
Digital Design & Computer Arch.
Lecture 4: Combinational Logic I

Prof. Onur Mutlu

ETH Zürich
Spring 2022

4 March 2022

Recall Last Lecture: Mysteries No Longer!

n Rowhammer (2012-2014)

n Meltdown & Spectre (2017-2018)

n Memories Forget: Refresh (2011-2012)

n Memory Performance Attacks (2006-2007)

2

The Story of RowHammer Lecture …
n Onur Mutlu,

"The Story of RowHammer"
Keynote Talk at Secure Hardware, Architectures, and Operating Systems
Workshop (SeHAS), held with HiPEAC 2021 Conference, Virtual, 19 January 2021.
[Slides (pptx) (pdf)]
[Talk Video (1 hr 15 minutes, with Q&A)]

3

https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://www.youtube.com/watch?v=JV1uc1kOt04
https://www.hipeac.net/2021/budapest/
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pdf
https://www.youtube.com/watch?v=sgd7PHQQ1AI

Data Retention & Memory Refresh Lecture
n Computer Architecture, Fall 2020, Lecture 2b

q Data Retention and Memory Refresh (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=v702wUnaWGE&list=PL5Q2soXY2Zi9xidyIgB
xUz7xRPS-wisBN&index=3

4

https://www.youtube.com/watch?v=v702wUnaWGE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=3

Memory Performance Attacks Lecture …
n Computer Architecture, Fall 2021, Lecture 2a

q Memory Performance Attacks (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=VJzZbwgBfy8&list=PL5Q2soXY2Zi9xidyIgBx
Uz7xRPS-wisBN&index=2

5

https://www.youtube.com/watch?v=VJzZbwgBfy8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=
https://www.youtube.com/watch?v=v702wUnaWGE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=3

Bloom Filters (in ~15 Minutes)
n Computer Architecture, Fall 2021, Lecture 4b (2:34:25 timestamp)

q https://youtu.be/G8nj6etQdEw?list=PL5Q2soXY2Zi-
Mnk1PxjEIG32HAGILkTOF&t=9262

6

https://youtu.be/G8nj6etQdEw?list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&t=9262

Takeaways

7

Two Major Goals of This Course

q Enable you to think critically

q Enable you to think broadly

8

Takeaways
n It is an exciting time to be understanding and designing

computing architectures

n Many challenging and exciting problems
q That no one has tackled (or thought about) before
q That can have huge impact on the world’s future

n Driven by explosion of data, new applications (ML/AI,
graph analytics, genomics), ever-greater realism, …
q We can easily collect more data than we can analyze/understand

n Driven by significant difficulties in keeping up with that
hunger at the technology layer
q Five walls: Energy, reliability, complexity, security, scalability

9

Computer Architecture as an
Enabler of the Future

10

Assignment: Required Lecture Video
n Why study computer architecture? Why is it important?
n Future Computing Platforms: Challenges & Opportunities

n Required Assignment
q Watch one of Prof. Mutlu’s lectures and analyze either (or both)
q https://www.youtube.com/watch?v=kgiZlSOcGFM (May 2017)
q https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

n Optional Assignment – for 1% extra credit
q Write a 1-page summary of one of the lectures and email us

n What are your key takeaways?
n What did you learn?
n What did you like or dislike?
n Submit your summary to Moodle

11

https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=722981

Assignment: Required Readings
n This week

q Combinational Logic
n P&P Chapter 3 until 3.3 + H&H Chapter 2

n Next week
q Hardware Description Languages and Verilog

n H&H Chapter 4 until 4.3 and 4.5
q Sequential Logic

n P&P Chapter 3.4 until end + H&H Chapter 3 in full

n Within two weeks, we will be done with
q P&P Chapters 1-3 + H&H Chapters 1-4

12

A Note on Hardware vs. Software
n This course might seem like it is only “Computer Hardware”

n However, you will be much more capable if you master both
hardware and software (and the interface between them)
q Can develop better software if you understand the hardware
q Can design better hardware if you understand the software
q Can design a better computing system if you understand both

n This course covers the HW/SW interface and microarchitecture
q We will focus on tradeoffs and how they affect software

n Recall the mysteries we discussed
n Recall the example chips & platforms we surveyed

13

… but, first …
n Let’s understand the fundamentals…

n You can change the world only if you understand it well
enough…
q Especially the basics (fundamentals)
q Past and present dominant paradigms
q And, their advantages and shortcomings – tradeoffs
q And, what remains fundamental across generations
q And, what techniques you can use and develop to solve

problems

14

Fundamental Concepts

15

What is A Computer?
n Three key components
n Computation
n Communication
n Storage/memory

16

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

What is A Computer?
n Three key components
n Computation
n Communication
n Storage/memory

17

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

What is A Computer?
n We will cover all three components

18

Memory
(program
and data)

I/O

Processing

control
(sequencing)

datapath

Recall: The Transformation Hierarchy

19

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Computer Architecture
(narrow view)

Computer Architecture
(expanded view)

What We Will Cover (I)

n Combinational Logic Design

n Hardware Description Languages (Verilog)

n Sequential Logic Design

n Timing and Verification

n ISA (MIPS and LC3b)

n MIPS Assembly Programming

20

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

What We Will Cover (II)
n Microarchitecture Fundamentals

n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n Branch Prediction

n Out-of-Order Execution

n Superscalar Execution

n Other Paradigms: Dataflow, VLIW, Systolic, SIMD/GPUs, …
21

n Memory Technology and Organization

n Caches

n Prefetching

n Virtual Memory

22

What We Will Cover (II)

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Processing Paradigms We Will Cover

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Decoupled Access-Execute
n Systolic Arrays
n SIMD Processing (Vector & Array, GPUs)

23

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Combinational Logic Circuits
and Design

24

What Will We Learn Today?
n Building blocks of modern computers

q Transistors
q Logic gates

n Boolean algebra

n Combinational logic circuits

n How to use Boolean algebra to represent combinational
circuits

n Minimizing logic circuits (if time permits)

25

General-Purpose Microprocessors

26

Modern General-Purpose Microprocessors

27Source: https://www.apple.com/mac/m1/

https://www.apple.com/mac/m1/

Modern General-Purpose Microprocessors

28Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Modern General-Purpose Microprocessors

29Source: https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html

https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html

Modern General-Purpose Microprocessors

30Source: https://twitter.com/Locuza_/status/1454152714930331652

Intel Alder Lake,
2021

https://twitter.com/Locuza_/status/1454152714930331652

FPGAs

31

Modern FPGAs

32Source: https://www.mouser.ch/new/xilinx/xilinx-zynq-7000-zc702-eval-kit/

https://www.mouser.ch/new/xilinx/xilinx-zynq-7000-zc702-eval-kit/

Special-Purpose ASICs (App-Specific Integrated Circuits)

