Digital Designh & Computer Arch.
Lecture 26: Virtual Memory

Prof. Onur Mutlu

ETH Zurich
Spring 2022
3 June 2022

Extra Assignment 4: Amdahl’s Law

= Paper review

o G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

= Optional Assignment — for 1% extra credit

o Write a 1-page review
o Upload PDF file to Moodle — Deadline: June 15

= Strongly recommended that you follow my guidelines for
(paper) review

Extra Assignment 4: Amdahl’s Law

G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Validity of the single processor

approach to achieving large scale

computing capabilities

by DR. GENE M. AMDAHL

International Business Machines
Sunnyvale, California

Corporation

INTRODUCTION
For over a decade prophets have voiced the con-
tention that the organization of a single computer
has reached its limits and that truly significant
advances can be made only by interconnection of a
multiplicity of computers in such a manner as to
permit cooperative solution. Variously the proper
direction has been pointed out as general purpose
computers with a generalized interconnection of
memories, or as specialized computers with geo-
metrically related memory interconnections and con-
trolled by one or more instruction streams.
Demonstration is made of the continued validity
of the single processor approach and of the weak-
nesses of the multiple processor approach in terms
of application to real problems and their attendant
irregularities.

cessing rate, even if the housekeeping were done in
a separate processor. The non-housekeeping part
of the problem could exploit at most a processor of
performance three to four times the performance of
the housekeeping processor. A fairly obvious con-
clusion which can be drawn at this point is that the
effort expended on achieving high parallel processing
rates is wasted unless it is accompanied by achieve-
ments in sequential processing rates of very nearly
the same magnitude.

Data management housekeeping is not the only
problem to plague oversimplified approaches to high
speed computation. The physical problems which are
of practical interest tend to have rather significant
complications. Examples of these complications
are as follows: boundaries are likely to be irregular;

interinre are likalv tn ha inhamngcananne: camnnfac

Extra Assignment 5

= Paper review

a O. Mutly, "Intelligent Architectures for Intelligent
Computing Systems,” DATE 2021.

= Optional Assignment — for 1% extra credit

o Write a 1-page review
o Upload PDF file to Moodle — Deadline: July 15

= Strongly recommended that you follow my guidelines for
(paper) review

https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf

A Blueprint for Fundamentally Better Architectures

= Onur Mutluy,

"Intelligent Architectures for Intelligent Computing Systems"”
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.

Slides (pptx) (pdf)]

'IEDM Tutorial Slides (pptx) (pdf)]

[Short DATE Talk Video (11 minutes)]

Longer IEDM Tutorial Video (1 hr 51 minutes)]

Intelligent Architectures for Intelligent Computing Systems

Onur Mutlu
ETH Zurich

omutlu@gmail.com

SAFARI .

https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware

SAFARI

Readings

= Virtual Memory

= Required
o H&H Chapter 8.4
o Kim & Mutlu, *Memory Systems,” Computing Handbook, 2014.

= https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-
handbook14.pdf

= Recommended

o Jacob & Mudge, “Virtual Memory: Issues of Implementation,”
IEEE Computer, 1998.

o Hajinazar et al., “"The Virtual Block Interface: A Flexible

Alternative to the Conventional Virtual Memory Framework,”
ISCA 2020.

Prefetching Wrap-Up

Real Systems: Hybrid Hardware Prefetchers

Idea: Use multiple prefetchers to cover many memory
access patterns

+ Better prefetch coverage
+ Potentially better timeliness

-- More complexity (many design & optimization decisions)
-- More bandwidth-intensive

-- Prefetchers interfere with each other (contention, pollution)
- Need to manage accesses from each prefetcher

Real Systems: Pretetching in Multi-Core

Prefetching shared data
o Coherence misses/invalidations can hurt performance/efficiency

Prefetching efficiency is a lot more important
o Bus bandwidth more precious
o Cache space more valuable

One cores’ prefetches interfere with other cores’ requests
o Cache conflicts at multiple levels

o Bus contention at multiple levels

o DRAM bank, rank, channel, row buffer contention

a

SAFARI 10

Bandwidth-Etficient Hybrid Prefetchers

= Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the
Best Paper Award by the Program Committee.

Techniques for Bandwidth-Efficient Prefetching of Linked Data Structures in
Hybrid Prefetching Systems

Eiman Ebrahimif Onur Mutlu§ Yale N. Pattf

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{ebrahimi, patt} @ece.utexas.edu onur@cmu.edu

11

https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt

Coordinated Control of Prefetchers

Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core Systems
Proceedings of the 42nd International Symposium on

Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

Coordinated Control of Multiple Prefetchers
in Multi-Core Systems
Eiman Ebrahimi; Onur Mutlu§ Chang Joo Leet Yale N. Patt;

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt}Qece.utexas.edu onur@cmu.edu

12

https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt

Pretetching-Aware Shared Resource Management

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core
Systems"

Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

Prefetch-Aware Shared-Resource Management
for Multi-Core Systems

Eiman Ebrahimit Chang Joo Leett Onur Mutlu§ Yale N. Patt;

tHPS Research Group tIntel Corporation §Carnegie Mellon University

The University of Texas at Austin . '
{ebrahimi pag}@hps.utexas.edu chang.joo.lee@intel.com onur@cmu.edu

13

https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx

Prefetching-Aware DRAM Control (I)

Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"

Proceedings of the 41st International Symposium on

Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November
2008. Slides (ppt)

Prefetch-Aware DRAM Controllers

Chang Joo Leef Onur Mutlu§ Veynu Narasimanj Yale N. Patt{

fDepartment of E.lectr.lcal and Computer]:Z*lngmeermg §Microsoft Research and Carnegie Mellon University
The University of Texas at Austin

. . onur @{microsoft.com,cmu.edu}
{cjlee, narasima, patt} @ece.utexas.edu

14

https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt

Prefetching-Aware DRAM Control (II)

Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,

"Improving Memory Bank-Level Parallelism in the Presence of
Prefetching"

Proceedings of the 42nd International Symposium on

Microarchitecture (MICRO), pages 327-336, New York, NY, December
2009. Slides (ppt)

Improving Memory Bank-Level Parallelism
in the Presence of Prefetching
Chang Joo Leet Veynu Narasimani Onur Mutlu§ Yale N. Pattt

TDepartment of Electrical and Computer Engineering
The University of Texas at Austin
{cjlee, narasima, patt}@ece.utexas.edu

§Computer Architecture Laboratory (CALCM)
Carnegie Mellon University
onur@cmu.edu

15

https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt

Prefetching-Aware Cache Management

= Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
January 2015.
Presented at the 10th HIPEAC Conference, Amsterdam, Netherlands, January
2015.
[Slides (pptx) (pdf)]
[Source Code]

Mitigating Prefetcher-Caused Pollution Using Informed Caching
Policies for Prefetched Blocks

VIVEK SESHADRI, SAMIHAN YEDKAR, HONGY!I XIN, and ONUR MUTLU,
Carnegie Mellon University

PHILLIP B. GIBBONS and MICHAEL A. KOZUCH, Intel Pittsburgh

TODD C. MOWRY, Carnegie Mellon University

16

https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim

Prefetching in GPUs

= Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur
Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides

(pdf)

Orchestrated Scheduling and Prefetching for GPGPUs

Adwait Jogt Onur Kayirant Asit K. Mishra® Mahmut T. Kandemirt
Onur Mutlu* Ravishankar lyer® Chita R. Das'
fThe Pennsylvania State University * Carnegie Mellon University SIntel Labs
University Park, PA 16802 Pittsburgh, PA 15213 Hillsboro, OR 97124
{adwait, onur, kandemir, das}@cse.psu.edu onur@cmu.edu {asit.k.mishra, ravishankar.iyer}@intel.com

17

https://people.inf.ethz.ch/omutlu/pub/orchestrated-gpgpu-scheduling-prefetching_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pdf

Lectures on Pretetching (I)

X 86 PRIﬁl’]ﬂ’I(:ll [nstruction

548 ompa ption
Mode Leg Mode

microarchitecture
dependent
specification

. T2 (tesr
empo

different instructions /1

o Pentium Il processor—2 evel cache

for different cache ,
Pentium 4 and Intel Xeon processors—2nd-level cache
|eVelS NTA (non-temporal data with respect to all cache levels)—prefetch data into non

temporal cache structure and into a location close to the processor, minimizing

aChe and higt

cache pollution
— Pentium lli processor— 1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache

A0
4« P) 1.06:55/2:45:37

Computer Architecture - Lecture 18: Prefetching (ETH Zirich, Fall 2020)

1,203 views * Nov 29, 2020 |b 26 0 SHARE SAVE

m Onur Mutlu Lectures
‘C’ 16.5K subscribers ANALYTICS EDIT VIDEO

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL502s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=33 18

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33

Lectures on Pretetching (1I)

Thread-Based Pre-Execution

Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

Chappell et al.,
“Simultanaous Subordinate
Microthreading (SSMT),”
ISCA 1999.

Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

> »l R 12:23/1:32:51

Computer Architecture - Lecture 19a: Execution-Based Prefetching (ETH Zdrich, Fall 2020)

424 views * Nov 29, 2020 |. 16 0 SHARE SAVE

{\ Onur Mutlu Lectures ANALYTICS | EDIT viDEO
< > subscripers

https://www.youtube.com/watch?v=zPewo6laJ 8&list=PL50Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=34 19

https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

ectures on Prefetching (I11)

the effects of long cache-miss

0.1
Reducing
‘mt,‘.'.w!m\!uu 2 major tocus of the micro

architecture, using techniques like preferct

ing and run-ahead. An aggressive hardware
prefetcher implementation detects L2 cache
requests and tracks up to 32 streams, each
with complex stride patterns

R

)
Run-ahead uses

the idle time that a CPl
spends waiting en a long latency operation to
discover cache and DTLB misses further
down the instruction stream and generates

prefetch requests for these misses.” These pre
fetch requests warm up the data cache and

DTLB well before the acmual execurion of

Runahead Execution in NVIDIA Denver

The core includes a hardware prefetch unit that Boggs

describes as “aggressive” in preloading the data cache but

less ageressive in preloading the instruction cache It also

the instructions that require the data. Run
thead complements the hardware prefetcher
because it's better at prefetching nonstrided
streams, and it trains the hardware prefetcher
faster than normal execution to yield a com
bined benefit of 13 percent on SPECint2000
and up to 60 percent on SPECfp2000.

implements a “run-ahead” feature that continues to execute
microcode speculatively after a data-cache miss; this exe

cution can trigger additional cache misses that resolve in
the shadow of the first miss. Once the data from the original
miss returns, the results of this speculative execution are
discarded and execution restarts with the bundle containing
the original miss, but run-ahead can preload subsequent
data into the cache, thus avoiding a string of time-wasting
cache misses. These and other features help Denver out

score Cortex-A15 by more than 2.6x on a memory-read test
even when both use the same SoC framework (Tegra K1

IEEE Micro 2015.

Boggs+, "Denver: NVIDIA's First 64-Bit ARM Processor,”

Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.

