to how the hardware executes the
code underneath

❑ E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, …

◼ Execution Model can be very different from the Programming
Model

❑ E.g., von Neumann model implemented by an OoO processor

❑ E.g., SPMD model implemented by a SIMD processor (a GPU)
42

How Can You Exploit Parallelism Here?

43

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming
options to exploit instruction-level

parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

Prog. Model 1: Sequential (SISD)

44

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code ◼ Can be executed on a:

◼ Pipelined processor

◼ Out-of-order execution processor

❑ Independent instructions executed
when ready

❑ Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

❑ In other words, the loop is dynamically
unrolled by the hardware

◼ Superscalar or VLIW processor

❑ Can fetch and execute multiple
instructions per cycle

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

45

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD A → V1

VLD B → V2

VADD V1 + V2 → V3

VST V3 → C

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

46

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

Prog. Model 3: Multithreaded

47

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine

Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine

◼ Except it is not programmed using SIMD instructions

◼ It is programmed using threads (SPMD programming model)

❑ Each thread executes the same code but operates a different
piece of data

❑ Each thread has its own context (i.e., can be
treated/restarted/executed independently)

◼ A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

❑ A warp is essentially a SIMD operation formed by hardware!

48

Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

49

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately → i.e., can execute each thread
independently (on any type of scalar pipeline) → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads
that are supposed to truly execute the same instruction →

dynamically obtain and maximize benefits of SIMD processing
51

Fine-Grained Multithreading of

Warps

52

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Warp 0 at PC X

◼ Assume a warp consists of 32 threads

◼ If you have 32K iterations, and 1 iteration/thread → 1K warps

◼ Warps can be interleaved on the same pipeline → Fine grained

multithreading of warps

Warp 1 at PC X

Iter.
33

Iter.
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2

Warps and Warp-Level FGMT

◼ Warp: A set of threads that execute the same instruction
(on different data elements) → SIMT (Nvidia-speak)

◼ All threads run the same code
◼ Warp: The threads that run lengthwise in a woven fabric …

53

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

High-Level View of a GPU

54Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

Latency Hiding via Warp-Level FGMT

◼ Warp: A set of threads that
execute the same instruction
(on different data elements)

◼ Fine-grained multithreading

❑ One instruction per thread in
pipeline at a time (No
interlocking)

❑ Interleave warp execution to
hide latencies

◼ Register values of all threads stay
in register file

◼ FGMT enables long latency
tolerance

❑ Millions of pixels

55

Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp Execution (Recall the Slide)

56

32-thread warp executing ADD A[tid],B[tid] → C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

57

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
❑ Example machine has 32 threads per warp and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 warp/cycle

58

W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic

◼ Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp → 4 warps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

59

◼ CPU threads and GPU kernels

❑ Sequential or modestly parallel sections on CPU

❑ Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers

60

Slide credit: Hwu & Kirk

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 61

Sample GPU Program (Less Simplified)

62Slide credit: Hyesoon Kim

Lecture on GPU Programming

63https://youtu.be/AkYnuqVpCug

https://youtu.be/AkYnuqVpCug

Heterogeneous Systems Course (Spring 2022)

https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php
?id=heterogeneous_systems

https://youtube.com/playlist?list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm

◼ Short weekly lectures

◼ Hands-on projects

64

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm

From Blocks to Warps

◼ GPU cores: SIMD pipelines

❑ Streaming Multiprocessors (SM)

❑ Streaming Processors (SP)

◼ Blocks are divided into warps

❑ SIMD unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps

65

NVIDIA Fermi architecture

Warp-based SIMD vs. Traditional SIMD
◼ Traditional SIMD contains a single thread

❑ Sequential instruction execution; lock-step operations in a SIMD instruction

❑ Programming model is SIMD (no extra threads) → SW needs to know

vector length

❑ ISA contains vector/SIMD instructions

◼ Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

❑ Does not have to be lock step

❑ Each thread can be treated individually (i.e., placed in a different warp)
→ programming model not SIMD

◼ SW does not need to know vector length

◼ Enables multithreading and flexible dynamic grouping of threads

❑ ISA is scalar → SIMD operations can be formed dynamically

❑ Essentially, it is SPMD programming model implemented on SIMD
hardware

66

SPMD
◼ Single procedure/program, multiple data

❑ This is a programming model rather than computer organization

◼ Each processing element executes the same procedure, except on
different data elements

❑ Procedures can synchronize at certain points in program, e.g. barriers

◼ Essentially, multiple instruction streams execute the same
program

❑ Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

❑ Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

❑ Modern GPUs programmed in a similar way on a SIMD hardware

67

SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately → i.e., can execute each thread
independently on any type of scalar pipeline → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads
that are supposed to truly execute the same instruction →

dynamically obtain and maximize benefits of SIMD processing
68

Threads Can Take Different Paths in Warp-based SIMD

◼ Each thread can have conditional control flow instructions

◼ Threads can execute different control flow paths

69

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT

◼ A GPU uses a SIMD
pipeline to save area
on control logic

❑ Groups scalar threads
into warps

◼ Branch divergence
occurs when threads
inside warps branch to
different execution
paths

70

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution.

