
Digital Design & Computer Arch.
Lecture 24a: Multi-Core Caches

Prof. Onur Mutlu

ETH Zürich
Spring 2022
27 May 2022

Multi-Core Issues in Caching

Caches in a Multi-Core System

3

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

Caches in a Multi-Core System

4Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Caches in a Multi-Core System

5Source: https://twitter.com/Locuza_/status/1454152714930331652

Intel Alder Lake,
2021

https://twitter.com/Locuza_/status/1454152714930331652

Caches in a Multi-Core System

6https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared

Caches in a Multi-Core System

7https://youtu.be/gqAYMx34euU
https://www.tech-critter.com/amd-keynote-computex-2021/

https://community.microcenter.com/discussion/5
134/comparing-zen-3-to-zen-2

Additional 64 MB L3 cache die
stacked on top of the processor die
- Connected using Through Silicon Vias (TSVs)
- Total of 96 MB L3 cache

AMD increases the L3 size of their 8-core Zen 3
processors from 32 MB to 96 MB

https://youtu.be/gqAYMx34euU
https://www.tech-critter.com/amd-keynote-computex-2021/
https://community.microcenter.com/discussion/5134/comparing-zen-3-to-zen-2

3D Stacking Technology: Example

8https://www.pcgameshardware.de/Ryzen-7-5800X3D-CPU-278064/Specials/3D-V-Cache-Release-1393125/

Caches in a Multi-Core System

9https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,
2020

Cores:
15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared

Caches in a Multi-Core System

10https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon

Nvidia Ampere, 2020

Cores:
128 Streaming Multiprocessors

L1 Cache or
Scratchpad:
192KB per SM
Can be used as L1 Cache
and/or Scratchpad

L2 Cache:
40 MB shared

Caches in a Multi-Core System

11https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Nvidia Hopper,
2022

L1 Cache or
Scratchpad:
256KB per SM
Can be used as L1 Cache
and/or Scratchpad

Cores:
144 Streaming
Multiprocessors

L2 Cache:
60 MB shared

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Caches in Multi-Core Systems
n Cache efficiency becomes even more important in a multi-

core/multi-threaded system
q Memory bandwidth is at premium
q Cache space is a limited resource across cores/threads

n How do we design the caches in a multi-core system?

n Many decisions and questions
q Shared vs. private caches
q How to maximize performance of the entire system?
q How to provide QoS & predictable perf. to different threads in a shared cache?
q Should cache management algorithms be aware of threads?
q How should space be allocated to threads in a shared cache?
q Should we store data in compressed format in some caches?
q How do we do better reuse prediction & management in caches?

12

Private vs. Shared Caches
n Private cache: Cache belongs to one core (a shared block

can be in multiple caches)
n Shared cache: Cache is shared by multiple cores

13

CORE 0 CORE 1 CORE 2 CORE 3

L2
CACHE

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2
CACHE

Resource Sharing Concept and Advantages
n Idea: Instead of dedicating a hardware resource to a

hardware context, allow multiple contexts to use it
q Example resources: functional units, pipeline, caches, buses,

memory
n Why?

+ Resource sharing improves utilization/efficiency à throughput
q When a resource is left idle by one thread, another thread can

use it; no need to replicate shared data
+ Reduces communication latency

q For example, data shared between multiple threads can be kept
in the same cache in multithreaded processors

+ Compatible with the shared memory programming model

14

Resource Sharing Disadvantages
n Resource sharing results in contention for resources

q When the resource is not idle, another thread cannot use it
q If space is occupied by one thread, another thread needs to re-

occupy it

- Sometimes reduces each or some thread’s performance
- Thread performance can be worse than when it is run alone

- Eliminates performance isolation à inconsistent performance
across runs

- Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
15

Private vs. Shared Caches
n Private cache: Cache belongs to one core (a shared block

can be in multiple caches)
n Shared cache: Cache is shared by multiple cores

16

CORE 0 CORE 1 CORE 2 CORE 3

L2
CACHE

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2
CACHE

Shared Caches Between Cores
n Advantages:

q High effective capacity
q Dynamic partitioning of available cache space

n No fragmentation due to static partitioning
n If one core does not utilize some space, another core can

q Easier to maintain coherence (a cache block is in a single location)

n Disadvantages
q Slower access (cache not tightly coupled with the core)
q Cores incur conflict misses due to other cores’ accesses

n Misses due to inter-core interference
n Some cores can destroy the hit rate of other cores

q Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)

