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Readings for This Week and Last Week
n Memory Hierarchy, Caches, Prefetching, Virtual Memory

n Required
q H&H Chapters 8.1-8.3
q Refresh: P&P Chapter 3.5
q Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014.

n https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

n Recommended
q An early cache paper by Maurice Wilkes

n Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965. 

q An example prefetching paper
n Mutlu et al., “Runahead Execution: An Effective Alternative to Large 

Instruction Windows,” IEEE Micro, 2003.
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Recall: Memory Hierarchy Example

3

Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014
https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf



Recall: A Modern Memory Hierarchy

4

Register File
32 words, sub-nsec

L1 cache
~10s of KB, ~nsec

L2 cache
100s of KB ~  few MB, many nsec

L3 cache, 
many MBs, even more nsec

Main memory (DRAM), 
Many GBs, ~100 nsec

Swap Disk
~100 GB or few TB, ~10s of usec-msec

manual/compiler
register spilling

automatic
demand 
paging

automatic
HW cache
management

Memory
Abstraction



Recall: Remote Memory in Large Servers
n Memory hierarchy extends beyond a single server
n This enables even higher memory capacity

q Needed to support modern data-intensive workloads

5Calciu+, “Rethinking Software Runtimes for Disaggregated Memory”, ASPLOS 2021.

Local memory
(and hierarchy)

Remote memory

Compute node
(Local)

Memory node
(Remote)

Low-latency
network



Recall: Deeper and Larger Cache Hierarchies

6Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested


Recall: Deeper and Larger Cache Hierarchies

7Source: https://twitter.com/Locuza_/status/1454152714930331652

Intel Alder Lake,
2021

https://twitter.com/Locuza_/status/1454152714930331652


Recall: Deeper and Larger Cache Hierarchies

8https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches: 
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared



AMD’s 3D Last Level Cache (2021)

9https://youtu.be/gqAYMx34euU
https://www.tech-critter.com/amd-keynote-computex-2021/

https://community.microcenter.com/discussion/5
134/comparing-zen-3-to-zen-2

Additional 64 MB L3 cache die 
stacked on top of the processor die 
- Connected using Through Silicon Vias (TSVs)
- Total of 96 MB L3 cache

AMD increases the L3 size of their 8-core Zen 3 
processors from 32 MB to 96 MB 

https://youtu.be/gqAYMx34euU
https://www.tech-critter.com/amd-keynote-computex-2021/
https://community.microcenter.com/discussion/5134/comparing-zen-3-to-zen-2


Recall: Deeper and Larger Cache Hierarchies

10https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,
2020

Cores:
15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared



Recall: Deeper and Larger Cache Hierarchies

11https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon

Nvidia Ampere, 2020

Cores:
128 Streaming Multiprocessors

L1 Cache or 
Scratchpad: 
192KB per SM 
Can be used as L1 Cache 
and/or Scratchpad

L2 Cache:
40 MB shared



Recall: Deeper and Larger Cache Hierarchies

12https://wccftech.com/nvidia-hopper-gpus-featuring-mcm-technology-tape-out-soon-rumor/

Nvidia Hopper, 2022

L1 Cache or 
Scratchpad: 
256KB per SM 
Can be used as L1 Cache 
and/or Scratchpad

Cores:
144 Streaming 
Multiprocessors

L2 Cache:
60 MB shared

https://wccftech.com/nvidia-hopper-gpus-featuring-mcm-technology-tape-out-soon-rumor/


Recall: Deeper and Larger Cache Hierarchies

13https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Nvidia Hopper, 
2022

L1 Cache or 
Scratchpad: 
256KB per SM 
Can be used as L1 Cache 
and/or Scratchpad

Cores:
144 Streaming 
Multiprocessors

L2 Cache:
60 MB shared

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/


Recall: How to Improve Cache Performance
n Three fundamental goals

n Reducing miss rate
q Caveat: reducing miss rate can reduce performance if more 

costly-to-refetch blocks are evicted

n Reducing miss latency or miss cost

n Reducing hit latency or hit cost

n The above three together affect performance 
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Recall: Improving Basic Cache Performance
n Reducing miss rate

q More associativity
q Alternatives/enhancements to associativity 

n Victim caches, hashing, pseudo-associativity, skewed associativity
q Better replacement/insertion policies
q Software approaches
q …

n Reducing miss latency/cost
q Multi-level caches
q Critical word first
q Subblocking/sectoring
q Better replacement/insertion policies
q Non-blocking caches (multiple cache misses in parallel)
q Multiple accesses per cycle
q Software approaches
q …

