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Recall Last Lecture: Mysteries No Longer!

n Rowhammer (2012-2014)

n Meltdown & Spectre (2017-2018)

n Memories Forget: Refresh (2011-2012)

n Memory Performance Attacks (2006-2007)
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The Story of RowHammer Lecture …
n Onur Mutlu,

"The Story of RowHammer"
Keynote Talk at Secure Hardware, Architectures, and Operating Systems 
Workshop (SeHAS), held with HiPEAC 2021 Conference, Virtual, 19 January 2021.
[Slides (pptx) (pdf)]
[Talk Video (1 hr 15 minutes, with Q&A)]
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https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://www.youtube.com/watch?v=JV1uc1kOt04
https://www.hipeac.net/2021/budapest/
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pdf
https://www.youtube.com/watch?v=sgd7PHQQ1AI


Data Retention & Memory Refresh Lecture
n Computer Architecture, Fall 2020, Lecture 2b

q Data Retention and Memory Refresh (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=v702wUnaWGE&list=PL5Q2soXY2Zi9xidyIgB
xUz7xRPS-wisBN&index=3
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https://www.youtube.com/watch?v=v702wUnaWGE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=3


Memory Performance Attacks Lecture …
n Computer Architecture, Fall 2021, Lecture 2a

q Memory Performance Attacks (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=VJzZbwgBfy8&list=PL5Q2soXY2Zi9xidyIgBx
Uz7xRPS-wisBN&index=2
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https://www.youtube.com/watch?v=VJzZbwgBfy8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=
https://www.youtube.com/watch?v=v702wUnaWGE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=3


Bloom Filters (in ~15 Minutes)
n Computer Architecture, Fall 2021, Lecture 4b (2:34:25 timestamp)

q https://youtu.be/G8nj6etQdEw?list=PL5Q2soXY2Zi-
Mnk1PxjEIG32HAGILkTOF&t=9262
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https://youtu.be/G8nj6etQdEw?list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&t=9262


Takeaways
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Two Major Goals of This Course

q Enable you to think critically

q Enable you to think broadly
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Takeaways
n It is an exciting time to be understanding and designing 

computing architectures

n Many challenging and exciting problems
q That no one has tackled (or thought about) before
q That can have huge impact on the world’s future

n Driven by explosion of data, new applications (ML/AI, 
graph analytics, genomics), ever-greater realism, …
q We can easily collect more data than we can analyze/understand

n Driven by significant difficulties in keeping up with that 
hunger at the technology layer
q Five walls: Energy, reliability, complexity, security, scalability
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Computer Architecture as an 
Enabler of the Future
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Assignment: Required Lecture Video
n Why study computer architecture? Why is it important?
n Future Computing Platforms: Challenges & Opportunities

n Required Assignment
q Watch one of Prof. Mutlu’s lectures and analyze either (or both)
q https://www.youtube.com/watch?v=kgiZlSOcGFM (May 2017)
q https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

n Optional Assignment – for 1% extra credit
q Write a 1-page summary of one of the lectures and email us

n What are your key takeaways?
n What did you learn?
n What did you like or dislike?
n Submit your summary to Moodle
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https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=722981


Assignment: Required Readings
n This week

q Combinational Logic 
n P&P Chapter 3 until 3.3     +        H&H Chapter 2

n Next week
q Hardware Description Languages and Verilog 

n H&H Chapter 4 until 4.3 and 4.5
q Sequential Logic 

n P&P Chapter 3.4 until end   +       H&H Chapter 3 in full

n Within two weeks, we will be done with 
q P&P Chapters 1-3    +      H&H Chapters 1-4
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A Note on Hardware vs. Software
n This course might seem like it is only “Computer Hardware”

n However, you will be much more capable if you master both 
hardware and software (and the interface between them)
q Can develop better software if you understand the hardware
q Can design better hardware if you understand the software 
q Can design a better computing system if you understand both

n This course covers the HW/SW interface and microarchitecture
q We will focus on tradeoffs and how they affect software

n Recall the mysteries we discussed
n Recall the example chips & platforms we surveyed
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… but, first …
n Let’s understand the fundamentals…

n You can change the world only if you understand it well 
enough…
q Especially the basics (fundamentals)
q Past and present dominant paradigms
q And, their advantages and shortcomings – tradeoffs
q And, what remains fundamental across generations 
q And, what techniques you can use and develop to solve 

problems
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Fundamental Concepts
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What is A Computer?
n Three key components
n Computation 
n Communication
n Storage/memory
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