Recall the Vector Mask and Masked Vector Operations?

Remember: Each Thread Is Independent

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately → i.e., can execute each thread
independently on any type of scalar pipeline → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads
that are supposed to truly execute the same instruction →

dynamically obtain and maximize benefits of SIMD processing

◼ If we have many threads

◼ We can find individual threads that are at the same PC

◼ And, group them together into a single warp dynamically

◼ This reduces “divergence” → improves SIMD utilization

❑ SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)

71

Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

◼ Form new warps from warps that are waiting

❑ Enough threads branching to each path enables the creation
of full new warps

72

Warp X

Warp Y

Warp Z

Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

◼ Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

73

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

74

A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar

threads of both Warp x and y

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

75

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread
flexibly to any lane?

Large Warps and Two-Level Warp Scheduling

◼ Two main reasons for GPU resources be underutilized

❑ Branch divergence

❑ Long latency operations

76

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

Large Warp Microarchitecture Example

Decode Stage

1 0 0 1

0 1 0 0

0 0 1 1

1 0 0 0

0 0 1 0

0 1 0 0

1 0 0 1

0 1 0 0

0 0

0

0
1 1 1 1

0

0

0

0

1 1 1 1

0 0

0

1 1 1 11 1 0 1

Sub-warp 0 mask Sub-warp 0 maskSub-warp 1 mask Sub-warp 0 maskSub-warp 1 maskSub-warp 2 mask

1 1 1 1 1 1 1 1

◼ Reduce branch divergence by having large warps

◼ Dynamically break down a large warp into sub-warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

Two-Level Round Robin

◼ Scheduling in two levels to deal with long latency operations

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

time

Core

Memory
System

Compute

Req Warp 0
Req Warp 1

Req Warp 7

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Group 0

Compute

Group 1

Req Warp 8
Req Warp 9

Req Warp 15

Compute

Group 0

Compute

Group 1

Saved Cycles

Large Warps and Two-Level Warp Scheduling

◼ Veynu Narasiman, Chang Joo Lee, Michael Shebanow, Rustam
Miftakhutdinov, Onur Mutlu, and Yale N. Patt,
"Improving GPU Performance via Large Warps and Two-Level
Warp Scheduling"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (ppt)
A previous version as HPS Technical Report, TR-HPS-2010-006,
December 2010.

79

https://people.inf.ethz.ch/omutlu/pub/large-gpu-warps_micro11.pdf
http://www.microarch.org/micro44/
https://people.inf.ethz.ch/omutlu/pub/narasiman_micro11_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/large-gpu-warps-TR-HPS-2010-006.pdf

An Example GPU

NVIDIA GeForce GTX 285

◼ NVIDIA-speak:

❑ 240 stream processors

❑ “SIMT execution”

◼ Generic speak:

❑ 30 cores

❑ 8 SIMD functional units per core

◼ NVIDIA, “NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper,” 2008.

Slide credit: Kayvon Fatahalian 81

NVIDIA GeForce GTX 285 “core”

…

= instruction stream decode= SIMD functional unit, control

shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage

for thread contexts

(registers)

Slide credit: Kayvon Fatahalian 82

NVIDIA GeForce GTX 285 “core”

…
64 KB of storage

for thread contexts

(registers)

◼ Groups of 32 threads share instruction stream (each group is
a Warp)

◼ Up to 32 warps are simultaneously interleaved

◼ Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian 83

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian 84

0.0

5000.0

10000.0

15000.0

20000.0

25000.0

0

1000

2000

3000

4000

5000

6000

7000

8000

GTX 285
(2009)

GTX 480
(2010)

GTX 780
(2013)

GTX 980
(2014)

P100 (2016) V100 (2017) A100 (2020)

G
FL

O
P

S

#F
u

n
ct

io
n

al
 U

n
it

s

Functional units (stream processors)

GFLOPS

Evolution of NVIDIA GPUs

85

NVIDIA V100

◼ NVIDIA-speak:

❑ 5120 stream processors

❑ “SIMT execution”

◼ Generic speak:

❑ 80 cores

❑ 64 SIMD functional units per core

❑ Tensor cores for Machine Learning

◼ NVIDIA, “NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.