15



Lectures on Cache Optimizations (I)

16https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3

https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3


Lectures on Cache Optimizations (II)

17https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6

https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6


Lectures on Cache Optimizations (III)

18https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21

https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21


Lectures on Cache Optimizations
n Computer Architecture, Fall 2017, Lecture 3

q Cache Management & Memory Parallelism (ETH, Fall 2017)
q https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBX
YFIZywZXCPl4M_&index=3

n Computer Architecture, Fall 2018, Lecture 4a
q Cache Design (ETH, Fall 2018)
q https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMh
ylk_d5dI-TM7&index=6

n Computer Architecture, Spring 2015, Lecture 19
q High Performance Caches (CMU, Spring 2015)
q https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3J
CL1TWybTDtKq&index=21

19https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=OyomXCHNJDA&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=3
https://www.youtube.com/watch?v=55oYBm9cifI&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=6
https://www.youtube.com/watch?v=jDHx2K9HxlM&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=21
https://www.youtube.com/onurmutlulectures


Recall:
Multi-Core Issues in Caching



Recall: Private vs. Shared Caches
n Private cache: Cache belongs to one core (a shared block 

can be in multiple caches)
n Shared cache: Cache is shared by multiple cores

21

CORE 0 CORE 1 CORE 2 CORE 3

L2 
CACHE

L2 
CACHE

L2 
CACHE

DRAM MEMORY CONTROLLER

L2 
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2 
CACHE



Lectures on Multi-Core Cache Management

22https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=17

https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=17


Lectures on Multi-Core Cache Management

23https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=29

https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=29


Lectures on Multi-Core Cache Management

24https://www.youtube.com/watch?v=Siz86__PD4w&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=30



Lectures on Multi-Core Cache Management
n Computer Architecture, Fall 2018, Lecture 18b

q Multi-Core Cache Management (ETH, Fall 2018)
q https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQM
hylk_d5dI-TM7&index=29

n Computer Architecture, Fall 2018, Lecture 19a
q Multi-Core Cache Management II (ETH, Fall 2018)
q https://www.youtube.com/watch?v=Siz86__PD4w&list=PL5Q2soXY2Zi9JXe3ywQM
hylk_d5dI-TM7&index=30

n Computer Architecture, Fall 2017, Lecture 15
q Multi-Core Cache Management (ETH, Fall 2017)
q https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXY
FIZywZXCPl4M_&index=17

25https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=c9FhGRB3HoA&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=29
https://www.youtube.com/watch?v=Siz86__PD4w&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7&index=30
https://www.youtube.com/watch?v=7_Tqlw8gxOU&list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_&index=17
https://www.youtube.com/onurmutlulectures


Lectures on Memory Resource Management

26https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21

https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21


Lectures on Memory Resource Management
n Computer Architecture, Fall 2020, Lecture 11a

q Memory Controllers (ETH, Fall 2020)
q https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=20

n Computer Architecture, Fall 2020, Lecture 11b
q Memory Interference and QoS (ETH, Fall 2020)
q https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=21

n Computer Architecture, Fall 2020, Lecture 13
q Memory Interference and QoS II (ETH, Fall 2020)
q https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxU
z7xRPS-wisBN&index=26

n Computer Architecture, Fall 2020, Lecture 2a
q Memory Performance Attacks (ETH, Fall 2020)
q https://www.youtube.com/watch?v=VJzZbwgBfy8&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=2

27https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=20
https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21
https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26
https://www.youtube.com/watch?v=VJzZbwgBfy8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=2
https://www.youtube.com/onurmutlulectures


Recall:
Cache Coherence



Recall: Cache Coherence 
n Basic question: If multiple processors cache the same 

block, how do they ensure they all see a consistent state?

