Digital Desigh & Computer Arch.

Lecture 4: Combinational Logic I

Prof. Onur Mutlu

ETH Zurich
Spring 2022
4 March 2022

Recall Last Lecture: Mysteries No Longet!

Rowhammer (2012-2014)
Meltdown & Spectre (2017-2018)
Memories Forget: Refresh (2011-2012)

Memory Performance Attacks (2006-2007)

The Story ot RowHammer Lecture ...

Onur Mutlu,
"The Story of RowHammer"
Keynote Talk at Secure Hardware, Architectures, and Operating Systems

Workshop (SeHAS), held with HIPEAC 2021 Conference, Virtual, 19 January 2021.
[Slides (pptx) (pdf)]
[Talk Video (1 hr 15 minutes, with Q&A)]

The Story of RowHammer

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutiu
19 January 2021
SEHAS Keynote @ HiPEAC

ETH:zirich Carnegie Mellon

P Pl N 5823711441

The Story of Rowhammer - Secure Hardware, Architectures, and Operating Systems Keynote - Onur Mutlu
2,989 views * Premiered Feb 2, 2021

S A ‘ A R , 6:5 L eclres ANALyTics | EpiT vibEO
&> 23K subscribers

il 103 GJ DISLIKE) SHARE ${ CLIP =+ SAVE ...

https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://www.youtube.com/watch?v=JV1uc1kOt04
https://www.hipeac.net/2021/budapest/
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pdf
https://www.youtube.com/watch?v=sgd7PHQQ1AI

Data Retention & Memory Refresh Lecture

Computer Architecture, Fall 2020, Lecture 2b

o Data Retention and Memory Refresh (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=v702wUnaWGER&list=PL5Q2s0XY2Zi9xidyIgB
xUz7xRPS-wisBN&index=3

£ Youamscreensharing O © 023850 [Lol

Variable Retention Time
7

—

N w = (9, (o))

Maximum Retention Time (s)

—

A 2Gb chip family

HHHHHHHHHHH

3,876 views - Sep 19,2020 e 48 GJ DISLIKE) SHARE =+ SAVE ...

@ sy ANALVTICS EDIT VIDEO
<& 22.8Ksubscribers

https://www.youtube.com/watch?v=v702wUnaWGE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=3

Memory Performance Attacks Lecture ...

Computer Architecture, Fall 2020, Lecture 2a

o Memory Performance Attacks (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=V]zZbwgBfy8&list=PL5Q2s0XY2Zi9xidyIgBx
Uz7xRPS-wisBN&index=2

€ Yousesceenshaing O © 011836 Lo loudl

Distributed DoS in Networked Multi-Core Systems

Attackers Stock option pricing application
(Cores 1-8) (Cores 9-64)

Cores connected via
packet-switched
routers on chip

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,"
MICRO 2009.

© ETH zURICH
Computer Architecture - Lecture 2a: Memory Performance Attacks (ETH Ziirich, Fall 2020)

5,903 views * Sep 19, 2020 e 101 GJ DISLIKE > SHARE =+ SAVE ...

S A ‘ A R , 6;) SIS ANALYTICS | EDIT viDEO
P 22.8K subscribers

https://www.youtube.com/watch?v=VJzZbwgBfy8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=
https://www.youtube.com/watch?v=v702wUnaWGE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=3

Takeaways

Takeaways

It is an exciting time to be understanding and designing
computing architectures

Many challenging and exciting problems
o That no one has tackled (or thought about) before
o That can have huge impact on the world’s future

Driven by explosion of data, new applications (ML/AI,
graph analytics, genomics), ever-greater realism, ...

o We can easily collect more data than we can analyze/understand

Driven by significant difficulties in keeping up with that
hunger at the technology layer

a Five walls: Energy, reliability, complexity, security, scalability

Computer Architecture as an
Enabler of the Future

Assignment: Required Lecture Video

= Why study computer architecture? Why is it important?
= Future Computing Platforms: Challenges & Opportunities

= Required Assighment
o Watch one of Prof. Mutlu’s lectures and analyze either (or both)
a https://www.youtube.com/watch?v=kgiZISOcGFM (May 2017)
o https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

= Optional Assignment — for 1% extra credit
o Write a 1-page summary of one of the lectures and email us
= What are your key takeaways?
= What did you learn?
= What did you like or dislike?
= Submit your summary to Moodle

https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=722981

Assignment: Required Readings

This week

o Combinational Logic
P&P Chapter 3 until 3.3 + H&H Chapter 2

Next week

o Hardware Description Languages and Verilog
H&H Chapter 4 until 4.3 and 4.5
o Sequential Logic
P&P Chapter 3.4 untilend + H&H Chapter 3 in full

By the end of next week, make sure you are done with
o P&P Chapters 1-3 + H&H Chapters 1-4

10

A Note on Hardware vs. Software

This course might seem like it is only "Computer Hardware”

However, you will be much more capable if you master both
hardware and software (and the interface between them)

a Can develop better software if you understand the hardware
o Can design better hardware if you understand the software
a Can design a better computing system if you understand both

This course covers the HW/SW interface and microarchitecture
o We will focus on tradeoffs and how they affect software

Recall the four mysteries

11

... but, first ...

Let’s understand the fundamentals...

You can change the world only if you understand it well
enough...

o Especially the basics (fundamentals)

Past and present dominant paradigms

And, their advantages and shortcomings — tradeoffs

And, what remains fundamental across generations

And, what techniques you can use and develop to solve
problems

Q
Q
Q
Q

12

Fundamental Concepts

13

What 1s A Computer?

= Three key components

= Computation
= Communication

= Storage/memory

Computing System

Burks, Goldstein, von Neumann, “Preliminary discussion of the

logical design of an electronic computing instrument,” 1946.

Computing E 5 Communication E a Memory/Storage
Unit Unit Unit
Memory System Storage System

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

14

What 1s A Computer?

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

What 1s A Computer?

We will cover all three components

Processing

control
(sequencing)

datapath

Memory
dorogram /O
and data)

16

Recall: The Transtormation Hierarchy

(expanded view) (narrow view)

Computer Architecture SW/HW Interface Computer Architecture

17

What We Will Cover (I)

= Combinational Logic Design
= Hardware Description Languages (Verilog)
= Sequential Logic Design
= Timing and Verification

= ISA (MIPS and LC3b)

l SW/HW Interface |

= MIPS Assembly Programming

18

What We Will Cover (II)

= Microarchitecture Basics: Single-cycle
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

= Out-of-Order Execution
m Other Processing Paradigms (SIMD, VLIW, Systolic, ...)
= Memory and Caches

= Virtual Memory

19

Processing Paradigms We Will Cover

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= SIMD Processing (Vector & Array, GPUs)
= Decoupled Access-Execute System Software

: SW/HW Interface
= Systolic Arrays /

20

Combinational Logic Circuits
and Design

21

What Will We Learn Today?

Building blocks of modern computers
o Transistors
o Logic gates

Boolean algebra
Combinational circuits

How to use Boolean algebra to represent combinational
circuits

Minimizing logic circuits (if time permits)

SAFARI

22

General-Purpose Microprocessors

SAFARI

23

Modern General-Purpose Microprocessors

chip built with this

cutting-edge technology.

The mos
into a single chip.

SAFARI

Source: https://www.apple.com/mac/m1/

24

https://www.apple.com/mac/m1/

1ICTOProCcessors

Purpose M

Modern General-

UPDDRAX

Ghannels

O
=
T
©

- ©

S 1'GY

L

D L L T e e teenngry Sl

dllEfficie

ne s

Agf

SNeuralfEn

st g

25

Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

SAFARI

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Modern General- Purpose M1croprocessors

8x 16[)

S 'PDDRAX
3 !