What is A Computer?
n Three key components
n Computation 
n Communication
n Storage/memory
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



What is A Computer?
n We will cover all three components
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Memory
(program
and data)

I/O

Processing

control
(sequencing)

datapath



Recall: The Transformation Hierarchy
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Computer Architecture 
(narrow view)

Computer Architecture 
(expanded view)



What We Will Cover (I)

n Combinational Logic Design

n Hardware Description Languages (Verilog)

n Sequential Logic Design

n Timing and Verification

n ISA (MIPS and LC3b) 

n MIPS Assembly Programming
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What We Will Cover (II)
n Microarchitecture Fundamentals

n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Branch Prediction

n Out-of-Order Execution

n Superscalar Execution

n Other Paradigms: Dataflow, VLIW, Systolic, SIMD/GPUs, …
21



n Memory Technology and Organization

n Caches

n Prefetching

n Virtual Memory

22

What We Will Cover (II)

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons



Processing Paradigms We Will Cover

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Decoupled Access-Execute
n Systolic Arrays
n SIMD Processing (Vector & Array, GPUs)
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Combinational Logic Circuits 
and Design
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What Will We Learn Today?
n Building blocks of modern computers

q Transistors
q Logic gates

n Boolean algebra

n Combinational logic circuits

n How to use Boolean algebra to represent combinational 
circuits

n Minimizing logic circuits (if time permits)
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General-Purpose Microprocessors
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Modern General-Purpose Microprocessors

27Source: https://www.apple.com/mac/m1/

https://www.apple.com/mac/m1/


Modern General-Purpose Microprocessors

28Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested


Modern General-Purpose Microprocessors

29Source: https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html

https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html


Modern General-Purpose Microprocessors

30Source: https://twitter.com/Locuza_/status/1454152714930331652

Intel Alder Lake,
2021

https://twitter.com/Locuza_/status/1454152714930331652


FPGAs
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Modern FPGAs

32Source: https://www.mouser.ch/new/xilinx/xilinx-zynq-7000-zc702-eval-kit/

https://www.mouser.ch/new/xilinx/xilinx-zynq-7000-zc702-eval-kit/


Special-Purpose ASICs (App-Specific Integrated Circuits)

33



Modern Special-Purpose ASICs

34

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.



Modern Special-Purpose ASICs

35

250 TFLOPS per chip in 2021
vs 90 TFLOPS in TPU3

1 ExaFLOPS per board

New ML applications (vs. TPU3):
• Computer vision
• Natural Language Processing (NLP)
• Recommender system
• Reinforcement learning that plays Go

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests



Modern Special-Purpose ASICs
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Cerebras WSE-2               
2.6 Trillion transistors

46,225 mm2

Largest GPU               
54.2 Billion transistors

826 mm2

n The largest ML 
accelerator chip (2021)

n 850,000 cores 

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Modern Special-Purpose ASICs

37Source: https://dl.acm.org/doi/pdf/10.1145/3445814.3446723

https://dl.acm.org/doi/pdf/10.1145/3445814.3446723


Modern GPUs

38Source: https://en.wikichip.org/wiki/nvidia/tegra/xavier

https://en.wikichip.org/wiki/nvidia/tegra/xavier


General Purpose vs. Special Purpose Systems

CPUs

Flexible: Can execute any program
Easy to program & use

GPUs FPGAs ASICs

Efficient & High performance

Cerebras WSE-2Apple M1 Nvidia GTX 1070 Xilinx Spartan

General Purpose Special Purpose

(Usually) Difficult to program & use
Inflexible: Limited set of programsNot the best performance & efficiency



They All Look the Same
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Microprocessors FPGAs ASICs

In short: Common building 
block of computers

Reconfigurable 
hardware, flexible

You customize 
everything



They All Look the Same
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Microprocessors FPGAs ASICs