P1 P2

x

Interconnection Network

Main Memory

1000



Recall: The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000



Recall: The Cache Coherence Problem
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Recall: The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000



Recall: The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT 
load 1000



Recall: A Very Simple Coherence Scheme (VI)
n Idea: All caches “snoop” (observe) each other’s write/read 

operations. If a processor writes to a block, all others 
invalidate the block.

n A simple protocol:

34

n Write-through, no-
write-allocate 
cache

n Actions of the local 
processor on the 
cache block: PrRd, 
PrWr, 

n Actions that are 
broadcast on the 
bus for the block: 
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--



Lecture on Cache Coherence  

35https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=38

https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=38


Lecture on Memory Ordering & Consistency

36https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=37

https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=37


Lecture on Cache Coherence & Consistency
n Computer Architecture, Fall 2020, Lecture 21

q Cache Coherence (ETH, Fall 2020)
q https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=38

n Computer Architecture, Fall 2020, Lecture 20
q Memory Ordering & Consistency (ETH, Fall 2020)
q https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=37

n Computer Architecture, Spring 2015, Lecture 28
q Memory Consistency & Cache Coherence (CMU, Spring 2015)
q https://www.youtube.com/watch?v=JfjT1a0vi4E&list=PL5PHm2jkkXmi5CxxI7b3JCL
1TWybTDtKq&index=32

n Computer Architecture, Spring 2015, Lecture 29
q Cache Coherence (CMU, Spring 2015)
q https://www.youtube.com/watch?v=X6DZchnMYcw&list=PL5PHm2jkkXmi5CxxI7b3
JCL1TWybTDtKq&index=33

37https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=T9WlyezeaII&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=38
https://www.youtube.com/watch?v=Suy09mzTbiQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=37
https://www.youtube.com/watch?v=JfjT1a0vi4E&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=32
https://www.youtube.com/watch?v=X6DZchnMYcw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=33
https://www.youtube.com/onurmutlulectures


Prefetching 



Prefetching
n Idea: Fetch the data before it is needed (i.e. pre-fetch) by 

the program

n Why? 
q Memory latency is high. If we can prefetch accurately and 

early enough, we can reduce/eliminate that latency.
q Can eliminate compulsory cache misses
q Can it eliminate all cache misses? Capacity, conflict? 

Coherence?

n Involves predicting which address will be needed in the 
future
q Works if programs have predictable miss address patterns

39



Prefetching and Correctness
n Does a misprediction in prefetching affect correctness?

n No, prefetched data at a “mispredicted” address is simply 
not used

n There is no need for state recovery
q In contrast to branch misprediction or value misprediction

40



Basics
n In modern systems, prefetching is usually done at cache 

block granularity

n Prefetching is a technique that can reduce both
q Miss rate
q Miss latency

n Prefetching can be done by 
q Hardware
q Compiler
q Programmer
q System

41



How a HW Prefetcher Fits in the Memory System

42Mutlu+, “Using the First-Level Caches as Filters to Reduce the Pollution Caused by Speculative Memory References”, IJPP 2005.



Prefetching: The Four Questions
n What

q What addresses to prefetch (i.e., address prediction algorithm)

n When
q When to initiate a prefetch request (early, late, on time)

n Where
q Where to place the prefetched data (caches, separate buffer)
q Where to place the prefetcher (which level in memory hierarchy)

n How
q How does the prefetcher operate and who operates it (software, 

hardware, execution/thread-based, cooperative, hybrid)
43



Challenge in Prefetching: What
n What addresses to prefetch

q Prefetching useless data wastes resources
n Memory bandwidth
n Cache or prefetch buffer space
n Energy consumption
n These could all be utilized by demand requests or more accurate 

prefetch requests
q Accurate prediction of addresses to prefetch is important

n Prefetch accuracy = used prefetches / sent prefetches
n How do we know what to prefetch?

q Predict based on past access patterns
q Use the compiler’s knowledge of data structures

n Prefetching algorithm determines what to prefetch
44



Challenges in Prefetching: How
n Software prefetching

q ISA provides prefetch instructions
q Programmer or compiler inserts prefetch instructions (effort)
q Usually works well only for “regular access patterns”

n Hardware prefetching
q Hardware monitors memory accesses
q Memorizes or finds patterns/strides
q Generates prefetch addresses automatically

n Execution-based prefetchers
q A “thread” is executed to prefetch data for the main program
q Can be generated by either software/programmer or hardware

45



X86 PREFETCH Instruction

46

microarchitecture 
dependent
specification

different instructions
for different cache
levels



Streaming Prefetcher in IBM POWER4

47Tendler et al., “POWER4 system microarchitecture,” IBM JR&D, 2002.



