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Extra Assignment 3: Amdahl’s Law

= Paper review

o G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

= Optional Assignment — for 1% extra credit

o Write a 1-page review
o Upload PDF file to Moodle — Deadline: June 15

= Strongly recommended that you follow my guidelines for
(paper) review




Readings for This Week and Last Week

Memory Hierarchy and Caches

Required

o H&H Chapters 8.1-8.3

o Refresh: P&P Chapter 3.5

o Kim & Mutlu, "Memory Systems,” Computing Handbook, 2014.

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction computing-handbook14.pdf

Recommended

o An early cache paper by Maurice Wilkes

Wilkes, “"Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.


https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

Recall: Memory Hierarchy Example
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100's of KB < 5ns
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several GB =~ 100ns
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Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction computing-handbook14.pdf



https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

Recall: A Modern Memory Hierarchy

Register File
32 words, sub-nsec

manual/compiler

register spilling

L1 cache
~10s of KB, ~“nsec

L2 cache .
100s of KB ~ few MB, many nsec automatic
HW cache
L3 cache, management

many MBs, even more nsec

Main memory (DRAM),
Many GBs, ~100 nsec

automatic
. demand
Swap Disk ]
~100 GB or few TB, ~10s of usec-msec paging




Aside: Remote Memory in Large Servers

= Memory hierarchy extends beyond a single server
= This enables even higher memory capacity
o Needed to support modern data-intensive workloads

[ I - - - S - |

ow-latency

Compute node network Memory node
(Local) (Remote)
Local memory Remote memory

(and hierarchy)

Calciu+, “Rethinking Software Runtimes for Disaggregated Memory”, ASPLOS 2021.



Aside: Remote Memory in Large Servers
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Lim+, “System-level Implications of Disaggregated Memory”, HPCA 2012.



Aside: Remote Memory in Large Servers

= Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf, Onur
Mutlu, and Aasheesh Kolli,
"Rethinking Software Runtimes for Disaggregated Memory"
Proceedings of the 26th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.

Rethinking Software Runtimes for Disaggregated Memory

Irina Calciu M. Talha Imran Ivan Puddu
VMware Research Penn State University ETH Ziirich
USA USA Switzerland
Sanidhya Kashyap Hasan Al Maruf Onur Mutlu
EPFL University of Michigan ETH Ziirich
Switzerland USA Switzerland
Aasheesh Kolli

_— Penn State University/Google —_—
USA 5


https://people.inf.ethz.ch/omutlu/pub/Kona-Rethinking-Software-Runtimes-for-Disaggregated-Memory_asplos21-AE.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/Kona-Rethinking-Software-Runtimes-for-Disaggregated-Memory_asplos21-extended-abstract.pdf
https://github.com/project-kona/asplos21-ae

Recall: Our Toy Cache Example

We will examine a direct-mapped cache first

Direct-mapped: A given main memory block can be placed in

only one possible location in the cache

Toy example: 256-byte memory, 64-byte cache, 8-byte blocks

fully-associative

“chunk”

cache block

cache block

cache block

cache block

Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

direct-mapped

cache block

“chunk”

cache block

cache block

N

cache block

set-associative

cache block

cache block

cache block

cache block




Recall: Set Associativity

Problem: Addresses N and N+8 always conflict in direct mapped cache

Idea: enable blocks with the same index to map to > 1 cache location
Example: Instead of having one column of 8, have 2 columns of 4 blocks

Tag store Data store
SET | ) ( '
V\ tag V\ tag
=7 =" MUX /
Lclgic \ MUX byte in block

it?

Address Hit:
tag index byte in block Key idea: Associative memory within the set

+ Accommodates conflicts better (fewer conflict misses)

3 bits| 2 bits| 3 bits
-- More complex, slower access, larger tag store

2-way set associative cache: Blocks with the same index can map to 2 locations



Recall: Higher Associativity

4-way Tag store
l |
= =7 =7 ="
/ Logic —— Hit?
Data store

>\ MUX - —

v .
byte in block
N MUX A Address

tag index byte in block
+ Likelihood of conflict misses even lower 4 bits |1b | 3 bits

-- More tag comparators and wider data mux; larger tags
4-way set associative cache: Blocks with the same index can map to 2 locations




Recall: Full Associativity

Fully associative cache
o A block can be placed in any cache location

Tag store | | I I I | I I
=7 =7 =7 =" —tp)] =7 =7
Logic
¢ Hit?
Data store| | | | | | | |
\|/ \‘/
o MUX
\/ .
byte in block
Address P,
tag byte in block \ MLjX
5 bits 3 bits

Fully associative cache: Any block can map to any location



Recall: Associativity (and Tradeotfs)

Degree of associativity: How many blocks can map to the
same index (or set)?

Higher associativity

++ Higher hit rate

-- Slower cache access time (hit latency and data access latency)

-- More expensive hardware (more comparators, larger tags/muxes)

hit rate {
Diminishing returns from higher /

associativity

associativity
13



Recall: Issues in Set-Associative Caches

Think of each block in a set having a “priority”

o Indicating how important it is to keep the block in the cache
Key issue: How do you determine/adjust block priorities?
There are three key decisions in a set:

o Insertion, promotion, eviction (replacement)

Insertion: What happens to priorities on a cache fill?
o Where to insert the incoming block, whether or not to insert the block

Promotion: What happens to priorities on a cache hit?

o Whether and how to change block priority

Eviction/replacement: What happens to priorities on a cache
mIss?

o Which block to evict and how to adjust priorities

14



Recall: Eviction/Replacement Policy

Which block in the set to replace on a cache miss?
o Any invalid block first

o If all are valid, consult the replacement policy
Random
FIFO
Least recently used (how to implement?)
Not most recently used
Least frequently used?

Least costly to re-fetch?

o Why would memory accesses have different cost?
Hybrid replacement policies

Optimal replacement policy?

15



Implementing LRU

Idea: Evict the least recently accessed block
Problem: Need to keep track of access ordering of blocks

Question: 2-way set associative cache:
o What do you need to implement LRU perfectly?

Question: 4-way set associative cache:
o What do you minimally need to implement LRU perfectly?

o How many different orderings possible for the 4 blocks in the
set?

o How many bits needed to encode the LRU order of a block?
o What is the logic needed to determine the LRU victim?

Repeat for N-way set associative cache

16



Approximations of LRU

Most modern processors do not implement “true LRU"” (also
called “perfect LRU") in highly-associative caches

Why?
o True LRU is complex

o LRU is an approximation to predict locality anyway (i.e., not
the best possible cache management policy)

Examples:
o Not MRU (not most recently used)

o Hierarchical LRU: divide the N-way set into M “groups”, track
the MRU group and the MRU way in each group

o Victim-NextVictim Replacement: Only keep track of the victim

and the next victim
17



Cache Replacement Policy: LRU or Random

LRU vs. Random: Which one is better?
o Example: 4-way cache, cyclic references to A, B, C, D, E
0% hit rate with LRU policy
Set thrashing: When the “program working set” in a set is
larger than set associativity
o Random replacement policy is better when thrashing occurs

In practice:
o Performance of replacement policy depends on workload
o Average hit rate of LRU and Random are similar

Best of both Worlds: Hybrid of LRU and Random

o How to choose between the two? Set sampling

See Qureshi et al., A Case for MLP-Aware Cache Replacement,”
ISCA 2006.
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What Is the Optimal Replacement Policy?