17

Lectures on Multi-Core Cache Management

18https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=17

https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=17

Lectures on Multi-Core Cache Management

19https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=29

https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=29

Lectures on Multi-Core Cache Management

20https://www.youtube.com/watch?v=Siz86__PD4w&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=30

Lectures on Multi-Core Cache Management
n Computer Architecture, Fall 2018, Lecture 18b

q Multi-Core Cache Management (ETH, Fall 2018)
q https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQM
hylk_d5dI-TM7&index=29

n Computer Architecture, Fall 2018, Lecture 19a
q Multi-Core Cache Management II (ETH, Fall 2018)
q https://www.youtube.com/watch?v=Siz86__PD4w&list=PL5Q2soXY2Zi9JXe3ywQM
hylk_d5dI-TM7&index=30

n Computer Architecture, Fall 2017, Lecture 15
q Multi-Core Cache Management (ETH, Fall 2017)
q https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXY
FIZywZXCPl4M_&index=17

21https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=29
https://www.youtube.com/watch?v=Siz86__PD4w&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=30
https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=17
https://www.youtube.com/onurmutlulectures

Lectures on Memory Resource Management

22https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21

https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21

Lectures on Memory Resource Management
n Computer Architecture, Fall 2020, Lecture 11a

q Memory Controllers (ETH, Fall 2020)
q https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=20

n Computer Architecture, Fall 2020, Lecture 11b
q Memory Interference and QoS (ETH, Fall 2020)
q https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=21

n Computer Architecture, Fall 2020, Lecture 13
q Memory Interference and QoS II (ETH, Fall 2020)
q https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxU
z7xRPS-wisBN&index=26

n Computer Architecture, Fall 2020, Lecture 2a
q Memory Performance Attacks (ETH, Fall 2020)
q https://www.youtube.com/watch?v=VJzZbwgBfy8&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=2

23https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=20
https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21
https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26
https://www.youtube.com/watch?v=VJzZbwgBfy8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=2
https://www.youtube.com/onurmutlulectures

Cache Coherence

Cache Coherence
n Basic question: If multiple processors cache the same

block, how do they ensure they all see a consistent state?

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT
load 1000

A Very Simple Coherence Scheme (VI)
n Idea: All caches “snoop” (observe) each other’s write/read

operations. If a processor writes to a block, all others
invalidate the block.

n A simple protocol:

30

n Write-through, no-
write-allocate
cache

n Actions of the local
processor on the
cache block: PrRd,
PrWr,

n Actions that are
broadcast on the
bus for the block:
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

Lecture on Cache Coherence

31https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=38

https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=38

Lecture on Memory Ordering & Consistency

32https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=37

https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=37

Lecture on Cache Coherence & Consistency
n Computer Architecture, Fall 2020, Lecture 21

q Cache Coherence (ETH, Fall 2020)
q https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=38

n Computer Architecture, Fall 2020, Lecture 20
q Memory Ordering & Consistency (ETH, Fall 2020)
q https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=37

n Computer Architecture, Spring 2015, Lecture 28
q Memory Consistency & Cache Coherence (CMU, Spring 2015)
q https://www.youtube.com/watch?v=JfjT1a0vi4E&list=PL5PHm2jkkXmi5CxxI7b3JCL
1TWybTDtKq&index=32

n Computer Architecture, Spring 2015, Lecture 29
q Cache Coherence (CMU, Spring 2015)
q https://www.youtube.com/watch?v=X6DZchnMYcw&list=PL5PHm2jkkXmi5CxxI7b3
JCL1TWybTDtKq&index=33

33https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=38
https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=37
https://www.youtube.com/watch?v=JfjT1a0vi4E&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=32
https://www.youtube.com/watch?v=X6DZchnMYcw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=33
https://www.youtube.com/onurmutlulectures

Prefetching

Digital Design & Computer Arch.
Lecture 24a: Multi-Core Caches

Prof. Onur Mutlu

ETH Zürich
Spring 2022
27 May 2022

These Slides Are for You to Study.
Next Lecture May Cover Them.