In short: Common building 
block of computers

Reconfigurable 
hardware, flexible

You customize 
everything

Program 
Development Time

minutes days months



They All Look the Same
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Microprocessors FPGAs ASICs

In short: Common building 
block of computers

Reconfigurable 
hardware, flexible

You customize 
everything

Program 
Development Time

minutes days months

Performance o + ++



They All Look the Same
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Microprocessors FPGAs ASICs

In short: Common building 
block of computers

Reconfigurable 
hardware, flexible

You customize 
everything

Program 
Development Time

minutes days months

Performance o + ++
Good for Ubiquitous

Simple to use
Prototyping

Small volume
Mass production,
Max performance



They All Look the Same
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Microprocessors FPGAs ASICs

In short: Common building 
block of computers

Reconfigurable 
hardware, flexible

You customize 
everything

Program 
Development Time

minutes days months

Performance o + ++
Good for Ubiquitous

Simple to use
Prototyping

Small volume
Mass production,
Max performance

Programming Executable file Bit file Design masks
Languages C/C++/Java/… Verilog/VHDL Verilog/VHDL
Main Companies Intel, ARM, AMD, 

Apple, NVIDIA
Xilinx, Altera TSMC, 

Globalfoundries



Microprocessors FPGAs ASICs

In short: Common building 
block of computers

Reconfigurable 
hardware, flexible

You customize 
everything

Program 
Development Time

minutes days months

Performance o + ++
Good for Ubiquitous

Simple to use
Prototyping

Small volume
Mass production,
Max performance

Programming Executable file Bit file Design masks
Languages C/C++/Java/… Verilog/VHDL Verilog/VHDL
Main Companies Intel, ARM, AMD, 

Apple, NVIDIA
Xilinx, Altera TSMC, 

Globalfoundries

Using this language

They All Look the Same
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Want to 
learn how 

these 
work

By 
program

ming 
these



All Computers are Built Upon 
the Same Building Blocks
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Building Blocks of Modern 
Computers
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Transistors
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Transistors

49

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

n Computers are built from very large numbers of very 
small (and relatively simple) structures: transistors
q Intel’s Pentium IV microprocessor, 2000, was 

made up of more than 42 million MOS transistors
q Apple’s M1 Max, offered for sale in 2021, is 

made up of more than 56 billion MOS transistors

n This lecture
q How the MOS transistor works (as a logic 

element)
q How these transistors are connected to form 

logic gates
q How logic gates are interconnected to form larger units that 

are needed to construct a computer



MOS Transistor
n By combining

q Conductors (Metal)
q Insulators (Oxide)
q Semiconductors

n We get a Transistor (MOS)

n Why is this useful?
q We can combine many of these to realize simple logic gates

n The electrical properties of metal-oxide semiconductors are 
well beyond the scope of what we want to understand in 
this course
q They are below our lowest level of abstraction
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Gate
Source Drain



Different Types of MOS Transistors
n There are two types of MOS transistors: n-type and p-type

n They both operate “logically,” very similar to the way wall 
switches work
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n-type p-type



Power Supply

Wall Switch

Power Supply

Wall Switch

How Does a Transistor Work?

q In order for the lamp to glow, electrons must flow
q In order for electrons to flow, there must be a closed circuit 

from the power supply to the lamp and back to the power 
supply

q The lamp can be turned on and off by simply manipulating the 
wall switch to make or break the closed circuit
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n Instead of the wall switch, we could use an n-type or a p-
type MOS transistor to make or break the closed circuit

How Does a Transistor Work?

53

Drain

Source

Gate

Schematic of an n-type
MOS transistor

If the gate of an n-type transistor is 
supplied with a high voltage, the 
connection from source to drain acts like a 
piece of wire (i.e., the circuit is closed)

Depending on the technology, 
high voltage can range from 0.3V to 3V

If the gate of the n-type transistor is 
supplied with zero voltage, the connection 
between the source and drain is broken 
(i.e., the circuit is open)



Drain

Source

Gate

Power Supply

3 Volt

How Does a Transistor Work?
n The n-type transistor in a circuit with a battery and a bulb

n The p-type transistor works in exactly the opposite fashion 
from the n-type transistor
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Power Supply

0 Volt

Shorthand notation

The circuit is closed 
when the gate is 
supplied with 3V

The circuit is closed 
when the gate is 
supplied with 0V

Drain

Source

Gate

n-type p-type

Gate



Logic Gates
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One Level Higher in the Abstraction
n Now, we know how a MOS transistor works
n How do we build logic structures out of MOS transistors?
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Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

n We construct basic logical units out of 
individual MOS transistors

n These logical units are called logic gates
q They implement simple Boolean functions

George Boole, “The Mathematical Analysis of Logic,” 1847.