Belady’s OPT

o Replace the block that is going to be referenced furthest in the
future by the program

o Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems Journal, 1966.

o How do we implement this? Simulate?

Is this optimal for minimizing miss rate?

Is this optimal for minimizing execution time?

a No. Cache miss latency/cost varies from block to block!

o Two reasons: Where miss is serviced from and miss overlapping

o Qureshi et al. "A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

19



Recommended Reading

Key observation: Some misses more costly than others as their latency is
exposed as stall time. Reducing miss rate is not always good for
performance. Cache replacement should take into account cost of misses.

Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,

"A Case for MLP-Aware Cache Replacement”

Proceedings of the 33rd International Symposium on Computer
Architecture (ISCA), pages 167-177, Boston, MA, June 2006. Slides (ppt)

A Case for MLP-Aware Cache Replacement

Moinuddin K. Qureshi Daniel N. Lynch Onur Mutlu Yale N. Patt
Department of Electrical and Computer Engineering
The University of Texas at Austin
{moin, lynch, onur, patt}@hps.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/qureshi_isca06.pdf
http://www.ece.neu.edu/conf/isca2006/
https://people.inf.ethz.ch/omutlu/pub/qureshi_isca06_talk.ppt

What’s In A Tag Store Entry?

Valid bit
Tag
Replacement policy bits

Dirty bit?
o Write back vs. write through caches

21



Handling Writes (I)

When do we write the modified data in a cache to the next level?
Write through: At the time the write happens
Write back: When the block is evicted

o Write-back

+ Can combine multiple writes to the same block before eviction
0 Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “dirty/modified”

o Write-through
+ Simpler design

+ All levels are up to date & consistent - Simpler cache coherence: no
need to check close-to-processor caches’ tag stores for presence
-- More bandwidth intensive; no combining of writes

22



Handling Writes (II)

Do we allocate a cache block on a write miss?
o Allocate on write miss: Yes
o No-allocate on write miss: No

Allocate on write miss

+ Can combine writes instead of writing each individually to next
level

+ Simpler because write misses can be treated the same way as
read misses

-- Requires transfer of the whole cache block

No-allocate

+ Conserves cache space if locality of written blocks is low
(potentially better cache hit rate)

23



Handling Writes (111)

What if the processor writes to an entire block over a small
amount of time?

Is there any need to bring the block into the cache from
memory in the first place?

Why do we not simply write to only a portion of the block,
l.e., subblock

o E.g., 4 bytes out of 64 bytes

a Problem: Valid and dirty bits are associated with the entire 64
bytes, not with each individual 4 bytes

24



Subblocked (Sectored) Caches

Idea: Divide a block into subblocks (or sectors)
o Have separate valid and dirty bits for each subblock (sector)
o Allocate only a subblock (or a subset of subblocks) on a request

++4+ No need to transfer the entire cache block into the cache
(A write simply validates and updates a subblock)

++4 More freedom in transferring subblocks into the cache (a
cache block does not need to be in the cache fully)

(How many subblocks do you transfer on a read?)

-- More complex design
-- May not exploit spatial locality fully

v|d| subblock |v]|d|subblock e e o0 |v|d]|subblock tag

25



Instruction vs. Data Caches

Separate or Unified?

Pros and Cons of Unified:

+ Dynamic sharing of cache space: no overprovisioning that

might happen with static partitioning (i.e., separate I and D
caches)

-- Instructions and data can evict/thrash each other (i.e., no
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

First level caches are almost always split
o Mainly for the last reason above — pipeline constraints
Outer level caches are almost always unified

26



Multi-level Caching in a Pipelined Design

First-level caches (instruction and data)

o Decisions very much affected by cycle time & pipeline structure
o Small, lower associativity; latency is critical

o Tag store and data store usually accessed in parallel
Second-level caches

o Decisions need to balance hit rate and access latency

o Usually large and highly associative; latency not as important

o Tag store and data store can be accessed serially

Serial vs. Parallel access of levels
o Serial: Second level cache accessed only if first-level misses
o Second level does not see the same accesses as the first

First level acts as a filter (filters some temporal and spatial locality)

Management policies are therefore different
27



Deeper and Larger Cache Hlerarchles
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https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
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and Larger Cache Hierarchies
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AMD’s 3D last Level Cache (2021)

32MB
L3 Cache

AMD increases the L3 size of their 8-core Zen 3
ccp processors from 32 MB to 96 MB

Additional 64 MB L3 cache die

stacked on top of the processor die
- Connected using Through Silicon Vias (TSVs)

- Total of 96 MB L3 cache

Structural silicon

64MB L3 cache die

Direct copper-to-copper bond

Through Silicon Vias (TSVs) for
silicon-to-silicon communication

Up to 8-core “Zen 3" CCD -

https://youtu.be/qgaAYMx34euU 31

https://www.tech-critter.com/amd-keynote-computex-2021/



https://youtu.be/gqAYMx34euU
https://www.tech-critter.com/amd-keynote-computex-2021/
https://community.microcenter.com/discussion/5134/comparing-zen-3-to-zen-2

Deeper and Larger Cache Hierarchies
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Deeper and Larger Cache Hierarchies

Cores:
128 Streaming Multiprocessors

L1 Cache or

Scratchpad:

192KB per SM
Can be used as L1 Cache
and/or Scratchpad

L2 Cache:
40 MB shared

Nvidia Ampere, 2020

https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon 33



Deeper and Larger Cache Hierarchies

Nvidia Hopper, 2022

- ~::' i ”"u‘un‘ & |u Lk o |
: ‘h A H -i 15 :

{ ||n |x
; 1

Cores: L1 Cache or L2 Cache:
144 Streaming Scratchpad: 60 MB shared
Multiprocessors 256KB per SM

Can be used as L1 Cache

and/or Scratchpad

34

https://wccftech.com/nvidia-hopper-gpus-featuring-mcm-technology-tape-out-soon-rumor/



https://wccftech.com/nvidia-hopper-gpus-featuring-mcm-technology-tape-out-soon-rumor/

Deeper and Larger Cache Hierarchies

Nvidia Hopper,

2022
Cores: L1 Cache or L2 Cache:
144 Streaming Scratchpad: 60 MB shared
Multiprocessors 256KB per SM
Can be used as L1 Cache
and/or Scratchpad

35
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https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA V100 & A100 Memory Hierarchy

= Example of data movement between GPU global memory
(DRAM) and GPU cores.

Tensor Cores

t Tensor Cores

Sreads Load-Shared Load-Shared
1 write (4x) (2x)
Store-Shared
Reserved for . i?::l? ;i% :c:ar Load-Global-
in-flight data ™ Store-Shared
Load-Global (Async-Copy)
L2
5 | I : A100 feature:
| _DRAM | @ | _DRAM | @ Direct copy from L2
A100 improves SM bandwidth efficiency with a new load-global-store-shared asynchronous copy to scratch pad P
instruction that bypasses L1 cache and register file (RF). Additionally, A100’s more efficient Tensor i
Cores reduce shared memory (SMEM) loads. byp_ass'n9 L1 and
register file.