Prefetching
n Idea: Fetch the data before it is needed (i.e. pre-fetch) by

the program

n Why?
q Memory latency is high. If we can prefetch accurately and

early enough we can reduce/eliminate that latency.
q Can eliminate compulsory cache misses
q Can it eliminate all cache misses? Capacity, conflict?

n Involves predicting which address will be needed in the
future
q Works if programs have predictable miss address patterns

37

Prefetching and Correctness
n Does a misprediction in prefetching affect correctness?

n No, prefetched data at a “mispredicted” address is simply
not used

n There is no need for state recovery
q In contrast to branch misprediction or value misprediction

38

Basics
n In modern systems, prefetching is usually done in cache

block granularity

n Prefetching is a technique that can reduce both
q Miss rate
q Miss latency

n Prefetching can be done by
q Hardware
q Compiler
q Programmer
q System

39

How a HW Prefetcher Fits in the Memory System

40

Prefetching: The Four Questions
n What

q What addresses to prefetch (i.e., address prediction algorithm)

n When
q When to initiate a prefetch request (early, late, on time)

n Where
q Where to place the prefetched data (caches, separate buffer)
q Where to place the prefetcher (which level in memory hierarchy)

n How
q How does the prefetcher operate and who operates it (software,

hardware, execution/thread-based, cooperative, hybrid)
41

Challenges in Prefetching: How
n Software prefetching

q ISA provides prefetch instructions
q Programmer or compiler inserts prefetch instructions (effort)
q Usually works well only for “regular access patterns”

n Hardware prefetching
q Hardware monitors processor accesses
q Memorizes or finds patterns/strides
q Generates prefetch addresses automatically

n Execution-based prefetchers
q A “thread” is executed to prefetch data for the main program
q Can be generated by either software/programmer or hardware

42

Important: Prefetcher Performance
n Accuracy (used prefetches / sent prefetches)
n Coverage (prefetched misses / all misses)
n Timeliness (on-time prefetches / used prefetches)

n Bandwidth consumption
q Memory bandwidth consumed with prefetcher / without

prefetcher
q Good news: Can utilize idle bus bandwidth (if available)

n Cache pollution
q Extra demand misses due to prefetch placement in cache
q More difficult to quantify but affects performance

43

Recommended Paper

n Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February
2007. Slides (ppt)
One of the five papers nominated for the Best Paper Award by
the Program Committee.

44

https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt

Effect of Runahead Prefetching in Sun ROCK
n Shailender Chaudhry talk, Aug 2008.

45

Effective prefetching can improve performance and reduce hardware cost

Lectures on Prefetching (I)

46https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33

Lectures on Prefetching (II)

47https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

Lectures on Prefetching (III)

48https://www.youtube.com/watch?v=KFCOecRQTIc

https://www.youtube.com/watch?v=KFCOecRQTIc

Lectures on Prefetching
n Computer Architecture, Fall 2020, Lecture 18

q Prefetching (ETH, Fall 2020)
q https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=33

n Computer Architecture, Fall 2020, Lecture 19a
q Execution-Based Prefetching (ETH, Fall 2020)
q https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=34

n Computer Architecture, Spring 2015, Lecture 25
q Prefetching (CMU, Spring 2015)
q https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JC
L1TWybTDtKq&index=29

n Computer Architecture, Spring 2015, Lecture 26
q More Prefetching (CMU, Spring 2015)
q https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JC
L1TWybTDtKq&index=30

49https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33
https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34
https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29
https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30
https://www.youtube.com/onurmutlulectures

Some Readings on Prefetching
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction Windows
for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance Computer
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.
HPCA Test of Time Award (awarded in 2021).
[Lecture Slides (pptx) (pdf)]
[Lecture Video (1 hr 54 mins)]
[Retrospective HPCA Test of Time Award Talk Slides (pptx) (pdf)]
[Retrospective HPCA Test of Time Award Talk Video (14 minutes)]

50

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pdf
https://youtu.be/Kj3relihGF4?t=1162
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pdf
https://www.youtube.com/watch?v=KFCOecRQTIc

Some Readings on Prefetching
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Effective Alternative to Large
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25,
November/December 2003.

51

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383