33

Modern Special-Purpose ASICs

34

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

Modern Special-Purpose ASICs

35

250 TFLOPS per chip in 2021
vs 90 TFLOPS in TPU3

1 ExaFLOPS per board

New ML applications (vs. TPU3):
• Computer vision
• Natural Language Processing (NLP)
• Recommender system
• Reinforcement learning that plays Go

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests

Modern Special-Purpose ASICs

36

Cerebras WSE-2
2.6 Trillion transistors

46,225 mm2

Largest GPU
54.2 Billion transistors

826 mm2

n The largest ML
accelerator chip (2021)

n 850,000 cores

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Modern Special-Purpose ASICs

37Source: https://dl.acm.org/doi/pdf/10.1145/3445814.3446723

https://dl.acm.org/doi/pdf/10.1145/3445814.3446723

Modern GPUs

38Source: https://en.wikichip.org/wiki/nvidia/tegra/xavier

https://en.wikichip.org/wiki/nvidia/tegra/xavier

General Purpose vs. Special Purpose Systems

CPUs

Flexible: Can execute any program
Easy to program & use

GPUs FPGAs ASICs

Efficient & High performance

Cerebras WSE-2Apple M1 Nvidia GTX 1070 Xilinx Spartan

General Purpose Special Purpose

(Usually) Difficult to program & use
Inflexible: Limited set of programsNot the best performance & efficiency

They All Look the Same

40

Microprocessors FPGAs ASICs

In short: Common building
block of computers

Reconfigurable
hardware, flexible

You customize
everything

They All Look the Same

41

Microprocessors FPGAs ASICs

In short: Common building
block of computers

Reconfigurable
hardware, flexible

You customize
everything

Program
Development Time

minutes days months

They All Look the Same

42

Microprocessors FPGAs ASICs

In short: Common building
block of computers

Reconfigurable
hardware, flexible

You customize
everything

Program
Development Time

minutes days months

Performance o + ++

They All Look the Same

43

Microprocessors FPGAs ASICs

In short: Common building
block of computers

Reconfigurable
hardware, flexible

You customize
everything

Program
Development Time

minutes days months

Performance o + ++
Good for Ubiquitous

Simple to use
Prototyping

Small volume
Mass production,
Max performance

They All Look the Same

44

Microprocessors FPGAs ASICs

In short: Common building
block of computers

Reconfigurable
hardware, flexible

You customize
everything

Program
Development Time

minutes days months

Performance o + ++
Good for Ubiquitous

Simple to use
Prototyping

Small volume
Mass production,
Max performance

Programming Executable file Bit file Design masks
Languages C/C++/Java/… Verilog/VHDL Verilog/VHDL
Main Companies Intel, ARM, AMD,

Apple, NVIDIA
Xilinx, Altera TSMC,

Globalfoundries

Microprocessors FPGAs ASICs

In short: Common building
block of computers

Reconfigurable
hardware, flexible

You customize
everything

Program
Development Time

minutes days months

Performance o + ++
Good for Ubiquitous

Simple to use
Prototyping

Small volume
Mass production,
Max performance

Programming Executable file Bit file Design masks
Languages C/C++/Java/… Verilog/VHDL Verilog/VHDL
Main Companies Intel, ARM, AMD,

Apple, NVIDIA
Xilinx, Altera TSMC,

Globalfoundries

Using this language

They All Look the Same

45

Want to
learn how

these
work

By
program

ming
these

All Computers are Built Upon
the Same Building Blocks

46

Building Blocks of Modern
Computers

47

Transistors

48

Transistors

49

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

n Computers are built from very large numbers of very
small (and relatively simple) structures: transistors
q Intel’s Pentium IV microprocessor, 2000, was

made up of more than 42 million MOS transistors
q Apple’s M1 Max, offered for sale in 2021, is

made up of more than 56 billion MOS transistors

n This lecture
q How the MOS transistor works (as a logic

element)
q How these transistors are connected to form

logic gates
q How logic gates are interconnected to form larger units that

are needed to construct a computer

MOS Transistor
n By combining

q Conductors (Metal)
q Insulators (Oxide)
q Semiconductors

n We get a Transistor (MOS)

n Why is this useful?
q We can combine many of these to realize simple logic gates

n The electrical properties of metal-oxide semiconductors are
well beyond the scope of what we want to understand in
this course
q They are below our lowest level of abstraction

50

Gate
Source Drain

Different Types of MOS Transistors
n There are two types of MOS transistors: n-type and p-type

n They both operate “logically,” very similar to the way wall
switches work

51

n-type p-type

Power Supply

Wall Switch

Power Supply

Wall Switch

How Does a Transistor Work?

q In order for the lamp to glow, electrons must flow
q In order for electrons to flow, there must be a closed circuit

from the power supply to the lamp and back to the power
supply

q The lamp can be turned on and off by simply manipulating the
wall switch to make or break the closed circuit

52

n Instead of the wall switch, we could use an n-type or a p-
type MOS transistor to make or break the closed circuit

How Does a Transistor Work?

53

Drain

Source

Gate

Schematic of an n-type
MOS transistor

If the gate of an n-type transistor is
supplied with a high voltage, the
connection from source to drain acts like a
piece of wire (i.e., the circuit is closed)

Depending on the technology,
high voltage can range from 0.3V to 3V

If the gate of the n-type transistor is
supplied with zero voltage, the connection
between the source and drain is broken
(i.e., the circuit is open)

Drain

Source

Gate

Power Supply

3 Volt

How Does a Transistor Work?
n The n-type transistor in a circuit with a battery and a bulb

n The p-type transistor works in exactly the opposite fashion
from the n-type transistor

54

Power Supply

0 Volt

Shorthand notation

The circuit is closed
when the gate is
supplied with 3V

The circuit is closed
when the gate is
supplied with 0V

Drain

Source

Gate

n-type p-type

Gate

Logic Gates

55

One Level Higher in the Abstraction
n Now, we know how a MOS transistor works
n How do we build logic structures out of MOS transistors?

56

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

n We construct basic logical units out of
individual MOS transistors

n These logical units are called logic gates
q They implement simple Boolean functions

George Boole, “The Mathematical Analysis of Logic,” 1847.

Making Logic Blocks Using CMOS Technology

n Modern computers use both n-type and p-type transistors,
i.e. Complementary MOS (CMOS) technology

n The simplest logic structure that exists in a modern
computer

57

nMOS + pMOS = CMOS

3V

0V

Out (Y)In (A)
n-type

p-type

What does this circuit do?

Functionality of Our CMOS Circuit

58

What happens when the input is connected to 0V?

