Digital Desigh & Computer Arch.

Lecture 23: Memory Hierarchy
and Caches

Prof. Onur Mutlu

ETH Zurich
Spring 2022
20 May 2022




Extra Assignment 3: Amdahl’s Law

= Paper review

o G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

= Optional Assignment — for 1% extra credit

o Write a 1-page review
o Upload PDF file to Moodle — Deadline: June 15

= Strongly recommended that you follow my guidelines for
(paper) review




Readings for This Week and Next

Memory Hierarchy and Caches

Required

o H&H Chapters 8.1-8.3

o Refresh: P&P Chapter 3.5

o Kim & Mutlu, "Memory Systems,” Computing Handbook, 2014.

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction computing-handbook14.pdf

Recommended

o An early cache paper by Maurice Wilkes

Wilkes, “"Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.


https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

Recall: Memory Bank Organization and Operation
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Recall: SRAM
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Read Sequence

1. address decode

2. drive row select

3. selected bit-cells drive bitlines
(entire row is read together)

4. differential sensing and column select
(data is ready)

5. precharge all bitlines
(for next read or write)

Access latency dominated by steps 2 and 3
Cycling time dominated by steps 2, 3 and 5
. step 2 proportional to 2™
- step 3 and 5 proportional to 2"



Recall: DRAM

row enable

bitline
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(n=m to minimize
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g1
A DRAM die comprises
CAS of multiple such arrays

Bit stored as charge on node
capacitor (non-restorative)

- bit cell loses charge when read
- bit cell loses charge over time

Read Sequence
1~3 same as SRAM

4. a “flip-flopping” sense amp
amplifies and regenerates the

bitline, data bit is mux’ ed out
5. precharge all bitlines

Destructive reads
Charge loss over time

Refresh: A DRAM controller must
periodically read each row within
the allowed refresh time (10s of

ms) such that charge is restored
6



Recall: DRAM vs. SRAM

= DRAM
o Slower access (capacitor)
Higher density (1T 1C cell)
Lower cost
Requires refresh (power, performance, circuitry)
Manufacturing requires putting capacitor and logic together

= SRAM
o Faster access (no capacitor)
Lower density (6T cell)
Higher cost
No need for refresh
Manufacturing compatible with logic process (no capacitor)




Recall: Phase Change Memory

Phase change material (chalcogenide glass) exists in two states:
o Amorphous: Low optical reflexivity and high electrical resistivity
o Crystalline: High optical reflexivity and low electrical resistivity
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PCM is resistive memory: High resistance (0), Low resistance (1)

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM
Alternative,” ISCA 2009.



Recall: DRAM vs. PCM

= DRAM

Q

o 0o 0 0 0O O

Faster access (capacitor)

Lower density (capacitor less scalable) - higher cost
Requires refresh (power, performance, circuitry)
Manufacturing requires putting capacitor and logic together
Volatile (loses data at loss of power)

No endurance problems

Lower access energy

= PCM

I e I N e B

Slower access (heating and cooling based “phase change” operation)
Higher density (phase change material more scalable) - lower cost
No need for refresh

Manufacturing requires less conventional processes — less mature
Non-volatile (does not lose data at loss of power)

Endurance problems (a cell cannot be used after N writes to it)
Higher access energy

SAFARI



Recall: Charge vs. Resistive Memories

Charge Memory (e.g., DRAM, Flash)

o Write data by capturing charge Q
o Read data by detecting voltage V

Resistive Memory (e.g., PCM, STT-MRAM, memristors)
o Write data by pulsing current dQ/dt
o Read data by detecting resistance R

10



Recall Promising New Memory Technologies

PCM

o Inject current to change material phase
o Resistance determined by phase

STT-MRAM

o Inject current to change magnet polarity
o Resistance determined by polarity

Memristors/RRAM/ReRAM
o Inject current to change atomic structure
o Resistance determined by atom distance

11



More on Emerging Memory Technologies

Phase (thmgc Memory: Pros and Cons

Pros over DRAM

o Better technology scaling (capacity and cost)
o Non volatile - Persistent

o Low idle power (no refresh)

Cons

o Higher latencies: ~4-15x DRAM (especially write)

a Higher active energy: ~2-50x DRAM (especially write)
o Lower endwrance (a cell dies after ~108 writes)

o Reliability issues (resistance drift)

Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings
a Find the right way to place PCM in the system
OAENR]
< P Pl o 51:34/24522

Computer Architecture - Lecture 15: Emerging Memory Technologies (ETH Zdrich, Fall 2020)

1,047 views * Nov 14, 2020 |. 24 0 SHARE SAVE

- Onur Mutlu Lectures
Q‘ 16.3K subsoribers ANALYTICS EDIT VIDEO

https://www.youtube.com/watch?v=AIE1rD9G YU&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=28 12



https://www.youtube.com/watch?v=AlE1rD9G_YU&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=28

More on Emerging Memory Technologies

Two-Level Memory/Storage Model

The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage - a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

__ Two-Level Store
Load/Store fopgn, fread, fwrite, ... 3

T * —- ; -
I Processor

Address and caches

Operating
system

Persistent (e.g., Phase-Change)
Memory

Comp. Arch. - Lect. 16a: Opportunities & Challenges of Emerging Memory Tech. (ETH Ziirich Fall 2020)

512 views * Nov 20, 2020 14 &lo P SHARE =; SAVE

@ ?ﬁn:l;:; Ml;ﬂu.te(:tures ANALYTICS EDIT VIDEO
& .3K subscribers

https://www.youtube.com/watch?v=pmLszZ\WWGMmMGQ&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=29 13



https://www.youtube.com/watch?v=pmLszWGmMGQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=29

More on Memory Technologies

DRAM Capacity, Bandwidth & Latency
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Computer Arch. - Lecture 3b: Memory Systems: Challenges and Opportunities (ETH Zdrich, Fall 2020)

1,446 views * Sep 26, 2020 |. 22 0 SHARE SAVE
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https://www.youtube.com/watch?v=pmLszZ\WWGMmMGQ&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=29 14



https://www.youtube.com/watch?v=pmLszWGmMGQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=29

Recall: Flash Memory & Solid-State Drives

= Flash memory was a very “doubtful” emerging technology
o for at least two decades

ﬂ FAPER Proceedings of the IEFE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

By Yu Cai, Saucata GHosg, EricH F. HaratscH, Yixin Luo, anp ONUR MuTLU

ABSTRACT | wane flash memory is ubiguitous in everyday life KEYWORDS | Data storage systems; error recovery; fault
today because its capacity has continuously increased and tolerance; flash memory; reliability; solid-state drives

SAFARI https://arxiv.org/pdf/1711.11427.pdf P



https://arxiv.org/pdf/1711.11427.pdf

Recall: A Flash Memory SSD Controller
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Fig. 1. (a) SSD system architecture, showing controller (Ctrl)
and chips. (b) Detailed view of connections between controller
components and chips.

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

https://arxiv.orqg/pdf/1711.11427.pdf 16



https://arxiv.org/pdf/1711.11427.pdf

Lecture on Flash Memory & SSDs

Planar vs. 3D NAND Flash Memory
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sceee : : o

e0000 - P

0000 & v Se®

o . o000 >
Planar NAND 3D NAND
Flash Memory Flash Memory

Reduce flash cell size,

Scalin, :
8 Reduce distance b/w cells

Increase # of layers

Reliability  Scaling hurts reliability | Not well studied!

SAFARI
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© ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 26: Flash Memory and Solid-State Drives (ETH Zurich, Fall 2020)

1,771 views + Dec 31, 2020 e 43 GJ 0 > SHARE =+ SAVE

@ Onur MUt|UALECtheS ANALYTICS EDIT VIDEO
&> 19.7K subscribers

S A FA R l https://www.youtube.com/watch?v=rninK6KWBeM&list=PL5Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=47 17



https://www.youtube.com/watch?v=rninK6KWBeM&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=47

Special Course on Flash Memory & SSDs

P&S Modern SSDs

Understanding and Designing
Modern NAND Flash-Based Solid-State Drives

Dr. Jisung Park

Prof. Onur Mutlu
ETH Zurich
Fall 2021

29 September 2021

Modern Solid-State Drives (SSDs) Course - Meeting 1: Basics & Course Presentation (Fall 2021)

1,055 views * Premiered Oct 5, 2021 l‘ 53 g' 0 A} SHARE =+ SAVE

@ Onur MutIuALectures ANALYTICS EDIT VIDEO
&> 19.7K subscribers

S A FAR I https://www.youtube.com/watch?v=dSsZA6]GcLERlist=PL50Q2s0XY2Zi 4tPsgX9m D7AI c1T86cO 18


https://www.youtube.com/watch?v=dSsZA6JGcLE&list=PL5Q2soXY2Zi_4tPsgX9m_D7AI_c1T86cO

Lectures on Memory Technologies

= Computer Architecture, Fall 2020, Lecture 15

o Emerging Memory Technologies (ETH, Fall 2020)

o https://www.youtube.com/watch?v=AIE1rD9G YU&list=PL502s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=28

= Computer Architecture, Fall 2020, Lecture 16a

o Opportunities & Challenges of Emerging Memory Tech (ETH, Fall 2020)

o https://www.youtube.com/watch?v=pmLszZWGmMMGQ&list=PL502s0XY2Zi9xidyIgBx
Uz7XRPS-wisBN&index=29

= Computer Architecture, Fall 2020, Lecture 3b

o Memory Systems: Challenges & Opportunities (ETH, Fall 2020)

o https://www.youtube.com/watch?v=02FbUxD7GHs&list=PL502s0XY2Zi9xidyIgBxU
z7XRPS-wisBN&index=6

https:/ /www.youtube.com/onurmutlulectures 19



https://www.youtube.com/watch?v=AlE1rD9G_YU&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=28
https://www.youtube.com/watch?v=pmLszWGmMGQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=29
https://www.youtube.com/watch?v=Q2FbUxD7GHs&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=6
https://www.youtube.com/onurmutlulectures

A Tutorial on Memory-Centric Systems

Onur Mutlu,
"Memory-Centric Computing Systems"”

Invited Tutorial at 66th International Electron Devices
Meeting (TEDM), Virtual, 12 December 2020.