86

NVIDIA V100 Block Diagram

80 cores on the V100
https://devblogs.nvidia.com/inside-volta/

87

NVIDIA V100 Core

15.7 TFLOPS Single Precision

7.8 TFLOPS Double Precision

125 TFLOPS for Deep Learning (Tensor cores)

88

https://devblogs.nvidia.com/inside-volta/

Tensor Core Microarchitecture (Volta)
◼ Each warp utilizes two tensor cores

◼ Each tensor core contains two “octets”

❑ 16 SIMD units per tensor core (8 per octet)

❑ 4x4 matrix-multiply and accumulate each cycle per tensor core

89
* M. A. Raihan, N. Goli and T. M. Aamodt, "Modeling Deep Learning Accelerator Enabled GPUs," ISPASS 2019.

Proposed* tensor core microarchitecture

SIMD unit

Unlike conventional SIMD,

register contents are not

private to each thread, but

shared inside the warp

Edge TPU: Baseline Accelerator

DRAM

ML Model

PE Array

B
u

ff
e
r

Dataflow

64x64 array

2TFLOP/s

4MB

on-chip buffer

Output

ActivationParameter
Input

Activation

=*

90Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion

● ●

Research Lecture on Edge TPU

91https://youtu.be/KPPfRRPENgQ?t=2999

https://youtu.be/KPPfRRPENgQ?t=2999

Lecture 19b: Systolic Array Architectures

92https://youtu.be/1SSqV7Y75oU?t=2316

https://youtu.be/1SSqV7Y75oU?t=2316

NVIDIA A100

◼ NVIDIA-speak:

❑ 6912 stream processors

❑ “SIMT execution”

◼ Generic speak:

❑ 108 cores

❑ 64 SIMD functional units per core

❑ Tensor cores for Machine Learning
◼ Support for sparsity

◼ New floating point data type (TF32)

◼ https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ 93

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

NVIDIA A100 Block Diagram

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

94

NVIDIA A100 Core

19.5 TFLOPS Single Precision

9.7 TFLOPS Double Precision

312 TFLOPS for Deep Learning (Tensor cores)

95

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

0

10000

20000

30000

40000

50000

60000

0

2000

4000

6000

8000

10000

12000

14000

16000

GTX 285
(2009)

GTX 480
(2010)

GTX 780
(2013)

GTX 980
(2014)

P100
(2016)

V100
(2017)

A100
(2020)

H100
(2022)

G
FL

O
P

S

#
Fu

n
ct

io
n

al
 U

n
it

s

Functional Units (Stream Processors)

GFLOPS

Evolution of NVIDIA GPUs (Updated)

96

NVIDIA H100 Block Diagram

144 cores on the full GH100
60MB L2 cache

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

97

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA H100 Core

48 TFLOPS Single Precision*

24 TFLOPS Double Precision*

800 TFLOPS (FP16, Tensor Cores)*

98
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

* Preliminary performance estimates

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Food for Thought

◼ Compare and contrast GPUs vs Systolic Arrays

❑ Which one is better for machine learning?

❑ Which one is better for image/vision processing?

❑ What types of parallelism each one exploits?

❑ What are the tradeoffs?

◼ If you are interested in such questions and more…

❑ Bachelor’s Seminar in Computer Architecture (HS2022,
FS2023)

❑ Computer Architecture Master’s Course (HS2022)

99

Heterogeneous Systems Course (Spring 2022)

https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php
?id=heterogeneous_systems

https://youtube.com/playlist?list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm

◼ Short weekly lectures

◼ Hands-on projects

100

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm

Heterogeneous Systems Course (Fall 2021)

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id
=heterogeneous_systems

https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

◼ Short weekly lectures

◼ Hands-on projects

101

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=heterogeneous_systems
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

Digital Design & Computer Arch.

Lecture 21: Graphics Processing Units

Dr. Juan Gómez Luna

Prof. Onur Mutlu

ETH Zürich

Spring 2022

13 May 2022

Clarification of Some GPU Terms

103

Generic Term NVIDIA Term AMD Term Comments

Vector length Warp size Wavefront size Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Pipelined
functional unit /
Scalar pipeline

Streaming
processor /
CUDA core

- Functional unit that executes instructions for one
GPU thread

SIMD functional
unit /
SIMD pipeline

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Vector ALU SIMD functional unit that executes instructions for
an entire warp

GPU core Streaming
multiprocessor

Compute unit It contains one or more warp schedulers and one
or several SIMD pipelines