Ghannels

SSUGlGachel

ciml LT R R

Gy Apple M1
: ‘!Flrestorm ’
sifaifls by
et e 2021
T‘ |
nay Iccstorm 117‘ i Il
EfflClency ot -4 |
+4MB Lz,l. 3 : i
ol
SAFARI Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested 26

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Modern General-Purpose Microprocessors

SAFARI Source: https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html 27

https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html

R
{5 Golden Cove'-

- |cL2g/MLC:

- CPU. Core,:;

Golden Cove— e den:Cover G o i S o s G g b ot d T Al]

§ -8.* TMUSI

1,25MiB T

" AL1/Texs,
B2 SLM:

c 4Li$/MLC' ‘

Memory;
: Channelﬁ
o Control

)-

=1 gl =’."' —— =— i= e
| 3MiB | 3BMIBLET T T 3MIBEE 3Mm ; » 3Mi -
; L3$7LL~C— .5 L3$/LLC- Y, LL3$7LLC . | [L3$/LLC "]
: 2x j?-:- 2x‘i:“-~:” >2x.~?r>y ' $3i”ffhi;
Rlng Agent Rlng Agent Rlng Agent Rlng Agent ng Agent -
SETS [e ‘; R RS R IA e g .‘;;:., e '-.,“.. »-—~_‘,4«...nu_._—):\ w —————— L b ¥ e 7:7—7 1; o
3MiB °|. ’ : 3M'iB I == 3miB~ | ' 3Mii3 == 3Mjisf [
L3$/LLC |4 “L3$/ELC | | T L3$/LLC | L3$/LLC) ¢ L3$/LLC

3 16 EUS
(128/Cores)y

ittt
)
[.Hll
u 1

10nm ESF= Intel 7 Alder Lake die shot (~209mm2) from Intel: https://www. |nte| com/content/www/us/en/newsroom/news/ 12th-gen-core-processors.html

SAFARI

Source: https://twitter.com/Locuza /status/1454152714930331652

Die shot interpretation by Locuza, October 2021

Intel Alder Lake,
2021

28

https://twitter.com/Locuza_/status/1454152714930331652

DIGII.EN'I'"

www dighlanting . com

Y XILINX

' | UN .ERSI" PROGRAM
m
a1 - fu-
oy 3 7 81 (‘-‘—
- n E (Q.a-
cseo 1 | (.4—

. : . ‘ iy 3 A3 Ut 4 L s W e ' L1 ' né
T 143 y g9 © gug ~ g © Sug * gus = gise = i3 = L2 w0

SAFARI

Modern FPGASs

e

LI

TN
'

Source: https://www.mouser.ch/new/xilinx/xilinx-zyng-7000-zc702-eval-kit/

SAFARI

30

https://www.mouser.ch/new/xilinx/xilinx-zynq-7000-zc702-eval-kit/

Special-Purpose ASICs (App-Specitic Integrated Circuits)

o

ge1)
wiie oW
.'uu'

p -— o9 O«

- 1t B aguine Soard for imperio
-m "o e & “by Fiorisn derude
B R

sy C11
12

L

- .
S0
- . !

) A

lili“?l(‘
R« R9 R6 g ’:.
e ne e K17

CI6RS R16
"

T'R'YT e

21 rh ;-&-&-5-
Con TRSTR26 FSSliam
e T 11T

SAFARI

Modern Special-Purpose ASICs

—> —> —>» Data

R

VR

i Partial Sums
o[22 [
] | ,|) ’_l — Done

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the illusion that each 256B input 1s read at once, and they instantly
update one location of each of 256 accumulator RAMs.

Figure 3. TPU Printed Circuit Board. It can be inserted in the slot
for an SATA disk 1n a server, but the card uses PCle Gen3 x16.

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

32

Modern Special-Purpose ASICs

Cerebras WSE-2
2.6 Trillion transistors
46,225 mm?2

= The largest ML
accelerator chip (2021)

= 850,000 cores

Largest GPU
54 .2 Billion transistors
826 mm?2

NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

33

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Modern Special-Purpose ASICs

Warehouse-Scale Video Acceleration: Co-design and Deployment in the Wild

PCle Encoder Encoder Encoder Encoder Encoder -
Core =Core Core Core Core f

e

Decoder Encoder Encoder Encoder|gncoder

~ Cores Encoder Core Core Core | Core
| _ Core

et

(a) Chip floorplan (b) Two chips on a PCBA
Figure 5: Pictures of the VCU

Source: https://dl.acm.org/doi/pdf/10.1145/3445814.3446723 34

https://dl.acm.org/doi/pdf/10.1145/3445814.3446723

Modern GPUs

-MM & DL* Avc"cels

Volta GPU

CPU Cluster

L]

Hd y¥aadi

i

A

AHd vy¥aadi

“LPDORA PAY. |

“LPDDRA PHY

[trobra pry

SA FARI Source: https://en.wikichip.org/wiki/nvidia/tegra/xavier

https://en.wikichip.org/wiki/nvidia/tegra/xavier

General Purpose vs. Special Purpose Systems

General Purpose Special Purpose
GPUs FPGAs ASICs

LA e = ;

Nvidia GTX 1070 Xilinx Spartan Cerebras WSE-2

e

Flexible: Can execute any program Efficient & High performance
Easy to program & use (Usually) Difficult to program & use
Not the best performance & efficiency Inflexible: Limited set of programs

They All Look the Same

=
=
=
=
N

In short: Common building Reconfigurable You customize
block of computers hardware, flexible everything

SAFARI 37

They All Look the Same

%
==
L
'..E..
X

In short: Common building Reconfigurable You customize
block of computers hardware, flexible everything
Program minutes days months

Development Time

SAFARI 38

They All Look the Same

In short: Common building Reconfigurable You customize
block of computers hardware, flexible everything

Program minutes days months

Development Time

Performance 0 + ++

SAFARI 39

They All Look the Same

E
&
=
=
N

In short: Common building Reconfigurable
block of computers hardware, flexible
Program minutes days
Development Time
Performance 0 +
Good for Ubiquitous Prototyping
Simple to use Small volume

™

You customize
everything

months

++

Mass production,
Max performance

SAFARI

40

They All Look the Same

In short:

Program

Development Time

Performance
Good for

Programming
Languages
Main Companies

Common building
block of computers

minutes

o

Ubiquitous
Simple to use

Executable file
C/C++/Java/...

Intel, ARM, AMD,
Apple, NVIDIA

Reconfigurable
hardware, flexible

days

+

Prototyping
Small volume

Bit file
Verilog/VHDL
Xilinx, Altera

x

You customize
everything

months

++

Mass production,
Max performance

Design masks
Verilog/VHDL

TSMC,
Globalfoundries

SAFARI

41

They All Look the Same

—
Microprocessors

Want to — By
learn how e program
these Lt "] ming
work A HIEES these
Common building Reconfigurable
block of computers/\ hardware, flexible

Program minutes days months
Development Time
Performance 0
Good for Ubiquitous
imple t
_ Simple to us-e Using this language

Programming Executable file]
Languages C/C++/Java/... Verilog/VHDL Verilog/VHDL
Main Companies Intel, ARM, AMD, Xilinx, Altera TSMC,

Apple, NVIDIA Globalfoundries
SAFARI 42

All Computers are Built Upon
the Same Building Blocks

Building Blocks of Modern
Computers

Transistors

45

Transistors

Computers are built from very large numbers of very
simple structures
o Intel’s Pentium IV microprocessor, first offered
for sale in 2000, was made up of more than 42 | Problem
million MOS transistors Algorithm

o Intel’s Core i7 Broadwell-E, offered for sale in | Program/Language
2016, is made up of more than 3.2 billion MOS | Runtime System

transistors (VM, OS, MM)
This lecture ISA (Architecture)
o How the MOS transistor works (as a logic Microarchitecture
element)
o How these transistors are connected to form
logic gates Electrons

o How logic gates are interconnected to form larger units that
are needed to construct a computer

46

MOS Transistor

= By combining
o Conductors (Metal)
o Insulators (Oxide)
o Semiconductors

= We get a Transistor (MOS)

= Why is this useful?
o We can combine many of these to realize simple logic gates
= The electrical properties of metal-oxide semiconductors are

well beyond the scope of what we want to understand in
this course

o They are below our lowest level of abstraction

47

Ditterent Types of MOS Transistors

There are two types of MOS transistors: n-type and p-type

Source
Source Drain

n-type p-type

They both operate “logically,” very similar to the way wall
switches work

48

How Does a Transistor Work?

ﬁ
i Wall Switch | I

L—

~
[Power Supply

o In order for the lamp to glow, electrons must flow

o In order for electrons to flow, there must be a closed circuit
from the power supply to the lamp and back to the power
supply

o The lamp can be turned on and off by simply manipulating the
wall switch to make or break the closed circuit

49

How Does a Transistor Work?

Instead of the wall switch, we could use an n-type or a p-
type MOS transistor to make or break the closed circuit

Drain _ _
J If the gate of an n-type transistor is

supplied with a high voltage, the

connection from source to drain acts like a
_‘ piece of wire

Source Depending on the technology,
Schematic of an n-type high voltage can range from 0.3V to 3V
MOS transistor

If the gate of the n-type transistor is
supplied with zero voltage, the connection
between the source and drain is broken

50

How Does a Transistor Work?

The n-type transistor in a circuit with a battery and a bulb

S SR
D

A\

i B Volt—l

Gate —|
v/)
. P |
Qhorthand notatlcy [ower Supply

The p-type transistor wor

ks in exactly the opposite fashion

from the n-type transistor

Drain Drain

The circuit is closed
when the gate is
supplied with 3V

n-type

]

-

The circuit is closed
when the gate is
supplied with OV

p-type

Source Source

51

Logic Gates

52

One Level Higher in the Abstraction

= Now, we know how a MOS transistor works
= How do we build logic out of MOS transistors?