3V

0V

Out (Y)0V

3V

0V

Y = 3V

p-type transistor
pulls the output up

p-type transistors are good at pulling up the voltage

3V

0V

Y = 0V

Functionality of Our CMOS Circuit

59

What happens when the input is connected to 3V?

n-type transistor pulls
the output down

3V

0V

Out (Y)A= 3V

n-type transistors are good at pulling down the voltage

A P N Y
0
1

A P N Y
0 ON OFF 1
1

CMOS NOT Gate (Inverter)
n This is actually the CMOS NOT Gate
n Why do we call it NOT?

q If A = 0V then Y = 3V
q If A = 3V then Y = 0V

n Digital circuit: one possible interpretation
q Interpret 0V as logical (binary) 0 value
q Interpret 3V as logical (binary) 1 value

60

3V

0V

Out (Y)In (A)

P

N

A P N Y
0 ON OFF 1
1 OFF ON 0

𝑌 = �̅�

CMOS NOT Gate (Inverter)
n This is actually the CMOS NOT Gate
n Why do we call it NOT?

q If A = 0V then Y = 3V
q If A = 3V then Y = 0V

n Digital circuit: one possible interpretation
q Interpret 0V as logical (binary) 0 value
q Interpret 3V as logical (binary) 1 value

61

3V

0V

Out (Y)In (A)

P

N

A Y
We call it a NOT gate

or an inverter

Truth table: shows what is the logical
output of the circuit for each possible input

NOT

Y = A

A Y
0 1
1 0

A Y𝑌 = �̅�

Another CMOS Gate: What Is This?
n Let’s build more complex gates!

62

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

CMOS NAND Gate
n Let’s build more complex gates!

q P1 and P2 are in parallel; only one must be ON to pull up
the output to 3V

q N1 and N2 are connected in series; both must be ON to
pull down the output to 0V

63

A B P1 P2 N1 N2 Y
0 0
0 1
1 0
1 1

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1
1 0
1 1

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0
1 1

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0 OFF ON ON OFF 1
1 1

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0 OFF ON ON OFF 1
1 1 OFF OFF ON ON 0

𝑌 = 𝐴 % 𝐵 = 𝐴𝐵
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

CMOS NAND Gate
n Let’s build more complex gates!

64

𝑌 = 𝐴 % 𝐵 = 𝐴𝐵NAND

Y = AB

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A
B Y

A
Y

B

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

n How can we make an AND gate?

CMOS AND Gate

65

𝑌 = 𝐴 % 𝐵 = 𝐴𝐵A B Y
0 0 0
0 1 0
1 0 0

111

A
Y

B

We make an AND gate using
one NAND gate and

one NOT gate

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

CMOS NOT, NAND, AND Gates

66

A
Y

B

A B Y
0 0 0
0 1 0
1 0 0

111

A B Y
0 0 1
0 1 1
1 0 1

011

A
Y

BA Y

NOT

Y = A

A Y
0 1
1 0

A Y

3V

0V

Out (Y)In (A)

P

N

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

General CMOS Gate Structure
n The general form used to construct any inverting logic gate,

such as: NOT, NAND, or NOR

67

pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

q The networks may consist of
transistors in series or in
parallel

q When transistors are in
parallel, the network is ON if
one of the transistors is ON

q When transistors are in series,
the network is ON only if all
transistors are ON

pMOS transistors are used for pull-up
nMOS transistors are used for pull-down

General CMOS Gate Structure (II)
n Exactly one network should be ON, and the other network

should be OFF at any given time

68

pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

q If both networks are ON at the
same time, there is a short
circuit à likely incorrect
operation

q If both networks are OFF at
the same time, the output is
floating à undefined

pMOS transistors are used for pull-up
nMOS transistors are used for pull-down

Digging Deeper: Why This Structure?
n MOS transistors are not perfect switches

n pMOS transistors pass 1’s well but 0’s poorly
n nMOS transistors pass 0’s well but 1’s poorly

n pMOS transistors are good at “pulling up” the output
n nMOS transistors are good at “pulling down” the output

69

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3
pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

See Section 1.7 in H&H

Digging Deeper: Latency
n Which one is faster?

q Transistors in series
q Transistors in parallel

n Series connections are slower than parallel connections
q More resistance on the wire

n How do you alleviate this latency?
q See H&H Section 1.7.8 for an example:

pseudo-nMOS Logic

70

Digging Deeper: Power Consumption
n Dynamic Power Consumption

q C * V2 * f
n C = capacitance of the circuit (wires and gates)
n V = supply voltage
n f = charging frequency of the capacitor

n Static Power consumption
q V * Ileakage

n supply voltage * leakage current

n Energy Consumption
q Power * Time

n See more in H&H Chapter 1.8
71

Common Logic Gates

72

Larger Gates
n We can extend the gates to more than 2 inputs

n Example: 3-input AND gate, 10-input NOR gate

n See your readings

73

Aside: Moore’s Law:
Enabler of Many Gates on a Chip

74

An Enabler: Moore’s Law

75

Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, 1965. Component counts double every other year

Image source: Intel

76
Number of transistors on an integrated circuit doubles ~ every two years

Image source: Wikipedia

77

78

Recommended Reading
n Moore, “Cramming more components onto integrated

circuits,” Electronics Magazine, 1965.

n Only 3 pages

n A quote:
“With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as
many as 65 000 components on a single silicon chip.”

n Another quote:
“Will it be possible to remove the heat generated by tens of
thousands of components in a single silicon chip?”

79

How Do We Keep Moore’s Law: Innovation
n Manufacturing smaller transistors/structures

q Some structures are already a few atoms in size

n Finding materials with better properties
q Copper instead of Aluminum (better conductor)
q Hafnium Oxide, air for Insulators
q Making sure all materials are compatible is the challenge

n Enabling precision manufacturing
q Extreme ultraviolet (EUV) light to pattern <10nm structures

n Creating new device technologies
q FinFET, Gate All Around transistor, Single Electron Transistor…

80

Innovation At the Bottom Enables Computing

81

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

Historical: Opportunities at the Bottom

82https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom

https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom

Historical: Opportunities at the Bottom (II)

83https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom

https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom

Combinational Logic Circuits

84

We Can Now Build Logic Circuits

n A logic circuit is composed of:
q Inputs
q Outputs

n Functional specification (describes relationship between
inputs and outputs)

n Timing specification (describes the delay between inputs
changing and outputs responding)

85

inputs outputs
functional spec

timing spec

Now, we understand the workings of the basic logic gates

What is our next step?