Slides (pptx) (pdf)]

Executive Summary Slides (pptx) (pdf)]

[ Tutorial Video (1 hour 51 minutes)]

Executive Summary Video (2 minutes)]
Abstract and Bio]

Related Keynote Paper from VLSI-DAT 2020]
Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

https://www.youtube.com/onurmutlulectures

20


https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures

Memory-Centric

C()mputing Systems

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutiu
12 December 2020
IEDM Tutorial

SAFARI ETH:zurich Carnegie Mellon
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IEDM 2020 Tutorial: Memory-Centric Computing Systems, Onur Mutlu, 12 December 2020

1,641 views * Dec 23, 2020 |. 48 0 SHARE SAVE

e ?;g{( “:uuglsli r%::rtsures https://www.youtube.com/watch?v=H3sEalINPBOE

https://www.youtube.com/onurmutlulectures 21



https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=H3sEaINPBOE

A Tutorial on Processing in Memory

= Onur Mutluy,
"Memory-Centric Computing”
Education Class at Embedded Systems Week (ESWEEK),
Virtual, 9 October 2021.

Slides (pptx) (pdf)]
Abstract (pdf)]

[Talk Video (2 hours, including Q&A)]
Invited Paper at DATE 2021]

["A Modern Primer on Processing in Memory" paper]

https://www.youtube.com/watch?v=N1Aclov1iJOM

https://www.youtube.com/onurmutlulectures 22



https://people.inf.ethz.ch/omutlu/pub/onur-ESWEEK-Lecture-MemoryCentricComputingSystems-October-9-2021.pptx
https://esweek.org/education-a2-memory-centric-computing/
https://people.inf.ethz.ch/omutlu/pub/onur-ESWEEK-Lecture-MemoryCentricComputingSystems-October-9-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-ESWEEK-Lecture-MemoryCentricComputingSystems-October-9-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/OnurMutlu-Memory-Centric-Computing-ESWEEK21.pdf
https://www.youtube.com/watch?v=N1Ac1ov1JOM&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=64
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=N1Ac1ov1JOM
https://www.youtube.com/onurmutlulectures

Memory-Centric

Computing

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
9 October 2021
ESWEEK Education Class

SAFARI ETHZzurich CarnegieMellon

R 1:08/2:00:10

Embedded Systems Week (ESWEEK) 2021 Lecture - Memory-Centric Computing - Onur Mutlu - 9 October 2021

509 views * Premiered Dec 6, 2021 e 28 CJ DISLIKE > SHARE =+ SAVE
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https://www.youtube.com/onurmutlulectures 23



https://people.inf.ethz.ch/omutlu/pub/onur-ESWEEK-Lecture-MemoryCentricComputingSystems-October-9-2021.pptx
https://esweek.org/education-a2-memory-centric-computing/
https://people.inf.ethz.ch/omutlu/pub/onur-ESWEEK-Lecture-MemoryCentricComputingSystems-October-9-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-ESWEEK-Lecture-MemoryCentricComputingSystems-October-9-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/OnurMutlu-Memory-Centric-Computing-ESWEEK21.pdf
https://www.youtube.com/watch?v=N1Ac1ov1JOM&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=64
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=N1Ac1ov1JOM&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=65
https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=N1Ac1ov1JOM

The Memory Hierarchy




Memory Hierarchy in a Modern System (I)
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Memory Hlerarchy in a Modern System (1D)
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SAFARI

Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
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https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Memory Hierarchy in a Modern System (111)

Apple M1 Ultra System (2022)

https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php



Memory Hierarchy in an Older System
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Memory Hierarchy in an Older System

L2 Cache



https://download.intel.com/newsroom/kits/40thanniversary/gallery/images/Pentium_4_6xx-die.jpg
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Memory Hierarchy in a Modern System (V)
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Cores:
128 Streaming Multiprocessors

L1 Cache or

Scratchpad:

192KB per SM
Can be used as L1 Cache
and/or Scratchpad

L2 Cache:
40 MB shared

Nvidia Ampere, 2020

https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon 32



Ideal Memory

Zero access time (latency)

Infinite capacity

Zero cost

Infinite bandwidth (to support multiple accesses in parallel)
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The Problem

Ideal memory’s requirements oppose each other

Bigger is slower
o Bigger - Takes longer to determine the location

Faster is more expensive
o Memory technology: SRAM vs. DRAM vs. SSD vs. Disk vs. Tape

Higher bandwidth is more expensive

o Need more banks, more ports, more channels, higher frequency
or faster technology
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The Problem

Bigger is slower

O 0 0O 0 0O 0 O

SRAM, < 1KByte, sub-nanosec

SRAM, KByte~MByte, ~nanosec

DRAM, Gigabyte, ~50 nanosec

PCM-DIMM (Intel Optane DC DIMM), Gigabyte, ~300 nanosec
PCM-SSD (Intel Optane SSD), Gigabyte ~Terabyte, ~6-10 us
Flash memory, Gigabyte~Terabyte, ~50-100 us

Hard Disk, Terabyte, ~10 millisec

Faster is more expensive (monetary cost and chip area)

O 0 0O 0 0O 0O O

SRAM, < 0.3$ per Megabyte

DRAM, < 0.03$ per Megabyte

PCM-DIMM (Intel Optane DC DIMM), < 0.004$ per Megabyte
PCM-SSD, < 0.001$ per Megabyte

Flash memory, < 0.00008$ per Megabyte

Hard Disk, < 0.00003$ per Megabyte

These sample values (circa ~2022) scale with time

Other technologies have their place as well

Q

MRAM, RRAM, STT-MRAM, memristors, ... (not mature yet)
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The Problem (Table View)

Bigger is slower

Cost per Megabyte

< 1 KByte sub-nanosec
SRAM KByte~MByte  ~nanosec < 0.3%
DRAM Gigabyte ~50 nanosec < 0.03%
PCM-DIMM :
(Intel Optane DC DIMM) Gigabyte ~300 nanosec < 0.004$
PCM-SSD Gigabyte ~6-10 ps
(Intel Optane SSD) ~Terabyte = 00
Gigabyte ~50-100 ps
Flash memory ~Terabyte < 0.00008%
Hard Disk Terabyte ~10millisec 4 00003$

Faster is more expensive
($$$ and chip area)

These sample values (circa ~2022) scale with time
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Aside: The Problem (2011 Version)

Bigger is slower

o SRAM, 512 Bytes, sub-nanosec

o SRAM, KByte~MByte, ~nanosec
o DRAM, Gigabyte, ~50 nanosec

o Hard Disk, Terabyte, ~10 millisec

Faster is more expensive (monetary cost and chip area)
o SRAM, < 10$ per Megabyte

o DRAM, < 1% per Megabyte

o Hard Disk < 1$ per Gigabyte

o These sample values (circa ~2011) scale with time

Other technologies have their place as well
o Flash memory (mature), PC-RAM, MRAM, RRAM (not mature yet)
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Why Memory Hierarchy?

We want both fast and large
But, we cannot achieve both with a single level of memory

Idea: Have multiple levels of storage (progressively bigger
and slower as the levels are farther from the processor)
and ensure most of the data the processor needs is kept in
the fast(er) level(s)

Memory System

Caches Main Memory

small & fast large & slow




The Memory Hierarchy

move what you use here — "

With good locality of
reference, memory

appears as fast as

and as large a\

P —

cheaper per byte

back up
everything @ large but slow

here

faster per byte
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Memory Hierarchy

Fundamental tradeoff
o Fast memory: small

o Large memory: slow
Idea: Memory hierarchy

Main
CPU 1 Cache Memory
RE (DRAM)

Latency, cost, size,
bandwidth

Hard Disk

40




Memory Hierarchy Example

I”

larger capacity

AN “top-leve capacity latency
3 L1 Cache 10's of KB = 1ns
S
g L2 Cache 100's of KB < 5ns
S
©
Yy
2 L3 Cache several MB =~ 10ns
<
= Main Memory several GB = 100ns

WV “bottom-level”

Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction computing-handbook14.pdf
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Locality

One’s recent past is a very good predictor of their near
future.

Temporal Locality: If you just did something, it is very
likely that you will do the same thing again soon

o since you are here today, there is a good chance you will be
here again and again regularly

Spatial Locality: If you did something, it is very likely you
will do something similar/related (in space)

o every time I find you in this room, you are probably sitting
close to the same people
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Memory Locality

III

A “typica
references
o typical programs are composed of “loops”

program has a lot of locality in memory

Temporal: A program tends to reference the same memory
location many times and all within a small window of time

Spatial: A program tends to reference nearby memory
locations within a window of time

o most notable examples:

1. instruction memory references - mostly sequential/streaming
2. references to arrays/vectors - often streaming/strided
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Caching Basics: Exploit Temporal Locality

Idea: Store recently accessed data in automatically-managed
fast memory (called cache)

Anticipation: same mem. location will be accessed again soon

Temporal locality principle
o Recently accessed data will be again accessed in the near future

o This is what Maurice Wilkes had in mind:

Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

“The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”
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Caching Basics: Exploit Spatial Locality

= Idea: Store data in addresses adjacent to the recently
accessed one in automatically-managed fast memory
o Logically divide memory into equal-size blocks
o Fetch to cache the accessed block in its entirety

= Anticipation: nearby memory locations will be accessed soon

= Spatial locality principle
a Nearby data in memory will be accessed in the near future
= E.g., sequential instruction access, array traversal
a This is what IBM 360/85 implemented
= 16 Kbyte cache with 64 byte blocks

= Liptay, “Structural aspects of the System/360 Model 85 II: the
cache,” IBM Systems Journal, 1968.
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The Bookshelt Analogy

Book in your hand
Desk
Bookshelf

Boxes at home
Boxes in storage

Recently-used books tend to stay on desk
o Comp Arch books, books for classes you are currently taking
a Until the desk gets full

Adjacent books in the shelf needed around the same time
o If I have organized/categorized my books well in the shelf
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Caching in a Pipelined Design

The cache needs to be tightly integrated into the pipeline

o Ideally, access in 1-cycle so that load-dependent operations
do not stall

High frequency pipeline = Cannot make the cache large
o But, we want a large cache AND a pipelined design

Idea: Cache hierarchy

Main
Level 2 Memory
CPU Level Cache (DRAM)
RF Cache




A Note on Manual vs. Automatic Management

Manual: Programmer manages data movement across levels
-- too painful for programmers on substantial programs
a core” vs “drum” memory in the 1950s

o done in embedded processors (on-chip scratchpad SRAM in lieu
of a cache), GPUs (called “shared memory”), ML accelerators, ...