Problem
= We construct basic logic structures out of | Algorithm
individual MOS transistors Program/Language
Runtime System
_ _ _ (VM, OS, MM)
= These logical units are called logic gates ISA (Architecture)

o They implement simple Boolean functions

53

Making Logic Blocks Using CMOS Technology

Modern computers use both n-type and p-type transistors,
I.e. Complementary MOS (CMOS) technology

nMOS + pMOS = CMOS

The simplest logic structure that exists in a modern

computer

_1
_|

In (A)

3V

p-type

Out (Y) What does this circuit do?
n-type

54

Functionality ot Our CMOS Circuit

A\

What happens when the input is connected to 0V?

1
]

oV —

3V

— Out (Y)

3V

p-type transistor
pulls the output up

24 o

Y

=3V

p-type transistors are good at pulling-up the voltage

55

Functionality ot Our CMOS Circuit

A\

What happens when the input is connected to 3V?

A= 3V

—

_|

3V

Out (Y)

3V

\

R

V4
oV

— Y =0V

n-type transistor pulls
the output down

n-type transistors are good at pulling-down the voltage

CMOS NOT Gate

= This is actually the CMOS NOT Gate =L
= Why do we call it NOT? —p
o IfFA=0VthenY =3V In (A)— L out(Y)
o IfA=3VthenY =0V N
= Digital circuit: one possible interpretation
o Interpret OV as logical (binary) 0 value \V4
o Interpret 3V as logical (binary) 1 value v
0 ON OFF 1 Y = A

OFF ON 0

SAFARI 57

CMOS NOT Gate

This is actually the CMOS NOT Gate =L
Why do we call it NOT? —p
o IfA=3VthenY =0V N
Digital circuit: one possible interpretation
o Interpret OV as logical (binary) 0 value x
o Interpret 3V as logical (binary) 1 value _
Y=A
Truth table: shows what is the logical
A —_— Y output of the circuit for each possible input
AlY
We call it a NOT gate 0 1
or an inverter 1 0

SAFARI

58

Another CMOS Gate: What Is This?

Let’s build more complex gates!

1%1 |

i In (A) o |
In (B) ——|

3V

ol

S

Out (Y)

=

2L_1|=

N

2<

SAFARI

CMOS NAND Gate

= Let’s build more complex gates!

3V

%1 —{[P2
%& F Out (Y)
ﬁ In (A) N1 AB Pl P2 N1 N2

Y
- L s 0 0JON ON OFF OFF] 1
| 0 1] ON OFF OFF ON | 1

o 1 OJOFF ON ON OFF| 1

0

1 1§OFF OFF ON ON

o P1 and P2 are in parallel; only one must be ON to pull the
output up to 3V

o N1 and N2 are connected in series; both must be ON to pull
the output to OV

SAFARI 60

CMOS NAND Gate

Let’s build more complex gates!

3V

éj,l —{[P2
<&\§&\< In (A) F 5\11 -
i In (B) o—|[N2

SAFARI

= AB
A BIlY
0 0|1
0 1|1
1 0|1
1 1o

61

CMOS AND Gate

How can we make an AND gate?

A B Y _ _
1 Y =A-B=AB
0o 1 0 A—
1 0 0 —Y
1 1 |1 B —
We make an AND gate using =] :3|V-
P2 —[P3

Ly]
]
(@)
=1
=

one NAND gate and %1 —]
one NOT gate r

i In (A)
In (B) ®

SAFARI 62

=
(Y
2
(98]

=l
N
<

24

CMOS NOT, NAND, AND Gates

AlY A B Y A B Y
0 1 0 0 1 0 0 |0
1 | o 0o 1 1 o 1 |o
1 0 1 1 0 | o
1 1 | o 1 1 1

3V

3V
Et—‘i p2 P1 —{[P2 r%%;

P Out (Y) Out (Y)
In (A) Out (Y) In (A) _| N1 In (A) |—| N3

—{[N1
N
In(8) ——&—|[N2 in(8) —&—|[N2 N
ov ov ov

SAFARI 63

General CMOS Gate Structure

The general form used to construct any inverting logic gate,

such as: NOT, NAND, or NOR

The networks may consist of
transistors in series or in
parallel

When transistors are in
parallel, the network is ON if
one of the transistors is ON

When transistors are in series,
the network is ON only if all
transistors are ON

Inputs

PMQOS transistors are used for pull-up
NMQOS transistors are used for pull-down

SAFARI

—

-

.

pMOS

pull-up
network

~

/

-

NS

nMOS
pull-down
network

~

/

%

output

64

General CMOS Gate Structure (11)

Exactly one network should be ON, and the other network

should be OFF at any given time

If both networks are ON at the
same time, there is a short
circuit - likely incorrect
operation

If both networks are OFF at
the same time, the output is
floating = undefined

PMQOS transistors are used for pull-up
NMQOS transistors are used for pull-down

SAFARI

Inputs

—

-

.

pMOS

pull-up
network

~

/

-

NS

nMOS
pull-down
network

~

/

%

output

65

Digoing Deeper: Why This Structure?

MOS transistors are not perfect switches

pMOS transistors pass 1's well but 0’s poorly
nMOS transistors pass 0’s well but 1’s poorly

pMOS transistors are good at “pulling up” the output
nMQOS transistors are good at “pulling down” the output

pMOS

pull-up

I%l _Cl P2 ﬁg network
Out (Y) . t

In (A) L—| |—| N3 INputs

In(e) ——&—{[N2

output

ov
nMOS

pull-down
network

ov

SAFARI See Section 1.7 in H&H 66

Digoing Deeper: Latency

Which one is faster?
o Transistors in series
o Transistors in parallel

Series connections are slower than parallel connections

a2 More resistance on the wire

How do you alleviate this latency?

o See H&H Section 1.7.8 for an example:
pseudo-nMOS Logic

SAFARI

inputs

Figure 1.39 Generic pseudo-nM0S
gate

-

v

A-[B-[c[p- Y

Figure 1.40 Pseudo-nMOS four-
input NOR gate

67

Diggoing Deeper: Power Consumption

Dynamic Power Consumption

o C*¥V2x*f
C = capacitance of the circuit (wires and gates)
V = supply voltage
f = charging frequency of the capacitor

Static Power consumption

o V* IIeakage
supply voltage * leakage current

Energy Consumption
a Power * Time

See more in H&H Chapter 1.8

SAFARI

68

Or™=rO

—OOTr

Or@¥mOr

OO0 r™r

0111

XNOR

Or@¥mOr

OO0 rrr

—O00O0

OR

Or@0Or

OO0 rr

OO0OOTr

NOR

Or@m0Or

OO0 rr

-—_-—-0

)z

AND

A —
B —

Or@¥mOr

OO0 r™rr

Buffer

-z

NAND

A —
B —

Inverter

Or@¥mOr

OO0 r™r

Common Logic Gates

69

SAFARI

Larger Gates

We can extend the gates to more than 2 inputs

Example: 3-input AND gate, 10-input NOR gate

See your readings

SAFARI

A

A

B |

c]
g

Figure 1.35 Three-input NAND
gate schematic

70

Aside: Moore’s Law:
Enabler of Many Gates on a Chip

An Enabler: Moore’s Law

LOG2 OF THE

16 10°
15 =
0S5 131 £ 10°
— ot [=
w L 8
cng l' taln s b 1965
e S 1%
OO 9 Pent 8
U",,‘_’ 81 Bon 2
58 7 2 10°
S 6 oo P 10+ 1970
wE 3 - £
= 3 251
=l =
. 2 w
| >
O z ‘ I} 1 1 |
N 10 10° 10° 10 10°
@ NUMBER OF COMPONENTS PER INTEGRATED
CIRCUIT
> 5 - v]
4004 & N ,.

- 3= st 1,000
1995 2000 2005

1970 1975 1980

1985 1990

Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, 1965. Component counts double every other year

Image source: Intel

72

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

16-Core SPARC T3

— Six-Core Caore :7\
2,600,000,000 - SiCore Xeon 400\ 010G oo Wosmor X
Dual-Care ltanum 2@ - .8-core POWERT
1,000,000,000 - ok, BEGHEAN e v
' 6 Sore Opteron 2400
'5 B ,,/ {Quad)
> (4F 24
100,000,000 - V13 ot
h -
5 < 12 //
LEE T <
z £ 19 ’
S 10,000,000 e 9
(@] ') (&5 2 VY| 8 L.
O =
S SSax
2 4000,000- S92 6
2] 2 ! wi— 9
c o= 4
© =~
= = W
. VY | 2
100,000 a :
0 L L [d 1 1 1 i [B | 1 1 L | IR | i
DO —IMTNWOMNMNOOOO —-—NMNT WO
NOWOODOUOULCODOYOWONSNMNSNMNSMMSNSDN-
RO DADORODADND DD
10,000 = = 2 32/ 0 0= m =
YEAR
2,300~ w008 Acatee
I 1 1 I]
1971 1980 1990 2000 2011

Date of introduction
Number of transistors on an integrated circuit doubles ~ every two years

Image source: Wikipedia

73

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

Our World
in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.