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
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Memory 1n the NVIDIA H100 GPU

=1 cycle

=5 cycles

=5 cycles

Direct cop

L2 Cache 60 M B

=500 cycles

Global Memory 3 TB/S 80 GB

Slide credit: 1zzat El Hajj



Multi-Level Cache Design Decisions

Which level(s) to place a block into (from memory)?
Which level(s) to evict a block to (from an inner level)?
Bypassing vs. non-bypassing levels

Inclusive, exclusive, non-inclusive hierarchies

o Inclusive: a block in an inner level is always included also in
an outer level - simplifies cache coherence

o Exclusive: a block in an inner level does not exist in an outer
level > better utilizes space in the entire hierarchy

o Non-inclusive: a block in an inner level may or may not be
included in an outer level - relaxes design decisions

38



Cache Performance




Cache Parameters vs. Miss/Hit Rate

Cache size

Block size
Associativity
Replacement policy

Insertion/Placement policy
Promotion Policy

40



Cache Size

Cache size: total data (not including tag) capacity
o bigger can exploit temporal locality better

Too large a cache adversely affects hit and miss latency
o bigger is slower

Too small a cache y Nitrate

o does not exploit temporal locality well

o useful data replaced often o .
working set

size
Working set: entire set of data f

the executing application references ‘
o Within a time interval cache size

41




Benefits of Larger Caches Widely Varies

= Benefits of cache size widely varies across applications

Misses per 1000 instructions

20 —— applu
18 —— twolf
L6 —ea— crafty

Low Utility Application

High Ultility Application

Saturating Utility Application

D2 .4 6 & 10 12 14 16
Num ways from 16-way 1MB L2

Qureshi and Patt, “Utility-Based Cache Partitioning,” MICRO 2006. 42



Block Size

Block size is the data that is associated with an address tag

o not necessarily the unit of transfer between hierarchies
Sub-blocking: A block divided into multiple pieces (each w/ V/D bits)

Too small blocks hit rate

o do not exploit spatial locality well
o have larger tag overhead

Too large blocks

o too few total blocks > exploit
temporal locality not well ok

o waste cache space and bandwidth/energy size
if spatial locality is not high
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Large Blocks: Critical-Word and Subblocking

Large cache blocks can take a long time to fill into the cache
o Idea: Fill cache block critical-word first
o Supply the critical data to the processor immediately

Large cache blocks can waste bus bandwidth

o Idea: Divide a block into subblocks

o Associate separate valid and dirty bits for each subblock
o Recall: When is this useful?

v|d| subblock |v]|d|subblock e e o0 |v|d]|subblock tag
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Associativity

How many blocks can be present in the same index (i.e., set)?

Larger associativity
o lower miss rate (reduced conflicts)
o higher hit latency and area cost

hit rate
Smaller associativity
o lower cost

o lower hit latency
Especially important for L1 caches

C e : associe;tivit
Is power of 2 associativity required? y

45



Recall: Higher Associativity (4-way)

4-way
Tag store
| |
=7 =7 =7 ="
/ Logic —— Hit?
Data store

>\ MUX - —

v .
byte in block
\ MtJX e Address

tag index byte in block
4 bits |1b | 3 bits
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Higher Associativity (3-way)

3-way
Tag store
v
=7 =" =7
/ Logic —— Hit?
Data store

>\ MUX - —

v .
byte in block
\ MtJX e Address

tag index byte in block
4 bits |1b | 3 bits
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Recall: 8-way Fully Associative Cache

Tag store | I I I I | I I |
=7 =7 =7 =7 =" =" =7 =7
Logic
¢ Hit?
Data store| | | | | | | | |
\I/ \‘/ \l/
o MUX
\/ .
byte in block
Address P,
tag byte in block \ MLjX
5 bits 3 bits
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7-way Fully Associative Cache

Tag store | | | | I I ! |
=" = =7 =7 =2 _n _o
Logic
¢ Hit?
Data store| | I I ! ! ”
\I/ \‘/
o MUX
Vi .
byte in block
Address
tag byte in block \ MLjX /4
5 bits | 3 bits
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Classification of Cache Misses

Compulsory miss
a first reference to an address (block) always results in a miss

o subsequent references should hit unless the cache block is
displaced for the reasons below

Capacity miss
o cache is too small to hold all needed data

o defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same
capacity

Conflict miss

a defined as any miss that is neither a compulsory nor a
capacity miss
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How to Reduce Each Miss Type

Compulsory

o Caching (only accessed data) cannot help; larger blocks can

o Prefetching helps: Anticipate which blocks will be needed soon
Conflict

o More associativity

o Other ways to get more associativity without making the
cache associative
Victim cache
Better, randomized indexing into the cache
Software hints for eviction/replacement/promotion

Capacity
o Utilize cache space better: keep blocks that will be referenced

o Software management: divide working set and computation
such that each “computation phase” fits in cache
51



How to Improve Cache Performance

Three fundamental goals

Reducing miss rate

o Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

Reducing miss latency or miss cost

Reducing hit latency or hit cost

The above three together affect performance
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Improving Basic Cache Performance

= Reducing miss rate

a

More associativity

o Alternatives/enhancements to associativity
= Victim caches, hashing, pseudo-associativity, skewed associativity

a

a

Better replacement/insertion policies
Software approaches

= Reducing miss latency/cost

a

L O 0 0 O O

Multi-level caches

Critical word first

Subblocking/sectoring

Better replacement/insertion policies

Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle

Software approaches
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Sottware Approaches tor Higher Hit Rate

Restructuring data access patterns
Restructuring data layout

Loop interchange
Data structure separation/merging
Blocking
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Restructuring Data Access Patterns (I)

Idea: Restructure data layout or data access patterns
Example: If column-major

a X[i+1,j] follows x[i,j] in memory

a X[i,j+1] is far away from x[i,j]

Poor code Better code
fori=1, rows forj =1, columns
forj =1, columns fori=1, rows
sum = sum + X[i,j] sum = sum + X[i,j]

This is called loop interchange

Other optimizations can also increase hit rate
o Loop fusion, array merging, ...
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Restructuring Data Access Patterns (1)

Blocking

o Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

o Avoids cache conflicts between different chunks of
computation

o Essentially: Divide the working set so that each piece fits in
the cache

Also called Tiling
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Data Reuse: An Example tfrom GPU Computing

= Same memory locations accessed by neighboring threads

Gaussian filter applied on J
every pixel of an image

for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; Jj++){
sum += gauss[i][j] * Image[ (i+row-1)*width + (j+col-1)];

}

Lecture 22: GPU Programming (Spring 2018) https://www.youtube.com/watch?v=y40-tY5WJ8A 57



Data Reuse: Tiling in GPU Computing

= To take advantage of data reuse, we divide the input into tiles
that can be loaded into shared memory (scratchpad memory)

__shared  int 1 data[(L SIZE+2)*(L_SIZE+2)];

Load tile into shared memory
__syncthreads();
for (int 1 = 0; i < 3; 1i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][]j] * 1 data[(i+l row-1)*(L_SIZE+2)+j+1 col-1];
}
}

Lecture 22: GPU Programming (Spring 2018) https://www.youtube.com/watch?v=y40-tY5WJ8A
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Naive Matrix Multiplication (I)

= Matrix multiplication: C=A x B
= Consider two input matrices A and B in row-major layout

o AsizecisMxP B A

o BsizeisP xN
o CsizeisMx N




Naive Matrix Multiplication (II)

= Naive implementation of matrix multiplication has poor
cache locality

#define A(i,Jj) matrix A[i * P + Jj]
#define B(i,Jj) matrix B[i * N + j]
#define C(i,J) matrix C[i * N + J]

for (i = 0; i < M; i++){ // i = row index B A
for (j = 0; j < N; j++){ // j = column index
C(i, j)y = 0; // Set to zero
for (k = 0; k < P; k++) // Rou Col
C(i, ) += A(i, k) * k P
}
}

S A

Consecutive accesses to B are far from
each other, in different cache lines.