Automatic: Hardware manages data movement across levels,
transparently to the programmer
++4 programmer’s life is easier

o the average programmer doesn’t need to know about caches

You don't need to know how big the cache is and how it works to
write a “correct” program! (What if you want a “fast” program?)
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Caches and Scratchpad in a Modern GPU

Cores:
128 Streaming Multiprocessors

L1 Cache or

Scratchpad:

192KB per SM
Can be used as L1 Cache
and/or Scratchpad

L2 Cache:
40 MB shared

NV|d|a Ampere 2020

https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon 49



Caches and Scratchpad in a Modern GPU

23 ﬁmﬁﬁ;@ — 71| Nvidia Hopper, 2022

Cores: L1 Cache or L2 Cache:
144 Streaming Scratchpad: 60 MB shared
Multiprocessors 256KB per SM

Can be used as L1 Cache

and/or Scratchpad

50
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Caches and Scratchpad in a Modern GPU

Nvidia Hopper,

2022
Cores: L1 Cache or L2 Cache:
144 Streaming Scratchpad: 60 MB shared
Multiprocessors 256KB per SM
Can be used as L1 Cache
and/or Scratchpad

51
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Cerebras’s Water Scale Engine (2019)

= The largest ML accelerator chip

Vg

ity

= 400,000 cores

L’ ffqfnf m'""'\[’

= 18 GB of on-chip memory

= 9 PB/s memory bandwidth

J TS
T TAIWAN 1723A1

PFBY82.M00 &l
GV100-895-A1

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?2
NVIDIA TITAN V

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning2



https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Scratchpad Memory in Cerebras WSE

NSEW

Single tile Single die Wafer Scale Engine
[ __ ] _____________ |
i !
[}
conea | °5° i
: |
Rout : i | N
[}
: 1 x| ,V_V,lMemory : N E
| =
| FMAGC
: Scheduler] )L : % \
[}
[} =
| v :
| |
= —_—=— —
l l 007 //
/
i / ) 51 tiles > - 12 dies g
4539 tiles 84 dies

Scratchpad Memory

o Highly parallel and distributed scratchpad SRAM memory with
2D mesh interconnection fabric across tiles

o 16-byte read and 8-byte write single-cycle latency
o 48 KB scratchpad in each tile, totaling 18 GB on the full chip
a No shared memory

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020. 53



Cerebras’s Water Scale Engine-2 (2021)

= The largest ML accelerator chip

= 850,000 cores
= 40 GB of on-chip memory

= 20 PB/s memory bandwidth

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm?2 826 mm?2

. NVIDIA Ampere GA100
https://cerebras.net/product/#overview
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A Historical Perspective
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A Historical Perspective
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Using smaller cores and wires, the memory density of core slowly increased, and by the late 1960s a density of about 32 kilobits per cubic foot (about 0.9 kilobits per litre) was typical.
However, reaching this density required extremely careful manufacture, which was almost always carried out by hand in spite of repeated major efforts to automate the process. The cost
declined over this period from about $1 per bit to about 1 cent per bit. The introduction of the first semiconductor memory chips in the late 1960s, which initially created static random-access
memory (SRAM), began to erode the market for core memory. The first successful dynamic random-access memory (DRAM), the Intel 1103, followed in 1970. Its availability in quantity at 1

cent p?r bit marked the beginning of the end for core memory.'!
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Magnetic Drum Memory Magnetic Core Memory
Main Memory of 1950s-1960s Main Memory of 1960s-1970s

Public Domain, https://commons.wikimedia.org/w/index.php?curid=239809 56
By Orion 8 - Combined from Magnetic core memory card.jpg and Magnetic core.jpg., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=11235412



Automatic Management in Memory Hierarchy

Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

Slave Memories and Dynamic Storage Allocation
M. V. WILKES

SUMMARY

The use is discussed of a fast core memory of, say, 32 000 words as
a slave to a slower core memory of, say, one million words in such a
way that in practical cases the effective access time is nearer that of
the fast memory than that of the slow memory.

"By a slave memory I mean one which automatically
accumulates to itself words that come from a slower main
memory, and keeps them available for subsequent use
without it being necessary for the penalty of main memory
access to be incurred again.”
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Historical Aside: Other Cache Papers

= Fotheringham, “"Dynamic Storage Allocation in the Atlas
Computer, Including an Automatic Use of a Backing Store,’
CACM 1961.

o http://dl.acm.org/citation.cfm?id=366800

= Bloom, Cohen, Porter, "Considerations in the Design of a
Computer with High Logic-to-Memory Speed Ratio,” AIEE
Gigacycle Computing Systems Winter Meeting, Jan. 1962.

(4
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Cache in 1962 (Bloom, Cohen, Porter)
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A Modern Memory Hierarchy

Register File
32 words, sub-nsec

L1 cache
~10s of KB, ~“nsec

L2 cache
100s of KB ~ few MB, many nsec

L3 cache,
many MBs, even more nsec

manual/compiler

register spilling

automatic
HW cache
management

Main memory (DRAM),
Many GBs, ~100 nsec

automatic

Swap Disk
~100 GB or few TB, ~10s of usec-msec

paging
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Hierarchical LLatency Analysis

A given memory hierarchy level i has intrinsic access time of
It also has perceived access time T, that is longer than

Except for the outer-most hierarchy level, when looking for a given
address there is

o a chance (hit-rate h)) you “hit” and access time is
o a chance (miss-rate m.) you “miss” and access time
o h+m=1
Thus
Ti=hty + my(t + Tiy)
Ti=t +m Ty

and m. are defined to be the hit-rate and miss-rate
of only the references that missed at L4
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Hierarchy Design Considerations

Recursive latency equation
Ti=t +m Ty
The goal: achieve desired T, within allowed cost
is desirable

Keep m; low
o increasing capacity C; lowers m;, but beware of increasing

o lower m, by smarter cache management (replacement::anticipate
what you don’t need, prefetching::anticipate what you will need)

Keep low
o faster outer hierarchy levels can help, but beware of increasing cost
o introduce intermediate hierarchy levels as a compromise
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Intel Penttum 4 Example

Bus
Interface

| Unit

Quad

Pumped
6.4 GB/s

Front-End BTB Instruction - -
4K Entries TLB/ Prefetcher -
2
Instruction Decoder .
Microcode
. = ROM
Trace Cache BTB Execution Trace Cache
2K Entries — (12K pops) o Mop Queue
v
I l Allocator /| Register Renamer
LMf.mm'_yuT_ngu_eJ | - Intige.nLElnaﬂng_onnm_Quug_l_l
A ‘ A ﬂn
AGU AGU Slow ALU FP
MMX Ep
Load Store Complex SSSSEEZ Move
Address Addressl Instr. SSE3
\ 4 A 4 — i 4

L2 Cache
(1M Byte
8-way)

L1 Data Cache (16Kbyte 8-way)

108GB/s

Boggs et al., "The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2004.




Intel Penttum 4 Example

L2 Cache

INEEN] INNEN]
R, simotmns

e



https://download.intel.com/newsroom/kits/40thanniversary/gallery/images/Pentium_4_6xx-die.jpg

Intel Penttum 4 Example

= 90nm P4, 3.6 GHz T=t +m T,

= L1 D-cache if m,=0.1, m,=0.1
1 G =16kB T,=7.6, T,=36
o ty =4 cycint/ 9 cycle fp

= L2 D-cache if m;=0.01, m,=0.01
0 C, = 1024 kB T1=4.2, T,=19.8
o t, =18 cycint/ 18 cyc fp if m;=0.05, m,=0.01

= Main memory T,=5.00, T,=19.8
0 3=~ 50ns or 180 cyc if m;=0.01, m,=0.50

= Notice T,=5.08, T,=108

o best case latency is not 1
o worst case access latencies are into 500+ cycles




Cache Basics and Operation




Cache

Any structure that "memoizes” used (or produced) data

o to avoid repeating the long-latency operations required to
reproduce/fetch the data from scratch

o e.g., a web cache

Most commonly in the processor design context:
an automatically-managed memory structure

o e.g., memoize in fast SRAM the most frequently or recently
accessed DRAM memory locations to avoid repeatedly paying
for the DRAM access latency
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Conceptual Picture of a Cache

Cache

Cache Block

Cache Block

Cache Block

B
‘..
-

-
-
-
-
-
-®
-
o

oo
-
-
-
-

information about
the cache block,

e.g., the address

Data (64B) Tag

Metadata

Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction computing-handbook14.pdf
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Logical Organization of a Cache (I)

A key question: How to map chunks of the main memory
address space to blocks in the cache?

o Which location in cache can a given "main memory chunk” be

placed in?
a ? 8GB
L
S Q cache
(q0)
—_ (O
S & T 1928 5 cache block
o . cache block
< -+ 128B
Q. cache block
-+ 64B cache block
”chunk”{
T+ 0 69




Logical Organization of a Cache (II)

A key question: How to map chunks of the main memory
address space to blocks in the cache?

o Which location in cache can a given "main memory chunk” be

placed in?
fully-associative direct-mapped set-associative
i set ——— |
cache block cache block cache block
" , cache block y cache block gachelbiack
chunk chunk”
cache block cache block :
\” cache block |
cache block cache block cache block
70
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Caching Basics

Block (line): Unit of storage in the cache

o Memory is logically divided into blocks that map to potential
locations in the cache

On a reference:
o HIT: If in cache, use cached data instead of accessing memory

o MISS: If not in cache, bring block into cache
May have to evict some other block

Some important cache design decisions

o Placement: where and how to place/find a block in cache?
Replacement: what data to remove to make room in cache?
Granularity of management: large or small blocks? Subblocks?
Write policy: what do we do about writes?