20,000,000,000
10,000,000,000

5,000,000,000

Pentium D Presler

IBM z13 Storage Controller. SPARC M7
18-core Xeon Haswell- E5

Xbox One main SOC\ 022 core Xeon Broadwell-E5
61-core Xeon Phi _’8 8;15 core Xeon Ivy Bridge-EX

12-cors POWER Apple P& tri-core ARMB4 *mobile SoC*)
8- core Core i7 Haswell-E
Duo-core + GPU Iris Core i7 Broadwell-U
Quad core + GPU GT2 Core i7 Skylake K

g L4 8 o Quad -core + GPU Core i7 Haswell

8-core Xeon Nehalem- EX\
Six-core Xeon 7400
Dual-core Itanium 20

1 ’000’000’000 ltanium 2 With° e Co o 7 (Quad) Apple A7 (dual-core ARM64 "mobile SoC")
MB cache rei U
500,000,000 Itanium 2 Madison 6M€p ‘émggbugl\ﬁg f%%g 213
Pentium D Smithfield_ Core 2 Duo Conroe
Itanium 2 McKinley€p © g Cell Core 2 Duo Wolfdale 3M
Pentium 4 Prescott-2M€p \QPCore 2 au(o; Adllen’?/lallle
entium edar Mi
1 00,000,000 AMD K8 @ °Pentlum 4 Prescott
Pentium 4 Northwoo
= 50,000,000 Pentium 4 Willamette ¢p €. Pd° i QAtom
entium Il Tualatin
= § Pentium Il Mobile Dixon QARM Cortex-A9
(@) AMD K7 QPentlum Ill Coppermine
8 AMD K6-
@] AMD K6
£ 10,000,000 _ o8 orSRBASRE
S Pentium Pro,
8 5,000,000) < Kamath
E Pent|um° AMD K5
= Intel 80486, s
1,000,000 nel8%%% Bhraooo
500,000 LSmachind cp ® ARNY00
Intel 80386, Intel o @ ARM 3
Motorola 68020 ¢ ¢ Gog
< Narman
100,000 gtoro Intel 80286 &%% |
50.000 e d @ Intel 80186
Intel 8086€p €y Intel 8088 o QARM 2 AF& 6
°ARM 1
10.000 T™s 1000 Zilog Z8Q Mgggorgla gc oxale N6
RCAJ802 Qnteigoss 00
55000 Intel 8008, Intel 8080
MOS Technology
Matorola g502
intel aba 6800
1,000
PRSI LRSI PP T FE DD >0
S S S FFFFFFTEEEES S S P S D

Year of introduction

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

SAFARI

Licensed under CC-BY-SA by the author Max Roser.

74

Moore’s Law: The number of transistors on microchips doubles every two years [SaWeuk

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count

50,000,000,000 GC2IPU €AMD Epyc Rome
72-core Xeon Phj Centriq 2400 "¢y € AWS Graviton2
BM 215 St SCPARtC ’|\|47 \032-core AMD Epyc
Z orage Controller | ioni
10,000,000,000 rag /AD}S%LA'QXKB'I'O%%O -
18-core Xeon Haswell-E5 \ © 8 g 8A|;p|‘écg\r13 ‘(righone P ors)
Xbox One main SoC
5,000,000,000 o poreXeon Phi@3 8 QAMD Ryzen 7 3700X

12-core POWERS,

© “SHiilicon Kirin 710
8-core Xeon Nehalem-EXN g

10-core Core i7 Broadwell-E
Qualcomm Snapdragon 835

Six-core Xeon 7400 P)
Ouatcor Aim 39 @ 3§ o e g S
1,000;0007000 Pentium D Presler POWERS ° g < 8 © Quad-core + GPU Core i7 Haswell
Itanium 2 with -2 o . Apple A7 (dual-core ARM64 "mobile SoC")
9 MB cach Core i7 (Quad)
500,000,000 eo\ Seoeiaua

[tanium 2 Madison 6M € Core 2 Duo Wolfdale

) Pentium D Smithfields Core 2. Duo Conroe
Itanium 2 McKinley € © Cell Core 2 Duo Wolfdale 3M

Pentium 4 Prescott-2M € € Core 2 Duo Allendale

100 OOO OOO \Pentium 4 Cedar Mill
' ’ AMD k8@ °Penﬁum 4 Prescott
50,000,000 Pentium 4 Northwood
B
' ' Pentium 4 Willamette ¢ € ®-@sajton QAtom

Pentium IIl Tualatin

Pentium Il Mobile Dixon QARM Cortex-A9

AMD K7 @ Pentium Ill Coppermine

AMD Keé-1l
F0.000,000 BB ¥ il
5,000,000 Pentium Pro° P}%at:rgiantqhu
Penﬁumo AMD K5
SATI10
1,000,000 ntel 8075 o0
500,000 e . -
Intel 8038 Intel o €@ ARM 3
Motorola 6802096° ‘%O°DEC ki
100,000 . et 30286 HLIERN 2] o
50,000 Se @ Intel 80186 o
Intel 80864 € Intel 8088 ° QARM 2 AR?A 6
. oARMl
10,000 146 1000 Ziogz80 " S808° R Wiasia f\)
5,000 ® reagam ntel 8085 0202
Intel 8008 Iniel 8080
°Motoro\a 2/15%§Technology
Intel 4804 6500
1,000
I\ SR A L R S S s | G\ R LI S S ol S SRS BN SN N
CRSCRICANCRIC RN L SIC GG GG R L R MR R R SR S S L

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Recommended Reading

Moore, “Cramming more components onto integrated
circuits,” Electronics Magazine, 1965.

Only 3 pages

A guote:

"With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as
many as 65 000 components on a single sificon chip.”

Another quote:

"Will it be possible to remove the heat generated by tens of

thousands of components in a single silicon chip?”
76

How Do We Keep Moore’s Law

Manufacturing smaller transistors/structures
o Some structures are already a few atoms in size

Developing materials with better properties

o Copper instead of Aluminum (better conductor)

o Hafnium Oxide, air for Insulators

o Making sure all materials are compatible is the challenge

Optimizing the manufacturing steps
o Extreme ultraviolet (EUV) light to pattern <10nm structures

New technologies
o FinFET, Gate All Around transistor, Single Electron Transistor...

SAFARI 77

Combinational Logic Circuits

78

We Can Now Build Logic Circuits

Now, we understand the workings of the basic logic gates

What is our next step?

Build some of the logic structures that are important

components of the microarchitecture of a computer!

= A logic circuit is composed of: rf . A
- functional spec
2 Inputs inputs —>» : outputs
o Outputs > timing spec
_ /

= Functional specification (describes relationship between
inputs and outputs)

w [iming specification (describes the delay between inputs
changing and outputs responding)

79

Types ot Logic Circuits

s
_)

inputs
_)

_

functional spec

timing spec

~

_>

5 outputs

J

Combinational Logic

o Memoryless

o Outputs are strictly dependent on the combination of input
values that are being applied to circuit right now

o In some books called Combinatorial Logic
Later we will learn: Sequential Logic

o Has memory

Structure stores history - Can “store” data values
o Outputs are determined by previous (historical) and current

values of inputs

80

Boolean Equations

81

Functional Specification

Functional specification of outputs in terms of inputs
What do we mean by “function”?

o Unique mapping from input values to output values

o The same input values produce the same output value every
time

o No memory (does not depend on the history of input values)

Example (full 1-bit adder — more later):

A I \

B— ¢ S
S =FA B G) o Cou
CZ)ut = G(Al B/ qn) "

S =A®BoC,
COut =AB +AC,_+BC_

82

Simple Equations: NOT / AND / OR

A (reads “not A”) is 1iff A is 0 414
0 |1
A D _
A 1 |o
A * B (reads “A and B”) is 1iff A and B areboth1 A4 B|A°B
00| O
A — - 01| 0
AeB
5 10| 0
11 | 1
A + B (reads “A or B”) is 1iff either A or B is 1 A B|A+B
00| O
A 01| 1
} A+B
B :[> 10| 1
11| 1

83

Boolean Algebra: Big Picture

An algebra on 1's and 0’s
o with AND, OR, NOT operations

What you start with

o Axioms: basic things about objects and operations
you just assume to be true at the start |

What you derive first

o Laws and theorems: allow you to manipulate Boolean expressions
o ...also allow us to do some simplification on Boolean expressions

What you derive later

o More “sophisticated” properties useful for manipulating digital
designs represented in the form of Boolean equations

George Boole, “The Mathematical Analysis of Logic,” 1847. 84

Boolean Algebra: Axioms

Formal version

1. B contains at least two elements,
0 and 1, such that 0 # 1

English version

Math formality...