Every access to B is likely to cause a k
cache miss




Tiled Matrix Multiplication (I)

= We can achieve better cache
locality by computing on B
smaller tiles or blocks that fit in
the cache

a Or in the scratchpad memory

and register file if we compute
on a GPU

A

tile dim

<4+“—>
tile dim

< > < >
P N

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981 61
Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.ora/10.1016/B978-0-12-811986-0.00005-4



https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4

Tiled Matrix Multiplication (I1I)

= Tiled implementation operates on submatrices (tiles or
blocks) that fit fast memories (cache, scratchpad, RF)

#define A(i,Jj) matrix A[i * P + Jj]
#define B(i,Jj) matrix B[i * N + j]
#define C(i,J) matrix C[i * N + J]

for (I = 0; I < M; I += tile dim) { E3
for (J = 0; J < N; J += tile dim) {

Set to zero(&C(I, J)); // Set to zero

for (K = 0; K< P; K += tile dim) D

Multiply tiles(&C(I, J), &A(I, K), &B(K, J)); K

o P
e

Multiply small submatrices (tiles or blocks)
of size tile dim x tile dim

tile dim

P N

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981 6 2

Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4



https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4

Tiled Matrix Multiplication on GPUs

e T P A
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Computer Architecture - Lecture 9: GPUs and GPGPU Programming (ETH Zdirich, Fall 2017)

14,426 views * Oct 23, 2017 1 225 i 2 » SHARE =} SAVE
- Onur Mutlu Lectures a
Q 16.5K subscribers SUBSCRIBED o

Computer Architecture - Lecture 9: GPUs and GPGPU Programming (Fall 2017) https://youtu.be/mgtlbEqn2dA?t=8157
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Restructuring Data Layout (I)

struct Node
struct Node* next;} Frequently
int kev: accessed
char 0| hame, Rarely
char [256] schooal; accessed

}

while (node
if = input-ke
/] access other fields of node

Rarely
node = node—>next; accessed
} Frequently
accessed

Pointer based traversal
(e.qg., of a linked list)

Assume a huge linked
list (1B nodes) and
unique keys

Why does the code on
the left have poor cache
hit rate?

o “Other fields” occupy
most of the cache line
even though they are
rarely accessed!
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Restructuring Data Layout (11)

struct Node = Idea: separate rarely-

struct Node™ next; accessed fields of a data
int key;

structure and pack them into
} a separate data structure

struct Node-data {
char [256] name;

char [256] school; = Who should do this?
} o Programmer
while (node) { o Compiler
if (hode—>key == input-key) { = Profiling vs. dynamic
/| access node—~>node-data 5 Hardware?

}

node = node=next: a Who can determine what is
} | frequently accessed?
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Improving Basic Cache Performance

= Reducing miss rate

a

More associativity

o Alternatives/enhancements to associativity
= Victim caches, hashing, pseudo-associativity, skewed associativity

a

a

Better replacement/insertion policies
Software approaches

= Reducing miss latency/cost

a

L O 0 0 O O

Multi-level caches

Critical word first

Subblocking/sectoring

Better replacement/insertion policies

Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle

Software approaches

06



Miss Latency/Cost

What is miss latency or miss cost affected by?

o Where does the miss get serviced from?
What level of cache in the hierarchy?
Row hit versus row conflict in DRAM (bank/rank/channel conflict)
Queueing delays in the memory controller and the interconnect
Local vs. remote memory (chip, node, rack, remote server, ...)

a How much does the miss stall the processor?
Is it overlapped with other latencies?
Is the data immediately needed by the processor?
Is the incoming block going to evict a longer-to-refetch block?
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Memory Level Parallelism (MLP)

isolated miss

parallel miss

A

4

7 |

/
v

, time

Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew98]

Several techniques to improve MLP (e.g., out-of-order execution)

MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?



Traditional Cache Replacement Policies

d

Traditional cache replacement policies try to reduce miss
count

Implicit assumption: Reducing miss count reduces memory-
related stall time

Misses with varying cost/MLP breaks this assumption!

E
e

E

iminating an isolated miss helps performance more than
iminating a parallel miss

iminating a higher-latency miss could help performance

more than eliminating a lower-latency miss

09



An Example

P4 P3 P2 PI {P] P2 P3 P4 @

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

&

&



Fewest Misses = Best Performance

P4 |S1Gachs

S3

P1

S

1

P3 |P2P4

P3 [P2 |S3

P4

1|S2 |S3PP4 |S1 |S2 |S3
P

P3 P2 P]H 1 P2 P3 P4J4>‘—>‘—>‘—5

Hit/Miss H HHM

HHHH M

M

M

: Misses=4
Tme[ IS | N BT B -4

Belady’ s OPT replacement

Hit/Miss H M M M

Time NG W [~

HMMM H

MLP-Aware replacement

H H
Savled > Misses=6
Cycles Stalls=2




Recommended: MLLP-Aware Cache Replacement

= How do we incorporate MLP/cost into replacement decisions?
= How do we design a hybrid cache replacement policy?

= Qureshi et al., “"A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

A Case for MLP-Aware Cache Replacement

Moinuddin K. Qureshi Daniel N. Lynch  Onur Mutlu Yale N. Patt
Department of Electrical and Computer Engineering
The University of Texas at Austin
{moin, lynch, onur, patt}@hps.utexas.edu
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Improving Basic Cache Performance

= Reducing miss rate

a
a

a
a

More associativity

Alternatives/enhancements to associativity

= Victim caches, hashing, pseudo-associativity, skewed associativity
Better replacement/insertion policies

Software approaches

a ...

= Reducing miss latency/cost

o 0 0 0O o0 0 0 0

Multi-level caches

Critical word first

Subblocking/sectoring

Better replacement/insertion policies

Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle

Software approaches
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Lectures on Cache Optimizations (I)

Victim Cache: Reducing Conflict Misses

Next Level
Cache

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

Idea: Use a small fully-associative buffer (victim cache) to
store recently evicted blocks

+ Can avoid ping ponging of cache blocks mapped to the same set (if two
cache blocks continuously accessed in nearby time conflict with each
other)

-- Increases miss latency if accessed serially with L2; adds complexity

Computer Architecture - Lecture 3: Cache Management and Memory Parallelism (ETH Ziirich, Fall 2017)

6,392 views * Sep 29, 2017 |b 49 1 SHARE SAVE

@ ?::;ml;tslrrit:fstures ANALYTICS EDIT VIDEO
«T > ’

https://www.youtube.com/watch?v=0yomXCHNJDA&Iist=PL5Q2s0XY2Zi90hoVQBXYFIZywZXCPIl4M &index=3 74



https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3

Lectures on Cache Optimizations (I11)

Peripheral Logic for True Multiporting

| A
DATA DATA

€ P Pl R) 1:18:05/1:28:10

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 4a: Cache Design (ETH Zurich, Fall 2018)