Build some of the logic structures that are important
components of the microarchitecture of a computer

Types of Logic Circuits

n Combinational Logic
q Memoryless
q Outputs are strictly dependent on the combination of input

values that are being applied to circuit right now
q In some books called Combinatorial Logic

n Later we will learn: Sequential Logic
q Has memory

n Structure stores history à Can ”store” data values
q Outputs are determined by previous (historical) and current

values of inputs
86

inputs outputs
functional spec

timing spec

Boolean Logic Equations

87

Functional Specification
n Functional specification of outputs in terms of inputs
n What do we mean by “function”?

q Unique mapping from input values to output values
q The same input values produce the same output value every

time
q No memory (does not depend on the history of input values)

n Example (full 1-bit adder – more later):

S = F(A, B, Cin)
Cout = G(A, B, Cin)

88

A S

S = A Å B Å Cin
Cout = AB + ACin + BCin

B
Cin

CL Cout

Simple Equations: NOT / AND / OR

89

A
B A • B

A • B (reads “A and B”) is 1 iff A and B are both 1

A
B A + B

A + B (reads “A or B”) is 1 iff either A or B is 1

A 𝑨

𝑨 (reads “not A”) is 1 iff A is 0 𝑨 𝑨
0 1
1 0

𝑨 𝑩 𝑨 • 𝑩
0 0 0
0 1 0
1 0 0
1 1 1

𝑨 𝑩 𝑨 + 𝑩
0 0 0
0 1 1
1 0 1
1 1 1

Boolean Algebra: Big Picture
n An algebra on 1’s and 0’s

q with AND, OR, NOT operations

n What you start with
q Axioms: basic things about objects and operations

you just assume to be true at the start

n What you derive first
q Laws and theorems: allow you to manipulate Boolean expressions
q …also allow us to do simplification on Boolean expressions

n What you derive later
q More “sophisticated” properties useful for manipulating digital

designs represented in the form of Boolean equations

90George Boole, “The Mathematical Analysis of Logic,” 1847.

Boolean Algebra: Axioms

91

1. B contains at least two elements,
0 and 1, such that 0 ≠ 1

2. Closure a,b ∈ B,
(i) a + b ∈ B
(ii) a • b ∈ B

3. Commutative Laws: a,b ∈ B,
(i) a + b = b + a
(ii) a • b = b • a

4. Identities: 0, 1 ∈ B
(i) a + 0 = a
(ii) a • 1 = a

5. Distributive Laws:
(i) a + (b • c) = (a + b) • (a + c)
(ii) a • (b + c) = a • b + a • c

6. Complement:
(i) 𝐚 + %𝒂= 1
(ii) 𝐚 • %𝒂 = 0

English version

Result of AND, OR stays
in set you start with

For primitive AND, OR of
2 inputs, order doesn’t matter

There are identity elements
for AND, OR, that give you back
what you started with

• distributes over +, just like algebra
…but + distributes over •, also (!!)

There is a complement element;
AND/ORing with it gives the identity elm.

Formal version

Math formality...

Boolean Algebra: Duality
n Observation

q All the axioms come in “dual” form
q Anything true for an expression also true for its dual
q So any derivation you could make that is true, can be flipped into

dual form, and it stays true

n Duality — More formally
q A dual of a Boolean expression is derived by replacing

n Every AND operation with... an OR operation
n Every OR operation with... an AND
n Every constant 1 with... a constant 0
n Every constant 0 with... a constant 1
n But don’t change any of the literals or play with the complements!

92

➙ a + (b • c) = (a + b) • (a + c)
a • (b + c) = (a • b) + (a • c) Example

Boolean Algebra: Useful Laws

93

Operations with 0 and 1:

Idempotent Law:

Involution Law:

Laws of Complementarity:

Commutative Law:

1. X + 0 = X
2. X + 1 = 1

3. X + X = X

4. = X

5. X + = 1

6. X + Y = Y + X

AND, OR with identities
gives you back the original
variable or the identity

AND, OR with self = self

double complement =
no complement

AND, OR with complement
gives you an identity

Just an axiom…

1D. X • 1 = X
2D. X • 0 = 0

3D. X • X = X

5D. X • = 0

6D. X • Y = Y • X

Dual

$𝐗$𝐗

($𝑿)

Distributive Laws:

Simplification Theorems:
9. X • Y + X • = X

10. X + X • Y = X

11. (X +) • Y = X • Y

9D. (X + Y) • (X +) = X

10D. X • (X + Y) = X

11D. (X •) + Y = X + Y

%𝒀

%𝒀

%𝒀

%𝒀

Useful Laws (continued)

94

8. X • (Y+ Z) = (X • Y) + (X • Z) 8D. X + (Y• Z) = (X + Y) • (X + Z)

Associative Laws:
7. (X + Y) + Z = X + (Y + Z)

= X + Y + Z
7D. (X • Y) • Z = X • (Y • Z)

= X • Y • Z
Parenthesis order
does not matter

Axiom

Useful for
simplifying
expressions

Actually worth remembering — they show up a lot in real designs…

"𝐘X • (Y +) = X Distributive (5)

X • 1 = X Complement (6)

X = X Identity (4)

Boolean Algebra: Proving Things

95

Proving theorems via axioms of Boolean Algebra:

EX: Prove the theorem: X • Y + X • = X

EX2: Prove the theorem: X + X • Y = X

X • 1 + X • Y = X Identity (4)

X • (1 + Y) = X Distributive (5)

X • 1 = X Identity (2)

X = X Identity (4)

$𝒀

DeMorgan’s Law: Enabling Transformations

96

¢ Think of this as a transformation
§ Let’s say we have:

F = A + B + C

§ Applying DeMorgan’s Law (12), gives us

DeMorgan's Law:
12.

12D. (𝑿 . 𝒀. 𝒁.…) = $𝑿 + $𝒀 + $𝒁 + …
(𝑿 + 𝒀 + 𝒁 +⋯) = $𝑿. $𝒀. $𝒁.…

𝑭 = (𝑨 + 𝑩 + 𝑪) = ($𝑨. $𝑩. $𝑪)

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false

DeMorgan’s Law (Continued)

97

NOR is equivalent to AND
with inputs complemented

NAND is equivalent to OR
with inputs complemented

These are conversions between different types of logic functions
They can prove useful if you do not have every type of gate…
Or, if some types of gates are more desirable to use than others…

𝑨 = (𝑿 + 𝒀) = $𝑿$𝒀

𝑩 = (𝑿𝒀) = $𝑿 + $𝒀

𝑿
𝒀

𝑿
𝒀

𝑿
𝒀 𝑩

𝑩𝑿
𝒀

𝑨

𝑨

𝑿 𝒀 𝑿𝒀 #𝑿 #𝒀 !𝑿 + !𝒀

0 0 1 1 1 1
0 1 1 1 0 1
1 0 1 0 1 1
1 1 0 0 0 0

𝑿 𝒀 𝑿 + 𝒀 #𝑿 #𝒀 #𝑿#𝒀
0 0 1 1 1 1
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 0