2. Closure a,b € B,
i) at+bEB
(il) a* b€ B

Result of AND, OR stays
in set you start with

3. Commutative Laws: a,b € B,

For primitive AND, OR of

83) 2 inputs, order doesn’t matter
4. Identities: 0,1 € B There are identity elements
(i) for AND, OR, that give you back
(i1) what you started with
5. D .zls‘trz'butz'v ¢ Laws: * distributes over +, just like algebra
83) ...but + distributes over °, also (!!)
6. Compl L
(io)mp crent There is a complement element;
(ii) AND/ORing with it gives the identity elm.

85

Boolean Algebra: Duality

Observation
o All the axioms come in “dual” form
o Anything true for an expression also true for its dual

o So any derivation you could make that is true, can be flipped into
dual form, and it stays true

Duality — More formally

o A dual of a Boolean expression is derived by replacing
Every AND operation with... an OR operation
Every OR operation with... an AND
Every constant 1 with... a constant O
Every constant 0 with... a constant 1
But don't change any of the literals or play with the complements!

Example as(b+c)=(a*b)+(a°c)

— a+(bec)=(a+b)°(a+c)

86

Boolean Algebra: Useful Laws

Dual
Operations with 0 and 1: 1 AND, OR with identities
1. X+0=X 1D. Xe1=X gives you back the original
2. X+1=1 2D. X0=0 variable or the identity
Idempotent Law:
3. X+X=X 3D. XX =X AND, OR with self = self
Involution Law:
4.(X) =X double complement =
no complement
Laws of Complementarity: _ AND, OR with complement
5. X +X=1 5D. XeX=0

gives you an identity

Commutative Law:
6. X+Y=Y+X

6D. XeY=YX

Just an axiom...

87

Usetul LLaws (continued)

Associative Laws: .
7. X+Y)+Z=X+(Y+2) 7D. XeY)eZ=X*(Y*Z) Parenthesis order
=X+Y+Z =XeY*Z does not matter

Distributive Laws:
8. Xe(Y+Z)=(X*Y)+(X*Z) 8D. X+ (YZ)=X+Y)*sX+7Z) Axiom

Simplification Theovems:

9. 9D.
Useful for
10. 10D. simplifying
expressions
11. 11D.

Actually worth remembering — they show up a lot in real designs...

38

Boolean Algebra: Proving Things

Proving theovems via axtoms of Boolean Algebra:
EX: Prove the theorem: Xe*Y + Xey =X
Distributive (5)
Complement (6)
Identity (4)

EX2: Prove the theorem: X + XeY =X
Identity (4)
Distributive (5)
Identity (2)
Identity (4)

89

DeMorgan’s Law: Enabling Transformations

DeMovrgan's Law: o
2.X+Y+Z+-)=X.Y.Z..
+

12D.(X.Y.Z..)=X+Y+Z

Think of this as a transformation

Let’s say we have:

F=A+B+C

Applying DeMorgan’s Law (12), gives us

F=(A+B+C) =(A.B.C)

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false

90

DeMorgan’s Law (Continued)

These are conversions between different types of logic functions
They can prove useful if you do not have every type of gate

A=XF7) = XV §DA x v|xav [x |7 | xv

00| 1 |1|1| 1

. _ 01| o |1]of o

NOR is equivalent to AND X i 1ol o lolil o
with inputs complemented yD

11] 0 Jojof o©

B=XY)=X+7Y ?;:}B xv| xw [x|p|x+v

00 1 (1)1 1

01| 1 [1]0f 1

NAND is equivalentto OR y 5 Tof 1 J0)1f 1

with inputs complemented y@ 11 o fofo] o

91

Using Boolean Equations
to Represent a Logic Circuit

92

Sum of Products Form: Key Idea

Assume we have the truth table of a Boolean Function

How do we express the function in terms of the inputs in a
standard manner?

Idea: Sum of Products form

Express the truth table as a two-level Boolean expression

o that contains all input variable combinations that result in a 1
output

o If ANY of the combinations of input variables that results in a
1 is TRUE, then the output is 1

o F = OR of all input variable combinations that result in a 1

93

Some Definitions

s Complement: variable with a bar over it

A,B,C

= Literal: variable or its complement
A, A,B,B,C,C

= Implicant: product (AND) of literals
(A-B-C) ,(A-C) ,(B-C)

= Minterm: product (AND) that includes all input variables
(A-B-C) ,(A-B-C) ,(A-B-0)

= Maxterm: sum (OR) that includes all input variables
(A+B+C),(A+B+C),(A+B+0)

94

Two-Level Canonical (Standard) Forms

Truth table is the unique signature of a Boolean function ...
o But, it Is an expensive representation

A Boolean function can have many alternative Boolean
expressions

o i.e., many alternative Boolean expressions (and gate
realizations) may have the same truth table (and function)

o If they all say the same thing, why do we care?
Different Boolean expressions lead to different gate realizations

Canonical form: standard form for a Boolean expression
o Provides a unique algebraic signature

95

Two-lLevel Canonical Forms: SOP

Sum of Products Form (SOP)

Also known as disjunctive normal form or minterm expansion

011 100 101 110 11 1
F=ABC + ABC + ABC + ABC + ABC

<
N o

<
D

== ==O0 0000
= =00 KMKROOIW

HOFEROKEKEOREO|ID
O O O

Each row in a truth table has a minterm
A minterm is a product (AND) of literals
Each minterm is TRUE for that row (and only that row)

All Boolean equations can be written in SOP form

Find all the input combinations (minterms) for which the output of the function is TRUE®

SOP Form — Why Does It Work?

This input

011 100 10 1+—110 111

F=ABC + ABC +[ABC |+ ABC + ABC

Activates
this ter

SR I -E-X-K=]1s

=== 0 0|™

R ROooOoRKROO|IW
= ORORORO|O

Only the shaded productterm — ABC =1-0-1—willbe 1

No other product terms will “turn on” — they will all be 0

So if inputs A B C correspond to a product term in expression,
o Weget 0+0+..+1+ ...+ 0+ 0 =1 for output

If inputs A B C do not correspond to any product term in expression
o Weget0+ 0+ ...+ 0 =0 for output

The function evaluates to TRUE (i.e., output is 1)
if any of the Products (minterms) causes the output to be 1 97

Aside: Notation for SOP

Standard “shorthand” notation

o If we agree on the order of the variables in the rows of truth
table...

then we can enumerate each row with the decimal number that
corresponds to the binary number created by the input pattern

A B C|F
0 0 00O
0 0 1]0
01 00
01 1|1
1 0 0|1 100 = decimal 4 so this is minterm #4, or m4
10 11
11 011
1 1 111 111 = decimal 7 so this is minterm #7, or m7

We can write this as a sum of products

—h
|

Or, we can use a summation notation

98

Canonical SOP Forms

A B C | minterms F in canonical form:

0 0 0] ABC =m0

0 0 1| ABC =ml F(A,B,C) = Ym(3,4,5,6,7)

0 1 0| ABC =m2 =m3 + m4 + m5 + m6 + m7
0 1 1| ABC =m3

1 0 0| ABC =m4 F =

1 0 1| ABC =m5

1 1 0| ABC =m6

1 1 11 ABC =m7

canonical form # minimal form

Shorthand Notation for
Minterms of 3 Variables

F

2-Level AND/OR
Realization

From Logic to Gates

m SOP (sum-of-products) leads to two-level logic

s Example:Y=(4-B-C)+(A-B

A

- Va

B

Vs

C

Ve

Y

.C)+(A-B-C)

U

\/

Y

minterm: ABC

minterm: ABC

minterm: ABC

100

Canonical Sum of Products Form: Key Idea

Any 1-bit function can be represented as a Sum of Products

A “Product” is the Boolean AND that includes ALL input
variables of the function 2 minterm

The 1-bit Output of the Function can be represented as
o Sum (OR) of all minterms that lead to a 1 in the Output

Logically

o The function evaluates to TRUE (i.e., output is 1) if ANY of the
Products (minterms) causes the Output to be 1

o SOP form represents the function as the SUM (OR) all
Products (minterms) that cause the Output to be 1

101

Alternative Canonical Form: POS

We can have another canonical form of representation

DeMorgan of SOP of F

Product of Sums (POS) produds

Each sum term represents one of the
“zeros” of the function

—(A+B+C)(A+€+C/,+B+C)

sums This input

0 0 0 01 O /
F=(A+B+)(A+B+C) (A+B+C)

= === 00 0|>

.