A Recommended Paper: Stream Prefetching

48Jouppi, “Improving direct-mapped cache performance by the addition of a small fully-associative cache and prefetch buffers,” ISCA 1990.



Important: Prefetcher Performance
n Accuracy (used prefetches / sent prefetches)
n Coverage (prefetched misses / all misses)
n Timeliness (on-time prefetches / used prefetches)

n Bandwidth consumption
q Memory bandwidth consumed with prefetcher / without 

prefetcher
q Good news: Can utilize idle bus bandwidth (if available)

n Cache pollution
q Extra demand misses due to prefetch placement in cache
q More difficult to quantify but affects performance

49



Outline of Prefetching Issues
n Why prefetch? Why could/does it work?
n The four questions

q What (to prefetch), when, where, how
n Software prefetching algorithms
n Hardware prefetching algorithms
n Execution-based prefetching techniques and algorithms
n Prefetching performance

q Coverage, accuracy, timeliness
q Bandwidth consumption, cache pollution

n Prefetcher throttling 
n Issues in multi-core, multiprocessor, multithreaded systems

50



Recommended Paper

n Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and 
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February 
2007. Slides (ppt)
One of the five papers nominated for the Best Paper Award by 
the Program Committee.

51

https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt


Effect of Runahead Prefetching in Sun ROCK
n Shailender Chaudhry talk, Aug 2008.

52

Effective prefetching can both improve performance and reduce hardware cost



An Example Prefetcher: 
Runahead Execution



54

ADD R2 ß R2, 64
STOR mem[R2] ß R4
ADD R4 ß R4, R5
MUL R4 ß R4, R3

LOAD R3 ß mem[R2]

ADD R2 ß R2, 8

BEQ R1, R0, target
LOAD R1 ß mem[R5]

Small Windows: Full-Window Stalls

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,
executed out of program order, 
but cannot be retired.

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

n Long-latency cache misses are responsible for most        
full-window stalls.

LOAD R3 ß mem[R2]



Impact of Long-Latency Cache Misses
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Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors,” HPCA 2003.



Impact of Long-Latency Cache Misses
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Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors,” HPCA 2003.



57

The Problem
n Out-of-order execution requires large instruction windows  

to tolerate today’s main memory latencies

n As main memory latency increases, instruction window size 
should also increase to fully tolerate the memory latency

n Building a large instruction window is a challenging task       
if we would like to achieve 
q Low power/energy consumption (tag matching logic, 

load/store buffers)
q Short cycle time (wakeup/select, regfile, bypass latencies)
q Low design and verification complexity



Runahead Execution
n A technique to obtain the memory-level parallelism benefits 

of a large instruction window

n When the oldest instruction is a long-latency cache miss:
q Checkpoint architectural state and enter runahead mode

n In runahead mode:
q Speculatively pre-execute instructions
q The purpose of pre-execution is to generate prefetches
q L2-miss dependent instructions are marked INV and dropped

n When the original miss returns:
q Restore checkpoint, flush pipeline, resume normal execution

n Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.

58



Compute

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Hit Load 2 Hit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Perfect Caches:

Small Window:

Runahead:

Runahead Example



Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

n Pre-executed loads and stores independent of L2-miss 
instructions generate very accurate data prefetches:
q For both regular and irregular access patterns

n Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

n Hardware prefetcher and branch predictor tables are trained
using future access information. 



Runahead Execution Pros and Cons 
n Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path

+ Simple to implement: most of the hardware is already built in
+ No waste of context: uses the main thread context for prefetching
+ No need to construct a pre-execution thread

n Disadvantages/Limitations
-- Extra executed instructions
-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses 
-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance (how far ahead to prefetch) limited by memory latency

n Implemented in Sun ROCK, IBM POWER6, NVIDIA Denver
61
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Runahead Execution vs. Large Windows
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Runahead on In-order vs. Out-of-order
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More on Runahead Execution
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction Windows 
for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance Computer 
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.
HPCA Test of Time Award (awarded in 2021).
[Lecture Slides (pptx) (pdf)]
[Lecture Video (1 hr 54 mins)]
[Retrospective HPCA Test of Time Award Talk Slides (pptx) (pdf)]
[Retrospective HPCA Test of Time Award Talk Video (14 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pdf
https://youtu.be/Kj3relihGF4?t=1162
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pdf
https://www.youtube.com/watch?v=KFCOecRQTIc


Effect of Runahead in Sun ROCK
n Shailender Chaudhry talk, Aug 2008.
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Effective prefetching can both improve performance and reduce hardware cost



More on Runahead in Sun ROCK

67Chaudhry+, “High-Performance Throughput Computing,” IEEE Micro 2005.