128K8B Instruction Cache (4 way) ~

T 32 byes
Fetch Queve

- 1 ’

ARM | ARM Hw

Onur Mutlu - Runahead Execution: A Short Retrospective (HPCA Test of Time Award Talk @ HPCA 2021)

1,162 views * Premiered Mar 6, 2021

)= Onur Mutlu Lectures
-~ 16.5K subscribers
>

https://www.youtube.com/watch?v=KFCOecRQTIc

|. 50

10

SHARE =} SAVE

ANALYTICS EDIT VIDEO

20

https://www.youtube.com/watch?v=KFCOecRQTIc

Lectures on Pretetching (IV)

Lecture 25: Prefetching - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

5,216 views * Apr 3,2015 i35 &lo) SHARE =y SAVE
Carnegie Mellon Computer Architecture 1da\
G 23.3K subscribers SUBSCRIBED ‘

https://www.youtube.com/watch?v=ibPL7T9IEwY&list=PL5PHM2jkkXmi5Cxx17b3JCL1TWybTDtKg&index=29

https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29

Lectures on Prefetching (V)

4« P Pl R) 11:36/1:56:08

Lecture 26. More Prefetching and Emerging Memory Technologies - CMU - Comp. Arch. 2015 - Onur Mutlu

3,642 views * Apr 6, 2015 iy 26 &0) SHARE =i SAVE
Carnegie Mellon Computer Architecture lda\
@ 23.3K subscribers SUBSCRIBED ‘

https://www.youtube.com/watch?v=TUFins4z604&list=PL5PHmM2jkkXmi5Cxx|7b3JCL1TWybTDtKg&index=30

https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30

Virtual Memory

Memory (Programmer’s View)

24

Ideal Memory

Zero access time (latency)

Infinite capacity

Zero cost

Infinite bandwidth (to support multiple accesses in parallel)

25

Abstraction: Virtual vs. Physical Memory

Programmer sees virtual memory
o Can assume the memory is “infinite”

Reality: Physical memory size is much smaller than what
the programmer assumes

The system (system software + hardware, cooperatively)
maps virtual memory addresses to physical memory

o The system automatically manages the physical memory
space transparently to the programmer

+ Programmer does not need to know the physical size of memory
nor manage it 2> A small physical memory can appear as a huge
one to the programmer - Life is easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff

Requires indirection and mapping between virtual and physical address spaces

Benefits of Automatic Management of Memory

= Programmer does not deal with physical addresses

= Each process has its own
o Virtual address space (very large)
a Independent mapping of virtual->physical addresses

= Enables
o Code and data to be located anywhere in physical memory
(relocation and flexible location of data)

o Isolation/separation of code and data of different processes in
physical memory

(protection and isolation)
o Code and data sharing between multiple processes
(sharing)

27

A System with Physical Memory Only

= Examples:
o most early supercomputers
o early personal computers (PCs) Memory
o many older embedded systems

Physical
Addresses

CPU’s load or store instructions generate
physical memory addresses

28

The Problem

Physical memory is of limited size (cost)
o What if you need more?

o Should the programmer be concerned about the size of code/data
blocks fitting physical memory?

o Should the programmer manage data movement from disk to
physical memory?

Multiple programs may need the physical memory

o Should the programmer make sure all processes (different
programs) can fit in physical memory?

o Should the programmer ensure two processes do not unintentionally
or incorrectly use the same physical memory portion?

ISA can have an address space greater than the physical
memory size
o E.qg., a 64-bit address space with byte addressability - 16 ExaBytes

o What if you do not have enough physical memory?
29

Diftficulties of Direct Physical Addressing

Programmer needs to manage physical memory space
o Inconvenient & difficult
o More difficult when you have multiple processes

Difficult to support code and data relocation
o Addresses are directly specified in the program

Difficult to support multiple processes (esp. concurrently)
o Protection and isolation between multiple processes
o Sharing of physical memory space without problems

Difficult to support data/code sharing across processes
o Different processes need to reference the same physical address

30

Virtual Memory

Idea: Give each program the illusion of a large address
space while having a small physical memory

o So that the programmer does not worry about managing
physical memory (within a process or across processes)

Programmer can assume they have “infinite” amount of
physical memory

Hardware and software cooperatively and automatically
manage the physical memory space to provide the illusion

a Illusion is maintained for each independent process

31

Basic Mechanism

Indirection and mapping (of addresses)

Address generated by each instruction in a program is a
“virtual address”

o i.e., it is not the physical address used to address main
memory

o called “linear address” in x86

An “address translation” mechanism maps this address to a
“physical address”

o called “real address” in x86

o Address translation mechanism can be implemented in
hardware and software together

32

Virtual Memory: Conceptual View

= Illusion of large, separate address space per process

Process 1 Process 2
virtual address space 1 virtual address space 2
virtual page virtual page
K_H /_H

—t e

4KB 8KB 12KB 256TB

physical page
physical address space

Requires indirection and mapping between virtual and physical address spaces

Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf 33

A System with Virtual Memory (Page-based)

Memory

Page Table

Virtual

Physical
Addresses

Addresses

e
T

= Address Translation: The hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

Page-based Virtual-to-Physical Mapping

Virtual Page
Process 1 Physical Page
)
=
Virtual Page -

Process 2

Four Issues in Indirection and Mapping

When to map a virtual address to a physical address?
o When the virtual address is first referenced by the program

What is the mapping granularity?
o Byte? Kilo-byte? Mega-byte? Giga-byte? ...
o Multiple granularities?

Where and how to store the virtual->physical mappings?
o Operating system data structures? Hardware? Cooperative?

What to do when physical address space is full?

o Evict an unlikely-to-be-needed virtual address from physical
memory

36

Virtual Pages, Physical Frames

Virtual address space divided into pages
Physical address space divided into frames

A virtual page is mapped to
o A physical frame, if the page is in physical memory
a A location in disk, otherwise

If an accessed virtual page is not in memory, but on disk

o Virtual memory system brings the page into a physical frame
and adjusts the mapping - this is called demand paging

Page table is the table that stores the mapping of virtual
pages to physical frames

37

Physical Memory as a Cache

In other words...

Physical memory is a cache for pages stored on disk

o In fact, it is a fully-associative cache in modern systems (a
virtual page can potentially be mapped to any physical frame)

Similar caching issues exist as we have covered earlier:

a Placement: where and how to place/find a page in cache?

o Replacement: what page to remove to make room in cache?
o Granularity of management: large, small, uniform pages?

o Write policy: what do we do about writes? Write back?

38

Cache/Virtual Memory Analogues

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Index Virtual Page Number
Metadata (Tag) Store Page Table

Data Store Physical Memory

39

Virtual Memory Detinitions

Page size: the mapping granularity of virtual->physical
address spaces

o dictates the amount of data transferred from hard disk to DRAM
at once

Page table: table that stores virtual=>physical page mappings

o lookup table used to translate virtual page addresses to physical
frame addresses (and find where the associated data is)

Address translation: the process of determining the physical
address from the virtual address

40

Recall: The Memory Hierarchy

move what you use here N fast
small

£ 2

With good locality of

reference, memory .
appears as fast as T 3
(0]
and as large a =Y B
12
2] ¢
3 18

backup 8

everything large but slow

here
41

Virtual to Physical Mapping

Virtual Addresses Address Translation

Physical Addresses

Physical Memory

Hard Drive

= Most accesses hit in physical memory
= Programs see the large capacity of virtual memory

H&H, Chapter 8.4

42

Address Translation

Virtual Address
302028 ... 141312 11109 ... 210

| VPN | Page Offset
{ 19
(Translation) A 12
{15 I
| PPN Page Offset

26 2524 ... 1312 11109 .. 210
Physical Address

H&H, Chapter 8.4 43

Virtual Memory Example

System:

o Virtual memory size: 2 GB = 231 bytes

o Physical memory size: 128 MB = 227 bytes
o Page size: 4 KB = 212 bytes

44

Virtual Memory Example (Continued)

System:

o Virtual memory size: 2 GB = 231 bytes

o Physical memory size: 128 MB = 227 bytes
o Page size: 4 KB = 212 bytes

Organization:

o Virtual address: 31 bits

o Physical address: 27 bits

o Page offset: 12 bits

o # Virtual pages = 231/212 = 219 (VPN = 19 bits)
o # Physical pages = 227/212 = 215 (PPN = 15 bits)

45

Virtual Memory Example (Continued)

Physical

Page

Number

7FFF
7FFE

0001
0000

Physical Addresses

Virtual Addresses

0x7FFFFO00 - Ox7FFFFFFF

Ox7FFFEOQOQOQ - Ox7FFFEFFF

0x7FFFDO0QQ - Ox7/FFFDFFF

Ox7FFFCO000 - Ox7FFFCFFF

Ox7FFFBO00O0 - Ox7FFFBFFF

0x7FFFAQQ0 - OX7FFFAFFF

0x/7FFF9000 - Ox/FFF9FFF

0x00006000 - 0xO0006FFF

0x7FFF000 - Ox7FFFFFF

0x00005000 - 0xO0005FFF

0x7FFEQQOQ - OX7FFEFFF

0x00004000 - 0xO0004FFF

0x00003000 - 0xO0003FFF

0x00002000 - 0x00002FFF

0x0001000 - OxO0001FFF

0x00001000 - 0xO0001FFF

0x0000000 - 0xO000FFF

0x00000000 - 0xO0000FFF

Physical Memory

H&H, Chapter 8.4

Virtual Memory

Virtual
Page

Number

7FFFF
7FFFE
7FFFD
7FFFC
7FFFB
7FFFA
7FFF9

00006
00005
00004
00003
00002
00001
00000

46

How Do We Translate Addresses?

Page table
o Has entry for each virtual page

Each page table entry has:

o Valid bit: whether the virtual page is located in physical
memory (if not, it must be fetched from the hard disk)

o Physical page number: where the virtual page is located in
physical memory

o (Replacement policy, dirty/modified, permission/access bits)

47

Page Table for Our Example (Continued)

Physical Virtual
Page Page
vV Number Number
0 7FFFF
0 7FFFE
1 0x0000 7FFFD
1 Ox7FFE 7FFFC
0 7FFFB
0 7FFFA
0 00007
0 00006
1 0x0001 00005
0 00004
0 00003
1 Ox7FFF 00002
0 00001
0 00000
Page Table

H&H, Chapter 8.4

Page Table Address Translation Example

Virtual Page
. Page Number Offset
A\é';tr“ezls [0x00002 | 47C |
19 12
Physical
Page Table is Indexed \6 Page Number
with the VPN 0
1 0x0000
1 OX7FFE
0 [}
0 s
o ©
. —
. .)
Page Table is located 0 =%
at physical memory 0 *
address specified by I —
the PTBR (Page Table 0
Base Register) e > T———
‘,?
Hit 15 12 Page offset bits
Page Table Provides physical do not change

Ox7FFF | 47C |

The PPN Address during translation

49

Page Table Address Translation Example

What is the physical
address of virtual address
Ox5F207?

Physical
Page Number

0x0000
OX7FFE

We first need to find the
page table entry
containing the translation

for the corresponding
VPN

Look up the PTE at the
address

o PTBR + VPN*PTE-size

OOk IFRIOO0OK

Page Table

0x0001

OX7FFF

hs

elle] Jlellel llele)

- —

50

Page Table Address Translation Example 1

Virtual Page
Virtual Page Number Offset
What is the physical Acdress |- 0:00005-F20]
19 12
address of virtual address —
OXSFZO? \(/) PageyNumber
- VPN - 5 2 0x0000
X
o Entry 5 in page table Ll OXIFFE
indicates VPN 5 is in 0 o
. ©
physical page 1 =
o Physical address is 0 &
Ox1F20 p{1] 0x0001
0
0
1 OX7FFF
0
0
H‘it 15 12
Physical |

K dres 0x0001 | F20 511

Page Table Address Translation Example 2

What is the physical
address of virtual address
0x73EQ?

Physical
Page Number

0x0000
OX7FFE

OOk IFRIO0OK

Page Table

0x0001

OX7FFF

" J(15

elle] Jlellel el

T_ |

52

Page Table Address Translation Example 2

Virtual Page
Page Number Offset

Virtual
Tl T ox00007 [3E0 |

What is the physical Address =
address of virtual address
0x73EQ?

Physical

V Page Number
0
a VPN =7 0
_ _ 1| 0x0000
o Entry 7 in page table is 1| OX7FFE
invalid, so the page is 5 o
not in physical memory -
o The virtual page must be — 2 g
swapped into physical 1] 0x0001
memory from disk 0
1 OX7FFF
0
0

" J(15

m

53

Issue: Page Table Size

64-bit
A

VPN Page Offset
4+ 52-bit +12-bit

page y C@ F—— PA
table 28-bit U 40-bit

Suppose 64-bit VA and 40-bit PA, how large is the page
table?