Activates this term

For the given input, only the shaded sum term
will equal 0

A+B+C=0+1+0

M2 OOKEKOO|w
HMOROKORO|®
SRR NN -N-N-] [

Anything ANDed with 0 is 0; Output F will be 0

The function evaluates to FALSE (i.e., output is 0)
if at least one of the Sums (maxterms) causes the output to be 0 102

Consider A=0, B=1, C=0

Input

A B C |F 010=—> F= i +B+C)(A+B OO(A+B+C
00 070 ST

o 1 olo 1 0 0 1.0 0 1 o0
0 1 1|1 \1/ \Nl/ N/
1 0 0|1

1 0 1|1 U
1 1 0|1

1 1 1|1 1 0

\

1
\)

|
F=0
Only one of the products will be 0, anything ANDed with 0 is 0
Therefore, the outputis F=0

103

POS: How to Write It

F=(A+B+C)(A+B+C)(A+B+C)
I

a

t

1;

= == =000 0>
= =00 MEQOO|I®
|
(vo]]
|

FORROREROKEOID
O O O™
v]

)

Maxterm form:
1. Find truth table rows where F is 0

2. 0 in input col — true literal
3. 1 in input col — complemented literal

4. OR the literals to get a Maxterm
5. AND together all the Maxterms

Or just remember, POS of F is the same as the DeMorgan of SOP of F !!

104

Canonical POS Forms

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

Maxterms

A+B+C =MO
A+B+C =M
A+B+C =M2
A+B+C =M3
A+B+C =M4
A+B+C =M5

A+B+C =M6
Z+E+E=M7ﬁ>
Maxterm shorthand notation

for a function of three variables

- O = 0O =20 -=_20|NM

F=(A+B+C)(A+B+C)(A+ B+ ()

1_[M(0,1,2)

MO OOO|

HHEHOOKKOO|x

HOMROKOERO|A

OO Oy

Note that you
form the
maxterms around
the “zeros” of the
function

This is not the
complement of
the function!

105

Useful Conversions

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

E.g., F(4,B,C) =Y m(3,4,5,6,7) = [M(0,1,2)

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

E.g., F(4,B,C) =[[M(0,1,2) = Ym(3,4,5,6,7)
3. Expansion of F to expansion of F:

E.g.,F(4,B,C) = Z m(3,4,567) —— F(ABC()= Z m(0,1,2)

_ 1_[M(0,1,2) . - 1_[M(3,4,5,6,7)

4. Minterm expansion of F to Maxterm expansion of F:
rewrite in Maxterm form, using the same indices as F

E.g F(4,BC) = Zm(3,4, 56,77 ., F(4,B,(C)=][IM(3,45,6,7)

= 1_[M(0,1,2) — = Z m(0,1,2)

106

Logic Simplification (or Minimization)

= Using Boolean Algebra, we can simplify the SOP or POS
form of any function in @ methodical way

= Starting with the canonical SOP or POS form enables
convenience and automation

a Truth table > SOP/POS form - Boolean Simplification Rules

n Example (full 1-bit adder — more later):
A _f \
B ¢ [°
5 = F(Al BI Gn) C] COUt
C:)ut = G(Al B/ qn) "
S =A®BoC,
C..=AB+AC_ +BC_

e 107

Logic Simplitication Example: SOP Form

m SOP (sum-of-products) form of function Y

s Example:Y=(4-B-C)+(A-B

A

- Va

B

Vs

C

Ve

Y

.C)+(A-B-C)

U

\/

Y

minterm: ABC

minterm: ABC

minterm: ABC

108

Logic Simplification Example: Simplified

m SOP (sum-of-products) form of function Y
s Example: Y= (B-C)+ (4" B)
A B C

Y Y

UHJ

109

Let’s Cover Some
Basic Combinational Blocks

110

Combinational Building Blocks
used in Modern Computers

Combinational Building Blocks

Combinational logic is often grouped into larger building
blocks to build more complex systems

Hides the unnecessary gate-level details to emphasize the
function of the building block

We now look at:

Decoder

Multiplexer

Full adder

PLA (Programmable Logic Array)

Q
Q
Q
Q

Decoder

113

Decoder

“Input pattern detector”
n inputs and 2" outputs
Exactly one of the outputs is 1 and all the rest are 0s

The one output that is logically 1 is the output
corresponding to the input pattern that the logic circuit is

expected to detect
Example: 2-to-4 decoder

24
A AlYs Y. Y Y, Decoder
1|— v,
0 010 0 0 1 3
o 110 o 1 o H— 10— Y,
1 olo 1 o o Ao — 01— Y,
1 111 o o o 00— Yo

114

Decoder (I)

n inputs and 2" outputs
Exactly one of the outputs is 1 and all the rest are 0s

The one output that is logically 1 is the output
corresponding to the input pattern that the logic circuit is
expected to detect

A ® g
B——t—4

. . A=1 * g
1ifABis 00 £B=0

1ifABis 01 ! C} 0

1ifABis 10

1ifABis 11

rTTT

Decoder (I1)

The decoder is useful in determining how to interpret a bit
pattern

o It could be the A=1 —
address of a row in ﬁB - d

DRAM, that the

processor intends to ! -
read from | } o

o It could be an —
instruction in the
program and the
processor has to -—
decide what action to ¢
do! (based on
instruction opcode)

116

Multiplexer (MUX)

Multiplexer (MUX), or Selector

Selects one of the NVinputs to connect it to the output
o based on the value of a log,-bit control input called select
Example: 2-to-1 MUX

S D, Dy| Y

0 0 o0 0 S

0o o0 1|1 -

68 1. 9 | @ Dy —0

0 1. 7|1 Ly
1 0 o0 o D, — 1

1 e | 8 e

i 9 (.=

E 5 3|3

Multiplexer (MUX), or Selector (1I)

Selects one of the NVinputs to connect it to the output
o based on the value of a log,-bit control input called select

Example: 2-to-1 MUX

A B A B

| "2
U

Multiplexer (MUX), or Selector (111)

The output C is always connected to either the input A or
the input B

o Output value depends on the value of the select line S

A B

| |
HHE—a

C

Your task: Draw the schematic for an 4-input (4:1) MUX
o Gate level: as a combination of basic AND, OR, NOT gates
o Module level: As a combination of 2-input (2:1) MUXes

120

A 4-to-1 Multiplexer

Sy 55
So S V V

\I\ DO _

Do —10 j
[~ D1

Dy — 1 .)

T b D

1
D> —0 o D; R
.

Dy — 1 Kj

[

121

Full Adder

Full Adder (T)

Binary addition

o Similar to decimal addition
o From right to left

o One column at a time

o One sum and one carry bit

Truth table of binary addition on one column of bits within

two n-bit operands

an_lan_z nun alaO

b, 1b,_ o ..byb,

Cn Ch1 Cq
Sn-1 5150
a; b; carry; |carry;.; S;
0 0 O 0 0
0O 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 O 0 1
1 0o 1 1 0
1 1 0 1 0
1 1 1 1 1

123

Full Adder (IT)

Binary addition
o N 1-bit additions
o SOP of 1-bit addition

Full Adder (1 bit)

Ci+1

an_lan_z nun alaO

b, 1b,_ 5 ..bibg

Cn Cn—l Cl
Sn-1 5150

a; b; carry;|carry;.; S;
0 0 O 0 0
o 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 O 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

124

4-Bit Adder from Full Adders

Creating a 4-bit adder out of 1-bit full adders
o To add two 4-bit binary numbers A and B

b3 as bz a b1 a;

rrooTrrorrrT

& Full Adder “ Full Adder «— Full Adder <«— Full Adder <«—0

(o)) C1
A
as adp, aq1 Qo 1 0 1 1
+ b, b, by b + 1 0 o 1
C4 C3 Cp Cq 1 0 1 1
S$S3 S2 S$1 Sy 0 1 0 0

125

Adder Design: Ripple Carry Adder

O

Figure 5.5 32-bit ripple-carry adder

126

Adder Design: Carry LLookahead Adder

Baiog Asios Boros Aozos 374 A74 Bao Aso
‘ 4-bitCLA | ©3 | abitcLA I
Block Block |n
Sa1.28 Soz.04 S7.4 Sa0
(a)
(I
Bs As B> Ao B; Aq Bo Ao
| | | |
R Y
+ - + - "
| | | |
83 SQ 81 SO
Gy Gs
P
1 Gy
P,
G,
— P,
— G,
Pa:
G Pao /[< P,
—Cin p—_ 5 1
\ g]

(b) 127

Programmable LLogic Array (PLA)

PLA: Recall: From ILLogic to Gates

m SOP (sum-of-products) leads to two-level logic
s Example:Y=(4-B-C)+(A-B-C)+(4-B-C)

A B C

RARARA

}— minterm: ABC

_\ | .
minterm: ABC

-

RN _ _
minterm: ABC

-

\/

Y

A PLA enables the two-level SOP implementation of any N-input M-output function!2?