1,437 views * Sep 29, 2018 15 &lo ) SHARE =i SAVE

@ ?:;1; mti';it:;thes ANALYTICS EDIT VIDEO
> :

https://www.youtube.com/watch?v=550YBm9cifl&list=PL5Q2s0XY2Zi9JXe3ywQMhylk d5dI-TM7&index=6 75



https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6

Lectures on Cache Optimizations (I1I)

> Pl R) 4503/1:39:38

Lecture 19. High Performance Caches - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu

9,737 views * Mar 5, 2015 i3 &1 P SHARE =i SAVE

@ Carnegie M_ellon Computer Architecture ANALYTICS EDIT VIDEO
23.2K subscribers

https://www.youtube.com/watch?v=jDHx2K9HxIM&list=PL5PHmM2jkkXmi5CxxI7b3JCL1TWybTDtKg&index=21



https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21

Lectures on Cache Optimizations

= Computer Architecture, Fall 2017, Lecture 3

o Cache Management & Memory Parallelism (ETH, Fall 2017)

o https://www.youtube.com/watch?v=0yomXCHNJIDA&list=PL502s0XY2Zi90hoVQBX
YFIZywZXCPI4M &index=3

= Computer Architecture, Fall 2018, Lecture 4a

o Cache Design (ETH, Fall 2018)

o https://www.youtube.com/watch?v=550YBm9cifI&list=PL50Q2s0XY2Zi9]Xe3ywQMh
vlk d5dI-TM7&index=6

= Computer Architecture, Spring 2015, Lecture 19

o High Performance Caches (CMU, Spring 2015)

o https://www.youtube.com/watch?v=jDHx2K9HxIM&list=PL5PHM2jkkXmi5CxxI17b3]
CL1TWybTDtKg&index=21

https://www.youtube.com/onurmutlulectures 77
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https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6
https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21
https://www.youtube.com/onurmutlulectures

Digital Desigh & Computer Arch.
Lecture 24: Advanced Caches

Prof. Onur Mutlu

ETH Zurich
Spring 2022
27 May 2022
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Multi-Core Issues in Caching
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Caches 1n 2 Multi- Core System
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Caches 1n a Multi-Core System
AMD increases the L3 size of their 8-core Zen 3
ccp processors from 32 MB to 96 MB

32MB Additional 64 MB L3 cache die

L3 Cach .
e stacked on top of the processor die

- Connected using Through Silicon Vias (TSVs)

- Total of 96 MB L3 cache

Structural silicon

64MB L3 cache die

Direct copper-to-copper bond

Through Silicon Vias (TSVs) for
silicon-to-silicon communication

Up to 8-core “Zen 3" CCD

https://youtu.be/qgaAYMx34euU 85
https://www.tech-critter.com/amd-keynote-computex-2021/
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https://www.tech-critter.com/amd-keynote-computex-2021/
https://community.microcenter.com/discussion/5134/comparing-zen-3-to-zen-2

3D Stacking Technology: Example

AMD 3D V-CACHE™

DIELECTRIC

- o oo

DIELECTRIC

Direct Copper -Copper Bonding

AMD Ryzen 7 5800X3D: The 3D V-Cache in detail (4)

https://www.pcgameshardware.de/Ryzen-7-5800X3D-CPU-278064/Specials/3D-V-Cache-Release-1393125/



Caches 1n a Multi-Core System
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Caches 1n a2 Multi-Core System

Cores:
128 Streaming Multiprocessors

L1 Cache or

Scratchpad:

192KB per SM
Can be used as L1 Cache
and/or Scratchpad

L2 Cache:
40 MB shared

Nvidia Ampere, 2020

https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon 88



Caches 1n a2 Multi-Core System

Nvidia Hopper,

2022
Cores: L1 Cache or L2 Cache:
144 Streaming Scratchpad: 60 MB shared
Multiprocessors 256KB per SM
Can be used as L1 Cache
and/or Scratchpad

Serloper.nV|d|a.Com/bloq/nV|d|a-hopper-arch|tecture-m-depth/ 89



https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Caches in Multi-Core Systems

= Cache efficiency becomes even more important in a multi-
core/multi-threaded system

o Memory bandwidth is at premium
o Cache space is a limited resource across cores/threads

= How do we design the caches in a multi-core system?

= Many decisions and questions

Shared vs. private caches

How to maximize performance of the entire system?

How to provide QoS & predictable perf. to different threads in a shared cache?
Should cache management algorithms be aware of threads?

How should space be allocated to threads in a shared cache?

Should we store data in compressed format in some caches?

How do we do better reuse prediction & management in caches?

o 0o 0 0 o0 0 O
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Private vs. Shared Caches

Private cache: Cache belongs to one core (a shared block
can be in multiple caches)

Shared cache: Cache is shared by multiple cores

// N — —~~
CORE O CORE 1 CORE 2 CORE 3 CORE 0 CORE 1 CORE 2 CORE 3
A A A A i 'y 7Y Y
v A v v v v v v
L2 L2 L2 L2 L2
ACHE ACHE ACHE ACHE
CAC CAC CAC CAC CACHE

\ DRAM MEMORY CONTROLLER

\ DRAM MEMORY CONTROLLER /
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Resource Sharing Concept and Advantages

Idea: Instead of dedicating a hardware resource to a
hardware context, allow multiple contexts to use it

o Example resources: functional units, pipeline, caches, buses,
memory

Why?

+ Resource sharing improves utilization/efficiency - throughput

o When a resource is left idle by one thread, another thread can
use it; no need to replicate shared data

+ Reduces communication latency

o For example, data shared between multiple threads can be kept
in the same cache in multithreaded processors

+ Compatible with the shared memory programming model
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Resource Sharing Disadvantages

Resource sharing results in contention for resources
o When the resource is not idle, another thread cannot use it

o If space is occupied by one thread, another thread needs to re-
occupy it

- Sometimes reduces each or some thread’s performance
- Thread performance can be worse than when it is run alone

- Eliminates performance isolation - inconsistent performance
across runs

- Thread performance depends on co-executing threads

- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
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Private vs. Shared Caches

Private cache: Cache belongs to one core (a shared block
can be in multiple caches)

Shared cache: Cache is shared by multiple cores

// N — —~~
CORE O CORE 1 CORE 2 CORE 3 CORE 0 CORE 1 CORE 2 CORE 3
A A A A i 'y 7Y Y
v A v v v v v v
L2 L2 L2 L2 L2
ACHE ACHE ACHE ACHE
CAC CAC CAC CAC CACHE

\ DRAM MEMORY CONTROLLER

\ DRAM MEMORY CONTROLLER /
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Shared Caches Between Cores

Advantages:
o High effective capacity
o Dynamic partitioning of available cache space
No fragmentation due to static partitioning
If one core does not utilize some space, another core can
o Easier to maintain coherence (a cache block is in a single location)

Disadvantages
o Slower access (cache not tightly coupled with the core)
o Cores incur conflict misses due to other cores’ accesses
Misses due to inter-core interference
Some cores can destroy the hit rate of other cores

o Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)
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Lectures on Multi-Core Cache Management

Computer Architecture
Lecture 15:
Multi-Core Cache Management

Prof. Onur Mutlu
ETH Zlrich
Fall 2017
15 November 2017

Computer Architecture - Lecture 15: Multi-Core Cache Management (ETH Ziirich, Fall 2017)
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Lectures on Multi-Core Cache Management

Page Coloring

» Physical memory divided into colors
= Colors map to different cache sets
= Cache partitioning

a Ensure two threads are allocate.
pages of different colors
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Lectures on Multi-Core Cache Management

Approaches to Reuse Prediction

| Use program counter or memory region information.