252 entries x ~4 bytes ~ 254 bytes
and that is for just one process!

and the process may not be using the entire VM space!
54

Page Table Challenges (I)

= Challenge 1: Page table is large
o at least part of it needs to be located in physical memory
a solution: multi-level (hierarchical) page tables

55

Multi-Level Page Tables

= Idea: Organize page table in a hierarchical manner such that
only a small first-level page table has to be in physical memory

= Multi-level (hierarchical) page tables

56

Multi-Level Page Table Example

= First-level page table has to be in physical memory
= Only the needed second-level page tables can be kept in physical memory

Page Table Page Table Page
. Number Offset offset
Virtual | | |
Address 5 ”
Physical Page
Vv Number
-"h A
ol

Page Table ' "

Vv Address R 2

. L

c

1 : ;

- * N

o | =

o £ Ml I

[} @ Iy o
° > ™

= |
|

First-Level Second-Level
Page Table Page Tables
57

Multi-Level Page Table: Address Translation

= For N-level page table, we need N page table accesses to find the PTE

Page Table Page Table Page
Virtual Number Offset Offset
! [ox0 | 3FE | FBO |
Address Yo Tio 1
Physical Page
Vv Number
u: 1 0x1003
<ot 1 0x23F1
H1 0
H] 1 Ox7FFE 0
0 <@
1 0
H| O «©
Page Table ' ;
V Address o >
0 Q0 . o
O —
1 0x40000 < 0 o
. o K1 0x0073 @
. ®© H1 0 e
° o
T I :
0 g --_1 0x72FC 2
0 % HO
— 0x2375000 i [0
| ko
Validi FT 1 0x00C1
" Valid2 v 2
Physical
Address _0X23F1] FBO | 53

Multi-Level Page Tables from x86 Manual

Example from the x86 architecture

Linear Address Space Linear Address
»| Dir Table Offset
Linear Addr. Page Directory Page Table Page

Physical Addr.

— -
| Pg. Dir_ Entry = =| Pg. Tbhl. Entry
T ‘ , ‘ =

Vg This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

*Physical Address

CR3: Control Register 3 (or Page Directory Base Register)

59

x86 Page Tables (I): Small Pages

Linear Address
31 22 21 12 11 0
Directory| Table Offset
/| 12 4-KByte Page
10 10 Page Table —»| Physical Address
Page Directory
—»= PTE r
20
= PDE with PS=0 —<
.~ 20
3’332
CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

60

x86 Page Tables (II): Large Pages

Linear Address
31 22 0

Directory Offset

22 4-MByte Page

10 _ Page Directory

—» Physical Address

— | PDE with PS=1 1/" -
- 8
32

CR3

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

Four-level Paging 1n x86-64

47

39 38

Linear Address

30 25

2120

12 1

PML4

Directory Ptr

Directory

Table

Offset

|

/9

Page-Directory-
Pn?nta' Table

=

-

PDE with P5S=0

/19 A9

PTE

E‘ » 4-KByte Page
Physical Addr

<

40

PDPTE

40 Page Table

Page-Directory

40

PMLAE

/| 40

ffdﬂ

CR3

e
— -

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

62

Page Table Challenges (II)

Challenge 1: Page table is large
o at least part of it needs to be located in physical memory
a solution: multi-level (hierarchical) page tables

Challenge 2: Each instruction fetch or load/store requires at
least two memory accesses:

1. one for address translation (page table read)
2. one to access data with the physical address (after translation)

Two memory accesses to service an instruction fetch or
load/store greatly degrades execution time

o Num. of memory accesses increases with multi-level page tables

o Unless we are clever... > speed up the translation...
63

Translation L.ookaside Butter (T1.B)

Idea: Cache the Page Table Entries (PTES) in a hardware
structure in the processor to speed up address translation

Translation lookaside buffer (TLB)

o Small cache of most recently used Page Table Entries, i.e.,
recently used Virtual-to-Physical translations

o Reduces the number of memory accesses required for most
instruction fetches and loads/stores to only one TLB access

04

Translation L.ookaside Butter (T1.B)

Page table accesses have temporal and spatial locality
o Memory accesses have temporal and spatial locality
o Large page sizes better exploit spatial locality (KBs, MBs, GBs)

o Consecutive instructions and loads/stores are likely to access
same page

TLB: cache of page table entries (i.e., translations)
o Small: accessed in ~1 cycle

o Typically 16 - 512 entries at level 1

o Usually high associativity

a > 90-99 % hit rates typical (depends on workload)

a

Reduces the number of memory accesses for most instruction
fetches and loads/stores to only one TLB access

65

Example Two-Entry TLB

Virtual Page
. Page Number Offset
Virtual
Address 0x00002 47C
19 12
Entry 1 Entry O
| I |
Virtual Physical Virtual Physical
VvV Page Number Page Number v Page Number Page Number
1| OX7FFFD | 0x0000 [1] 0x00002 | Ox7FFF |TLB
l 19 15 19 15
| I
U U L L .
Hit, Hit, Hit,
Ui Physical 15 12
It Address Ox7FFF 47C

06

TLB is a Translation (PTE) Cache

All issues we discussed in caching and prefetching lectures
apply to TLBs

Example issues:

Instruction vs. Data TLBs

Multi-level TLBs

Associativity and size choices and tradeoffs
Insertion, promotion, replacement policies

What to keep in which TLB and how to decide that
Prefetching into the TLBs

TLB coherence

Shared vs. private TLBs across cores/threads

o O 0O 0 o0 o0 o0 o0 o

67

Virtual Memory Support
and Examples

Supporting Virtual Memory

Virtual memory requires both HW+SW support
o Page Table is in memory

o Can be cached in special hardware structures called Translation
Lookaside Buffers (TLBs)

The hardware component is called the MMU (memory
management unit)

o Includes Page Table Base Register(s), TLBs, page walkers

It is the job of the software (e.qg., the Operating System) to
o Populate page tables, decide what to replace in physical memory

o Change the Page Table Base Register on context switch (to use
the running thread’s page table)

o Handle page faults and ensure correct mapping
69

Address Translation

How to obtain the physical address from a virtual address?

Page size specified by the ISA
o VAX: 512 bytes

o Today: 4KB, 8KB, 2GB, ... (small and large pages mixed
together)

o Trade-offs? (remember cache lectures)

Page Table contains an entry for each virtual page
o Called Page Table Entry (PTE)
o Whatis in a PTE?

70

What Is in a Page Table Entry (PTE)?

Page table is the “tag store” for the physical memory data store
o A mapping table between virtual memory and physical memory

PTE is the “tag store entry” for a virtual page in memory
o Need a valid bit = to indicate validity/presence in physical memory

Need tag bits (PFN) - to support translation

a

o Need bits to support replacement

o Need a dirty bit to support “write back caching”

o Need protection bits to enable access control and protection

Pivysicol frame 112 pose 15 t)oed N

«— PTE

Proedon or ticcess coryl b5 [Can s precess occess

| Dordy i3~ /v L veind
[V[p]e] per [~ PFN
« \
Valie bt
(1s e prge Refocrte ov occess b’
preint Prysiced (Wos e pege refeerced

reorney)

re%j)

Fue puge.? ot kol
of occe el)

Recall: Address Translation (I)

Parameters

o P = 2P = page size (bytes)

o N = 2" = Virtual-address limit

o M = 2™ = Physical-address limit

n—1 p p-1 0
virtual page number page offset virtual address

v

@ress tra@

m-1 v p p-1 Y 0
physical frame number page offset physical address

Page offset bits do not change as a result of translation

Recall: Address Translation (II)

Separate (set of) page table(s) per process
VPN forms index into page table (points to a page table entry)
Page Table Entry (PTE) provides information about page

page table
base register

virtual address
n—1 p p—1

o Vvirtual page number (VPN)

(per process)

page offset

valid access physical frame number (PFN)

VPN acts as "
table index

if valid=0 _

9

then page
not in memory
(page fault)

m-1 ! p p-1

physical frame number (PFN)

page offset

physical address

73

Address Translation: Page Hit

CPUchip . _ ®
\PTEA :
TTPTE
Processor 52 > MMU ;®
f | PA
___ @
Data
®

1) Processor sends virtual address to MMU

Cache/
memory

2-3) MMU fetches PTE from page table in memory

4) MMV sends physical address to L1 cache

5) L1 cache sends data word to processor

74

Address Translation: Page Fault

Page fault exception handler

®-MMU

| P -
rocessor VA

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory

Cache/
memory

Victim pagéd

®

. New page

Disk

®

4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim, and if dirty pages it out to disk
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction.

75

Page Fault (“A Miss in Physical Memory”)

If a page is not in physical memory but disk
o Page table entry indicates virtual page not in memory
a Access to such a page triggers a page fault exception

o OS exception handler invoked to move data from disk into memory
Other processes can continue executing
OS has full control over page placement

Before fault After fault

Memory

Memory

Page Table

Virtual Page Table

Addresses

Physical
Addresses| .

Virtual
Addresses

.
.
®
.
.
o®
®
°

CPU

CPU

Servicing a Page Fault

1. Processor signals I/O controller

o Read block of length P starting
at disk address X and store
starting at memory address Y

2. Disk-to-mem read occurs
o Direct Memory Access (DMA)
a Under control of I/O controller

3. Controller signals completion
o Interrupts processor
o OS resumes suspended process

(1) Initiate Block Read

Processor
Reg

I(2) DMA
VTransfer

77

Page Replacement Algorithms

If physical memory is full (i.e., list of free physical pages is
empty), which physical frame to replace on a page fault?

Is True LRU feasible?
o 4GB memory, 4KB pages, how many possibilities of ordering?

Modern systems use approximations of LRU

o E.g., the CLOCK algorithm

And, more sophisticated algorithms to take into account
“frequency” of use

o E.g., the ARC algorithm

o Megiddo and Modha, "ARC: A Self-Tuning, Low Overhead
Replacement Cache,” FAST 2003.

78

CLOCK Page Replacement Algorithm

Keep a circular list of physical frames in memory (OS does)
Keep a pointer (hand) to the last-examined frame in the list
When a page is accessed, set the R bit in the PTE

When a frame needs to be replaced, replace the first frame
that has the reference (R) bit not set, traversing the
circular list starting from the pointer (hand) clockwise

o During traversal, clear the R bits of examined frames
o Set the hand pointer to the next frame in the list

Clock Algorithm
o]
[0]
Clear bits whife search for a page.
fora pag
@ ﬁ @ Stop af first cfear (zero) bit.
[o]
1
@ 79

Cache versus Page Replacement

Physical memory (DRAM) is a cache for disk
o Managed by system software via the virtual memory subsystem

Page replacement is similar to cache replacement
Page table is the “tag store” for physical memory data store

What is the difference?
o Required speed of access to cache vs. physical memory
o Number of blocks in a cache vs. physical memory

a “Tolerable” amount of time to find a replacement candidate (disk
Versus memory access latency)

o Role of hardware versus software

80

Memory Protection

Memory Protection

Multiple programs (i.e., processes) run concurrently
o Each process has its own page table

o Each process can use its entire virtual address space without
worrying about where other programs are

A process can only access physical pages mapped in its
page table — cannot overwrite memory of another process

a Provides protection and isolation between processes
o Enables access control mechanisms per page

82

Page Table 1s Per Process

Each process has its own virtual address space
o Full address space for each program
o Simplifies memory allocation, sharing, linking and loading

Virtual 0 Physical Address

Address VP 1 ,_lﬁ_\ddrels?. » PP 2 Space (DRAM)
VP 2 ranslation
Space for

Process 1. 1

PP 7
Virtual 0 /

VP 1
Address > 5510
Space for
Process 2. N-1 M-1

A

(e.g., read-only
library code)

/

\ 4

83

Access Protection/Control
via Virtual Memory

Page-Level Access Control (Protection)

Not every process is allowed to access every page

o E.g., need supervisor (i.e., kernel) level privilege to access
system pages
o E.g., may not be able to execute “instructions” in some pages

Idea: Store access control information on a page basis in
the process’s page table

Enforce access control at the same time as translation

- Virtual memory system serves two functions today
Address translation (for illusion of large physical memory)

Access control (protection)
85

Two Functions ot Virtual Memory

Merna

SR j “pose oipset | A _ ,
RS VR S s e o R
Troslebion [oAy t. Trnsldn——

, ,*Acc'canhvl o M e 2. A—(é“‘s,s]'

FPIE Conlons OccesS covivel baite osstomhed with 11e Wl Pege-.