Making Logic Blocks Using CMOS Technology

n Modern computers use both n-type and p-type transistors, 
i.e. Complementary MOS (CMOS) technology

n The simplest logic structure that exists in a modern 
computer
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nMOS + pMOS = CMOS

3V

0V

Out (Y)In (A)
n-type

p-type

What does this circuit do?



Functionality of Our CMOS Circuit

58

What happens when the input is connected to 0V?

3V

0V

Out (Y)0V

3V

0V

Y = 3V

p-type transistor 
pulls the output up

p-type transistors are good at pulling up the voltage



3V

0V

Y = 0V

Functionality of Our CMOS Circuit
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What happens when the input is connected to 3V?

n-type transistor pulls 
the output down

3V

0V

Out (Y)A= 3V

n-type transistors are good at pulling down the voltage



A P N Y
0
1

A P N Y
0 ON OFF 1
1

CMOS NOT Gate (Inverter)
n This is actually the CMOS NOT Gate
n Why do we call it NOT?

q If A = 0V then Y = 3V
q If A = 3V then Y = 0V

n Digital circuit: one possible interpretation
q Interpret 0V as logical (binary) 0 value
q Interpret 3V as logical (binary) 1 value

60

3V

0V

Out (Y)In (A)

P

N

A P N Y
0 ON OFF 1
1 OFF ON 0

𝑌 = �̅�



CMOS NOT Gate (Inverter)
n This is actually the CMOS NOT Gate
n Why do we call it NOT?

q If A = 0V then Y = 3V
q If A = 3V then Y = 0V

n Digital circuit: one possible interpretation
q Interpret 0V as logical (binary) 0 value
q Interpret 3V as logical (binary) 1 value
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3V

0V

Out (Y)In (A)

P

N

A Y
We call it a NOT gate

or an inverter

Truth table: shows what is the logical 
output of the circuit for each possible input

NOT

Y = A

A Y
0 1
1 0

A Y𝑌 = �̅�



Another CMOS Gate: What Is This?
n Let’s build more complex gates!
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3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2



CMOS NAND Gate
n Let’s build more complex gates!

q P1 and P2 are in parallel; only one must be ON to pull up 
the output to 3V

q N1 and N2 are connected in series; both must be ON to 
pull down the output to 0V
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A B P1 P2 N1 N2 Y
0 0
0 1
1 0
1 1

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1
1 0
1 1

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0
1 1

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0 OFF ON ON OFF 1
1 1

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0 OFF ON ON OFF 1
1 1 OFF OFF ON ON 0

𝑌 = 𝐴 % 𝐵 = 𝐴𝐵
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2



CMOS NAND Gate
n Let’s build more complex gates!
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𝑌 = 𝐴 % 𝐵 = 𝐴𝐵NAND

Y = AB

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A
B Y

A
Y

B

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2



n How can we make an AND gate?

CMOS AND Gate
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𝑌 = 𝐴 % 𝐵 = 𝐴𝐵A B Y
0 0 0
0 1 0
1 0 0

111

A
Y

B

We make an AND gate using
one NAND gate and 

one NOT gate

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3



CMOS NOT, NAND, AND Gates
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A
Y

B

A B Y
0 0 0
0 1 0
1 0 0

111

A B Y
0 0 1
0 1 1
1 0 1

011

A
Y

BA Y

NOT

Y = A

A Y
0 1
1 0

A Y

3V

0V

Out (Y)In (A)