More on Runahead in Sun ROCK

68Chaudhry+, “Simultaneous Speculative Threading,” ISCA 2009.



Runahead Execution in IBM POWER6

69

Cain+, “Runahead Execution vs. Conventional Data Prefetching 
in the IBM POWER6 Microprocessor,” ISPASS 2010.



Runahead Execution in IBM POWER6
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Runahead Execution in NVIDIA Denver

71

Boggs+, “Denver: NVIDIA’s First 64-Bit ARM Processor,” IEEE Micro 2015.



Runahead Execution in NVIDIA Denver

72

Boggs+, “Denver: NVIDIA’s First 64-Bit ARM Processor,” 
IEEE Micro 2015.
Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.



Runahead Enhancements



Runahead Enhancements

n Mutlu et al., “Techniques for Efficient Processing in Runahead
Execution Engines,” ISCA 2005, IEEE Micro Top Picks 2006.

n Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005.

n Armstrong et al., “Wrong Path Events,” MICRO 2004.

n Mutlu et al., “An Analysis of the Performance Impact of 
Wrong-Path Memory References on Out-of-Order and 
Runahead Execution Processors,” IEEE TC 2005.
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Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]
q Wrong Path Memory Reference Analysis [IEEE TC’05]



More on Efficient Runahead Execution
n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Techniques for Efficient Processing in Runahead Execution 
Engines"
Proceedings of the 32nd International Symposium on Computer 
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides 
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as 
Top Picks by IEEE Micro.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf


More on Efficient Runahead Execution
n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Efficient Runahead Execution: Power-Efficient Memory Latency 
Tolerance"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20, 
January/February 2006.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10


More Effective Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of 
Runahead Execution by Exploiting Regular Memory Allocation Patterns"
Proceedings of the 38th International Symposium on Microarchitecture (MICRO), 
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)
One of the five papers nominated for the Best Paper Award by the 
Program Committee.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf


More on Efficient Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique 
for Efficiently Parallelizing Dependent Cache Misses"
IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508, 
December 2006.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/


Looking to the Past



At the Time… Early 2000s…

n Large focus on increasing the size of the window…
q And, designing bigger, more complicated machines

n Runahead was a different way of thinking
q Keep the OoO core simple and small
q At the expense of some benefits (e.g., non-memory-related)
q Use aggressive “automatic speculative execution” solely for 

prefetching
q Synergistic with prefetching and branch prediction methods

n A lot of interesting and innovative ideas ensued… 
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Important Precedent [Dundas & Mudge, ICS 1997]

82
Dundas+, “Improving Data Cache Performance by Pre-Executing Instructions Under a Cache Miss,” ICS 1997.



An Inspiration [Glew, ASPLOS-WACI 1998]

83
Glew, “MLP yes! ILP no!,” ASPLOS WACI 1998.



Looking to the Future



A Look into the Future…

n Microarchitecture is still critically important
q And, fun…
q And, impactful…

n Runahead is a great example of harmonious industry-
academia collaboration

n Fundamental problems will remain fundamental
q And will require fundamental (and creative) solutions
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Citation for the Test of Time Award

n Runahead Execution is a pioneering paper that opened up 
new avenues in dynamic prefetching. 

n The basic idea of runahead execution effectively increases 
the instruction window very significantly, without having to 
increase physical resource size (e.g. the issue queue). 

n This seminal paper spawned off a new area of ILP-
enhancing microarchitecture research. 

n This work has had strong industry impact as evidenced by 
IBM's POWER6 - Load Lookahead, NVIDIA Denver, and Sun 
ROCK's hardware scouting.
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Suggestion to Researchers: Principle: Passion

Follow Your Passion
(Do not get derailed

by naysayers)



Suggestion to Researchers: Principle: Resilience

Be Resilient



Principle: Learning and Scholarship

Focus on
learning and scholarship



Principle: Learning and Scholarship

The quality of your work 
defines your impact



More on Runahead Execution
n Lecture video from Fall 2020, Computer Architecture:

q https://www.youtube.com/watch?v=zPewo6IaJ_8

n Lecture video from Fall 2017, Computer Architecture:
q https://www.youtube.com/watch?v=Kj3relihGF4

n Onur Mutlu,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July 
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by 
the University of Texas at Austin.