86

VM as a Tool tfor Memory Access Protection

Extend Page Table Entries (PTES) with permission bits

Check bits on each access and during a page fault
o If violated, generate exception (Access Protection exception)

Page Tables Memory
Read? Write? Physical Addr PP 0
VP 0:] Yes No PP 6
. PP 2
ProcessI: vp1:| Yves || Yes PP 4
vP 2:| No No XXXXXXX PP 4
. . . PP 6
Read? Write? Physical Addr PP 8
VP 0:] Yes Yes PP 6
. / PP 10
Process J: vp1:] Yes No PP 9
PP 12
VP 2:] No No XXXXXXX

87

Privilege Levels 1n x86

Protection Rings

Operating
System

-

Kemel Level O
Operating System
Services Level 1

Level 2

Applications

Figure 5-3. Protection Rings

38

Privilege Levels 1n x86

Four privilege levels in x86 (referred to as rings)

0 |R|ng 0: Highest privilege (operating system)
¥ “Supervisor

1
1
EII

0 iRing 3: Lowest privilege (user applications) “User

Supervisor = Kernel (in modern terminology)

x86: A Closer L.ook at the PDE/PTE

= PDE: Page Directory Entry (32 bits)
= PTE: Page Table Entry (32 bits)

31[30[29]28[27]26]25]24[23[22]21[20[19][18[17[16[15][14[13[12[11]10/9[8[7 [6[5[4[3[2][1]0
p
Address of page director;.f1 Ignored B P-|]':”"l Ignored CR3
P P R PDE:
Bits 31:22 of address Reserved Bits 39:32 of
of 2MB page frame (must be 0) addres% ? Ignored C L{d ggg

PDE

liﬂm
IIE[!TﬂIl

Ignored

PTE

PDE:
not
present

PTE:
not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

Protection: PDE’s Flags
Protects all 1024 pages in a page table

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit Contents
Position(s)
0(P) Present; must be 1 to reference a page table

Read/write; if O, writes may not be allowed to the 4-MByte region controlled by this entry (see Section 4.6)

User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte region controlled by this entry (see Section

46)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be O (otherwise, this entry maps a 4-MByte page; see Table 4-4); otherwise, ignored

Protection: PTE’s Flags

Protects one page at a time

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit Contents
Position(s)
0(P) Present; must be 1 to map a 4-KByte page

Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
46)

Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this

3 (PWT)
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be C])JI

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

Page Level Protection in x86

Table 5-3. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type | Privilege Access Type | Privilege Access Type
User Read-Only Usar Read-Only User Read-Only
User Read-Only Usar Read-Write User Read-Only
User Read-Write Usar Read-Only User Read-Only
User Read-Write Usar Read-Write Usar Read/Write
User Read-Only Supervisor Read-Only Supervisor Road/Write*®
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor RoadWra*
User Read-Wrie Supervisor Read-Write Supervisor ReadWrite
Supervisor Read-Only Usar Read-Only Supervisor ReadWra*
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor ReadWrite*
Supervisor Read-lWrite Usar Read-Write Supervisor Road/Write
Supervisor Read-Only Supervisor Read-Only Supervisor ReadWrite*
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor ReadWrite*®
Supervisor Read-lWrte Supervisor Read-Write Supervisor RoadWre

93

Protection: PDE + PTE = ???

Table 5-3. Combined Page-Directory and Page-Table Protection
Combined Effect

Page-Directory Entry

Page-Table Entry

Privilege Access Type Privilege Access Type Privilege Access Type

User
User
User
User
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor

NO

* If CROWP = 1, access type is determined by the R/W flags of the page-directory and page-table entries. IF CRO.WP = 0, supervisor
privilege permits read-write access.

Read-Only
Read-Only
Read-Write
Read-Write
Read-Only
Read-Only
Read-Write
Read-Write
Read-Only
Read-Only
Read-Write
Read-Write
Read-Only
Read-Only
Read-Write
Read-Write

Supervisor
Supervisor
Supervisor
Supervisor
User
User
User
User
Supervisor
Supervisor
Supervisor

Supervisor

Read-Only
Read-Write
Read-Only
Read-Write
Read-Only
Read-Write
Read-Only
Read-Write
Read-Only
Read-Write
Read-Only
Read-Write
Read-Only
Read-Write
Read-Only
Read-Write

Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisar
Supervisor
Supervisar

Supervisor

Read-Only
Read-Only
Read-Only
Read/Write
Read/Write*
Read/Write*
Read/Write*
Read/Write
Read/Write*
Read/Write*
Read/Write*
Read/Write
Read/Write*
Read/Write*
Read/Write*
Read/Write

Food tor Thought: What If?

Your hardware is unreliable and someone can flip the
access protection bits

o such that a user-level program can gain supervisor-level
access (i.e., access to all data on the system)

o by flipping the access control bit from user to supervisor!

Can this happen?

95

Remember RowHammer?

One can
predictably induce errors
in most DRAM memory chips

SAFARI

96

Remember RowHammer?

One can predictably induce bit flips in commodity DRAM chips
o >80% of the tested DRAM chips are vulnerable

First example of how a simple hardware failure mechanism
can create a widespread system security vulnerability

MIGIED] Forget Software—Now Hackers Are Exploiting Physics

SSSSSSSSSSSSSSSSSSSSS

. HACRERS ARE EXPLOITING
PHYSICS

BBBBBBB

Modern DRAM is Prone to Disturbance Errors

— Row of Cells = \Wordline

== Victim Row —
Hammere«’: .1: Vtch/

== Victim Row —

= ROW —

Repeatedly reading a row enough times (before memory gets
refreshed) induces disturbance errors in adjacent rows in most
real DRAM chips you can buy today

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 98
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

A Simple Program Can Induce Many Errors

l l!ﬂll“ll .

_' RAM Module

.
—M HH HH
:.u°'

loop:

mov (), %eax

mov (), %ebx
clflush ()

clflush ()
mfence
Jjmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

a RAM Module

° -
e H“ H“ H“ H SR emaraselte

1. Avoid cache hits ¥ =
— Flush X from cache

2. Avoid row hits to X Y >
— Read Y in another row

Download from: https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

l ll“ll“ll‘l .

_' RAM Module

.
—M HH HH
,u°'

loop:

mov (), %eax

mov (), %ebx
clflush ()

clflush ()
mfence
Jjmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

l ll“ll“ll‘l .

_' RAM Module

.
—M HH HH
,u°'

loop:

mov (), %eax

mov (), %ebx
clflush ()

clflush ()
mfence
Jjmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

_' RAM Module

.
—M HH HH
luﬂu

loop:

mov (), %eax

mov (), %ebx
clflush ()

clflush ()
mfence
Jjmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

Observed Errors in Real Systems

CPU Architecture Errors Access-Rate
ntel Haswell (2013) 22.9K 12.3M/sec

ntel lvy Bridge (2012) 20.7K 11.7M/sec
ntel Sandy Bridge (2011) 16.1K 11.6M/sec
AMD Piledriver (2012) 59 6.1M/sec

A real reliability & security issue

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 104
DRAM Disturbance Errors,” ISCA 2014.

One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an daccess to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

Flipping Bits in Memory Without Accessing Them:

P roject Ze ro An Experimental Study of DRAM Disturbance Errors

(Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Exploiting the DRAM rowhammer bug to gain kernel privileges

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

RowHammer Security Attack Example

= "Rowhammer” is a problem with some recent DRAM devices in which
repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).

o Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors (Kim et al., ISCA 2014)

= We tested a selection of laptops and found that a subset of them
exhibited the problem.

= We built two working privilege escalation exploits that use this effect.
o Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

= One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

= When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTES).

= It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015) 106

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Google’s Original RowHammer Attack

The following slides are from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

Kernel exploit

e Xx86 page tables entries (PTEs) are dense and trusted
o They control access to physical memory
o ADbitflipina PTE’s physical page number can give a process
access to a different physical page
e Aim of exploit: Get access to a page table
o Gives access to all of physical memory
e Maximise chances that a bit flip is useful:
o Spray physical memory with page tables
o Check for useful, repeatable bit flip first

This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

108

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

x86-64 Page Table Entries (PTEs)

e Page table is a 4k page containing array of 512 PTEs
e Each PTE is 64 bits, containing:

63 62 52 51 32
N Available Physical-Page Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)
i 7
P PIP|U|[R
Physical-Page Base Address AVL G|A|D|A|(C|W| /|1 |P
T DIT|S|W

Figure 5-21. 4-Kbyte PTE—Long Mode

e Could flip:
o “Writable” permission bit (RW): 1 bit —» 2% chance
o Physical page number: 20 bits on 4GB system — 31% chance

This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privildd¥s. pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

Virtual Address Physical
Space Memory

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIéc}e%.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

What happens when we map a file with read-write
permissions?

/

Virtual Address Physical
Space Memory

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://WWW.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIéc}e]s.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

What happens when we map a file with read-write
permissions? Indirection via page tables.

Virtual Address Physical
Space Memory

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://WWW.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIéc}gs.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

What happens when we repeatedly map a file with
read-write permissions?

Virtual Address Physical
Space Memory

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://WWW.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIéc}g%.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

What happens when we repeatedly map a file with
read-write permissions?

PTEs in physical memory help resolve virtual
addresses to physical pages.

Virtual Address Physical
Space Memory

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIéc}é.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

What happens when we repeatedly map a file with
read-write permissions?
PTEs in physical memory help resolve virtual
addresses to physical pages.
We can fill physical memory with PTEs.
Virtual Address Physical
Space MemOry

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIéc}er%.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

What happens when we repeatedly map a file with
read-write permissions?
PTEs in physical memory help resolve virtual
addresses to physical pages.
We can fill physical memory with PTEs.
Each of them points to pages in the same physical
file mapping.

Virtual Address Physical

Space MemOry

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIéc}e(%.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

What happens when we repeatedly map a file with
read-write permissions?

PTEs in physical memory help resolve virtual
addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical
file mapping.

If a bit in the right place in the PTE flips ...

Virtual Address Physical
Space Memory

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIéc}e7s.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

What happens when we repeatedly map a file with
read-write permissions?

PTEs in physical memory help resolve virtual
addresses to physical pages.

—> We can fill physical memory with PTEs.

Each of them points to pages in the same physical
file mapping.

If a bit in the right place in the PTE flips ...

... the corresponding virtual address now points to
a wrong physical page - with RW access.

Virtual Address Physical
Space Memory

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIéc}e%.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

What happens when we repeatedly map a file with
read-write permissions?
PTEs in physical memory help resolve virtual
addresses to physical pages.
—> We can fill physical memory with PTEs.
Each of them points to pages in the same physical
file mapping.
r— If a bit in the right place in the PTE flips ...
... the corresponding virtual address now points to
a wrong physical page - with RW access.
Chances are this wrong page contains a page
table itself.
Virtual Address Physical
Space MemOry

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIéc}e()s.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

What happens when we repeatedly map a file with
read-write permissions?
PTEs in physical memory help resolve virtual
addresses to physical pages.
—> We can fill physical memory with PTEs.
Each of them points to pages in the same physical
file mapping.
r— If a bit in the right place in the PTE flips ...
... the corresponding virtual address now points to
a wrong physical page - with RW access.
Chances are this wrong page contains a page
table itself.
_ An attacker that can read / write page tables ...
Virtual Address Physical
Space MemOry

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIégé%.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

What happens when we repeatedly map a file with
read-write permissions?

PTEs in physical memory help resolve virtual
addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical
file mapping.

If a bit in the right place in the PTE flips ...

... the corresponding virtual address now points to
a wrong physical page - with RW access.

Chances are this wrong page contains a page
table itself.

An attacker that can read / write page tables can

Virtual Address Physical use that to map any memory read-write.
Space Memory

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIége]s.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

Exploit strategy

Privilege escalation in 7 easy steps ...

1. Allocate a large chunk of memory

2. Search for locations prone to flipping

3. Check if they fall into the “right spot” in a PTE for allowing the
exploit

4. Return that particular area of memory to the operating system

5. Force OS to re-use the memory for PTEs by allocating massive
quantities of address space

6. Cause the bitflip - shift PTE to point into page table

7. Abuse R/W access to all of physical memory

In practice, there are many complications.

This slide-is from Mark Seaborn-and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us—15/materia|s/us—15—Seaborn—Eproitinq—The—DRAM—Rowhammer—Buq—To—Gain—KerneI—PriviIé(%%.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

Security Implications

-

......................

T

N)

. LU o
(u((}(«u«qg‘ ‘ .‘.k,_ N

S

J)’””"

Security Implications

-
.-o-:u ..-!.:::5;.!;::4. \“.
-~
.
B\ qu::::q;s_:_;_u.:.:r::‘-:-xzx_\—
\ p .
N \
1..'“ ,“' -
b AU

.........
........