Using Boolean Equations
to Represent a Logic Circuit

98

We Covered Until This Point
in the Lecture

99

Digital Design & Computer Arch.
Lecture 4: Combinational Logic I

Prof. Onur Mutlu

ETH Zürich
Spring 2022

4 March 2022

Sum of Products Form: Key Idea
n Assume we have the truth table of Boolean Function F

n How do we express the function in terms of the inputs in a
standard manner?

n Idea: Sum of Products form
n Express the truth table as a two-level Boolean expression

q that contains all input variable combinations that result in a 1
output

q If ANY of the combinations of input variables that results in a 1
is TRUE, then the output is 1

q F = OR of all input variable combinations that result in a 1

101

Some Definitions (for a 3-Input Function)
¢ Complement: variable with a bar over it
𝑨 , 𝑩 , 𝑪

¢ Literal: variable or its complement
𝑨 , 𝑨 , 𝑩 , 𝑩 , 𝑪 , 𝑪

¢ Implicant: product (AND) of literals
(𝑨 1 𝑩 1 𝑪) , (𝑨 1 𝑪) , (𝑩 1 𝑪)

¢ Minterm: product (AND) that includes all input variables
(𝑨 1 𝑩 1 𝑪) , (𝑨 1 𝑩 1 𝑪) , (𝑨 1 𝑩 1 𝑪)

¢ Maxterm: sum (OR) that includes all input variables
(𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪)

102

Two-Level Canonical (Standard) Forms
n Truth table is the unique signature of a Boolean function …

q But, it is an expensive representation

n A Boolean function can have many alternative Boolean
expressions
q i.e., many alternative Boolean expressions (and gate

realizations) may have the same truth table (and function)
q If they all say the same thing, why do we care?

n Different Boolean expressions lead to different logic gate
implementations à Different cost, latency, energy properties

n Canonical form: standard form for a Boolean expression
q Provides a unique algebraic signature

103

Two-Level Canonical Forms: SOP
Sum of Products Form (SOP)
Also known as disjunctive normal form or minterm expansion

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

All Boolean equations can be written in SOP form

• Each row in a truth table has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)

𝑭 = $𝑨𝐁𝐂 + 𝐀$𝑩$𝑪 + 𝐀$𝑩𝐂 + 𝐀𝐁$𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

Find all the input combinations (minterms) for which the output of the function is TRUE.

SOP Form — Why Does It Work?

105

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

n Only the shaded product term — 𝐀$𝑩𝐂 = 𝟏 1 $𝟎 1 𝟏— will be 1

n No other product terms will “turn on” — they will all be 0
n So if inputs A B C correspond to a product term in expression,

q We get 0 + 0 + … + 1 + … + 0 + 0 = 1 for output
n If inputs A B C do not correspond to any product term in expression

q We get 0 + 0 + … + 0 = 0 for output

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
𝑭 = $𝑨𝐁𝐂 + 𝐀$𝑩$𝑪 + 𝐀$𝑩𝐂 + 𝐀𝐁$𝑪 + 𝐀𝐁𝐂

𝐀 𝐁 𝐂 𝐅
This input

Activates
this term

The function evaluates to TRUE (i.e., output is 1)
if any of the Products (minterms) causes the output to be 1

Aside: Notation for SOP

106

111 = decimal 7 so this is minterm #7, or m7

100 = decimal 4 so this is minterm #4, or m4

n Standard “shorthand” notation
q If we agree on the order of the variables in the rows of truth

table…
n then we can enumerate each row with the decimal number that

corresponds to the binary number created by the input pattern

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

f =

= ∑m(3,4,5,6,7)

m3 + m4 + m5 + m6 + m7 We can write this as a sum of products

Or, we can use a summation notation

𝐀 𝐁 𝐂 𝐅

Canonical SOP Forms

107

Shorthand Notation for
Minterms of 3 Variables

F in canonical form:
F(A,B,C) = ∑m(3,4,5,6,7)

= m3 + m4 + m5 + m6 + m7

canonical form ≠ minimal form

2-Level AND/OR
Realization

minterms
0 0 0 = m0
0 0 1 = m1
0 1 0 = m2
0 1 1 = m3
1 0 0 = m4
1 0 1 = m5
1 1 0 = m6
1 1 1 = m7

𝑭 = $𝑨𝐁𝐂 + 𝐀$𝑩$𝑪
+ 𝐀$𝑩𝐂 + 𝐀𝐁$𝑪 + 𝐀𝐁𝐂

𝑭 = 𝐀$𝑩 𝑪 + $𝑪 + $𝑨𝐁𝐂 + 𝐀𝐁(𝑪 + $𝑪)

= 𝐀$𝑩 + $𝑨𝐁𝐂 + 𝐀𝐁

= 𝐀($𝑩 + 𝑩) + $𝑨𝐁𝐂

= 𝐀 + $𝑨𝐁𝐂

= 𝐀 + 𝐁𝐂

%𝑨%𝑩%𝑪
%𝑨%𝑩𝑪
%𝑨𝑩%𝑪
%𝑨𝑩𝑪
𝑨%𝑩%𝑪
𝑨%𝑩𝑪
𝑨𝑩%𝑪
𝑨𝑩𝑪

𝐀 𝐁 𝐂

From Logic to Gates
¢ SOP (sum-of-products) leads to two-level logic

¢ Example: 𝒀 = 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪

108

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

Canonical Sum of Products Form: Key Idea
n Any 1-bit function can be represented as a Sum of Products

n A “Product” is the Boolean AND that includes ALL input
variables of the function à minterm

n The 1-bit Output of the Function can be represented as
q Sum (OR) of all minterms that lead to a 1 in the Output

n Logically
q The function evaluates to TRUE (i.e., output is 1) if ANY of the

Products (minterms) causes the Output to be 1
q SOP form represents the function as the SUM (OR) of all

Products (minterms) that cause the Output to be 1
109

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Alternative Canonical Form: POS

110

For the given input, only the shaded sum term
will equal 0

Anything ANDed with 0 is 0; Output F will be 0

Product of Sums (POS)

0 0 0 0 0 1

sums

product

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + %𝑪)(𝑨 + %𝑩 + 𝑪)

𝑭 = 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + %𝑪 (𝑨 + %𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

Each sum term represents one of the
“zeros” of the function

This input

Activates this term

𝑨 + %𝑩 + 𝑪 = 𝟎 + %𝟏 + 𝟎

0 1 0

We can have another canonical form of representation

DeMorgan of SOP of %𝑭

The function evaluates to FALSE (i.e., output is 0)
if at least one of the Sums (maxterms) causes the output to be 0