91https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=zPewo6IaJ_8
https://www.youtube.com/watch?v=Kj3relihGF4
https://people.inf.ethz.ch/omutlu/pub/mutlu_dissertation.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_phd_defense_talk.ppt
https://www.youtube.com/onurmutlulectures


More on Runahead Execution (I)

92https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34


More on Runahead Execution (II)

93https://www.youtube.com/watch?v=KFCOecRQTIc

https://www.youtube.com/watch?v=KFCOecRQTIc


More Recommended Material 
on Prefetching



Lectures on Prefetching (I)

95https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33


Lectures on Prefetching (II)

96https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34


Lectures on Prefetching (III)

97https://www.youtube.com/watch?v=KFCOecRQTIc

https://www.youtube.com/watch?v=KFCOecRQTIc


Lectures on Prefetching (IV)

98https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29

https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29


Lectures on Prefetching (V)

99https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30

https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30


Lectures on Prefetching
n Computer Architecture, Fall 2020, Lecture 18

q Prefetching (ETH, Fall 2020)
q https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=33

n Computer Architecture, Fall 2020, Lecture 19a
q Execution-Based Prefetching (ETH, Fall 2020)
q https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=34

n Computer Architecture, Spring 2015, Lecture 25
q Prefetching (CMU, Spring 2015)
q https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JC
L1TWybTDtKq&index=29

n Computer Architecture, Spring 2015, Lecture 26
q More Prefetching (CMU, Spring 2015)
q https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JC
L1TWybTDtKq&index=30

100https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33
https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34
https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29
https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30
https://www.youtube.com/onurmutlulectures


Recommended Readings on Prefetching
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction Windows 
for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance Computer 
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.
HPCA Test of Time Award (awarded in 2021).
[Lecture Slides (pptx) (pdf)]
[Lecture Video (1 hr 54 mins)]
[Retrospective HPCA Test of Time Award Talk Slides (pptx) (pdf)]
[Retrospective HPCA Test of Time Award Talk Video (14 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pdf
https://youtu.be/Kj3relihGF4?t=1162
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pdf
https://www.youtube.com/watch?v=KFCOecRQTIc


Recommended Readings on Prefetching
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Effective Alternative to Large 
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25, 
November/December 2003.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383


Recommended Readings on Prefetching
n Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Feedback Directed Prefetching: Improving the Performance and 
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February 
2007. Slides (ppt)
One of the five papers nominated for the Best Paper Award by 
the Program Committee.
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https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt


Recommended Readings on Prefetching
n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Efficient Runahead Execution: Power-Efficient Memory Latency 
Tolerance"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20, 
January/February 2006.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10


Another Example Prefetcher: 
Stride Prefetcher



Stride Prefetchers
n Consider the following strided memory access pattern:

q A, A+N, A+2N, A+3N, A+4N…
q Stride = N

n Idea: Record the stride between consecutive memory 
accesses; if stable, use it to predict next N memory 
accesses

n Two types
q Stride determined on a per-instruction basis
q Stride determined on a per-memory-region basis
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Instruction Based Stride Prefetching

n Each load/store instruction can lead to a memory access 
pattern with a different stride
q Can only detect strides caused by each instruction

n Timeliness of prefetches can be an issue
q Initiating the prefetch when the load is fetched the next time 

can be too late
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Load Inst. Last Address Last Confidence

PC (tag) Referenced Stride

……. ……. ……

Load
Inst
PC



Memory-Region Based Based Stride Prefetching

n Can detect strided memory access patterns that appear due 
to multiple instructions
q A, A+N, A+2N, A+3N, A+4N … where each access could be 

due to a different instruction

n Stream prefetching (stream buffers) are a special case of 
cache block address based stride prefetching where N = 1
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Address tag Stride Control/Confidence