‘S“!”' .'\
K <

1%

It's like breaking into an apartment by e,
repeatedly slamming a neighbor’s door until
the vibrations open the door you were after

More Security Implications (I)

“"We can gain unrestricted access to systems of website visitors.”

Not there yet, but ...

Y OWHAMMER)S

ROQOT privileges for web apps!

Daniel Gruss (@lavados), Clementine Maurice (@BloodyTangerine),
December 28, 2015 — 32¢3, Hamburg, Germany

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA'16)
125

Source: https://lab.dsst.io/32c3-slides/7197.html

https://lab.dsst.io/32c3-slides/7197.html

More Security Implications (1I)

“Can gain control of a smart phone deterministically”

Hammer And Root

MI//lons of Androids

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS'1626

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

More Security Implications (111)

Using an integrated GPU in a mobile system to remotely
escalate privilege via the WebGL interface

dl'S TECHNICA BIZ&IT TECH SCIENCE POLICY CARS GAMING & CULTURE

Drive-by Rowhammer attack uses GPU to
compromise an Android phone

JavaScript based GLitch pwns browsers by flipping bits inside memory chips.

DAN GOODIN - 5/3/2018, 12:00 PM

Grand Pwning Unit: Accelerating Microarchitectural
Attacks with the GPU

Pietro Frigo Cristiano Giuffrida Herbert Bos Kaveh Razavi
Vrije Universiteit Vrije Universiteit Vrije Universiteit Vrije Universiteit
Amsterdam Amsterdam Amsterdam Amsterdam

p.frigo@vu.nl giuffrida@cs.vu.nl herbertb@cs.vu.nl kaveh@cs.vu.nl

More Security Implications (IV)
Rowhammer over RDMA (1)

dl'S TECHNICA BIZ&IT TECH SCIENCE POLICY CARS GAMING & CULTURE

Packets over a LAN are all it takes to
trigger serious Rowhammer bit flips

The bar for exploiting potentially serious DDR weakness keeps getting lower.

DAN GOODIN - 5/10/2018, 5:26 PM

Throwhammer: Rowhammer Attacks over the Network and Defenses

Andrei Tatar Radhesh Krishnan Elias Athanasopoulos Cristiano Giuffrida
VU Amsterdam VU Amsterdam University of Cyprus VU Amsterdam
Herbert Bos Kaveh Razavi

VU Amsterdam VU Amsterdam

More Security Implications (V)
= Rowhammer over RDMA (II)

(((@.T he Hacker News’

Security in a serious way

Nethammer—Exploiting DRAM Rowhammer Bug Through
Network Requests

Nethammer:
Inducing Rowhammer Faults through Network Requests

Moritz Lipp Misiker Tadesse Aga Michael Schwarz
Graz University of Technology University of Michigan Graz University of Technology
Daniel Gruss Clémentine Maurice Lukas Raab
Graz University of Technology Univ Rennes, CNRS, IRISA Graz University of Technology
— Lukas Lamster

129

Graz University of Technology

More Security Implications (VI)
= IEEE S&P 2020

RAMBIleed

RAMBIleed: Reading Bits in Memory Without
Accessing Them

Andrew Kwong Daniel Genkin Daniel Gruss Yuval Yarom
University of Michigan University of Michigan Graz University of Technology University of Adelaide and Data61
ankwong @umich.edu genkin @umich.edu daniel.gruss @iaik.tugraz.at yval@cs.adelaide.edu.au

More Security Implications (VII)

= USENIX Security 2019

Terminal Brain Damage: Exposing the Graceless Degradation
in Deep Neural Networks Under Hardware Fault Attacks

Sanghyun Hong, Pietro Frigo®, Yigitcan Kaya, Cristiano Giuffrida’, Tudor Dumitras

University of Maryland, College Park
"Vrije Universiteit Amsterdam

One specific bit-flip in a DNN's representation leads to accuracy drop over 90%

' A Single Bit-flip Can Cause Terminal Brain Damage to DNNs
\\

Our research found that a specific bit-flip in a DNN’s bitwise representation can
cause the accuracy loss up to 90%, and the DNN has 40-50% parameters, on
average, that can lead to the accuracy drop over 10% when individually
subjected to such single bitwise corruptions...

1!

Read More

More Security Implications (VIII)

USENIX Security 2020

DeepHammer: Depleting the Intelligence of Deep Neural Networks
through Targeted Chain of Bit Flips

Fan Yao Adnan Siraj Rakin Deliang Fan
University of Central Florida Arizona State University
fan.yao@ucf.edu asrakin@asu.edu dfan@asu.edu

Degrade the inference accuracy to the level of Random Guess

Example: ResNet-20 for CIFAR-10, 10 output classes

More Security Implications?

133

Curious? First RowHammer Paper

= Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutluy,

"Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors"

Proceedings of the 41st International Symposium on Computer Architecture
(ISCA), Minneapolis, MN, June 2014.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and
Data] [Lecture Video (1 hr 49 mins), 25 September 2020]

One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and
Embedded Security for IEEE TCAD (link).

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Yoongu Kim' Ross Daly* Jeremie Kim' Chris Fallin®* Ji Hye Lee!
Donghyuk Lee! Chris Wilkerson? Konrad Lai Onur Mutlu!

ICarnegie Mellon University ~ ?Intel Labs

SAFARI 134

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://www.youtube.com/watch?v=KDy632z23UE
https://wp.nyu.edu/toppicksinhardwaresecurity/

Curious? RowHammer: Now and Beyond...

= Onur Mutlu and Jeremie Kim,
"RowHammer: A Retrospective”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD) Special Issue on Top Picks in Hardware and
Embedded Security, 2019.

Preliminary arXiv version]

Slides from COSADE 2019 (pptx)]
Slides from VLSI-SOC 2020 (pptx) (pdf)]
[Talk Video (30 minutes)]

RowHammer: A Retrospective

Onur Mutlu3* Jeremie S. Kim?#3
SETH Ziirich tCarnegie Mellon University

SAFARI 135

http://people.inf.ethz.ch/omutlu/pub/RowHammer-Retrospective_ieee_tcad19.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf
http://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-COSADE-Keynote-April-4-2019.pptx
http://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pptx
http://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pdf
https://www.youtube.com/watch?v=B58YT9hZM4g

RowHammer i1s Getting Much Worse (2020)

Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan,
Roknoddin Azizi, Lois Orosa, and Onur Mutluy,

"Revisiting RowHammer: An Experimental Analysis of Modern
Devices and Mitigation Techniques"

Proceedings of the 47th International Symposium on Computer
Architecture (ISCA), Valencia, Spain, June 2020.

Slides (pptx) (pdf)]

Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]

Lightning Talk Video (3 minutes)]

Revisiting RowHammer: An Experimental Analysis
of Modern DRAM Devices and Mitigation Techniques

Jeremie S. KimST Minesh Patel’ A. Giray Yaglikc1®
Hasan Hassan® Roknoddin Azizi® Lois Orosa® Onur Mutlu$T

SETH Ziirich TCarnegie Mellon University

https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q

New RowHammer Dimensions (2021)

Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung Park, Hasan Hassan,
Minesh Patel, Jeremie S. Kim, and Onur Mutlu,

"A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM
Chips and Implications on Future Attacks and Defenses"

Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual,
October 2021.

[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (21 minutes)]

[Lightning Talk Video (1.5 minutes)]

[arXiv version]

A Deeper Look into RowHammer’s Sensitivities:
Experimental Analysis of Real DRAM Chips
and Implications on Future Attacks and Defenses

Lois Orosa* A. Giray Yagliker* Haocong Luo Ataberk Olgun Jisung Park
ETH Zurich ETH Zirich ETH Ziirich ETH Ziirich, TOBB ETU ETH Zurich

Hasan Hassan Minesh Patel Jeremie S. Kim Onur Mutlu
ETH Ziirich ETH Ziirich ETH Zirich ETH Ziirich

137

https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=fkM32oA0u6U&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=12
https://www.youtube.com/watch?v=slFNdmPVD-Q&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=6
https://arxiv.org/abs/2110.10291

Industry-Adopted Solutions Do Not Work

= Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu,
Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), San Francisco,
CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Lecture Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Lecture Video (59 minutes)]
[Source Code]
[Web Article]
Best paper award.
Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020

TRRespass: Exploiting the Many Sides of
Target Row Refresh

Pietro Frigo*" Emanuele Vannacci*' Hasan Hassan® Victor van der Veen’
Onur Mutlu® Cristiano Giuffrida* Herbert Bos* Kaveh Razavi*

*Vriie Universiteit Amsterdam SETH Ziirich Youalcomm Technologies Inc.

http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://www.youtube.com/watch?v=pwRw7QqK_qA
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/
https://pwnies.com/winners/

Hard to Guarantee RowHammer-Free Chips

Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu,
Alec Wolman, and Onur Mutlu,

"Are We Susceptible to Rowhammer? An End-to-End
Methodology for Cloud Providers"

Proceedings of the 41st IEEE Symposium on Security and

Privacy (8&P), San Francisco, CA, USA, May 2020.

Slides (pptx) (pdf)]

[Talk Video (17 minutes)]

Are We Susceptible to Rowhammer?
An End-to-End Methodology for Cloud Providers

Lucian Cojocar, Jeremie Kim3', Minesh Patel$, Lillian Tsai?,
Stefan Saroiu, Alec Wolman, and Onur Mutlu$'
Microsoft Research, SETH Ziirich, TCMU, ¥MIT

SAFARI 139

https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=XP1SvxmJoHE

Industry-Adopted Solutions Are Very Poor

= Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh Razavi,
and Onur Mutlu,
"Uncovering In-DRAM RowHammer Protection Mechanisms: A New
Methodology, Custom RowHammer Patterns, and Implications"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO),
Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (25 minutes)]
[Lightning Talk Video (100 seconds)]
[arXiv version]

Uncovering In-DRAM RowHammer Protection Mechanisms:
A New Methodology, Custom RowHammer Patterns, and Implications

Hasan Hassan' Yahya Can Tugrul '+ Jeremie S. Kim' Victor van der Veen’

Kaveh Razavi' Onur Mutlu®
"ETH Ziirich *TOBB University of Economics & Technology ?Qualcomm Technologies Inc.

140

https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=YkBR9yeLHRs&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=11
https://www.youtube.com/watch?v=HHxeuWVqq8w&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=5
https://arxiv.org/abs/2110.10603

BlockHammer Solution in 2021

A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun,
Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha
Shahroodi, Saugata Ghose, and Onur Mutlu,

"BlockHammer: Preventing RowHammer at Low Cost by Blacklisting
Rapidly-Accessed DRAM Rows"

Proceedings of the 2/th International Symposium on High-Performance
Computer Architecture (HPCA), Virtual, February-March 2021.

[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Talk Video (22 minutes)]

[Short Talk Video (7 minutes)]

BlockHammer: Preventing RowHammer at Low Cost
by Blacklisting Rapidly-Accessed DRAM Rows

A. Giray Yaglik¢ci! Minesh Patel' Jeremie S. Kim! Roknoddin Azizi' Ataberk Olgun! Lois Orosa!
Hasan Hassan! Jisung Park! Konstantinos Kanellopoulos! Taha Shahroodi! Saugata Ghose? Onur Mutlu!
\ETH Ziirich 2University of Illinois at Urbana—Champaign

SAFARI 141

https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=cWbW4qoDFds
https://www.youtube.com/watch?v=40SXSKXW5kY

Google’s Recent RowHammer Attack (May 2021)

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Introducing Half-Double: New hammering technique for DRAM

Rowhammer bug
May 25, 2021

Research Team: Salman Qazi, Yoongu Kim, Nicolas Boichat, Eric Shiu & Mattias Nissler

Today, we are sharing details around our discovery of Half-Double, a new Rowhammer
technique that capitalizes on the worsening physics of some of the newer DRAM chips

to alter the contents of memory.

Rowhammer is a DRAM vulnerability whereby repeated accesses to one address can
tamper with the data stored at other addresses. Much like speculative execution
vulnerabilities in CPUs, Rowhammer is a breach of the security guarantees made by the
underlying hardware. As an electrical coupling phenomenon within the silicon itself,
Rowhammer allows the potential bypass of hardware and software memory protection
policies. This can allow untrusted code to break out of its sandbox and take full control

of the system.