The Programmable Logic Array (PLA)

The below logic structure is a very common building block

for implementing any collection of logic functions one
wishes to A

An array of AND gates B

followed by an array of OR .
gates

How do we determine the
number of AND gates?

o Remember SOP: the
number of possible minterms

Connections

LA

iigpiigipugigl

PYYYYYYY

o For an n-input logic function, we need a PLA with 2" n-input
AND gates
How do we determine the nhumber of OR gates? The

number of output columns in the truth table
A PLA enables the two-level SOP implementation of any N-input M-output function!3Y

The Programmable Logic Array (PLA)

How do we implement a logic function?
o Connect the output of an AND gate to the input of an OR gate
if the corresponding minterm is included in the SOP

o This is a simple programmable 4
logic construct

B

Programming a PLA: we ¢
program the connections from
AND gate outputs to OR gate
inputs to implement a desired
logic function

Connections

MV

T T AL

PYYYYYYY

Have you seen any other type of programmable logic?
o Yes! An FPGA...

o An FPGA uses more advanced structures, as we saw in Lecture 3

A PLA enables the two-level SOP implementation of any N-input M-output function!>1

PLA Example (I)

Inputs
v
4 B
AND Impligants
Array N
g J

OR
Array

1p
Qutputs

Read H&H Chapter 5.6.1

132

PLA Example Function (1I)

OR Array
(T V T) 4)
® @ & LHeG &
& ¢ & G &
© @ i (-
B », \ »
AND Array
X

Read H&H Chapter 5.6.1

133

PLA Example Function (I11I)

OR ARRAY

2 _X7 W W A 2 N

™\ ABC

J

~N | ABC

J

™ AB

J
. >, \.)

AND ARRAY |
X Y

Read H&H Chapter 5.6.1 134

Implementing a Full Adder Using a PLLA

=
—0 X
B ﬁg_>_ %:)7
c 1 This input should not be
9 Y We do not need
") connections = _-— connected to any outputs |
T this output
[I |
S ai—
s = >z ﬂlﬁ i T x
. T\
—o} b; 0 : |
B, — | |
¢)T |
9 \ I |] C'.,.
Truth table of a full adder — '
T\ |
a; b; carry; |carry;.; S; =) |
0 0 0 0 0 — . |)
o o0 1 0 1 — i |
o 1 0 0 1 =) | |
o 1 1 1 0 — | |
1 0 0 0 1 | ==
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

135

Logical Completeness

Logical (Functional) Completeness

Any logic function we wish to implement could be
accomplished with a PLA

o PLA consists of only AND gates, OR gates, and inverters

o We just have to program connections based on SOP of the
intended logic function

The set of gates {AND, OR, NOT} is logically complete
because we can build a circuit to carry out the specification
of any truth table we wish, without using any other kind of
gate

NAND is also logically complete. So is NOR.
o Your task: Prove this.

137

More Combinational Blocks

More Combinational Building Blocks

H&H Chapter 2 in full
o Required Reading
o E.g., see Tri-state Buffer and Z values in Section 2.6

H&H Chapter 5
o Will be required reading soon.

You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.

o Sections 5.1 and 5.2

139

Comparator

140

Equality Checker (Compare 1t Equal)

= Checks if two N-input values are exactly the same
= Example: 4-bit Comparator

Az
A B 537

Ay
= Bs—

+ Equal

| A
Equal 51
Ap)

Bo —

slsjvlv

ALU (Arithmetic Logic Unit)

ALU (Arithmetic Logic Unit)

= Combines a variety of arithmetic and logical operations into
a single unit (that performs only one function at a time)

= Usually denoted with this symbol:

Table 5.1 ALU operations

A B e Function
YN AN
I v | 000 A AND B
\ ALU /’§ 2 001 A OR B
AN 010 A+B
Y
011 not used
Figure 5.14 ALU symbol 100 A AND B
101 A ORB
110 A-B

111 SLT

Example ALU (Arithmetic Logic Unit)

A B
AN AN
Table 5.1 ALU operations
000 A AND B <AL
> | F
_ °
001 A OR B TN
010 A+B =
011 not used
100 A AND B
101 A OR B
110 A-B
111 SLT

144

More Combinational Building Blocks

See H&H Chapter 5.2 for

o Subtractor (using 2's Complement Representation)
Shifter and Rotator

Multiplier

Divider

o o O 0O

145

More Combinational Building Blocks

H&H Chapter 2 in full
o Required Reading
o E.g., see Tri-state Buffer and Z values in Section 2.6

H&H Chapter 5
o Will be required reading soon.

You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.

o Sections 5.1 and 5.2

146

Tri-State Buffer

Tri-State Buffer

A tri-state buffer enables gating of different signals onto a
wire

Tristate

Buffer

=

-

R R o olm
R or olx
H o N N|<

Figure 2.40 Tristate buffer

Floating signal (Z): Signal that is not driven by any circuit
o Open circuit, floating wire

SAFARI 148

Example: Use ot Tri-State Buffers

Imagine a wire connecting the CPU and memory

o At any time only the CPU or the memory can place a value on
the wire, both not both

o You can have two tri-state buffers: one driven by CPU, the
other memory; and ensure at most one is enabled at any time

SAFARI 149

Example Design with Tri-State Butters

GateCPU

[CPU

GateMem

[Memory

Shared Bus

SAFARI 150

Another Example

"
Processor ent

to bus

from bus
_

Ayt

J

£
Video en2

to bus

~

from bus

XY

.

>

[Ethernet en3

to bus

\

Ay

from bus
_

-
Memory en4

to bus

from bus

Ayt

shared bus

SAFARI

151

Multiplexer Using Tri-State Butters

S __
S5
DO E(% DO ﬂl—>
—Y 5150
N D ~| ;
D, y ‘ a
55 Y
Y=D,S+D,S D, &
Figure 2.56 Multiplexer using 5150
tristate buffers Ds“ }

SAFARI 152

Aside: Logic Using Multiplexers

= Multiplexers can be used as lookup tables to perform logic
functions

A B Y
0 o] o
o 1] o0 A
1 o] o A BlY A Y
1 1|1 (0 0 OJ_>C
o[o 0
Y=AB V_ AB >0 1 0 D g v
1 o0 |o =
AB 5] _J-)@ B) B—1
00
01
10 .
T 11

v

Figure 2.59 4:1 multiplexer
implementation of two-input AND
function

SAFARI 153

Aside: Logic Using Multiplexers (1I)

= Multiplexers can be used as lookup tables to perform logic
functions

Y=A®B

SAFARI 154

Aside: Logic Using Multiplexers (111)

= Multiplexers can be used as lookup tables to perform logic
functions

A BC
A B C|Y L | |
o 0 o] 1 o
o 0o 11]o0 000
o 1 o01]o 001
& 1 4 |« 010
1 0 0 1 011 Ly
1 0 1] 1 100
IR s I 101
1 1 11]o0 110
111
Y=AB+BC+ ABC W "

SAFARI Read H&H Chapter 2.8 155

Aside: Logic Using Decoders (I)

= Decoders can be combined with OR gates to build logic

functions.
2:4
Decoder Minterm
11 AB
A — 10 AB
B — 01 AB
00 AB
Y=A®D®B

4

Figure 2.65 Logic function using
decoder

SAFARI Read H&H Chapter 2.8 156

Logic Simplification using

Boo.

ean Algebra Rules

Recall: Full Adder in SOP Form Logic

O A 10+ 0O0O0 -

O OO 1 O v

b; carry; |carry;.; S;

a;

Ci+1

O 1 O +d1 0O+ O

OO 1 =+ OO i

O OO0 O i v

Full Adder

—0

D
-
B
-
D

[
+——=
+——
[
+——
P
[
[
+——

a;

158

Goal: Simplified Full Adder

Full
Adder

A8 S=A®B®C;,

o w 6. COU’[=AB+ ACin = BCin

S

O

=
==
—

How do we simplify Boolean logic?

—_— e OO0 = =00 >
—O0O—=0—=20=0lm

—L—L—Lo—&OOOoO
_LOO_LO—L—LO (D

159

Quick Recap on Logic Simplitication

The original Boolean expression (i.e., logic circuit) may not
be optimal

[F=~A(A+B)+ (B+ AA)A + ~B)]

Can we reduce a given Boolean expression to an equivalent
expression with fewer terms?

=T

The goal of logic simplification:
o Reduce the number of gates/inputs
o Reduce implementation cost

A basis for what the automated design tools are doing today

160

Logic Simplitication

= Systematic techniques for simplifications

o amenable to automation
Key Tool: The Uniting Theorem — F = AB + AB

A B |[F F= AB+AB=AB+B)=4(1)=4

Find two element subsets of the ON-set where only one variable
changes its value. This single varying variable can be eliminated!