Instructions/data: do we treat them separately?
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Cache Abstraction and Metrics

Address
Tag Store Data Store
(is the address (stores
in the cache? memory
+ bookkeeping) blocks)
Hit/miss? Data

Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)
Average memory access time (AMAT)

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency )
Important Aside: Is reducing AMAT always beneficial for performance?

72



A Basic Hardware Cache Design

We will start with a basic hardware cache design

Then, we will examine a multitude of ideas to make it
better (i.e., higher performance)
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Blocks and Addressing the Cache

Main memory logically divided into fixed-size chunks (blocks)
Cache can house only a limited number of blocks

2 ace

-+ 192B

-+ 128B

physical address
space

+ 648
“chunk |

+ 0

N

cache

cache block

cache block

cache block

cache block
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Blocks and Addressing the Cache

Main memory logically divided into fixed-size chunks (blocks)
Cache can house only a limited number of blocks

Each block address maps to a potential location in the
cache, determined by the index bits in the address

o used to index into the tag and data stores  tag index byte in block
2b | 3 bits| 3 bits

Cache access: 8-bit address

1) index into the tag and data stores with index bits in address
2) check valid bit in tag store
3) compare tag bits in address with the stored tag in tag store

If the stored tag is valid and matches the tag of the block,

then the block is in the cache (cache hit).
75



Let’s See A Toy Example

We will examine a direct-mapped cache first

Direct-mapped: A given main memory block can be placed in

only one possible location in the cache

Toy example: 256-byte memory, 64-byte cache, 8-byte blocks

fully-associative

“chunk”

cache block

cache block

cache block

cache block

Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

direct-mapped

cache block

“chunk”

cache block

cache block

~

cache block

set-associative

cache block

cache block

cache block

cache block
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Direct-Mapped Cache: Placement and Access

Block: 00001

Block: 00010
Block: 00011
Block: 00100
Block: U0T01

Block: 00110
Block: 00111

ock:
Block: 01010

Block: 01011
Block: 01100
Block: U1101

Block: 01110
Block: 0111

000__
OoC

Block 10010
Block: 10011
Block: 107100
Biock 10101
Block: 10110
Block: 10111
000
Block: 11001
Block: 11010
Block: 11011
Block: 11100
Block: 11101
Block: 11110
Block: 11111

Main memory

oy

D

Assume byte-addressable main memory:
256 bytes, 8-byte blocks = 32 blocks

Assume cache: 64 bytes, 8 blocks

o Direct-mapped: A block can go to only one location
tag index byte in block

2b 3 bits Tag store Data store
Address
V agd
\z? \ MUX byte in block
Hit? Data

o Blocks with same index contend for the same cache location

Cause conflict misses when accessed consecutively
77



Direct-Mapped Caches

Direct-mapped cache: Two blocks in memory that map to
the same index in the cache cannot be present in the cache
at the same time

o One index - one entry

Can lead to 0% hit rate if more than one block accessed in
an interleaved manner map to the same index

o Assume addresses A and B have the same index bits but
different tag bits

a A, B, A B, A B, A B, .. 2 conflict in the cache index
o All accesses are conflict misses
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Set Associativity

Problem: Addresses N and N+8 always conflict in direct mapped cache

Idea: enable blocks with the same index to map to > 1 cache location
Example: Instead of having one column of 8, have 2 columns of 4 blocks

Tag store Data store
SET | ) ( '
V\ tag V\ tag
=7 =" MUX /
Lclgic \ MUX byte in block

it?

Address Hit:
tag index byte in block Key idea: Associative memory within the set

+ Accommodates conflicts better (fewer conflict misses)

3 bits| 2 bits| 3 bits
-- More complex, slower access, larger tag store

2-way set associative cache: Blocks with the same index can map to 2 locations



Higher Associativity

4-way Tag store
l |
= =7 =7 ="
/ Logic —— Hit?
Data store

>\ MUX - —

v .
byte in block
N MUX A Address

tag index byte in block
+ Likelihood of conflict misses even lower 4 bits |1b | 3 bits

-- More tag comparators and wider data mux; larger tags
4-way set associative cache: Blocks with the same index can map to 2 locations




Full Associativity

Fully associative cache
o A block can be placed in any cache location

Tag store | | I I I | I I
=7 =7 =7 =" —tp)] =7 =7
Logic
¢ Hit?
Data store| | | | | | | |
\I/ \‘/
o MUX
\/ .
byte in block
Address P,
tag byte in block \ MLjX
5 bits 3 bits

Fully associative cache: Any block can map to any location



Associativity (and Tradeotts)

Degree of associativity: How many blocks can map to the
same index (or set)?

Higher associativity

++ Higher hit rate

-- Slower cache access time (hit latency and data access latency)
-- More expensive hardware (more comparators)

hit rate {
Diminishing returns from higher /

associativity

associativity
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Issues 1n Set-Associative Caches

Think of each block in a set having a “priority”

o Indicating how important it is to keep the block in the cache
Key issue: How do you determine/adjust block priorities?
There are three key decisions in a set:

o Insertion, promotion, eviction (replacement)

Insertion: What happens to priorities on a cache fill?
o Where to insert the incoming block, whether or not to insert the block

Promotion: What happens to priorities on a cache hit?

o Whether and how to change block priority

Eviction/replacement: What happens to priorities on a cache
mIss?

o Which block to evict and how to adjust priorities
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Eviction/Replacement Policy

Which block in the set to replace on a cache miss?
o Any invalid block first

o If all are valid, consult the replacement policy
Random
FIFO
Least recently used (how to implement?)
Not most recently used
Least frequently used?

Least costly to re-fetch?

o Why would memory accesses have different cost?
Hybrid replacement policies

Optimal replacement policy?
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Cache Terminology

Capacity (0):

o the number of data bytes a cache stores
Block size (b):

o bytes of data brought into cache at once

Number of blocks (B = ¢/D):
o number of blocks in cache: B= (b

Degree of associativity (N):
o number of blocks in a set

Number of sets (5 = B/N):
o each memory address maps to exactly one cache set
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How is data found?

Cache organized into Ssets
Each memory address maps to exactly one set

Caches categorized by number of blocks in a set:
o Direct mapped: 1 block per set

o N-way set associative: N blocks per set

o Fully associative: all cache blocks are in a single set

Examine each organization for a cache with:
a Capacity (C= 8 words)

a Block size (6 = 1 word)

o So, number of blocks (5 = 8)
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Direct Mapped Cache

11...
11...
11...
11...
11...
11...
11...
11...

00...
00...
00...
00...
00...
00...
00...
00...
00...
00...

Address
11111100

11111000
11110100
11110000
11101100
11101000
11100100
11100000

00100100
00100000
00011100
00011000
00010100
00010000
00001100
00001000
00000100
00000000

mem[OxFF...FC]
mem[OxFF...F8]
mem[OxFF...F4]

mem[OxFF...EC]
mem[OxFF...E8]

oo anemfQxEE D E4]

mem[0x00..20]
mem[0x00..1C]
mem[0x00...18]
mem[0x00...14]

mem[0x00...0C]
mem[0x00...08]

...................... \)

mem[0x00...00]
230 Word Main Memory

23 Word Cache

Set Number
7 (111)
6 (110)
5(101)
4 (100)
3 (011)
2 (010)
1 (001)
0 (000)
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Direct Mapped Cache Hardware

Memory
Address

Byte
Tag Set Offset
00
27 3
V Tag Data
8-entry x
(1+27+32)-bit
SRAM
| 27 32
Hit Data
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Direct Mapped Cache Pertormance

Tag

Byte

Set Offset

Memory 5545

001]00

Address

3

V Tag

Data

0

00...00

mem[0x00...0C]

00...00

mem([0x00...08]

00...00

mem[0x00...04]

O|l=_ [~ |~ |O|O|O

# MIPS assembly code

addi $to, $e, 5
beq $to, $0, done
lw  $t1, ox4($9)
lw  $t2, oxC($9)
lw  $t3, ox8(%$9)
addi $to, $te, -1
Jj loop

loop:

done:

Miss Rate

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)
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Direct Mapped Cache Pertormance

Byte
Tag Set Offset

Memory

Address 00...00 201 00

V Tag Data
0 Set7 (111)
0 Set 6 (110)
0 Set 5 (101)
0 Set 4 (100)
1| 00..00 | mem[0x00...0C] [ Set 3 (011)
1| 00..00 | mem[0x00...08] [ Set 2 (010)

11| 00..00 | mem[0x00...04] | Set 1 (001)
0 Set 0 (000)

# MIPS assembly code . _
addi $t0, $0, 5 Miss Rate 3/15

loop: beq $te, $0, done —
Iw  $tl1, ox4($0) 0
lw  $t2, OxC($0) 20%
lw  $t3, ox8($0) i
addi $to, $to, -1 Temporal Locality

j  loop Compulsory Misses

done:




Direct Mapped Cache: Conflict

Byte
Tag Set Offset
Memory 1 50...01 [001]00
Address -
V Tag Data
0
0
0
0
0
0
{1 | 00..00 | MEMIOXVY...04
0

# MIPS assembly code
addi $to, %0, 5

loop:  beq $t@, $0, done
v $t1, x4($0)
v $t2, ox24($0)
addi $to, $to, -1
J loop

done:

Miss Rate

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)
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Direct Mapped Cache: Conflict

Tag

Memory 5557

Address

# MIPS assembly code
addi $to, $e, 5

loop: beq $to, $0, done
lw  $t1, ox4($9)
lw  $t2, ox24(%$9)
addi $to, $te, -1
Jj loop

done:

Byte
Set Offset
001]00
3
V Tag Data
0 Set7(111)
0 Set 6 (110)
0 Set 5 (101)
0 Set 4 (100)
0 Set 3 (011)
0 Set 2 (010)
{1 | 00..00 | MEMIXIV.-L21 | Set 1 (001)
0 Set 0 (000)
Miss Rate = 10/10
= 100%
Conflict Misses
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N-Way Set Associative Cache

Byte
Mem ory Tag Set Offset
00
Address Way 1 Way 0
28 2 X
V Tag Data V Tag Data
.>
28 32 28 32
| I
u u 1 -
Hit, Hit,
Jrz
Hit Data

Hit
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N-way Set Associative Performance

# MIPS assembly code M/:S'S Rate —
addi $te, %o, 5
loop: beq $to, $0, done
lw  $t1, ox4($9)
lw $t2, ox24(%$0)
addi $te, $teo, -1
j loop
done:
Way 1 Way 0
I | |
V Tag Data V Tag Data
0 0
0 0
1| 00...10 | mem[0x00...24] | 1| 00...00 | mem[0x00...04]
0 0

Set 3
Set 2
Set 1
Set 0
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N-way Set Associative Performance

# MIPS assembly code Miss Rate = 2/]0

addi $to, ¢eo, 5 —_ o
loop: beq $to, $0, done 20%

Iw  $t1, ex4($e)

Iw  $t2. 6x24(30) Associativity reduces

addi $te, $te, -1 conflict misses

j loop
done:

Way 1 Way 0

| | | |
V Tag Data V Tag Data
0 0 Set3
0 0 Set 2
1| 00...10 | mem[0x00...24] | 1| 00...00 | mem[0x00...04] Set 1
0 0 Set 0




Fully Associative Cache

No conflict misses

Expensive to build

V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data
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Spatial Locality?

Increase block size:

o Block size, b = 4 words

o C= 8 words

o Direct mapped (1 block per set)

o Number of blocks, 8= (Jb=8/4 = 2

Block Byte
Tag Set Offset Offset
ooy T T 100,
ress - 5
V Tag Data
> Set 1

Set0

o7 {32 132 132 A32
Q\ =

32

Hit Data



Direct Mapped Cache Pertormance

addi $to, $0, 5 : _
loop:  beq $to, $o, done Miss Rate

lw  $t1, ox4($0)
lw  $t2, oxC($9)
lw  $t3, ox8(%$9)
addi $to, $to, -1
j loop

done:

Block Byte
Tag Set Offset Offset

Memory
Address !oo...zgo\ 0] 112 [00]
V Tag Data
>0 Set 1
1| 00...00 | mem[0x00...0C] | mem[0x00...08] | mem[0x00...04] | mem[0x00...00] | Set 0
L o7 32 132 32 132
= > 2 S
32
Hit Data
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Direct Mapped Cache Performance

addi $to, %0, 5 . —
loop: beq $te. $0. done Miss Rate = 1/15
lw  $t1, ox4($0) = 6.67%

lw  $t2, oxC($0)
1 ,
i tee, o) Larger blocks reduce
j  loop compulsory misses through

spatial locality

done:

Block Byte
Memo Tag Set Offset Offset
"Y100...00[0[ 11 [00]
Address - .
Vv _Tag Data
o Set 1
1] 00...00 | mem[0x00...0C] | mem[0x00...08] | mem[0x00...04] | mem[0x00...00] | Set 0
T oz N2 J32 T2 Toz
o 3 S S
g 32
it Data
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Cache Organization Recap

= Main Parameters

o Capacity: C
Block size: b
Number of blocks in cache: B= (/b
Number of blocks in a set: ¥
Number of Sets: §= B/N

o O O O

Number of Ways Number of Sets

Organization (N) (S =B/N)
Direct Mapped 1 B
N-Way Set Associative 1<N<B B/N

Fully Associative B 1
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Capacity Misses

Cache is too small to hold all data of interest at one time

o If the cache is full and program tries to access data X that is
not in cache, cache must evict data Y to make room for X

o Capacity miss occurs if program then tries to access Y again
o X will be placed in a particular set based on its address

In a direct mapped cache, there is only one place to put X

In an associative cache, there are multiple ways where X
could go in the set.

How to choose Y to minimize chance of needing it again?

o Least recently used (LRU) replacement: the least recently
used block in a set is evicted when the cache is full.
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Types of Misses

Compulsory: first time data is accessed
Capacity: cache too small to hold all data of interest
Conflict: data of interest maps to same location in cache

Miss penalty: time it takes to retrieve a block from lower
level of hierarchy
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LLRU Replacement

# MIPS assembly

1w $t0, Ox04($0)
lw $t1, 0x24($9)
1w $t2, 0x54(%$0)

V U Tag Data

V Tag

Data

V U Tag Data

V Tag

Data

Set Number

105



LLRU Replacement

# MIPS assembly

1w $t0, 0x04($0)
lw $t1, 0x24($9)
1w $t2, 0x54(%$0)

Way 1 Way 0
[ 1 |
V U Tag Data V Tag Data
0]0 0 Set 3 (11)
0]0 0 Set 2 (10)
1] 0 00..010| mem[0x00...24] | 1| 00...000| mem[0x00...04] | Set 1 (01)
0/0 0 Set 0 (00)
(a)
Way 1 Way 0
| 1 |
V U Tag Data V Tag Data
0[0 0 Set 3 (11)
0[0 0 Set 2 (10)
1] 1]00..010 | mem[0x00...24] | 1| 00...101| mem[0x00...54] | Set 1 (01)
0|0 0 Set 0 (00)
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We Will Cover The Remaining Slides
in Future Lectures.

They Are for Your Benetit.




Implementing LRU

Idea: Evict the least recently accessed block
Problem: Need to keep track of access ordering of blocks

Question: 2-way set associative cache:
o What do you need to implement LRU perfectly?

Question: 4-way set associative cache:

o What do you need to implement LRU perfectly?

o How many different orderings possible for the 4 blocks in the
set?

o How many bits needed to encode the LRU order of a block?
o What is the logic needed to determine the LRU victim?
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Approximations of LRU

Most modern processors do not implement “true LRU"” (also
called “perfect LRU") in highly-associative caches

Why?
o True LRU is complex

o LRU is an approximation to predict locality anyway (i.e., not
the best possible cache management policy)

Examples:
o Not MRU (not most recently used)

o Hierarchical LRU: divide the N-way set into M “groups”, track
the MRU group and the MRU way in each group

o Victim-NextVictim Replacement: Only keep track of the victim

and the next victim
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Cache Replacement Policy: LRU or Random

LRU vs. Random: Which one is better?
o Example: 4-way cache, cyclic references to A, B, C, D, E
0% hit rate with LRU policy
Set thrashing: When the “program working set” in a set is
larger than set associativity
o Random replacement policy is better when thrashing occurs

In practice:
o Performance of replacement policy depends on workload
o Average hit rate of LRU and Random are similar

Best of both Worlds: Hybrid of LRU and Random

o How to choose between the two? Set sampling

See Qureshi et al., A Case for MLP-Aware Cache Replacement,”
ISCA 2006.
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What Is the Optimal Replacement Policy?

Belady’s OPT

o Replace the block that is going to be referenced furthest in the
future by the program

o Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

o How do we implement this? Simulate?

Is this optimal for minimizing miss rate?

Is this optimal for minimizing execution time?

a No. Cache miss latency/cost varies from block to block!

o Two reasons: Remote vs. local caches and miss overlapping

o Qureshi et al. "A Case for MLP-Aware Cache Replacement,”
ISCA 2006.
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Recommended Reading

Key observation: Some misses more costly than others as their latency is
exposed as stall time. Reducing miss rate is not always good for
performance. Cache replacement should take into account cost of misses.

Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,

"A Case for MLP-Aware Cache Replacement”

Proceedings of the 33rd International Symposium on Computer
Architecture (ISCA), pages 167-177, Boston, MA, June 2006. Slides (ppt)

A Case for MLP-Aware Cache Replacement

Moinuddin K. Qureshi Daniel N. Lynch Onur Mutlu Yale N. Patt
Department of Electrical and Computer Engineering
The University of Texas at Austin
{moin, lynch, onur, patt}@hps.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/qureshi_isca06.pdf
http://www.ece.neu.edu/conf/isca2006/
https://people.inf.ethz.ch/omutlu/pub/qureshi_isca06_talk.ppt

What’s In A Tag Store Entry?

Valid bit
Tag
Replacement policy bits

Dirty bit?
o Write back vs. write through caches
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Handling Writes (I)

When do we write the modified data in a cache to the next level?
Write through: At the time the write happens
Write back: When the block is evicted

o Write-back

+ Can combine multiple writes to the same block before eviction
0 Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “dirty/modified”

o Write-through
+ Simpler design

+ All levels are up to date & consistent - Simpler cache coherence: no
need to check close-to-processor caches’ tag stores for presence
-- More bandwidth intensive; no combining of writes
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Handling Writes (II)

Do we allocate a cache block on a write miss?
o Allocate on write miss: Yes
o No-allocate on write miss: No

Allocate on write miss

+ Can combine writes instead of writing each of them
individually to next level

+ Simpler because write misses can be treated the same way as
read misses

-- Requires transfer of the whole cache block

No-allocate

+ Conserves cache space if locality of writes is low (potentially
better cache hit rate)
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Handling Writes (111)

What if the processor writes to an entire block over a small
amount of time?

Is there any need to bring the block into the cache from
memory in the first place?