SAFARI https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html 142

Google’s Recent RowHammer Attack (May 2021)

Victim (C) #*

[Victim -] —— | Aggressor (B)
[Victim* *] — | Aggressor
Victim¥ ®

(a) Classic Rowhammer (b) Half-Double

= Given three consecutive rows A, B, and C, we were able to attack C by directing a very large number of
accesses to A, along with just a handful (~dozens) to B.

= Based on our experiments, accesses to B have a non-linear gating effect, in which they appear to
“transport” the Rowhammer effect of A onto C.

= This is likely an indication that the electrical coupling responsible for Rowhammer is a property of
distance, effectively becoming stronger and longer-ranged as cell geometries shrink down.

SAFARI https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html 143

The Story of RowHammer Lecture ...

Onur Mutlu,

"The Story of RowHammer"

Keynote Talk at Secure Hardware, Architectures, and Operating Systems
Workshop (SeHAS), held with HIPEAC 2021 Conference, Virtual, 19 January 2021.
[Slides (pptx) (pdf)]

[Talk Video (1 hr 15 minutes, with Q&A)]

The Story of RowHammer

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
19 January 2021
SEHAS Keynote @ HIPEAC

SAFARI ETH:zurich Carnegie Mellon

- -

4 P pl o) 5818711441

The Story of Rowhammer - Secure Hardware, Architectures, and Operating Systems Keynote - Onur Mutlu

1,293 views * Premiered Feb 2, 2021 |. 64 0 SHARE SAVE

8 o https://www.youtube.com/watch?v=sgd7PHQQ1AI 144

https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://www.youtube.com/watch?v=JV1uc1kOt04
https://www.hipeac.net/2021/budapest/#/
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pdf
https://www.youtube.com/watch?v=sgd7PHQQ1AI
https://www.youtube.com/watch?v=sgd7PHQQ1AI

The Story of RowHammer in 20 Minutes

Onur Mutlu,
"The Story of RowHammer"

Invited Talk at the Workshop on Robust and Safe Software 2.0 (RSSZ2), held with the
27th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Virtual, 28 February 2022.

[Slides (pptx) (pdf)]

5. First RowHammer Bit Flips per Chip

Mfr. A Mir. B Mfr. C

120K

)
o
S
X

@®
=]
X

=

(=3
=]
S

S
o
=

for the first bit flip (HCy

Hammer Count needed

g
N 4

o
=
-old

DDR:
n
DDR:

-old
new |-

5 2 o 2 7

mmmmmmmmmmm

0
o
[
o

o
>
1)

°

7

@
i
a
a

=00
g 3
o @
L9
Q0

PDDR4-
PDDR4-

DDR4
DDR4-new
LPDDR4-1x

L
Ll

Newer chips from each DRAM manufacturer
are more vulnerable to RowHammer
SAFARI

P Pl N) 1001720149

The Story of RowHammer - Invited Talk in Robust & Safe Software Workshop (ASPLOS 2022) - Onur Mutlu

402 views * Premiered Apr 27, 2022 s 177 GP DISLIKE > SHARE L DOWNLOAD $¢ CLIP =+ SAVE

@ onwmuuiecures i //www.youtube.com/watch?v=ctKTRyi96Bk susscrizzo @ 145

) Sl 4

https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-RSS2-ASPLOS-February-28-2022.pptx
https://rss2workshop.github.io/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-RSS2-ASPLOS-February-28-2022.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-RSS2-ASPLOS-February-28-2022.pdf
https://www.youtube.com/watch?v=ctKTRyi96Bk

Detailed Lectures on RowHammer

Computer Architecture, Fall 2020, Lecture 4b

o RowHammer (ETH Zrich, Fall 2020)

o https://www.youtube.com/watch?v=KDy632z23UE&list=PL50Q2s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=8

Computer Architecture, Fall 2020, Lecture 5a

o RowHammer in 2020: TRRespass (ETH Zlrich, Fall 2020)

o https://www.youtube.com/watch?v=pwRw70QgK gA&list=PL50Q2s0XY?2Zi9xidyIgBxU
z7/XRPS-wisBN&index=9

Computer Architecture, Fall 2020, Lecture 5b

o RowHammer in 2020: Revisiting RowHammer (ETH ZUrich, Fall 2020)

o https://www.youtube.com/watch?v=gR7XR-
Eepcag&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=10

Computer Architecture, Fall 2020, Lecture 5c

o Secure and Reliable Memory (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=HvswnsfG30Q&list=PL502s0XY2Zi9xidyIgBxUz
/XRPS-wisBN&index=11

SAFARI https://www.youtube.com/onurmutlulectures 146

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=HvswnsfG3oQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=11
https://www.youtube.com/onurmutlulectures

I Talk A Lot About RowHammer

SAFARI Art credit: Malti Redeker (https://www.instagram.com/malti.red/) 147

https://www.instagram.com/malti.red/

Takeaway and Food for Thought

If hardware is unreliable, higher-level security and protection
mechanisms (as in virtual memory) may be compromised

The root of security and trust is at the very low levels...
o in the hardware itself
o RowHammer, Spectre, Meltdown are recent key examples...

What should we assume the hardware provides?
How do we keep hardware reliable?
How do we design secure hardware?

How do we design secure hardware with high performance,
high energy efficiency, low cost, convenient programming?

Plenty of exciting and highly-relevant research questions
SAFARI 148

Virtual Memory
Summary

Virtual Memory Summary

Virtual memory gives the illusion of “infinite” capacity
A subset of virtual pages are located in physical memory

A page table maps virtual pages to physical pages — this is
called address translation

A TLB speeds up address translation
Multi-level page tables keep the page table size in check

Using different page tables for different programs provides

memory protection
150

There 1s More... We Will Not Cover...

How to handle virtualized systems?
o Virtual machines running programs
o Hypervisors

Alternative page table structures
o Hashed page tables
o Inverted page tables

a ...

151

Virtual Memory in Virtualized Environments

Virtualized environments (e.q., Virtual Machines) need to
have an additional level of address translation

Guest-Physical /

Guest Host
Host-Virtual

Virtual ;
e G - Physical

Host - OS /

CPU — —

152

Virtual Memory: Parting Thoughts

VM is one of the most successful examples of

o architectural support for programmers

o how to partition work between hardware and software
o hardware/software cooperation

o programmer/architect tradeoff

Going forward: How does virtual memory scale into the
future? Four key trends:

o Increasing, huge physical memory sizes (local & remote)

o Hybrid physical memory systems (DRAM + NVM + SSD)

o Many accelerators in the system addressing physical memory
Q

Virtualized systems (hypervisors, software virtualization, local
and remote memories)

153

Rethinking Virtual Memory

Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata
Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu,
"The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory
Framework"

Proceedings of the 47th International Symposium on Computer Architecture (ISCA), Virtual, June 2020.
[Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[ARM Research Summit Poster (pptx) (pdf)]

[Talk Video (26 minutes)]

[Lightning Talk Video (3 minutes)]

[Lecture Video (43 minutes)]

The Virtual Block Interface: A Flexible Alternative
to the Conventional Virtual Memory Framework

Nastaran Hajinazar*T Pratyush Pate]® Minesh Pate]* Konstantinos Kanellopoulos* Saugata Ghose?
Rachata Ausavarungnirun® Geraldo F. Oliveira* Jonathan Appavoo® Vivek Seshadri¥ Onur Mutlu*?

*ETH Ziirich 1Simon Fraser University ™ University of Washington iCamegie Mellon University
O©King Mongkut’s University of Technology North Bangkok °Boston University " Microsoft Research India

SAFARI 1>4

https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-ARM-Research-Summit-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-ARM-Research-Summit-poster.pdf
https://www.youtube.com/watch?v=7c6LgVrCwPo
https://youtu.be/04l-Zlaue0k
https://www.youtube.com/watch?v=PPR7YrBi7IQ

Lectures on Virtual Memory

Challenges

* Three examples of the challenges in adapting
conventional virtual memory frameworks for
increasingly-diverse systems:

- Requiring a rigid page table structure
- High address translation overhead in virtual machines

- Inefficient heterogeneous memory management

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 12c: The Virtual Block Interface (ETH Ziirich, Fall 2020)

726 views * Oct 31, 2020 g6 o) SHARE =} SAVE

- Onur Mutlu Lectures
5:, , 165K subscribers ANALYTICS EDIT VIDEO

SAFAr&l//www.voutube.com/watch?v:ZRhGMleSzw&Iist:PL5PHm2ikamiSCxxI7b3JCLlTWvbTDth&index:ZZ

155

https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22

Lectures on Virtual Memory

Pl o 1:43:45/1:44:49

Lecture 20. Virtual Memory - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu

22,313 views * Mar 7, 2015 i 139 &5) SHARE =; SAVE

Carnegie Mellon Computer Architecture oy
@ 23.3K subscribers SUBSCRIBED ‘A
-

https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL50Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=24 156

https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24

Lectures on Virtual Memory

= Computer Architecture, Spring 2015, Lecture 20

o Virtual Memory (CMU, Spring 2015)

o https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHmM2jkkXmi5CxxI7b3
JCL1TWybTDtKg&index=22

= Computer Architecture, Fall 2020, Lecture 12c

o The Virtual Block Interface (ETH, Fall 2020)

o https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL50Q2s0XY2Zi9xidylgBxUz7
XRPS-wisBN&index=24

https:/ /www.youtube.com/onurmutlulectures 157

https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22
https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24
https://www.youtube.com/onurmutlulectures

Digital Designh & Computer Arch.
Lecture 26: Virtual Memory

Prof. Onur Mutlu

ETH Zurich
Spring 2022
3 June 2022

Backup Slides

Some Issues in Virtual Memory

Three Major Issues in Virtual Memory

1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?
3. When do we do the translation in relation to cache access?

= There are many other issues we will not cover in detail
o What happens on a context switch?
o How can you handle multiple page sizes?

a ...

161

Virtual Memory Issue 1

How large is the page table?

Where do we store it?

o In hardware?

o In physical memory? (Where is the PTBR?)
o In virtual memory? (Where is the PTBR?)

How can we store it efficiently without requiring physical
memory that can store all page tables?

o Idea: multi-level page tables
a Only the first-level page table has to be in physical memory

o Remaining levels are in virtual memory (but get cached in
physical memory when accessed)

162

Recall: Solution: Multi-Level Page Tables

Example from the x86 architecture

Linear Address Space Linear Address
»| Dir Table Offset

Linear Addr.

Page Directory Page Table Page

— -
| Pg. Dir_ Entry = =| Pg. Tbhl. Entry
- - ‘ 2 ‘ -

0 _ This page mapping example is for 4-KByte pages
CR3* and the normal 32-bit physical address size.

*Physical Address

Physical Addr.

163

Page Table Access

How do we access the Page Table?

Page Table Base Register (CR3 in x86)
Page Table Limit Register

If VPN is out of the bounds (exceeds PTLR) then the
process did not allocate the virtual page - access control
exception

Page Table Base Register is part of a process’s context
o Just like PC, status registers, general purpose registers
o Needs to be loaded when the process is context-switched in

164

More on x86 Page Tables (I): Small Pages

Linear Address
31 22 21 12 11 0
Directory Table Offset
12 4-KByte Page
10 10 Page Table —»| Physical Address
Page Directory
—»= PTE r
20
| PDE with PS=0 [—<
- 20
3’3:32
CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

165

More on x86 Page Tables (II): Large Pages

Linear Address
31 22 0

Directory Offset

22 4-MByte Page

10 _ Page Directory

—» Physical Address

—»| PDE with P5=1 {;}r

Y

32

CR3

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

166

x86 Page Table Entries

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries
with 32-bit paging. For the paging structure entries, it identifies separately the
format of entries that map pages, those that reference other paging structures, and
those that do neither because they are “"not present”; bit 0 (P) and bit 7 (PS) are
highlighted because they determine how such an entry is used.