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Consider A=0, B=1, C=0

111

Only one of the products will be 0, anything ANDed with 0 is 0

Therefore, the output is F = 0

1 1 0

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + %𝑪)(𝑨 + %𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑭 = 𝟎

𝟎 %𝟏 𝟎𝟎 𝟏 %𝟎𝟎 𝟏 𝟎

0 1 0
Input

POS: How to Write It

112

Maxterm form:
1. Find truth table rows where F is 0

2. 0 in input col ➙ true literal
3. 1 in input col ➙ complemented literal

4. OR the literals to get a Maxterm
5. AND together all the Maxterms

Or just remember, POS of 𝑭 is the same as the DeMorgan of SOP of %𝑭 !!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + %𝑪)(𝑨 + %𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑨 %𝑩 𝑪

𝑨 + %𝑩 + 𝑪

Canonical POS Forms

113

Maxterms
0 0 0 = M0
0 0 1 = M1
0 1 0 = M2
0 1 1 = M3
1 0 0 = M4
1 0 1 = M5
1 1 0 = M6
1 1 1 = M7

Maxterm shorthand notation
for a function of three variables

Note that you
form the

maxterms around
the “zeros” of the

function

This is not the
complement of
the function!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

𝑨 + 𝑩 + 𝑪
𝑨 + 𝑩 + %𝑪
𝑨 + %𝑩 + 𝑪
𝑨 + %𝑩 + %𝑪
%𝑨 + 𝑩 + 𝑪
%𝑨 + 𝑩 + %𝑪
%𝑨 + %𝑩 + 𝐂
%𝑨 + %𝑩 + %𝑪

𝐅 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + %𝑪)(𝑨 + %𝑩 + 𝑪)

5𝑴(𝟎, 𝟏, 𝟐)𝐀 𝐁 𝐂

𝐀 𝐁 𝐂 𝐅

Useful Conversions

114

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

3. Expansion of to expansion of :

4. Minterm expansion of to Maxterm expansion of :
rewrite in Maxterm form, using the same indices as

E.g., 𝐅 𝑨, 𝑩, 𝑪 = ∑𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 = ∏𝑴(𝟎, 𝟏, 𝟐)

E.g., 𝐅 𝑨, 𝑩, 𝑪 = ∏𝑴(𝟎, 𝟏, 𝟐) = ∑𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

𝐄. 𝐠. , 𝐅 𝑨, 𝑩, 𝑪 =D𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 %𝑭 𝑨,𝑩, 𝑪 =D𝒎(𝟎, 𝟏, 𝟐)

=5𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕=5𝑴(𝟎, 𝟏, 𝟐)

𝐅 %𝑭

𝐄. 𝐠. , 𝐅 𝑨, 𝑩, 𝑪 =D𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 %𝑭 𝑨,𝑩, 𝑪 = ∏𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

=D𝒎(𝟎, 𝟏, 𝟐)=5𝑴(𝟎, 𝟏, 𝟐)

𝐅 %𝑭
𝐅

Logic Simplification (or Minimization)
n Using Boolean Algebra, we can simplify the SOP or POS

form of any function in a methodical way

n Starting with the canonical SOP or POS form enables
convenience and automation
q Truth table à SOP/POS form à Boolean Simplification Rules

n Example (full 1-bit adder – more later):

S = F(A, B, Cin)
Cout = G(A, B, Cin)

115

A S

S = A Å B Å Cin
Cout = AB + ACin + BCin

B
Cin

CL Cout

Logic Simplification Example: SOP Form
¢ SOP (sum-of-products) form of function Y

¢ Example: 𝒀 = 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪

116

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

Logic Simplification Example: Simplified
¢ SOP (sum-of-products) form of function Y

¢ Example: 𝒀 = 𝑩 1 𝑪 + 𝑨 1 𝑩

117

Let’s Cover Some
Basic Combinational Blocks

118

Combinational Building Blocks
used in Modern Computers

119

Combinational Building Blocks
n Combinational logic is often grouped into larger building

blocks to build more complex systems

n Hides the unnecessary gate-level details to emphasize the
function of the building block

n We now examine:
q Decoder
q Multiplexer
q Full adder
q PLA (Programmable Logic Array)

Decoder

121

Decoder
n “Input pattern detector”
n n inputs and 2n outputs
n Exactly one of the outputs is 1 and all the rest are 0s
n The one output that is logically 1 is the output

corresponding to the input pattern that the logic circuit is
expected to detect

n Example: 2-to-4 decoder

122

Decoder (I)
n n inputs and 2n outputs
n Exactly one of the outputs is 1 and all the rest are 0s
n The one output that is logically 1 is the output

corresponding to the input pattern that the logic circuit is
expected to detect
A 1 if A,B is 00B

1 if A,B is 01

1 if A,B is 10

1 if A,B is 11

A = 1 0B = 0

0

1

0

Decoder (II)
n The decoder is useful in determining how to interpret a bit

pattern

124

A = 1 0B = 0

0

1

0

q It could be the
address of a row in
DRAM, that the
processor intends to
read from

q It could be an
instruction in the
program and the
processor needs to
decide what action to
take (based on
instruction opcode)

Multiplexer (MUX)

125

Multiplexer (MUX), or Selector
n Selects one of the N inputs to connect it to the output

q based on the value of a log2N-bit control input called select
n Example: 2-to-1 MUX

Multiplexer (MUX), or Selector (II)
n Selects one of the N inputs to connect it to the output

q based on the value of a log2N-bit control input called select
n Example: 2-to-1 MUX

A B

S

C

ba

A B

S = 0

C

0A

A

Multiplexer (MUX), or Selector (III)
n The output C is always connected to either the input A or

the input B
q Output value depends on the value of the select line S

n Your task: Draw the schematic for an 4-input (4:1) MUX
q Gate level: as a combination of basic AND, OR, NOT gates
q Module level: As a combination of 2-input (2:1) MUXes

128

A B

S

C

S C
0 A
1 B

A 4-to-1 Multiplexer

129

Full Adder

130

Full Adder (I)
n Binary addition

q Similar to decimal addition
q From right to left
q One column at a time
q One sum and one carry bit

n Truth table of binary addition on one column of bits within
two n-bit operands

131

𝒂𝒏F𝟏𝒂𝒏F𝟐…𝒂𝟏𝒂𝟎
𝒃𝒏F𝟏𝒃𝒏F𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏F𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏F𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder (II)
n Binary addition

q N 1-bit additions
q SOP of 1-bit addition

132

𝒂𝒏F𝟏𝒂𝒏F𝟐…𝒂𝟏𝒂𝟎
𝒃𝒏F𝟏𝒃𝒏F𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏F𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏F𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci
ci+1

si

Full Adder (1 bit)