……. ……

Cache 
Block 

Address



Instruction-Based Stride Prefetching

109



What About More Complex Access Patterns?
n Simple regular patterns

q Stride, stream prefetchers do well

n Complex regular patterns
q E.g., multiple regular strides
q +1, +2, +3, +1, +2, +3, +1, +2, +3, …

n Irregular patterns
q Linked data structure traversals
q Indirect array accesses
q Random accesses
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Multi-Stride Detection in Modern Prefetchers

111

GemsFDTD
Complex but predictable set of strides



Path Confidence Based Lookahead Prefetching

n Key Idea:
q Given a history of strides, learn and predict what stride might 

come next
n {7,-6,12} à 6, {-6,12,6} à -5, …

q Bootstrap prediction to generate new predictions, until the 
cascaded path confidence drops below a threshold

112

History of 
Strides

Prediction Prediction 
Confidence

Path 
Confidence

Pass 1 {7,-6,12} 6 85% 85% Bootstrap

Pass 2 {-6,12,6} -5 70% 85%*70%=60% Bootstrap
Pass 3 {12,6,-5} -6 82% 60%*82%=49% STOP



Another Example Prefetcher:
Self-Optimizing Prefetcher



Self-Optimizing Memory Prefetchers

114

n Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas 
Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online 
Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, 
October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia
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Basics of Reinforcement Learning (RL)

• Algorithmic approach to learn to take an action in a 
given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)
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Brief Overview of Pythia
Pythia formulates prefetching as a reinforcement learning problem

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor & 
Memory Subsystem

Reward
Prefetch from address 

A+o�set (O)

Features of memory 
request to address A 

(e.g., PC)
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Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;
- RIN-H=-14; RIN-L=-8; RCL=-12



119

More Detailed Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs
• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to 

corresponding EQ entry

Look up 
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action & 
State-Action pair in EQ

6

Prefetch Fill 

A1 A2 A3

Memory 
Hierarchy

Generate
prefetch

Evict EQ entry and 
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max
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3.4%
7.7%

1. Pythia consistently provides the highest 
performance in all core configurations
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a wide range of DRAM bandwidth configurations
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A Lot More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features 
and hyperparameter values

• Detailed single-core and four-core performance

https://arxiv.org/pdf/2109.12021.pdf

https://arxiv.org/pdf/2109.12021.pdf
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Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated
• Champsim source code + Chisel modeling code
• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia
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Backup Slides:
More on Runahead Execution



Runahead Execution Mechanism
n Entry into runahead mode

q Checkpoint architectural register state

n Instruction processing in runahead mode

n Exit from runahead mode
q Restore architectural register state from checkpoint



Instruction Processing in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

Runahead mode processing is the same as                
normal instruction processing, EXCEPT:

n It is purely speculative: Architectural (software-visible) 
register/memory state is NOT updated in runahead mode.

n L2-miss dependent instructions are identified and treated 
specially.
q They are quickly removed from the instruction window.
q Their results are not trusted.



L2-Miss Dependent Instructions

Compute

Load 1 Miss

Runahead
Miss 1

n Two types of results produced: INV and VALID

n INV = Dependent on an L2 miss

n INV results are marked using INV bits in the register file and 
store buffer.

n INV values are not used for prefetching/branch resolution.



Removal of Instructions from Window

Compute

Load 1 Miss

Runahead
Miss 1

n Oldest instruction is examined for pseudo-retirement
q An INV instruction is removed from window immediately.
q A VALID instruction is removed when it completes execution.

n Pseudo-retired instructions free their allocated resources.
q This allows the processing of later instructions.

n Pseudo-retired stores communicate their data to       
dependent loads.



Store/Load Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n A pseudo-retired store writes its data and INV status to a  
dedicated memory, called runahead cache. 

n Purpose: Data communication through memory in runahead mode.

n A dependent load reads its data from the runahead cache.

n Does not need to be always correct à Size of runahead cache is 
very small.



Branch Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n INV branches cannot be resolved.
q A mispredicted INV branch causes the processor to stay on the wrong 
program path until the end of runahead execution.

n VALID branches are resolved and initiate recovery if mispredicted.



A Runahead Processor Diagram
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Mutlu+, “Runahead Execution,”
HPCA 2003.



Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]
q Wrong Path Memory Reference Analysis [IEEE TC’05]



The Efficiency Problem
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Causes of Inefficiency
n Short runahead periods

n Overlapping runahead periods

n Useless runahead periods

n Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top 
Picks 2006.



Short Runahead Periods
n Processor can initiate runahead mode due to an already in-flight L2 

miss generated by
q the prefetcher, wrong-path, or a previous runahead period

n Short periods  
q are less likely to generate useful L2 misses
q have high overhead due to the flush penalty at runahead exit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Miss

Miss 1

Miss 2

Load 1 Hit



Overlapping Runahead Periods

Compute

Load 1 Miss

Miss 1

Runahead

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

OVERLAP OVERLAP

n Two runahead periods that execute the same instructions

n Second period is inefficient



Useless Runahead Periods
n Periods that do not result in prefetches for normal mode 

n They exist due to the lack of memory-level parallelism
n Mechanism to eliminate useless periods:

q Predict if a period will generate useful L2 misses
q Estimate a period to be useful if it generated an L2 miss that 

cannot be captured by the instruction window
n Useless period predictors are trained based on this estimation

Compute

Load 1 Miss

Runahead
Miss 1

Load 1 Hit
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Overall Impact on IPC
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More on Efficient Runahead Execution
n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Techniques for Efficient Processing in Runahead Execution 
Engines"
Proceedings of the 32nd International Symposium on Computer 
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides 
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as 
Top Picks by IEEE Micro.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf


More on Efficient Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency 
Tolerance"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20, 
January/February 2006.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10


Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]
q Wrong Path Memory Reference Analysis [IEEE TC’05]



n Runahead execution cannot parallelize dependent misses
q wasted opportunity to improve performance
q wasted energy (useless pre-execution)

n Runahead performance would improve by 25% if this 
limitation were ideally overcome

The Problem: Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 Load 1 Hit

Runahead: Load 2 is dependent on Load 1

Runahead

Cannot Compute Its Address!

INV



Parallelizing Dependent Cache Misses
n Idea: Enable the parallelization of dependent L2 cache 

misses in runahead mode with a low-cost mechanism

n How: Predict the values of L2-miss address (pointer) 
loads

n Address load: loads an address into its destination register, 
which is later used to calculate the address of another load

n as opposed to data load

n Read:
q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 

2005.



Parallelizing Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Hit

Miss 2

Load 2 Load 1 Hit

Value Predicted

Runahead
Saved Cycles

Can Compute Its Address

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

Runahead

Cannot Compute Its Address!

Saved Speculative 
Instructions

Miss



More on AVD Prediction

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of 
Runahead Execution by Exploiting Regular Memory Allocation Patterns"
Proceedings of the 38th International Symposium on Microarchitecture (MICRO), 
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)
One of the five papers nominated for the Best Paper Award by the 
Program Committee.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf


More on AVD Prediction (II)

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique 
for Efficiently Parallelizing Dependent Cache Misses"
IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508, 
December 2006.

151

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/


Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]
q Wrong Path Memory Reference Analysis [IEEE TC’05]



Wrong Path Events

n David N. Armstrong, Hyesoon Kim, Onur Mutlu, and Yale N. Patt,
"Wrong Path Events: Exploiting Unusual and Illegal Program 
Behavior for Early Misprediction Detection and Recovery"
Proceeedings of the 37th International Symposium on 
Microarchitecture (MICRO), pages 119-128, Portland, OR, December 
2004. Slides (pdf)Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/armstrong_micro04.pdf
http://www.microarch.org/micro37/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.ppt


Effects of Wrong Path Execution (I)

n Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"Understanding the Effects of Wrong-Path Memory References on 
Processor Performance"
Proceedings of the 3rd Workshop on Memory Performance 
Issues (WMPI), pages 56-64, Munchen, Germany, June 2004. Slides 
(pdf)
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https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04.pdf
http://doi.acm.org/10.1145/1054943.1054951
https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04_talk.pdf


Effects of Wrong Path Execution (II)

n Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"An Analysis of the Performance Impact of Wrong-Path Memory 
References on Out-of-Order and Runahead Execution Processors"
IEEE Transactions on Computers (TC), Vol. 54, No. 12, pages 1556-1571, 
December 2005.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc05.pdf
http://doi.ieeecomputersociety.org/10.1109/TC.2005.190