2. Learn group

1. Group Blocks -
behavior

3. Predict reuse

PC1 PG PCIRRPE2

@ gl [p@|pd

1. Same group - same reuse behavior
2. No control over number of high-reuse blocks
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Lectures on Multi-Core Cache Management

= Computer Architecture, Fall 2018, Lecture 18b

o Multi-Core Cache Management (ETH, Fall 2018)

o https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL502s0XY27i9]Xe3ywOM
hylk d5dI-TM7&index=29

= Computer Architecture, Fall 2018, Lecture 19a

o Multi-Core Cache Management II (ETH, Fall 2018)

o https://www.youtube.com/watch?v=Siz86 PD4w&list=PL502s0XY2Zi9]Xe3ywQOM
hylk d5dI-TM7&index=30

= Computer Architecture, Fall 2017, Lecture 15

o Multi-Core Cache Management (ETH, Fall 2017)

o https://www.youtube.com/watch?v=7 Tglw8gxOU&list=PL50Q2s0XY2Zi90hoVOBXY
FIZywZXCPl4M &index=17

https://www.youtube.com/onurmutlulectures 99
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Lectures on Memory Resource Management

S
- 2

QoS-Aware Memory Systems: Challenges

How do we reduce inter-thread interference?
o Improve system performance and core utilization
o Reduce request serialization and core starvation

How do we control inter-thread interference?

o Provide mechanisms to enable system software to enforce
QoS policies
o While providing high system performance

= How do we make the memory system configurable/flexible?

o Enable flexible*mechanisms that can achieve many goals
= Provide fairness or throughput when needed
» Satisfy performance guarantees when needed

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 11b: Memory Interference and QoS (ETH Ziirich, Fall 2020)
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Lectures on Memory Resource Management

= Computer Architecture, Fall 2020, Lecture 11a

o Memory Controllers (ETH, Fall 2020)

o https://www.youtube.com/watch?v=TeG7730giMQ&list=PL502s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=20

= Computer Architecture, Fall 2020, Lecture 11b

o Memory Interference and QoS (ETH, Fall 2020)

o https://www.youtube.com/watch?v=0nnI807nCkc&list=PL50Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=21

= Computer Architecture, Fall 2020, Lecture 13

o Memory Interference and QoS II (ETH, Fall 2020)

o https://www.youtube.com/watch?v=Axye9VgOT7/w&list=PL50Q2s0XY2Zi9xidyIgBxU
Z7XRPS-wisBN&index=26

= Computer Architecture, Fall 2020, Lecture 2a

o Memory Performance Attacks (ETH, Fall 2020)

o https://www.youtube.com/watch?v=V1zZbwgBfy8&list=PL50Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=2
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Cache Coherence




Cache Coherence

Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?
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A Very Simple Coherence Scheme (VI)

Idea: All caches “snoop” (observe) each other’s write/read
operations. If a processor writes to a block, all others
invalidate the block.

A simple protocol:

PrRd/-- PrWr / BusWr Wr_ite-through, no-
write-allocate

cache
@ Actions of the local

BusWr processor on the
PrRd / BusRd cache block: PrRd,

PrWr,
Actions that are
broadcast on the
Q PrWr / BusWr bus for the block:
BusRd, BusWr
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Lecture on Cache Coherence

MESI State Machine
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Lecture on Memory Ordering & Consistency
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Lecture on Cache Coherence & Consistency

= Computer Architecture, Fall 2020, Lecture 21

o Cache Coherence (ETH, Fall 2020)

o https://www.youtube.com/watch?v=T9WIlyezeall&list=PL502s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=38

= Computer Architecture, Fall 2020, Lecture 20

o Memory Ordering & Consistency (ETH, Fall 2020)

o https://www.youtube.com/watch?v=Suy09mzTbiOQ&list=PL50Q2s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=37

= Computer Architecture, Spring 2015, Lecture 28

o Memory Consistency & Cache Coherence (CMU, Spring 2015)

o https://www.youtube.com/watch?v=JfjT1a0vi4E&list=PL5PHmM2jkkXmi5CxxI17b3JCL
1TWybTDtKg&index=32

= Computer Architecture, Spring 2015, Lecture 29

o Cache Coherence (CMU, Spring 2015)

o https://www.youtube.com/watch?v=X6DZchnMYcw&list=PL5PHmM2jkkXmi5CxxI7b3
JCL1TWybTDtKg&index=33

https://www.youtube.com/onurmutlulectures 111
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Prefetching




Prefetching

Idea: Fetch the data before it is needed (i.e. pre-fetch) by
the program

Why?
o Memory latency is high. If we can prefetch accurately and
early enough we can reduce/eliminate that latency.

o Can eliminate compulsory cache misses
o Can it eliminate all cache misses? Capacity, conflict?

Involves predicting which address will be needed in the
future
o Works if programs have predictable miss address patterns

114



Pretetching and Correctness

Does a misprediction in prefetching affect correctness?

No, prefetched data at a “mispredicted” address is simply
not used

There is no need for state recovery
o In contrast to branch misprediction or value misprediction
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Basics

In modern systems, prefetching is usually done in cache
block granularity

Prefetching is a technique that can reduce both
o Miss rate
o Miss latency

Prefetching can be done by
o Hardware

o Compiler

o Programmer

o System
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How a HW Pretetcher Fits in the Memory System
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i
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Bus : Bus :
‘ - i i S e ’
Off-Chip T Off-Chip
A
Memory Controller Memory Controller
i
A\ - } |
DRAM Memory Banks DRAM Memory Banks
. . - e e o
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Prefetching: The Four Questions

What
o What addresses to prefetch (i.e., address prediction algorithm)

When
o When to initiate a prefetch request (early, late, on time)

Where

o Where to place the prefetched data (caches, separate buffer)
o Where to place the prefetcher (which level in memory hierarchy)

How

o How does the prefetcher operate and who operates it (software,
hardware, execution/thread-based, cooperative, hybrid)
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Challenges 1n Prefetching: How

Software prefetching

o ISA provides prefetch instructions

o Programmer or compiler inserts prefetch instructions (effort)
o Usually works well only for “regular access patterns”

Hardware prefetching

o Hardware monitors processor accesses

o Memorizes or finds patterns/strides

o Generates prefetch addresses automatically

Execution-based prefetchers

o A “thread” is executed to prefetch data for the main program
o Can be generated by either software/programmer or hardware
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Important: Pretetcher Performance

Accuracy (used prefetches / sent prefetches)
Coverage (prefetched misses / all misses)
Timeliness (on-time prefetches / used prefetches)

Bandwidth consumption

o Memory bandwidth consumed with prefetcher / without
prefetcher

o Good news: Can utilize idle bus bandwidth (if available)

Cache pollution
o Extra demand misses due to prefetch placement in cache
o More difficult to quantify but affects performance
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Recommended Paper

= Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February
2007. Slides (ppt)

One of the five papers nominated for the Best Paper Award by
the Program Committee.

Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers

Santhosh Srinath{f Onur Mutlu§ Hyesoon Kimi{ Yale N. Patt}

IDepartment of Electrical and Computer Engineering
The University of Texas at Austin
{santhosh, hyesoon, patt} @ece.utexas.edu

TMicrosoft §Microsoft Research
ssri @microsoft.com onur @microsoft.com
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Ettect of Runahead Prefetching in Sun ROCK

= Shailender Chaudhry talk, Aug 2008.
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g / /;7/
o
< 1.00 40% Better
o= Performance
0.50 '
256KB512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB
L2 Cache Size

Effective prefetching can improve performance and reduce hardware cost
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Lectures on Pretetching (I

PREFETCHA

X86 PREFETCH Instruction

Jpcode Sruchos 64-B1t
Mode

microarchitecture
dependent
specification

ache and higt

different instructions
for different cache
levels

Pentium |l processor—2nd-level cache
Pentium 4 and Intel Xeon processors—2nd-level cache

NTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution

— Pentium lll processor— 1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache
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Lectures on Pretetching (1)

Review: Runahead Execution (Mutlu et al., HPCA 2003)

Small Window:

Load 1 Miss Load 2 Miss

| |
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Runahead:
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l l l l
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Computer Architecture - Lecture 19a: Execution-Based Prefetching (ETH Ziirich, Fall 2020)
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Lectures on Prefetching (111)

Runahead Execution in NVIDIA Denver

Reducing the effects of |un); cache-r

ies has been a major focus of the micro

“k[l.i
architecture, using techniques like prefetch

} i

ng .l!lt’ run-ancad \l'. .ll'\L:H'\\]\L' h.l.’({\\.l"('

prefetcher implementation detects L2 cache
requests and tracks up to 32 streams, each
with complex stride patterns

;{HH .lll(\l\é USCS [}H 1\“( ume (:’\.I[ al i.l
spends waiting en a long latency operation to
discover cache and DTLB misses further
down the instruction stream and generates
;\lg'ftl\.'l requests for these misses
fetch requests warm up the data cache and

DTLB well before the

actual execurion of

T'he core includes a hardware prefetch unit that Boggs
describes as “aggressive” in preloading the data cache but

less ageressive in preloading the instruction cache It also

implements a “run-ahead” feature that continues to execute
microcode speculatively after a data-cache miss; this exe

cution can trigger additional cache misses that resolve in
the shadow of the first miss. Once the data from the original
miss returns, the results of this speculative execution are
discarded and execution restarts with the bundle containing
the original miss, but run-ahead can preload subsequent
data into the cache, thus avoiding a string of time-wasting
['hese and other features help Denver out

score Cortex-A15 by more than 2.6x on a memory-read test
even when both use the same SoC framework (Tegra K1)

cache misses

the instructions that require the data. Run
ahead complements the hardware prefetcher
because it’s better at prefetching nonstrided
streams, and it trains the hardware prefetcher
faster than normal execution to yield a com
bined benefit of 13 percent on SPECint2000
and up to 60 percent on SPECfp2000.

Boggs+, "Denver: NVIDIA's First 64-Bit ARM Processor,” =

IEEE Micro 2015.

Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.

Banch .. 18

128KB Instruction Cache (4 way)
Pred
Unit | 32 by
Fetch Queve

Onur Mutlu - Runahead Execution: A Short Retrospective (HPCA Test of Time Award Talk @ HPCA 2021)
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Lectures on Pretetching

= Computer Architecture, Fall 2020, Lecture 18

o Prefetching (ETH, Fall 2020)

o https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL502s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=33

= Computer Architecture, Fall 2020, Lecture 19a

o Execution-Based Prefetching (ETH, Fall 2020)

o https://www.youtube.com/watch?v=zPewo6lal 8&list=PL502s0XY2Zi9xidylgBxUz7
XRPS-wisBN&index=34

= Computer Architecture, Spring 2015, Lecture 25

o Prefetching (CMU, Spring 2015)
o https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHmM?2jkkXmi5Cxx17b3]C

L1TWybTDtKg&index=29
= Computer Architecture, Spring 2015, Lecture 26

o More Prefetching (CMU, Spring 2015)

o https://www.youtube.com/watch?v=TUFins4z604&list=PL5PHmM2jkkXmi5CxxI17b3]C
L1TWybTDtKg&index=30

https://www.youtube.com/onurmutlulectures 126
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https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30
https://www.youtube.com/onurmutlulectures

Some Readings on Prefetching

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction Windows
for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance Computer
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)

One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.

HPCA Test of Time Award (awarded in 2021).
[Lecture Slides (pptx) (pdf)]

[Lecture Video (1 hr 54 mins)]
[Retrospective HPCA Test of Time Award Talk Slides (pptx) (pdf)]
[Retrospective HPCA Test of Time Award Talk Video (14 minutes)]

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark  Chris Wilkerson 1 Yale N. Patt §

S§ECE Department TMicroprocessor Research IDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation
{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pdf
https://youtu.be/Kj3relihGF4?t=1162
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pdf
https://www.youtube.com/watch?v=KFCOecRQTIc

Some Readings on Prefetching

Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Effective Alternative to Large
Instruction Windows"

IEEE Micro, Special Issue: Micro'’s Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25,
November/December 2003.

RUNAHEAD EXECUTION:
AN EFFECTIVE ALTERNATIVE TO
LARGE INSTRUCTION WINDOWS
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383

Basic Cache Examples:
For You to Study




Cache Terminology

Capacity (0):

o the number of data bytes a cache stores
Block size (b):

o bytes of data brought into cache at once

Number of blocks (B = ¢/D):
o number of blocks in cache: B= (b

Degree of associativity (N):
o number of blocks in a set

Number of sets (5 = B/N):
o each memory address maps to exactly one cache set
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How is data found?

Cache organized into Ssets
Each memory address maps to exactly one set

Caches categorized by number of blocks in a set:
o Direct mapped: 1 block per set

o N-way set associative: N blocks per set

o Fully associative: all cache blocks are in a single set

Examine each organization for a cache with:
a Capacity (C= 8 words)

a Block size (6 = 1 word)

o So, number of blocks (5 = 8)
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Direct Mapped Cache

11...
11...
11...
11...
11...
11...
11...
11...

00...
00...
00...
00...
00...
00...
00...
00...
00...
00...

Address
11111100

11111000
11110100
11110000
11101100
11101000
11100100
11100000

00100100
00100000
00011100
00011000
00010100
00010000
00001100
00001000
00000100
00000000

mem[OxFF...FC]
mem[OxFF...F8]
mem[OxFF...F4]

mem[OxFF...EC]
mem[OxFF...E8]

oo anemfQxEE D E4]

mem[0x00..20]
mem[0x00..1C]
mem[0x00...18]
mem[0x00...14]

mem[0x00...0C]
mem[0x00...08]

...................... \)

mem[0x00...00]
230 Word Main Memory

23 Word Cache

Set Number
7 (111)
6 (110)
5(101)
4 (100)
3 (011)
2 (010)
1 (001)
0 (000)
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Direct Mapped Cache Hardware

Memory
Address

Byte
Tag Set Offset
00
27 3
V Tag Data
8-entry x
(1+27+32)-bit
SRAM
27 32
[
Hit Data
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Direct Mapped Cache Pertormance

Tag

Byte

Set Offset

Memory 5545

001]00

Address

3

V Tag

Data

0

00...00

mem[0x00...0C]

00...00

mem([0x00...08]

00...00

mem[0x00...04]