4-Bit Adder from Full Adders
n Creating a 4-bit adder out of 1-bit full adders

q To add two 4-bit binary numbers A and B

133

𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒂𝟎
𝒃𝟑 𝒃𝟐 𝒃𝟏 𝒃𝟎

𝒔𝟑 𝒔𝟐 𝒔𝟏 𝒔𝟎

𝒄𝟒 𝒄𝟑 𝒄𝟐 𝒄𝟏
+

𝟏 𝟎 𝟏 𝟏

𝟏 𝟎 𝟎 𝟏

𝟎 𝟏 𝟎 𝟎
𝟏 𝟎 𝟏 𝟏
+

Full Adder

a0b0

s0

0c1Full Adder

a1b1

s1

c2Full Adder

a2b2

s2

c3Full Adder

a3b3

s3

c4

Adder Design: Ripple Carry Adder

134

Adder Design: Carry Lookahead Adder

135

Programmable Logic Array (PLA)

136

PLA: Recall: From Logic to Gates
¢ SOP (sum-of-products) leads to two-level logic

¢ Example: 𝒀 = 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

A PLA enables the two-level SOP implementation of any N-input M-output function

The Programmable Logic Array (PLA)
n The below logic structure is a very common building block

for implementing any collection of logic functions one
wishes to

n An array of AND gates
followed by an array of OR
gates

n How do we determine the
number of AND gates?
q Remember SOP: the

number of possible minterms
q For an n-input logic function, we need a PLA with 2n n-input

AND gates
n How do we determine the number of OR gates? The

number of output columns in the truth table

A

B

C

X

Y

Z

Connections

A PLA enables the two-level SOP implementation of any N-input M-output function

n How do we implement a logic function?
q Connect the output of an AND gate to the input of an OR gate

if the corresponding minterm is included in the SOP

The Programmable Logic Array (PLA)

139

q This is a simple programmable
logic construct

n Programming a PLA: we
program the connections from
AND gate outputs to OR gate
inputs to implement a desired
logic function

n Have you seen any other type of programmable logic?
q Yes! An FPGA…
q An FPGA uses more advanced structures, as we saw in Lecture 3

A

B

C

X

Y

Z

Connections

A PLA enables the two-level SOP implementation of any N-input M-output function

PLA Example (I)

140Read H&H Chapter 5.6.1

PLA Example Function (II)

141Read H&H Chapter 5.6.1

PLA Example Function (III)

142Read H&H Chapter 5.6.1

Implementing a Full Adder Using a PLA

ai

bi

ci
ci+1

si

X

143

A

B

C

X

Y

Z

Connections

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Truth table of a full adder

This input should not be
connected to any outputs We do not need

this output

Logical Completeness

144

Logical (Functional) Completeness
n Any logic function we wish to implement could be

accomplished with a PLA
q PLA consists of only AND gates, OR gates, and inverters
q We just have to program connections based on SOP of the

intended logic function

n The set of gates {AND, OR, NOT} is logically complete
because we can build a circuit to carry out the specification
of any truth table we wish, without using any other kind of
gate

n NAND is also logically complete. So is NOR.
q Your task: Prove this.

145

More Combinational Blocks

146

More Combinational Building Blocks
n H&H Chapter 2 in full

q Required Reading
q E.g., see Tri-state Buffer and Z values in Section 2.6

n H&H Chapter 5
q Will be required reading soon.

n You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.
q Sections 5.1 and 5.2

147

Comparator

148

Equality Checker (Compare if Equal)
n Checks if two N-input values are exactly the same
n Example: 4-bit Comparator

ALU (Arithmetic Logic Unit)

150

ALU (Arithmetic Logic Unit)
n Combines a variety of arithmetic and logical operations into

a single unit (that performs only one function at a time)
n Usually denoted with this symbol:

Example ALU (Arithmetic Logic Unit)

152

More Combinational Building Blocks
n See H&H Chapter 5.2 for

q Subtractor (using 2’s Complement Representation)
q Shifter and Rotator
q Multiplier
q Divider
q …

153

More Combinational Building Blocks
n H&H Chapter 2 in full

q Required Reading
q E.g., see Tri-state Buffer and Z values in Section 2.6

n H&H Chapter 5
q Will be required reading soon.

n You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.
q Sections 5.1 and 5.2

154

Tri-State Buffer

155

Example: Use of Tri-State Buffers
n Imagine a wire connecting the CPU and memory

q At any time only the CPU or the memory can place a value on
the wire, both not both

q You can have two tri-state buffers: one driven by CPU, the
other memory; and ensure at most one is enabled at any time

156

Example Design with Tri-State Buffers

157

CPU

Memory

GateMem

GateCPU

Shared Bus

Another Example

158

Multiplexer Using Tri-State Buffers

159

Aside: Logic Using Multiplexers
n Multiplexers can be used as lookup tables to perform logic

functions

160

Tri-State Buffer
n A tri-state buffer enables gating of different signals onto a

wire

n Floating signal (Z): Signal that is not driven by any circuit
q Open circuit, floating wire

161

Aside: Logic Using Multiplexers (II)
n Multiplexers can be used as lookup tables to perform logic

functions

162

Aside: Logic Using Multiplexers (III)
n Multiplexers can be used as lookup tables to perform logic

functions

163Read H&H Chapter 2.8

Aside: Logic Using Decoders (I)
n Decoders can be combined with OR gates to build logic

functions.

164Read H&H Chapter 2.8

Logic Simplification using
Boolean Algebra Rules

165

Recall: Full Adder in SOP Form Logic

166

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci
ci+1

si

Goal: Simplified Full Adder

167

How do we simplify Boolean logic?

Quick Recap on Logic Simplification
n The original Boolean expression (i.e., logic circuit) may not

be optimal

n Can we reduce a given Boolean expression to an equivalent
expression with fewer terms?

n The goal of logic simplification:
q Reduce the number of gates/inputs
q Reduce implementation cost

168

F = ~A(A + B) + (B + AA)(A + ~B)

F = A + B

A basis for what the automated design tools are doing today

Logic Simplification
n Systematic techniques for simplifications

q amenable to automation

169

Key Tool: The Uniting Theorem —

𝑭 =

A's value does NOT change within the ON-set rows

B's value changes within the rows where F==1 (“ON set”)

B's value stays the same within the ON-set rows

A's value changes within the ON-set rows

➙ B is eliminated, A remains

➙ A is eliminated, B remains

If an input (B) can change without changing the output, that input
value is not needed

𝑭 = 𝑨$𝑩 + 𝑨𝑩

𝑨$𝑩 + 𝑨𝑩 = 𝑨 $𝑩 + 𝑩 = 𝑨 𝟏 = 𝑨

𝑮 = $𝑨$𝑩 + 𝑨$𝑩 = $𝑨 + 𝑨 $𝑩 = $𝑩

Essence of Simplification:
Find two element subsets of the ON-set where only one variable
changes its value. This single varying variable can be eliminated!