B13012928127126/252423122121120[1911817/16/15141312[11110, 987 16| 5

Address of page directury' lgnored Ilgnored] CR3

Bits 39:3Z2|P
of Allgnored|G |1 |D|A
address? | T

PDE
4MB

page

Bits 31:22 of address Reserved
of ZMB page frame (must be 0)

|_I

PDE

1] page
table

[e T Do/ OO e
—& | d=Z 9] A= TTjw

A= A=
E~T| T~=T

Address of page table lgnored (D |g|A
n

PDE
not
present

o

lgnored

PTE:
4KB

page

|_l

Address of 4KB page frame lgnored | G

— =T
=
e

[W iy v}

—& T

(0

=~

PTE:
lgnored 0] not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

167

x3860 PTE (4KB page)

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0(P)

Present; must be 1 to map a 4-KByte page

1 (R/W)

Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CRO.WF; see Section 4.6)

2 (UIS)

User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT)

Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD)

Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A)

Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D)

Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT)

If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0}1

8(G)

Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

119

lgnored

31:12

Physical address of the 4-KByte page referenced by this entry

168

x36 Page Directory Entry (PDE)

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by
this entry (depends on CPL and CRO.WF; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

169

X86-64 Page Table Entry Structure

HEEEHEEEEEEEE M1 [M-1 3[3[312]2]2[2[[2[2[2[2[[T[T[T{T[T[T[T|T]T1]1
3|2|1(0(9(8|7|6|5|4|3|2|1 2|1|0|9(8(7|6|5|4|3|2|1|0(9(8(7|6|5|4|3|2|1]|0]|9/8|7|6]|5|4|3[2[1{0
; P|P
2 Address of PML4 table (4-level paging)
Reserved or PML5 table (5-level paging) Ignored B \fl_u' Ign. CR3
X I{ |P[P];|R
RS u PML5E:
Q Ignored Rsvd. Address of PML4 table lan. {4 g g \fl_u' S‘;:,. 1 present
PML5E:
Ignored 0 not
present
X TREREME .
5) Ignored Rsvd. Address of page-directory-pointer table Ign. 53 g g \fl_u' %\:‘d 1 ::::ls-ggt
PML4E:
Ignored 0 not
present
X P PIP|,,[R| | PDPTE:
| POt | ignored Rsvd. | |, cAddressof | Reserved Al 1gn. |c|1|olalcwl/[1] 1cB
3| Key 1GB page fram T DIT SW page
X I PIP|ylR PDPTE:
D Ignored Rsvd. Address of page directory lgn. |@(g|A|C|W|,c|/ (1] page
3 n| |D|T[~|w|] directory
PDTPE:
Ignored 0 not
present
X ' ' P P[P| IR PDE:
| POt | ignored Rsvd. Address of Reserved |A| Ign. |c|1olalclwlY|/[1] 2MB
3| Key 2MB page frame T DIV S page
X H[PIPIy[R PDE:
D Ignored Rsvd. Address of page table Ign. |0]|g|A|C|w| S /{1] page
3 n| [D[T]={wi table
PDE:
Ignored 0 not
present
X prot Pl | IPIP|uIR PTE:
D K 4 Ignored Rsvd. Address of 4KB page frame Ign. |G|A|D]A|C|W| S /|1] 4KB
3| Key T D[TT W page
PTE:
Ignored 0 not
present

Figure 4-11. Formats of CR3 and Paging-Structure Entries with 4-Level Paging and 5-Level Paging

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

170

X86-64 Page Table: Accessing 4KB pages

Linear Address

47 39 38 30 29 2120 12 1
| PML4 | Directory Ptr Directory Table | Offset
| 2
ra / g /
/9 719 1o 4-KByte Page
Physical Addr
PTE >
Page-Directory- PDE with PS=0 [—< 40
Pointer Table 40 Page Table

PDPTE

S

Page-Directory

PML4E

40

40

CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using 4-Level Paging

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

171

X86-64 Page Table: Accessing 2MB pages

Linear Address

47 39 38 30 29 2120
PML4 Directory Ptr Directory Offset
| /T 9 21
9
2-MByte Page
Physical Addr
Page-Directory- PDE with PS=1
Pointer Table 31
A Page-Directory
—>» PDPTE
40
‘9
-
40
—>»| PML4E
40
CR3

Figure 4-9. Linear-Address Translation to a 2-MByte Page using 4-Level Paging

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

172

X86-64 Page Table: Accessing 1GB pages

47 39 38

Linear Address
30 29

PML4

Directory Ptr

Offset

/9

Page-Directory-
Pointer Table

jgo

1-GByte Page

> Physical Addr

—>»| PDPTE with PS=1

22

40

—>»| PML4E

40

CR3

Figure 4-10. Linear-Address Translation to a 1-GByte Page using 4-Level Paging

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

173

Three Major Issues in Virtual Memory

1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?
3. When do we do the translation in relation to cache access?

= There are many other issues we will not cover in detail
o What happens on a context switch?
o How can you handle multiple page sizes?

a ...

174

Recall: Translation LLookaside Butter (T1.B)

Idea: Cache the Page Table Entries (PTES) in a hardware
structure in the processor to speed up address translation

Translation lookaside buffer (TLB)

o Small cache of most recently used Page Table Entries, i.e.,
recently used Virtual-to-Physical translations

o Reduces the number of memory accesses required for most
instruction fetches and loads/stores to only one TLB access

175

Virtual Memory Issue 11

How fast is the address translation?
o2 How can we make it fast?

Idea: Use a hardware structure that caches PTEs =
Translation Lookaside Buffer (TLB)

What should be done on a TLB miss?
o What TLB entry to replace?
2 Who handles the TLB miss? HW vs. SW?

What should be done on a page fault?
o What virtual page to replace from physical memory?
o Who handles the page fault? HW vs. SW?

176

Speeding up Translation with a TLLB

A cache of address translations
o Avoids accessing the page table on every memory access

Index = lower bits of VPN Virtual address

(virtual page #) VBN pageotset
Tag = unused bits of VPN + Tag
process ID \
Data = a page-table entry -
Status = valid, dirty |nde_x>
The usual cache design choices Physical page 1S =
(placement, replacement policy, (Physioal address Y)

multi-level, etc.) apply here too.

177

Handling TI.B Misses

The TLB is small; it cannot hold all PTEs
o Some translation requests will inevitably miss in the TLB
o Must access memory to find the required PTE

Called walking the page table
Large performance penalty

Better TLB management & prefetching can reduce TLB misses

Who handles TLB misses?
o Hardware or software?

Handling TLLB Misses (1)

Approach #1. Hardware-Managed (e.g., x86)
o The hardware does the page walk

o The hardware fetches the PTE and inserts it into the TLB
If the TLB is full, the entry replaces another entry
a Done transparently to system software

o Can employ specialized structures and caches
E.g., page walkers and page walk caches

Approach #2. Software-Managed (e.g., MIPS)

o The hardware raises an exception

o The operating system does the page walk

o The operating system fetches the PTE

o The operating system inserts/evicts entries in the TLB

Handling TL.LB Misses (111)

= Hardware-Managed TLB
+ No exception on TLB miss. Instruction just stalls
+ Independent instructions may execute and help tolerate latency
+ No extra instructions/data brought into caches

-- Page directory/table organization is etched into the system:
OS has little flexibility in deciding these

= Software-Managed TLB
+ The OS can define the page table oganization
+ More sophisticated TLB replacement policies are possible

-- Need to generate an exception = performance overhead due to
pipeline flush, exception handler execution, extra instructions
brought to caches

Three Major Issues in Virtual Memory

1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?
3. When do we do the translation in relation to cache access?

= There are many other issues we will not cover in detail
o What happens on a context switch?
o How can you handle multiple page sizes?

a ...

181

Teaser: Virtual Memory Issue 111

When do we do the address translation?
o Before or after accessing the L1 cache?

182

Address Translation and Caching

When do we do the address translation?
o Before or after accessing the L1 cache?

In other words, is the cache virtually addressed or
physically addressed?

o Virtual versus physical cache
What are the issues with a virtually addressed cache?

Synonym problem:

o Two different virtual addresses can map to the same physical
address = same physical address can be present in multiple
locations in the cache = can lead to inconsistency in data

183

Homonyms and Synonyms

Homonym: Same VA can map to two different PAs
o Why?
VA is in different processes

Synonym: Different VAs can map to the same PA
o Why?

Different pages can share the same physical frame within or
across processes

Reasons: shared libraries, shared data, copy-on-write pages
within the same process, ...

Do homonyms and synonyms create problems when we
have a cache?

o Is the cache virtually or physically addressed?
184

Cache-VM Interaction

CPU
VA
- |pm----t----
PA
cache
lower
hier.

physical cache

CPU
cache
VA
-t ----1----
PA
lower
hier.

virtual (L1) cache

See backup slides for more

CPU

cache

virtual-physical cache

v

lower
hier.

VA

PA

A Modern Example
Virtual Memory System

Evolution of Address Translation

Simple Address Translation

~

L1 Data L1 Instruction
TLB TLB

L1 Data Cache

Software
Page Table Walker

Modern Address Translation

L1 Data
TLB L1ITLB
PTW
L2 TLB
Cache
PTW Walker

L1 Data Cache

187

Memory Management Unit

The Memory Management Unit (MMU) is responsible
for resolving address translation requests

o One MMU per core (usually)

MMU typically has three key components:

o Translation Lookaside Buffers that cache recently-used
virtual-to-physical translations (PTES)

o Page Table Walk Caches that offer fast access to the
intermediate levels of a multi-level page table

o Hardware Page Table Walker that sequentially accesses
the different levels of the Page Table to fetch the required PTE

188

Intel Skylake: MMU
L1 Instruction Page Walk
TLB Caches
L2 Unified
TLB T
. Hardware
- \ Page Table Walker

https://www.7-cpu.com/cpu/Skylake.html

189

https://www.7-cpu.com/cpu/Skylake.html

Intel Skylake

. 1.1 Data TLB

L1 Instruction
TLB

L1 Data
TLB

L2 Unified
TLB

Page Walk
Caches

[

[

Hardware
Page Table Walker

190

Intel Skylake: I.1 Data TL.B

Separate L1 Data TLB structures for 4KB, 2MB, and 1GB pages

L1 DTLB

o 4KB: 64-entry, 4-way, 1 cycle access, 9 cycle miss
o 2MB: 32-entry, 4-way, 1 cycle access, 9 cycle miss
o 1GB: 4 entry, fully-associative

Virtual-to-physical mappings are inserted in the
corresponding TLB after a TLB miss

During a translation request, all three L1 TLBs are looked
up in parallel

https://www.7-cpu.com/cpu/Skylake.html 191

https://www.7-cpu.com/cpu/Skylake.html

[.1 Data TLB: Parallel LLookup Example

31th bitto 22th bit to 13-14th bit to

index 1GB jndex 2MB

Virtual \ \

index 4KB

Address [001010100100101000000000011100000001

L12MB TLB

L11GBTLB

set0 ()(

seto (D et1 ()(

L14KB TLB
Set 0 () ()
Set 1 () ()
Set 2 () ()
Set 3 () ()

192

Intel Skylake: .2 Unified 1/D TLB

L1 Data
TLB

L2 Unified
TLB

Page Walk
Caches

[

|

Hardware
Page Table Walker

193

Intel Skylake: 1.2 Unified TI.B

L2 Unified TLB caches translations for both instr. and data
o private per individual core

2 separate L2 TLB structures for 4KB/2MB and 1GB pages

L2 TLB
o 4KB/2MB: 1536-entry, 12-way, 14 cycle access, 9 cycle miss
o 1GB: 16-entry, 4-way, 1 cycle access, 9 cycle miss penalty

Challenge: How can the L2 TLB support both 4KB and 2MB
pages using a single structure?

(Not enough publicly available information for Intel Skylake)

https://www.7-cpu.com/cpu/Skylake.html 194

https://www.7-cpu.com/cpu/Skylake.html

[.2 Unified TLB: Accessing the TLLB
The 4KB/2MB structure of the L2 TLB is probed in 2 steps

Step 1: Assume the page size is 4KB, calculate the index bits
and access the L2 TLB

a If the tag matches, it is a hit. If the tag does not match, go to
Step 2.

Step 2: Assume the page size is 2MB, re-calculate the index
and access the L2 TLB.

o If the tag matches, it is a hit. If the tag does not match, it is an
L2 TLB miss.