Why do we not simply write to only a portion of the block,
l.e., subblock

o E.g., 4 bytes out of 64 bytes

a Problem: Valid and dirty bits are associated with the entire 64
bytes, not with each individual 4 bytes
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Subblocked (Sectored) Caches

Idea: Divide a block into subblocks (or sectors)
o Have separate valid and dirty bits for each subblock (sector)
o Allocate only a subblock (or a subset of subblocks) on a request

++4+ No need to transfer the entire cache block into the cache
(A write simply validates and updates a subblock)

++4 More freedom in transferring subblocks into the cache (a
cache block does not need to be in the cache fully)

(How many subblocks do you transfer on a read?)

-- More complex design
-- May not exploit spatial locality fully

v|d| subblock |v]|d|subblock e e o0 |v|d]|subblock tag
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Instruction vs. Data Caches

Separate or Unified?

Pros and Cons of Unified:

+ Dynamic sharing of cache space: no overprovisioning that

might happen with static partitioning (i.e., separate I and D
caches)

-- Instructions and data can evict/thrash each other (i.e., no
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

First level caches are almost always split
o Mainly for the last reason above — pipeline constraints
Higher level caches are almost always unified
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Multi-level Caching in a Pipelined Design

First-level caches (instruction and data)

o Decisions very much affected by cycle time

o Small, lower associativity; latency is critical

o Tag store and data store usually accessed in parallel
Second-level caches

o Decisions need to balance hit rate and access latency

o Usually large and highly associative; latency not as important
o Tag store and data store can be accessed serially

Serial vs. Parallel access of levels
o Serial: Second level cache accessed only if first-level misses
o Second level does not see the same accesses as the first

First level acts as a filter (filters some temporal and spatial locality)

Management policies are therefore different
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Deeper and Larger Cache Hlerarchles
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and Larger Cache Hierarchies

|I|||Iﬂll|||1|Illll|||mH!IIIIIHIIHHI]IHIIIIM I

Debug, Wafer tests bumps

IIIIlIlIIIlIIIlIlIIIl'""llll_L'zI'“"“ i

i ;L%Caﬁft?e FRET

1 MiB (35 Array

uCode ROM_

L3$ Tags'

&
. 1MiB L3$ Array

.L3.Cache

1 MiB L3$ Array

b 145 Togs
20 Control

Zen3 Core¢

1 MiB L3$ Array

L3 Cache

1 MiB L3$ Array

FP Register

L3$ Tags'

EPU Control  #f. Zen3 Core

Caain

FP/Register

. 1MiBL3$ Array

L3'Cache

1 miB (35 Array

3 5 . ) L3$ Toos'
gucoo o 7en3 Core
.

. 1MiBL3$ Array

L3 Cache

* 1 MiB L3$ Array

L3$ Control | ° . L3$ Tags
.. ;

¥'1 MiB L33 Array.

L3 Cache

1 Mi8 £3% Array
L3$ Control L3% Tags

1 MiB'L3s Array.

: L3 Cache

1 MiB L3 Array

L3% Tags

1 mis L3s Array

L3 Cache - .

‘1 MiB L3$ Array
138 Control | * . L3 Tags

1 MiB L33 Array.

13 Cache , _‘

1 Mi8 L3§"Array

L3§ Tags L3$ Control

1 MiB L33 Array

L3 Cache

1 M8 13§ Array

L3$.Tags L3$ Contro|

1mMiBLIs Array o

L3 Cache

L3$ Tags L3$ Control

1 MIB L3$ Array
.

‘L3 Cache -

1 Mi8 L3§ Array
L3$ Tags L3$ Control

1 MiB L3$ Array

13 Cache -

", 1 MiB L3$ Array

135 Tags

1 MiB L3$ Array

3 Cache

1 MiB L3$ Array

138 Tags

1 MiB L3$ Array

‘L3 €ache

1 MiB L3$ Array

138 Tags

1 MiB L3$ Array

L4

W CT'
el ™

L3 Cache -

"1 MiB 3§ Array

135 Tags.

1 MiB L3$ Array

AMD Ryzen 5000, 2020

L2 Control

. [Tags+]
Sule

256 KnB

‘L3 Cache : .

4} P
T

uCode ROM

FP Register

Zen3 Coré
;

)€ Thstruction
LY Cache 3 ; =
Zen3 Core
141 DCache:

n KiB 1 pata Cache |

FPU Control

£P Régister

@1 Tnstriction
Cache {

FP Register

. Zen3 Core
11 DCache;

|32kiB L1 Data Cache |

|

FP Register

Tnstruction 3
i toancien
LA

Gvel BTB

'Ll DCache.
Zen3 Coré
_ LiBCache -

FP Register

i
@
g
3
&

FPY Control

uCode ROM

FPU Control

FPU Control

Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared

https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

121



Deeper and Larger Cache Hierarchies
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Deeper and Larger Cache Hierarchies

Cores:
128 Streaming Multiprocessors

L1 Cache or

Scratchpad:

192KB per SM
Can be used as L1 Cache
and/or Scratchpad

L2 Cache:
40 MB shared

Nvidia Ampere, 2020

https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon 123



NVIDIA V100 & A100 Memory Hierarchy

= Example of data movement between GPU global memory
(DRAM) and GPU cores.

Tensor Cores

t Tensor Cores

Sreads Load-Shared Load-Shared
1 write (4x) (2x)
Store-Shared
Reserved for . i?::l? ;i% :c:ar Load-Global-
in-flight data ™ Store-Shared
Load-Global (Async-Copy)
L2
5 | I : A100 feature:
| _DRAM | @ | _DRAM | @ Direct copy from L2
A100 improves SM bandwidth efficiency with a new load-global-store-shared asynchronous copy to scratch pad P
instruction that bypasses L1 cache and register file (RF). Additionally, A100’s more efficient Tensor i
Cores reduce shared memory (SMEM) loads. byp_ass'n9 L1 and
register file.

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
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Cache Performance




Cache Parameters vs. Miss/Hit Rate

Cache size

Block size
Associativity
Replacement policy

Insertion/Placement policy
Promotion Policy
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Cache Size

Cache size: total data (not including tag) capacity

o bigger can exploit temporal locality better

o not ALWAYS better

Too large a cache adversely affects hit and miss latency
o smaller is faster => bigger is slower
o access time may degrade critical path
Too small a cache

o doesn’t exploit temporal locality well
o useful data replaced often

. hit rate

“working set”

size
Working set: the whole set of data f

the executing application references ‘ ‘
o Within a time interval cache size
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Block Size

Block size is the data that is associated with an address tag

o not necessarily the unit of transfer between hierarchies
Sub-blocking: A block divided into multiple pieces (each w/ V/D bits)

Too small blocks hit rate

o don't exploit spatial locality well
o have larger tag overhead

Too large blocks

o too few total # of blocks - less
temporal locality exploitation ook

o waste of cache space and bandwidth/energy size
if spatial locality is not high
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Large Blocks: Critical-Word and Subblocking

Large cache blocks can take a long time to fill into the cache
o Idea: Fill cache block critical-word first
o Supply the critical data to the processor immediately

Large cache blocks can waste bus bandwidth

o Idea: Divide a block into subblocks

o Associate separate valid and dirty bits for each subblock
o Recall: When is this useful?

v|d| subblock |v]|d|subblock e e o0 |v|d]|subblock tag
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Associativity

How many blocks can be present in the same index (i.e., set)?

Larger associativity
o lower miss rate (reduced conflicts)
o higher hit latency and area cost (plus diminishing returns)

hit rate
Smaller associativity ﬁ
o lower cost

o lower hit latency
Especially important for L1 caches

e : associe;tivity
Is power of 2 associativity required?
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Recall: Higher Associativity (4-way)

4-way
Tag store
| |
=7 =7 =7 ="
/ Logic —— Hit?
Data store

>\ MUX - —

v .
byte in block
\ MtJX e Address

tag index byte in block
4 bits |1b | 3 bits
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Higher Associativity (3-way)

3-way
Tag store
v
=7 =" =7
/ Logic —— Hit?
Data store

>\ MUX - —

v .
byte in block
\ MtJX e Address

tag index byte in block
4 bits |1b | 3 bits
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Recall: 8-way Fully Associative Cache

Tag store | I I I I | I I |
=7 =7 =7 =7 =" =" =7 =7
Logic
¢ Hit?
Data store| | | | | | | | |
\I/ \‘/ \l/
o MUX
\/ .
byte in block
Address P,
tag byte in block \ MLjX
5 bits 3 bits
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7-way Fully Associative Cache

Tag store | | | | I I ! |
=" = =7 =7 =2 _n _o
Logic
¢ Hit?
Data store| | I I ! ! ”
\I/ \‘/
o MUX
Vi .
byte in block
Address
tag byte in block \ MLjX /4
5 bits | 3 bits
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Classification of Cache Misses

Compulsory miss
a first reference to an address (block) always results in a miss

o subsequent references should hit unless the cache block is
displaced for the reasons below

Capacity miss
o cache is too small to hold all needed data

o defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same
capacity

Conflict miss

a defined as any miss that is neither a compulsory nor a
capacity miss
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How to Reduce Each Miss Type

Compulsory

o Caching cannot help

o Prefetching can: Anticipate which blocks will be needed soon
Conflict

o More associativity

o Other ways to get more associativity without making the
cache associative
Victim cache
Better, randomized indexing
Software hints?