Logic Simplification Example: Priority Circuit
n Priority Circuit

q Inputs: “Requestors” with priority levels
q Outputs: “Grant” signal for each requestor
q Example 4-bit priority circuit

170

Simplified Priority Circuit
n Priority Circuit

q Inputs: “Requestors” with priority levels
q Outputs: “Grant” signal for each requestor
q Example 4-bit priority circuit

171

X (Don’t Care) means I don’t care what the value of this input is

Logic Simplification:
Karnaugh Maps (K-Maps)

172

Karnaugh Maps are Fun…
n A pictorial way of minimizing circuits by visualizing

opportunities for simplification
n They are for you to study on your own…

n See Backup Slides
n Read H&H Section 2.7
n Watch videos of Lectures 5 and 6 from 2019 DDCA course:

q https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNF
QFHRO3GrXxA9&t=4570

q https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBN
FQFHRO3GrXxA9&t=220

173

https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=4570
https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=220

Backup Slides on
Karnaugh Maps (K-Maps)

174

Complex Cases
n One example

n Problem
q Easy to see how to apply Uniting Theorem…
q Hard to know if you applied it in all the right places…
q …especially in a function of many more variables

n Question
q Is there an easier way to find potential simplifications?
q i.e., potential applications of Uniting Theorem…?

n Answer
q Need an intrinsically geometric representation for Boolean f()
q Something we can draw, see…

175

𝑪𝒐𝒖𝒕 = &𝑨𝑩𝑪 + 𝑨&𝑩𝑪 + 𝑨𝑩&𝑪 + 𝑨𝑩𝑪

Karnaugh Map
n Karnaugh Map (K-map) method

q K-map is an alternative method of representing the truth table
that helps visualize adjacencies in up to 6 dimensions

q Physical adjacency ↔ Logical adjacency

176

2-variable K-map
0 1

0 00 01

1 10 11

Numbering Scheme: 00, 01, 11, 10 is called a
“Gray Code” — only a single bit (variable) changes

from one code word and the next code word

00 01 11 10
00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10
0 000 001 011 010

1 100 101 111 110

𝑨𝑩𝑨 𝑩 𝑪𝑫
𝑨
𝑩𝑪

Karnaugh Map Methods

177

Adjacent

000

001

010

011

110

111

100

101

000

001
010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”
Wrap around from first to last column
Wrap around from top row to bottom row

00 01 11 10
0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪

K-map Cover - 4 Input Variables

178

00 01 11 10
00 1 0 0 1
01 0 1 0 0
11 1 1 1 1
10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅(𝐀, 𝐁, 𝐂, 𝐃) =D𝒎(𝟎, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)

𝐅 = 𝐀 + %𝑩%𝑫 + 𝐁%𝑪𝑫𝐀 + %𝑩%𝑫𝐀

Logic Minimization Using K-Maps
n Very simple guideline:

q Circle all the rectangular blocks of 1’s in the map, using the
fewest possible number of circles
n Each circle should be as large as possible

q Read off the implicants that were circled

n More formally:
q A Boolean equation is minimized when it is written as a sum of

the fewest number of prime implicants
q Each circle on the K-map represents an implicant
q The largest possible circles are prime implicants

180

K-map Rules
n What can be legally combined (circled) in the K-map?

q Rectangular groups of size 2k for any integer k
q Each cell has the same value (1, for now)
q All values must be adjacent

n Wrap-around edge is okay

n How does a group become a term in an expression?
q Determine which literals are constant, and which vary across group
q Eliminate varying literals, then AND the constant literals

n constant 1 ➙ use 𝐗, constant 0 ➙ use %𝑿

n What is a good solution?
q Biggest groupings ➙ eliminate more variables (literals) in each term
q Fewest groupings ➙ fewer terms (gates) all together
q OR together all AND terms you create from individual groups

181

K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map
for each of the 3
output functions

182

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

A
F1 AB = CD

B
F2 AB < CD

C
F3 AB > CD

D

K-map Example: Two-bit Comparator (2)

183

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

00 01 11 10
00 1
01 1
11 1
10 1

K-map for F1

𝑨𝑩
𝑪𝑫

F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

𝑨
𝑩

𝑫

𝑪

K-map Example: Two-bit Comparator (3)

184

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

00 01 11 10
00 1 1 1
01 1 1
11

10 1

K-map for F2

𝑨𝑩
𝑪𝑫

F2 = A'C + A'B'D + B'CD

F3 = ? (Exercise for you)

𝑨
𝑩

𝑫

𝑪

K-maps with “Don’t Care”
n Don’t Care really means I don’t care what my circuit outputs if this

appears as input
q You have an engineering choice to use DON’T CARE patterns

intelligently as 1 or 0 to better simplify the circuit

185

I can pick 00, 01, 10, 11
independently of below

I can pick 00, 01, 10, 11
independently of above

A B C D F G

• • •

0 1 1 0 X X
0 1 1 1
1 0 0 0 X X
1 0 0 1

• • •

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

Example: BCD Increment Function
n BCD (Binary Coded Decimal) digits

q Encode decimal digits 0 - 9 with bit patterns 00002 — 10012
q When incremented, the decimal sequence is 0, 1, …, 8, 9, 0, 1

186

These input patterns should
never be encountered in practice

(hey -- it’s a BCD number!)
So, associated output values are

“Don’t Cares”

00 01 11 10
00 1 1
01 1 1
11 X X X X
10 1 X X

K-map for BCD Increment Function

A B C D
+ 1
W X Y Z

187

00 01 11 10
00
01 1
11 X X X X
10 1 X X

00 01 11 10
00 1
01 1 1 1
11 X X X X
10 X X

00 01 11 10
00 1 1
01 1 1
11 X X X X
10 X X

W
𝑨𝑩

𝑪𝑫
X
𝑨𝑩

𝑪𝑫

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫 ZY

Z (without don’t cares) = A'D' + B'C'D’

Z (with don’t cares) = D'

𝑨
𝑩

𝑫

𝑪

K-map Summary

n Karnaugh maps as a formal systematic approach
for logic simplification

n 2-, 3-, 4-variable K-maps

n K-maps with “Don’t Care” outputs

n H&H Section 2.7
188