O|l=_ [~ |~ |O|O|O

# MIPS assembly code

addi $to, $e, 5
beq $to, $0, done
lw  $t1, ox4($9)
lw  $t2, oxC($9)
lw  $t3, ox8(%$9)
addi $to, $te, -1
Jj loop

loop:

done:

Miss Rate

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)
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Direct Mapped Cache Pertormance

Byte
Tag Set Offset

Memory

Address 00...00 201 00

V Tag Data
0 Set7 (111)
0 Set 6 (110)
0 Set 5 (101)
0 Set 4 (100)
1| 00..00 | mem[0x00...0C] [ Set 3 (011)
1| 00..00 | mem[0x00...08] [ Set 2 (010)

11| 00..00 | mem[0x00...04] | Set 1 (001)
0 Set 0 (000)

# MIPS assembly code . _
addi $t0, $0, 5 Miss Rate 3/15

loop: beq $te, $0, done —
Iw  $tl1, ox4($0) 0
lw  $t2, OxC($0) 20%
lw  $t3, ox8($0) i
addi $to, $to, -1 Temporal Locality

j  loop Compulsory Misses

done:
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Direct Mapped Cache: Conflict

Byte
Tag Set Offset
Memory 1 50...01 [001]00
Address -
V Tag Data
0
0
0
0
0
0
{1 | 00..00 | MEMIOXVY...04
0

# MIPS assembly code
addi $to, %0, 5

loop:  beq $t@, $0, done
v $t1, x4($0)
v $t2, ox24($0)
addi $to, $to, -1
J loop

done:

Miss Rate

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)
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Direct Mapped Cache: Conflict

Tag

Memory 5557

Address

# MIPS assembly code
addi $to, $e, 5

loop: beq $to, $0, done
lw  $t1, ox4($9)
lw  $t2, ox24(%$9)
addi $to, $te, -1
Jj loop

done:

Byte
Set Offset
001]00
3
V Tag Data
0 Set7(111)
0 Set 6 (110)
0 Set 5 (101)
0 Set 4 (100)
0 Set 3 (011)
0 Set 2 (010)
{1 | 00..00 | MEMIXIV.-L21 | Set 1 (001)
0 Set 0 (000)
Miss Rate = 10/10
= 100%
Conflict Misses
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N-Way Set Associative Cache

Byte
Mem ory Tag Set Offset
00
Address Way 1 Way 0
28 2 X
V Tag Data V Tag Data
.>
28 32 28 32
| I
u u 1 -
Hit, Hit,
Jrz
Hit Data

Hit
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N-way Set Associative Performance

# MIPS assembly code M/:S'S Rate —
addi $te, %o, 5
loop: beq $to, $0, done
lw  $t1, ox4($9)
lw $t2, ox24(%$0)
addi $te, $teo, -1
j loop
done:
Way 1 Way 0
I | |
V Tag Data V Tag Data
0 0
0 0
1| 00...10 | mem[0x00...24] | 1| 00...00 | mem[0x00...04]
0 0

Set 3
Set 2
Set 1
Set 0
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N-way Set Associative Performance

# MIPS assembly code

addi $to, $0, 5
loop: beq $to, $0, done
Iw  $t1, ox4($9)
lw $t2, ox24(%$0)
addi $to, $to, -1

Miss Rate = 2/10
= 20%

Associativity reduces
conflict misses

j loop
done:
Way 1 Way 0
| |
V Tag Data V Tag Data
0 0
0 0
1| 00..10 | mem[0x00...24] | 1| 00...00 | mem[0x00...04]
0 0

Set 3
Set 2
Set 1
Set 0
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Fully Associative Cache

No conflict misses

Expensive to build

V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data
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Spatial Locality?

Increase block size:

o Block size, b = 4 words

o C= 8 words

o Direct mapped (1 block per set)

o Number of blocks, 8= (Jb=8/4 = 2

Block Byte
Tag Set Offset Offset
ooy T T 100,
ress - .
V Tag Data
> Set 1
Set0
' /f27§\ A32 132 132 A32
32
Hit Data
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Direct Mapped Cache Pertormance

addi $to, $0, 5 : _
loop:  beq $to, $o, done Miss Rate

lw  $t1, ox4($0)
lw  $t2, oxC($9)
lw  $t3, ox8(%$9)
addi $to, $to, -1
j loop

done:

Block Byte
Tag Set Offset Offset

Memory
Address !oo...zgo\ 0] 112 [00]
V Tag Data
>0 Set 1
1| 00...00 | mem[0x00...0C] | mem[0x00...08] | mem[0x00...04] | mem[0x00...00] | Set 0
L o7 32 132 32 132
= > 2 S
32
Hit Data
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Direct Mapped Cache Performance

addi $to, %0, 5 . —
loop: beq $te. $0. done Miss Rate = 1/15
lw  $t1, ox4($0) = 6.67%

lw  $t2, oxC($0)
1 ,
i tee, o) Larger blocks reduce
j  loop compulsory misses through

spatial locality

done:

Block Byte
Memo Tag Set Offset Offset
"Y100...00[0[ 11 [00]
Address - .
Vv _Tag Data
o Set 1
1] 00...00 | mem[0x00...0C] | mem[0x00...08] | mem[0x00...04] | mem[0x00...00] | Set 0
T oz N2 J32 T2 Toz
o 3 S S
g 32
it Data
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Cache Organization Recap

= Main Parameters

o Capacity: C
Block size: b
Number of blocks in cache: B= (/b
Number of blocks in a set: ¥
Number of Sets: §= B/N

o O O O

Number of Ways Number of Sets

Organization (N) (S =B/N)
Direct Mapped 1 B
N-Way Set Associative 1<N<B B/N

Fully Associative B 1
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Capacity Misses

Cache is too small to hold all data of interest at one time

o If the cache is full and program tries to access data X that is
not in cache, cache must evict data Y to make room for X

o Capacity miss occurs if program then tries to access Y again
o X will be placed in a particular set based on its address

In a direct mapped cache, there is only one place to put X

In an associative cache, there are multiple ways where X
could go in the set.

How to choose Y to minimize chance of needing it again?

o Least recently used (LRU) replacement: the least recently
used block in a set is evicted when the cache is full.
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Types of Misses

Compulsory: first time data is accessed
Capacity: cache too small to hold all data of interest
Conflict: data of interest maps to same location in cache

Miss penalty: time it takes to retrieve a block from lower
level of hierarchy
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LLRU Replacement

# MIPS assembly

1w $t0, Ox04($0)
lw $t1, 0x24($9)
1w $t2, 0x54(%$0)

V U Tag Data

V Tag

Data

V U Tag Data

V Tag

Data

Set Number
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LLRU Replacement

# MIPS assembly

1w $t0, 0x04($0)
lw $t1, 0x24($9)
1w $t2, 0x54(%$0)

Way 1 Way 0
[ 1 |
V U Tag Data V Tag Data
0]0 0 Set 3 (11)
0]0 0 Set 2 (10)
1] 0 00..010| mem[0x00...24] | 1| 00...000| mem[0x00...04] | Set 1 (01)
0/0 0 Set 0 (00)
(a)
Way 1 Way 0
| 1 |
V U Tag Data V Tag Data
0[0 0 Set 3 (11)
0[0 0 Set 2 (10)
1] 1]00..010 | mem[0x00...24] | 1| 00...101| mem[0x00...54] | Set 1 (01)
0|0 0 Set 0 (00)
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