— B is eliminated, A remains

B's value stays the same within the ON-set rows

' A's value changes within the ON-set rows
1 0 — A is eliminated, B remains

%\% G= AB+AB=(A+A)B=B
0
1
1

161

Logic Simplification Example: Priority Circuit

= Priority Circuit
o Inputs: "Requestors” with priority levels
o Outputs: “Grant” signal for each requestor
o Example 4-bit priority circuit

Az Ay A A Ys Yo Y7 Y

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 i |

- A3 Y3 I 0 0 1 0 0 0 1. 0
0 0] | i 0 0 2k 0

- A2 Y2 I 0 i 8 0 0 0 i | 0 0
0 1 0 1 0 1 0 0

- A1 Y1 N 0 g § 1 0 0 1 0 0
0 1 1 1 0 1 0 0

- AO YO N 1 0 0 0 1 0 0 0
Priority g ! 0 0 1 i1 0 0 0

Circuit il 0 i 0 1 0 0 0

1 0 1 1 1 0 0 0

1 1 0 0 i 0 0 0

1 1 0 1 : | 0 0 0

1 1 1 0 1 0 0 0

1 1 1 1 1 0 0 0

162

Simplified Priority Circuit

= Priority Circuit
o Inputs: "Requestors” with priority levels
o Outputs: “Grant” signal for each requestor
o Example 4-bit priority circuit

AsAr Al A

>
@

>
N
B

>
S

>
w

Q.

0O

R oooo
M= o o o
XX P O O
XXX P o
R oooo
or—\ooo,\;<
ook ool X
OOOI—‘OO‘<

X0

Figure 2.29 Priority circuit truth table with

don’t cares (X’s)

FRRPRRPRRPREPRPOOOOOOOO
FRRRPOOOORRKRRRFEROOOO
FRPOORRFROORMFPOORRE OO
FOoOrRrOROFRORORORORO
PRRPREPRPREROOO0OOOOOX
OCoocooocoorkEEREOOoOoOo<
Coocooo0o0o0000O0OkRk OO
Coocoocoooooooooookr ol

X (Don’t Care) means | don'’t care what the value of this input is

163

Logic Simplification:
Karnaugh Maps (IK-Maps)

Karnaugh Maps are Fun...

= A pictorial way of minimizing circuits by visualizing
opportunities for simplification

= They are for you to study on your own...

= See Backup Slides
= Read H&H Section 2.7

= Watch videos of Lectures 5 and 6 from 2019 DDCA course:

o https://youtu.be/0ks0PeaOUjE?list=PL5Q2s0XY2Zi8]58xLKBNF
QFHRO3GrXxA9&t=4570

o https://youtu.be/0zs18ARNG6s?list=PL50Q2s0XY2Zi8]58xLKBN
FQFHRO3GrXxA9&t=220

165

https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=4570
https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=220

Backup Slides on
Karnaugh Maps (IK-Maps)

Complex Cases

One example

Cout = ABC + ABC + ABC + ABC

Problem

o Easy to see how to apply Uniting Theorem...

o Hard to know if you applied it in all the right places...
o ...especially in a function of many more variables

Question

o Is there an easier way to find potential simplifications?
o i.e., potential applications of Uniting Theorem...?

Answer
o Need an intrinsically geometric representation for Boolean f()
o Something we can draw, see...

167

Karnaugh Map

= Karnaugh Map (K-map) method

o K-map is an alternative method of representing the truth table
that helps visualize adjacencies in up to 6 dimensions

o Physical adjacency < Logical adjacency

2-variable K-map 3-variable K-map 4-variable K-map
Ih 0 1 ACOO 01 11 10 ABDOO 01 11 10
01 0 | 000 | 001 | o011 | 010 00 |oo00 [0001 |0011 |0010

1120 |12 1 | 100 | 101 | 111 | 110 01 |o100 |o101 |0111 |0110

11 |1100|1101 |1111 |1110

10 (1000 |1001 [1011 1010

Numbering Scheme: 00, 01, 11, 10 is called a

“Gray Code” — only a single bit (variable) changes
from one code word and the next code word

168

Karnaugh Map Methods

Adjacent

X¢00 01 11 10 T o] e [12

01 101
0 | ooo | 001 | 011 | 010 011|111

1 {100 | 101 | 111 | 110 {000{010{110{100
\001\01 1 \1 1 1\ 101

Adjacent

K-map adjacencies go “around the edges”

Wrap around from first to last column
Wrap around from top row to bottom row

169

K-map Cover - 4 Input Variables

F(A B,CD) = Z m(0,2,5,8,9,10,11,12,13,14,15)

L F=A+BD + BCD

Strategy for “circling” rectangles on Kmap:

Biggest “oops!” that people forget:

170

Logic Minimization Using IK-Maps

Very simple guideline:

a Circle all the rectangular blocks of 1's in the map, using the
fewest possible number of circles

Each circle should be as large as possible
o Read off the implicants that were circled

More formally:

o A Boolean equation is minimized when it is written as a sum of
the fewest number of prime implicants

a Each circle on the K-map represents an implicant
a The largest possible circles are prime implicants

172

K-map Rules

What can be legally combined (circled) in the K-map?
o Rectangular groups of size 2k for any integer k
o Each cell has the same value (1, for now)

o All values must be adjacent
Wrap-around edge is okay

How does a group become a term in an expression?
o Determine which literals are constant, and which vary across group

o Eliminate varying literals, then AND the constant literals
constant 1 = use X, constant 0 = use X

What is a good solution?
o Biggest groupings = eliminate more variables (literals) in each term
o Fewest groupings = fewer terms (gates) all together
o OR together all AND terms you create from individual groups
173

K-map Example: Two-bit Comparator

F1 F2 F3

1

0

1

1

1

1
1

0O O

1

1
1

0O O

A B C D
O 0 O O

1

O 0 O

1 0 |0

0

=CD

O 0|0 O

1

0O |0

1

O 0 O |0 O

1
1

1

0O O

F1 RE

F2 AB < CD

O 0|0 O

1

Design Approach:

O |0 O

1

Write a 4-Variable K-map
for each of the 3

output functions

174

Example: Two-bit Comparator (2)

K-map

=) =) =) (=)
© ©:0 © ©:0 : O o
D0101m0101m0101m0101
Vlo o " OO "W OO0 Wi\ OO0 wW =
NI © © 0 W = = = © ©0 ©0 O =W w=w w w
L|O ©O ©O O ©0 0 0 O ™ ™ ™ ™ ™ ™ = =
O /o
v
'y
S \ -
™ =i
m v
\ o

Dgg

C
AB\

00

01

11
1

A

0

F1

175

Example: Two-bit Comparator (3)

K-map

MO mo mo o
o O © ©:0 : O o
D0101m0101m0101m0101
C0011.0011.0011.0011
N0 © 0 0 W W = =W O 0 0 0 W ™ =W =
<|O © 00000 0 W "W ™ ™ ™ = = =
Q
~~~ \
&) 4 )
o
=i

01

K-map for F2
11
\/
N
l/\\
D

? (Exercise for you)

CDOO

A0
01
11

G

0

A
F2
F3

176




K-maps with “Don’t Care”

Don't Care really means 7 don't care what my circuit outputs if this
appears as input

o You have an engineering choice to use DONT CARE patterns
intelligently as 1 or 0 to better simplify the circuit

A BCDIF G

| can pick 00, 01, 10, 11

X X «—/ independently of below

X X \
| can pick 00, 01, 10, 11

independently of above

= O = O

177



Example: BCD Increment Function

BCD (Binary Coded Decimal) digits
o Encode decimal digits 0 - 9 with bit patterns 0000, — 1001,
o When incremented, the decimal sequenceis O, 1, ..., 8,9, 0, 1

A B C D W X Y Z

0 0 0 O 0 0 1

0 0 0 1 0 1 O

0 0 1 0O 0o 1 1

0o 0 1 1 1 0 O

0 1 0 O 1 0 1

0o 1 0 1 1 1 0

0o 1 1 0 1 1 1

o 1 1 1 0 0 O

1 0 0 O 0 0 1

1 0 0 1 0 0 O B

1 0 1 O X X X

: (1) (1, (1, ; ; ; These input patterns_ shoulo!

1 1 0 1 X X X never be e_ncountered in practice
1 1 1 0 X X X (hey -- it’'s a BCD number?!)

1 1 1 1 X X X So, associated output values are

“Don’t Cares”
178



K-map tor BCD Increment Function

4 )
ag| £ (without don't cares) = b
+ . ,

— Z (with don't cares) =
W X
- \
10| 1 X [ x 10 X | x
Y Z
C
ABN00 01 11 10 »L00 01 11 10
00 1 1 00
01 1 1 01
11| X [ X | X [X A<11 x| x [x[x])B
10 X | X 10 (1 X | x
X

179



K-map Summary

Karnaugh maps as a formal systematic approach
for logic simplification

2-, 3-, 4-variable K-maps

K-maps with "Don’t Care” outputs

H&H Section 2.7

180



Digital Desigh & Computer Arch.

Lecture 4: Combinational Logic I

Prof. Onur Mutlu

ETH Zurich
Spring 2022
4 March 2022