Capacity
o Utilize cache space better: keep blocks that will be referenced

o Software management: divide working set and computation
such that each “computation phase” fits in cache
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How to Improve Cache Performance

Three fundamental goals

Reducing miss rate

o Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

Reducing miss latency or miss cost

Reducing hit latency or hit cost

The above three together affect performance
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Improving Basic Cache Performance

= Reducing miss rate
o More associativity

o Alternatives/enhancements to associativity
= Victim caches, hashing, pseudo-associativity, skewed associativity

o Better replacement/insertion policies
o Software approaches

= Reducing miss latency/cost
o Multi-level caches
Critical word first
Subblocking/sectoring
Better replacement/insertion policies
Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle
Software approaches

L O 0 0 O O
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Sottware Approaches tor Higher Hit Rate

Restructuring data access patterns
Restructuring data layout

Loop interchange
Data structure separation/merging
Blocking
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Restructuring Data Access Patterns (I)

Idea: Restructure data layout or data access patterns
Example: If column-major

a X[i+1,j] follows x[i,j] in memory

a X[i,j+1] is far away from x[i,j]

Poor code Better code
fori=1, rows forj =1, columns
forj =1, columns fori=1, rows
sum = sum + X[i,j] sum = sum + X[i,j]

This is called loop interchange

Other optimizations can also increase hit rate
o Loop fusion, array merging, ...
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Restructuring Data Access Patterns (1)

Blocking

o Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

o Avoids cache conflicts between different chunks of
computation

o Essentially: Divide the working set so that each piece fits in
the cache

Also called Tiling
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Data Reuse: An Example tfrom GPU Computing

= Same memory locations accessed by neighboring threads

Gaussian filter applied on J
every pixel of an image

for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; Jj++){
sum += gauss[i][j] * Image[ (i+row-1)*width + (j+col-1)];

}

Lecture 22: GPU Programming (Spring 2018) https://www.youtube.com/watch?v=y40-tY5WJ8A 142



Data Reuse: Tiling in GPU Computing

= To take advantage of data reuse, we divide the input into tiles
that can be loaded into shared memory (scratchpad memory)

__shared  int 1 data[(L SIZE+2)*(L_SIZE+2)];

Load tile into shared memory
__syncthreads();
for (int 1 = 0; i < 3; 1i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][]j] * 1 data[(i+l row-1)*(L_SIZE+2)+j+1 col-1];
}
}

Lecture 22: GPU Programming (Spring 2018) https://www.youtube.com/watch?v=y40-tY5WJ8A 143



Naive Matrix Multiplication (I)

= Matrix multiplication: C=A x B

= Consider two input matrices A and B in row-major layout

o AsizecisMxP
o BsizeisP xN
o CsizeisMx N

B

A
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Naive Matrix Multiplication (II)

= Naive implementation of matrix multiplication has poor
cache locality

#define A(i,Jj) matrix A[i * P + Jj]
#define B(i,Jj) matrix B[i * N + j]
#define C(i,J) matrix C[i * N + J]

for (i = 0; i < M; i++){ // i = row index B A
for (j = 0; j < N; j++){ // j = column index
C(i, j)y = 0; // Set to zero
for (k = 0; k < P; k++) // Rou Col
C(i, J) += A(i, k) * = F
}

S A

Consecutive accesses to B are far from
each other, in different cache lines.

Every access to B is likely to cause a k
cache miss
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Tiled Matrix Multiplication (I)

= We can achieve better cache
locality by computing on B
smaller tiles or blocks that fit in
the cache

a Or in the scratchpad memory

and register file if we compute
on a GPU

A

tile dim

<4+“—>
tile dim

< > < >
P N

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981 1 46
Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.ora/10.1016/B978-0-12-811986-0.00005-4



https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4

Tiled Matrix Multiplication (I1I)

= Tiled implementation operates on submatrices (tiles or
blocks) that fit fast memories (cache, scratchpad, RF)

#define A(i,Jj) matrix A[i * P + Jj]
#define B(i,Jj) matrix B[i * N + j]
#define C(i,J) matrix C[i * N + J]

for (I = 0; I < M; I += tile dim) { E3
for (J = 0; J < N; J += tile dim) {

Set to zero(&C(I, J)); // Set to zero

for (K = 0; K< P; K += tile dim) D

Multiply tiles(&C(I, J), &A(I, K), &B(K, J)); K

o e
e

Multiply small submatrices (tiles or blocks)
of size tile dim x tile dim

tile dim

P N

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981 1 47

Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4



https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4

Tiled Matrix Multiplication on GPUs
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Computer Architecture - Lecture 9: GPUs and GPGPU Programming (ETH Zdirich, Fall 2017)

14,426 views * Oct 23, 2017 1 225 i 2 » SHARE =} SAVE
- Onur Mutlu Lectures
Q 16.5K subscribers SUBSCRIBED

Computer Architecture - Lecture 9: GPUs and GPGPU Programming (Fall 2017) https://youtu.be/mgtlbEqn2dA?t=8157
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Restructuring Data Layout (1)

struct Node {
struct Node* next;
int key;
char [256] name;
char [256] schooal;

}

while (node) {
if (node—>key == input-key) {
/] access other fields of node
}

node = node—2>next;

}

Pointer based traversal
(e.qg., of a linked list)

Assume a huge linked
list (1B nodes) and
unique keys

Why does the code on
the left have poor cache
hit rate?

o “Other fields” occupy
most of the cache line
even though rarely
accessed!
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Restructuring Data Layout (11)

struct Node {
struct Node™* next;
int key;
struct Node-data* node-data;

}

struct Node-data {
char [256] name;
char [256] schooal;

}

while (node) {
if (node—>key == input-key) {
/| access node—~>node-data
}

node = node—>next;

= Idea: separate frequently-
used fields of a data
structure and pack them
into a separate data
structure

= Who should do this?
o Programmer

o Compiler
= Profiling vs. dynamic
o Hardware?

o Who can determine what
is frequently used?
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Improving Basic Cache Performance

= Reducing miss rate
o More associativity

o Alternatives/enhancements to associativity
= Victim caches, hashing, pseudo-associativity, skewed associativity

o Better replacement/insertion policies
o Software approaches

= Reducing miss latency/cost
o Multi-level caches
Critical word first
Subblocking/sectoring
Better replacement/insertion policies
Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle
Software approaches

L O 0 0 O O
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Miss Latency/Cost

What is miss latency or miss cost affected by?

o Where does the miss get serviced from?
Local vs. remote memory
What level of cache in the hierarchy?
Row hit versus row conflict
Queueing delays in the memory controller and the interconnect

a How much does the miss stall the processor?
Is it overlapped with other latencies?

Is the data immediately needed?
Is the incoming block going to evict a longer-to-refetch block?
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Memory Level Parallelism (MLP)

isolated miss

parallel miss

A

4

7 |

/
v

, time

Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew98]

Several techniques to improve MLP (e.g., out-of-order execution)

MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?



Traditional Cache Replacement Policies

d

Traditional cache replacement policies try to reduce miss
count

Implicit assumption: Reducing miss count reduces memory-
related stall time

Misses with varying cost/MLP breaks this assumption!

Eliminating an isolated miss helps performance more than
eliminating a parallel miss

Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss
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An Example

P4 P3 P2 PI {P] P2 P3 P4 @

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

&

&



Fewest Misses = Best Performance

P4 |S1Gachs

S3

P1

S

1

P3 |P2P4

P3 [P2 |S3

P4

1|S2 |S3PP4 |S1 |S2 |S3
P

P3 P2 P]H 1 P2 P3 P4J4>‘—>‘—>‘—5

Hit/Miss H HHM
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M

M

: Misses=4
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Belady’ s OPT replacement

Hit/Miss H M M M

Time NG W [~
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MLP-Aware replacement

H H
Savled > Misses=6
Cycles Stalls=2




Recommended: MLLP-Aware Cache Replacement

= How do we incorporate MLP/cost into replacement decisions?
= How do we design a hybrid cache replacement policy?

= Qureshi et al., “"A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

A Case for MLP-Aware Cache Replacement

Moinuddin K. Qureshi Daniel N. Lynch  Onur Mutlu Yale N. Patt
Department of Electrical and Computer Engineering
The University of Texas at Austin
{moin, lynch, onur, patt} @hps.utexas.edu
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Improving Basic Cache Performance

= Reducing miss rate
o More associativity
o Alternatives/enhancements to associativity
= Victim caches, hashing, pseudo-associativity, skewed associativity
o Better replacement/insertion policies
o Software approaches

a ...

= Reducing miss latency/cost

Multi-level caches

Critical word first

Subblocking/sectoring

Better replacement/insertion policies

Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle

Software approaches

o 0 0 0O o0 0 0 0
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Lectures on Cache Optimizations (I)

Victim Cache: Reducing Conflict Misses

Next Level
Cache

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

Idea: Use a small fully-associative buffer (victim cache) to
store recently evicted blocks

+ Can avoid ping ponging of cache blocks mapped to the same set (if two
cache blocks continuously accessed in nearby time conflict with each
other)

-- Increases miss latency if accessed serially with L2; adds complexity

Computer Architecture - Lecture 3: Cache Management and Memory Parallelism (ETH Ziirich, Fall 2017)

6,392 views * Sep 29, 2017 |b 49 1 SHARE SAVE

@ ?::;ml;tslrrit:fstures ANALYTICS EDIT VIDEO
«T > ’

https://www.youtube.com/watch?v=0yomXCHNJDA&Iist=PL5Q2s0XY2Zi90hoVQBXYFIZywZXCPIl4M &index=3 159



https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3

Lectures on Cache Optimizations (I11)

Peripheral Logic for True Multiporting

A
DATA

DATA —V

€ P Pl R) 1:18:05/1:28:10

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 4a: Cache Design (ETH Zurich, Fall 2018)

1,437 views * Sep 29, 2018 15 &lo ) SHARE =i SAVE

@ ?:;1; mti';it:;thes ANALYTICS EDIT VIDEO
> :

https://www.youtube.com/watch?v=550YBm9cifl&list=PL5Q2s0XY2Zi9JXe3ywQMhylk d5dI-TM7&index=6 160



https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6

Lectures on Cache Optimizations (I1I)

> Pl R) 4503/1:39:38

Lecture 19. High Performance Caches - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu

9,737 views * Mar 5, 2015 i3 &1 P SHARE =i SAVE

@ Carnegie M_ellon Computer Architecture ANALYTICS EDIT VIDEO
23.2K subscribers

https://www.youtube.com/watch?v=jDHx2K9HxIM&list=PL5PHmM2jkkXmi5CxxI7b3JCL1TWybTDtKg&index=21 1ol



https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21

Lectures on Cache Optimizations

= Computer Architecture, Fall 2017, Lecture 3

o Cache Management & Memory Parallelism (ETH, Fall 2017)

o https://www.youtube.com/watch?v=0yomXCHNJIDA&list=PL502s0XY2Zi90hoVQBX
YFIZywZXCPI4M &index=3

= Computer Architecture, Fall 2018, Lecture 4a

o Cache Design (ETH, Fall 2018)

o https://www.youtube.com/watch?v=550YBm9cifI&list=PL50Q2s0XY2Zi9]Xe3ywQMh
vlk d5dI-TM7&index=6

= Computer Architecture, Spring 2015, Lecture 19

o High Performance Caches (CMU, Spring 2015)

o https://www.youtube.com/watch?v=jDHx2K9HxIM&list=PL5PHM2jkkXmi5CxxI17b3]
CL1TWybTDtKg&index=21

https:/ /www.youtube.com/onurmutlulectures 162



https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3
https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6
https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21
https://www.youtube.com/onurmutlulectures

Multi-Core Issues in Caching




Caches 1n a Multi-Core System
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Caches 1n 2 Multi- Core System
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Caches 1n a2 Multi-Core System
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Caches 1n a Multi-Core System
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Caches 1n a2 Multi-Core System

Cores:
128 Streaming Multiprocessors

L1 Cache or

Scratchpad:

192KB per SM
Can be used as L1 Cache
and/or Scratchpad

L2 Cache:
40 MB shared

Nvidia Ampere, 2020

https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon 168



Caches in Multi-Core Systems

Cache efficiency becomes even more important in a multi-
core/multi-threaded system

o Memory bandwidth is at premium
o Cache space is a limited resource across cores/threads

How do we design the caches in a multi-core system?

Many decisions

Shared vs. private caches

How to maximize performance of the entire system?

How to provide QoS to different threads in a shared cache?
Should cache management algorithms be aware of threads?
How should space be allocated to threads in a shared cache?
Should we store data in compressed format in some caches?
How do we do better reuse prediction & management in caches?

o 0o 0 0 o0 0 O
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Private vs. Shared Caches

Private cache: Cache belongs to one core (a shared block
can be in multiple caches)

Shared cache: Cache is shared by multiple cores

// N — —~~
CORE O CORE 1 CORE 2 CORE 3 CORE 0 CORE 1 CORE 2 CORE 3
A A A A i 'y 7Y Y
v A v v v v v v
L2 L2 L2 L2 L2
ACHE ACHE ACHE ACHE
CAC CAC CAC CAC CACHE

\ DRAM MEMORY CONTROLLER

\ DRAM MEMORY CONTROLLER /
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Resource Sharing Concept and Advantages

Idea: Instead of dedicating a hardware resource to a
hardware context, allow multiple contexts to use it

o Example resources: functional units, pipeline, caches, buses,
memory

Why?

+ Resource sharing improves utilization/efficiency - throughput

o When a resource is left idle by one thread, another thread can
use it; no need to replicate shared data

+ Reduces communication latency

o For example, data shared between multiple threads can be kept
in the same cache in multithreaded processors

+ Compatible with the shared memory programming model
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Resource Sharing Disadvantages

Resource sharing results in contention for resources
o When the resource is not idle, another thread cannot use it

o If space is occupied by one thread, another thread needs to re-
occupy it

- Sometimes reduces each or some thread’s performance
- Thread performance can be worse than when it is run alone

- Eliminates performance isolation - inconsistent performance
across runs

- Thread performance depends on co-executing threads

- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
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Private vs. Shared Caches

Private cache: Cache belongs to one core (a shared block
can be in multiple caches)

Shared cache: Cache is shared by multiple cores

// N — —~~
CORE O CORE 1 CORE 2 CORE 3 CORE 0 CORE 1 CORE 2 CORE 3
A A A A i 'y 7Y Y
v A v v v v v v
L2 L2 L2 L2 L2
ACHE ACHE ACHE ACHE
CAC CAC CAC CAC CACHE

\ DRAM MEMORY CONTROLLER

\ DRAM MEMORY CONTROLLER /
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Shared Caches Between Cores

Advantages:
o High effective capacity
o Dynamic partitioning of available cache space
No fragmentation due to static partitioning
If one core does not utilize some space, another core can
o Easier to maintain coherence (a cache block is in a single location)

Disadvantages
o Slower access (cache not tightly coupled with the core)
o Cores incur conflict misses due to other cores’ accesses
Misses due to inter-core interference
Some cores can destroy the hit rate of other cores

o Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)
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Lectures on Multi-Core Cache Management

Computer Architecture
Lecture 15:
Multi-Core Cache Management

Prof. Onur Mutlu
ETH Zlrich
Fall 2017
15 November 2017

Computer Architecture - Lecture 15: Multi-Core Cache Management (ETH Ziirich, Fall 2017)

934 views * Nov 17,2017 |. 13 0 SHARE SAVE

- Onur Mutlu Lectures
5:, , 165 s e ANALYTICS EDIT VIDEO

https://www.youtube.com/watch?v=7 Tqglw8agxOU&list=PL5Q2s0XY2Zi90hoVQBXYFIZywZXCPIl4M &index=17 175
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Lectures on Multi-Core Cache Management

Page Coloring

» Physical memory divided into colors
= Colors map to different cache sets
= Cache partitioning

a Ensure two threads are allocate.
pages of different colors

[« P DI RY 54:39/1:07:14 @ &[0

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 18b: Multi-Core Cache Management (ETH Ziirich, Fall 2018)
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Lectures on Multi-Core Cache Management

Approaches to Reuse Prediction

| Use program counter or memory region information.

2. Learn group

1. Group Blocks -
behavior

3. Predict reuse
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1. Same group - same reuse behavior
2. No control over number of high-reuse blocks
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Lectures on Multi-Core Cache Management

= Computer Architecture, Fall 2018, Lecture 18b

o Multi-Core Cache Management (ETH, Fall 2018)

o https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL502s0XY27i9]Xe3ywOM
hylk d5dI-TM7&index=29

= Computer Architecture, Fall 2018, Lecture 19a

o Multi-Core Cache Management II (ETH, Fall 2018)

o https://www.youtube.com/watch?v=Siz86 PD4w&list=PL502s0XY2Zi9]Xe3ywQOM
hylk d5dI-TM7&index=30

= Computer Architecture, Fall 2017, Lecture 15

o Multi-Core Cache Management (ETH, Fall 2017)

o https://www.youtube.com/watch?v=7 Tglw8gxOU&list=PL50Q2s0XY2Zi90hoVOBXY
FIZywZXCPl4M &index=17
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Lectures on Memory Resource Management

AP
-

QoS-Aware Memory Systems: Challenges

How do we reduce inter-thread interference?
o Improve system performance and core utilization
o Reduce request serialization and core starvation

How do we control inter-thread interference?

o Provide mechanisms to enable system software to enforce
QoS policies
o While providing high system performance

= How do we make the memory system configurable/flexible?

o Enable flexible*mechanisms that can achieve many goals
= Provide fairness or throughput when needed
» Satisfy performance guarantees when needed

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 11b: Memory Interference and QoS (ETH Ziirich, Fall 2020)
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Lectures on Memory Resource Management

= Computer Architecture, Fall 2020, Lecture 11a

o Memory Controllers (ETH, Fall 2020)

o https://www.youtube.com/watch?v=TeG7730giMQ&list=PL502s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=20

= Computer Architecture, Fall 2020, Lecture 11b

o Memory Interference and QoS (ETH, Fall 2020)

o https://www.youtube.com/watch?v=0nnI807nCkc&list=PL50Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=21

= Computer Architecture, Fall 2020, Lecture 13

o Memory Interference and QoS II (ETH, Fall 2020)

o https://www.youtube.com/watch?v=Axye9VgOT7/w&list=PL50Q2s0XY2Zi9xidyIgBxU
Z7XRPS-wisBN&index=26

= Computer Architecture, Fall 2020, Lecture 2a

o Memory Performance Attacks (ETH, Fall 2020)

o https://www.youtube.com/watch?v=V1zZbwgBfy8&list=PL50Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=2
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Cache Coherence




Cache Coherence

Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem

Id r2, X
addr1,r2, r4
st x, r1
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The Cache Coherence Problem
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A Very Simple Coherence Scheme (VI)

Idea: All caches “snoop” (observe) each other’s write/read
operations. If a processor writes to a block, all others
invalidate the block.

A simple protocol:

PrRd/-- PrWr / BusWr Wr_ite-through, no-
write-allocate

cache
@ Actions of the local

BusWr processor on the
PrRd / BusRd cache block: PrRd,

PrWr,
Actions that are
broadcast on the
Q PrWr / BusWr bus for the block:
BusRd, BusWr

187



Lecture on Cache Coherence

MESI State Machine
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Lecture on Memory Ordering & Consistency
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Lecture on Cache Coherence & Consistency

= Computer Architecture, Fall 2020, Lecture 21

o Cache Coherence (ETH, Fall 2020)

o https://www.youtube.com/watch?v=T9WIlyezeall&list=PL502s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=38

= Computer Architecture, Fall 2020, Lecture 20

o Memory Ordering & Consistency (ETH, Fall 2020)

o https://www.youtube.com/watch?v=Suy09mzTbiOQ&list=PL50Q2s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=37

= Computer Architecture, Spring 2015, Lecture 28

o Memory Consistency & Cache Coherence (CMU, Spring 2015)

o https://www.youtube.com/watch?v=JfjT1a0vi4E&list=PL5PHmM2jkkXmi5CxxI17b3JCL
1TWybTDtKg&index=32

= Computer Architecture, Spring 2015, Lecture 29

o Cache Coherence (CMU, Spring 2015)

o https://www.youtube.com/watch?v=X6DZchnMYcw&list=PL5PHmM2jkkXmi5CxxI7b3
JCL1TWybTDtKg&index=33
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