General algorithm:
Re-calculate index and probe TLB for all remaining page sizes

Similar to “associativity in time” (also called pseudo-associativity) 19°

Step 1: Calculate Index for 4KB

13-14th bit to
index 4KB

Virtual /

Address[001010100100101000000006011100000001]

L2 TLB

set0 D CEED
Set1 () ()

Set 2 () ()
Set 3 () ()

196

Step 2: Re-calculate Index for 2MB

Virtual
Address

22th-23th bit to
index 2MB

|

00101010010010\1000000000011100000001

L2 TLB

Set 0 () ()

set 1 (D D
Set2 (.) ()

Set 3 () ()

197

[.2 TI.B: N-Step Index Re-Calculation

= Pros:
+ Simple and practical implementation

= Cons:

- Varying L2 TLB hit latency (faster for 4KB, slower for 2MB)

- Slower identification of L2 TLB Miss as all page sizes need to be
tested

= Potential Optimizations:

1. Parallel Lookup: Look up for 4KB and 2MB pages in parallel
2. Page Size Prediction: Predict the probing order

Tradeoffs are similar to “associativity in time” (also called pseudo-associativity)

198

Hardware Page Table Walker

T

Hardware
Page Table Walker

199

Hardware Page Table Walker (I)

= A per-core hardware component that walks the multi-level
page table to avoid expensive context switches & SW handling

= HW PTW consists of 2 components:

o A state machine that is designed to be aware of the
architecture’s page table structure
o Registers that keep track of outstanding TLB misses

Hardware Page Table Walker

TLB Miss Registers
STATE

MACHINE

200

Hardware Page Table Walker (II)

= Pros:
+ Avoids the need for context switch on TLB miss
+ Overlaps TLB misses with useful computation
+ Supports concurrent TLB misses

= Cons:
- Hardware area and power overheads
- Limited flexibility compared to software page table walk

201

Hardware Page Table Walker (I1I)

PTW accesses the CR3 register that maintains information
about the physical address of the root of the page table
(PML4)

PTW concatenates the content of CR3 with the first 9 bits
of the virtual address

Linear Address
47 39 38 3029 2120 12 11 0
| PML4 | Directory Ptr | Directory | Table | Offset

9 9
9 12 _4-KByte Page

Physical Addr
PTE >
- _ 40
Page-Di ry- PDE with PS=0

a irecto >
Pointer Table 40 Page Table

Page-Directory

40

Figure 4-8. Linear-Address Translation to a 4-KByte Page using 4-Level Paging

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

202

Hardware Page Table Walker (IV)

Hardware PTWs allow overlapping TLB misses with useful

computation

Software PTW

VPN =1 VPN =5

LOAD A TLB Miss [Context Switch — TLB Miss Handler] LOAD B TLB Hit

Saved Cycles

Hardware PTW

VPN =1 /

[LOAD A] TLB Miss Page Table Walk] ¢
LOAD B TLB Hit

VPN =5

203

Page Walk Caches

Page Walk
Caches

T

204

Page Walk Caches

Page Walk Caches cache translations from non-leaf levels
of a multi-level page table to accelerate page table walks

Page Walk Caches are low-latency caches that provide
faster access to the page table levels

compared to accessing the regular cache/memory hierarchy
for every page table walk

205

Intel Skylake: MMU
L1 Instruction Page Walk
TLB Caches
L2 Unified
TLB T
. Hardware
- \ Page Table Walker

206

Modern Virtual Memory Designs

A14 “Firestorm” Intel/AMD/ARM
(iPhone 12 Pro)

Decode 8 4, 5 (Samsung M3), 5 (Cortex-X1)
width
ROB size 630 352 (Intel Willow Cove)
Load/store ~148 outstanding loads Intel Sunny Cove (128-LQ, 72-SQ)
queue size ~106 outstanding stores AMD Zen3 (64-LQ, 44-SQ)
256 entries 64 entries
3072 entries 1536 entries
16KB 4KB
L1-I cache 192KB 48KB (Intel Ice Lake)
L1-D cache 128KB, 3-cycles 32KB (Intel/AMD), 4-cycles
L2 cache 8MB shared across two big-cores, 1MB (Intel Cascade Lake)
~16-cycles

L3 cache 16MB shared across all CPU cores 1.375 MB/core
and integrated GPU

https://www.anandtech.com/show/16226/apple-silicon-m1-al4-deep-dive/2 207
https://news.ycombinator.com/item?id=25257932

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://news.ycombinator.com/item?id=25257932

More on
Issues 1n Virtual Memory

Virtual Memory and Cache Interaction

Address Translation and Caching

When do we do the address translation?
o Before or after accessing the L1 cache?

In other words, is the cache virtually addressed or
physically addressed?

o Virtual versus physical cache
What are the issues with a virtually addressed cache?

Synonym problem:

o Two different virtual addresses can map to the same physical
address = same physical address can be present in multiple
locations in the cache = can lead to inconsistency in data

210

Homonyms and Synonyms

Homonym: Same VA can map to two different PAs
o Why?
VA is in different processes

Synonym: Different VAs can map to the same PA
o Why?

Different pages can share the same physical frame within or
across processes

Reasons: shared libraries, shared data, copy-on-write pages
within the same process, ...

Do homonyms and synonyms create problems when we
have a cache?

o Is the cache virtually or physically addressed?
211

Cache-VM Interaction

CPU
VA
- |pm----t----
PA
cache
lower
hier.

physical cache

CPU
cache
VA
-t ----1----
PA
lower
hier.

virtual (L1) cache

CPU

cache

v

lower
hier.

VA

PA

virtual-physical cache212

Physical Cache

PTPT cobe (Physrcat ccohe)

B § VA
paprod A Py adoress
R,
/’" B e / " Coote

213

Virtual Cache

VINT cache. (Vivival Code)

Pone om.q VA

b an

h;/*-s

yohal

A
bl ‘ % 3 dotu
Sere

sht

214

Virtual-Physical Cache

VIPT code
. poag offed- | VA
r e
. L 1
/
=ER—) ~f
7
| pl / T
pren Priy offesd- l
L a—%r =7

Whee con e .so'-e.phﬁ,grcd.c.ou_e&locn +e

a7

215

Virtually-Indexed Physically-Tagged

If (index-bits + byte-in-block-bits < page-offset-bits), the cache
index bits come only from page offset (same in VA and PA)

o Also implies Cache Size < (page size x associativity)
If both cache and TLB are on chip

0 index both arrays concurrently using VA bits
o check cache tag (physical) against TLB output at the end

VPN Page Offset

TLB physical
cache

PPN @(tag data

TLB hit? cache hit?

216

Virtually-Indexed Physically-Tagged

= If (index-bits + byte-in-block-bits < page-offset-bits), the cache
index bits include VPN = Synonyms can cause problems
0 The same physical address can exist in two locations

= Solutions?

VPN Page Offset
I v
TLB physical
cache
|
v
PPN ‘@’ tag data
TLB hit? cache hit? 217

Some Solutions to the Synonym Problem

Limit cache size to (page size times associativity)
o get index from page offset

On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

5 Used in Alpha 21264, MIPS R10K

Restrict page placement in OS

o make sure index(VA) = index(PA)
o Called page coloring

o Used in many SPARC processors

218

[L1-D Cache in Intel Skylake

= 32 KB, 64B cacheline size, 8-way associative, 64 sets

= Virtually-indexed physically-tagged (VIPT)

= #set-index bits (6) + #byte-in-block-bits (6) = log2(Page Size)
a No synonym problem

“SEESAW: Using Superpages to Improve VIPT Caches, Parasar+, ISCA'18
https://en.wikichip.org/wiki/intel/microarchitectures/skylake (server)
https://uops.info/cache.html

https://www.7-cpu.com/cpu/Skylake.html

219

https://www.cs.yale.edu/homes/abhishek/mparasar-isca18.pdf
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://uops.info/cache.html
https://www.7-cpu.com/cpu/Skylake.html

An Exercise (I)

We have a byte-addressable toy computer that has a physical address space of 512 bytes. The computer

uses a simple, one-level virtual memory system. The page table is always in physical memory. The page
size is specified as 8 bytes and the virtual address space is 2 KB.

Part A.

i. (1 point)
How many bits of each virtual address is the virtual page number?

ii. (1 point)
How many bits of each physical address is the physical frame number?

220

We would like to add a 128-byte write-through cache to enhance the performance of this computer.
However. we would like the cache access and address translation to be performed simultaneocusly. In
other words, we would like to index our cache using a virtnal address. but do the tag comparison using the
physical addresses (virtually-indexed physically-tagged). The cache we would like to add is direct-
mapped. and has a block size of 2 bytes. The replacement policy is LRU. Answer the following questions:

iii. (1 point)
How many bits of a virtual address are used to determine which byte in a block 1s accessed?

iv. (2 point)
How many bits of a virtual address are used to index into the cache? Which bits exactly?

v. (1 point)
How many bits of the virtual page number are used to index into the cache?

vi. (5 points)
What is the size of the tag store in bits? Show your work.

Part B.

Suppose we have two processes sharing our toy computer. These processes share some portion of the
physical memory. Some of the virtual page-physical frame mappings of each process are given below:

PROCESS 0 PROCESS 1
Virtual Page | Physical Frame Virtual Page | Physical Frame
Page 0 Frame 0 Page O Frame 4
Page 3 Frame 7 Page 1 Frame 5
Page 7 Frame 1 Page 7 Frame 3
Page 15 Frame 3 Page 11 Frame 2

vii. (2 points)
Give a complete physical address whose data can exist in two different locations in the cache.

viii. (3 points)
Give the indexes of those two different locations in the cache.

An Exercise (Concluded)

ix. (3 points)
We do not want the same physical address stored in two different locations in the 128-byte cache. We can
prevent this by increasing the associativity of our virtually-indexed physically-tagged cache. What is the

minimum associativity required?

X. (4 points)
Assume we would like fo use a direct-mapped cache. Describe a solution that ensures that the same

physical address is never stored in two different locations in the 128-byte cache.

223

A Potpourri of Issues

Trade-Ofts in Page Size

= Large page size (e.g., 1GB)

a Pro: Fewer PTEs required =» Saves memory space
a Pro: Fewer TLB misses = Improves performance

a Con: Cannot have fine-grained permissions

a Con: Large transfers to/from disk
= Even when only 1KB is needed, 1GB must be transferred
= Waste of bandwidth/energy
= Reduces performance
o Con: Internal fragmentation
= Even when only 1KB is needed, 1GB must be allocated
= Waste of space
= Q: What is external fragmentation?

Some System Software Tasks for VM

Keeping track of which physical frames are free
Allocating free physical frames to virtual pages

Page replacement policy
o When no physical frame is free, what should be removed?

Sharing pages between processes
Copy-on-write optimization

Page-flip optimization

226

Virtual Memory in Virtualized Environments

Virtualized environments (e.g. Virtual Machines) need to
have an additional level of address translation

Guest-Physical /

Guest Host
Host-Virtual

Virtual ;
e G - Physical

Host - OS /

CPU — —

227

Shadow Paging

= System maintains a new shadow page table which maps
guest-virtual page directly to host-physical page

= Guest-virtual to Guest-physical page table is read-only for
the Guest OS

= Pros:
+ Fast TLB Miss / Page Table Walk

= Cons:

- To maintain a consistent shadow page table, the system
handles every update to Guest and Host page tables

228

Shadow Paging

(Guest Virtual Address)—

Guest Page Table

S
~
~

N J

7
Ve
Ve
P

Host Page Table

C Host Physical Address)—

Shadow Page Table

Guest Virtual Address
/] —
LA
= =l
= I
: S

Host Physical
Address

4 Memory Accesses

229

Nested Paging

Nested paging is the widely used hardware technique to
virtualize memory in modern systems

Two-dimensional hardware page-table walk:

a For every level of Guest Page table
Perform a 4-level Host Page table walk

Pros:
+ Easy for the system to maintain/update two page tables

Cons:
- TLB Misses are more costly (up to 24 memory accesses)

230

Nested Paging

(Guest Virtual Address)

Guest Page Table

Guest Physical Address

Host Page Table

(Host Physical Address)

gCR3

Guest Virtual Address

D

=~

\/
gPA

5+5+5+5+4 =24 Memory Accesses

Host Physic
Address

231