P

N

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2



General CMOS Gate Structure
n The general form used to construct any inverting logic gate, 

such as: NOT, NAND, or NOR
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pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

q The networks may consist of 
transistors in series or in 
parallel

q When transistors are in 
parallel, the network is ON if 
one of the transistors is ON

q When transistors are in series, 
the network is ON only if all
transistors are ON

pMOS transistors are used for pull-up
nMOS transistors are used for pull-down



General CMOS Gate Structure (II)
n Exactly one network should be ON, and the other network 

should be OFF at any given time
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pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

q If both networks are ON at the 
same time, there is a short 
circuit à likely incorrect 
operation

q If both networks are OFF at 
the same time, the output is 
floating à undefined

pMOS transistors are used for pull-up
nMOS transistors are used for pull-down



Digging Deeper: Why This Structure?
n MOS transistors are not perfect switches

n pMOS transistors pass 1’s well but 0’s poorly
n nMOS transistors pass 0’s well but 1’s poorly

n pMOS transistors are good at “pulling up” the output
n nMOS transistors are good at “pulling down” the output
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3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3
pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

See Section 1.7 in H&H 



Digging Deeper: Latency
n Which one is faster?

q Transistors in series
q Transistors in parallel

n Series connections are slower than parallel connections
q More resistance on the wire

n How do you alleviate this latency?
q See H&H Section 1.7.8 for an example:                        

pseudo-nMOS Logic

70



Digging Deeper: Power Consumption
n Dynamic Power Consumption

q C * V2 * f
n C = capacitance of the circuit (wires and gates)
n V = supply voltage
n f = charging frequency of the capacitor

n Static Power consumption
q V * Ileakage

n supply voltage * leakage current

n Energy Consumption
q Power * Time

n See more in H&H Chapter 1.8
71



Common Logic Gates
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Larger Gates
n We can extend the gates to more than 2 inputs

n Example: 3-input AND gate, 10-input NOR gate

n See your readings
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Aside: Moore’s Law: 
Enabler of Many Gates on a Chip
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An Enabler: Moore’s Law
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Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, 1965.       Component counts double every other year

Image source: Intel



76
Number of transistors on an integrated circuit doubles ~ every two years

Image source: Wikipedia
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Recommended Reading
n Moore, “Cramming more components onto integrated 

circuits,” Electronics Magazine, 1965. 

n Only 3 pages

n A quote:
“With unit cost falling as the number of components per 
circuit rises, by 1975 economics may dictate squeezing as 
many as 65 000 components on a single silicon chip.”

n Another quote:
“Will it be possible to remove the heat generated by tens of 
thousands of components in a single silicon chip?”
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How Do We Keep Moore’s Law: Innovation  
n Manufacturing smaller transistors/structures

q Some structures are already a few atoms in size

n Finding materials with better properties
q Copper instead of Aluminum (better conductor)
q Hafnium Oxide, air for Insulators
q Making sure all materials are compatible is the challenge

n Enabling precision manufacturing
q Extreme ultraviolet (EUV) light to pattern <10nm structures

n Creating new device technologies
q FinFET, Gate All Around transistor, Single Electron Transistor…
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Innovation At the Bottom Enables Computing
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Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)
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Historical: Opportunities at the Bottom 

82https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom

https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom


Historical: Opportunities at the Bottom (II) 

83https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom

https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom


Combinational Logic Circuits
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We Can Now Build Logic Circuits

n A logic circuit is composed of:
q Inputs
q Outputs

n Functional specification (describes relationship between 
inputs and outputs)

n Timing specification (describes the delay between inputs 
changing and outputs responding)
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inputs outputs
functional spec

timing spec

Now, we understand the workings of the basic logic gates

What is our next step?

Build some of the logic structures that are important 
components of the microarchitecture of a computer



Types of Logic Circuits

n Combinational Logic
q Memoryless
q Outputs are strictly dependent on the combination of input 

values that are being applied to circuit right now
q In some books called Combinatorial Logic

n Later we will learn: Sequential Logic
q Has memory

n Structure stores history à Can ”store” data values
q Outputs are determined by previous (historical) and current 

values of inputs
86

inputs outputs
functional spec

timing spec



Boolean Logic Equations
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Functional Specification
n Functional specification of outputs in terms of inputs
n What do we mean by “function”?

q Unique mapping from input values to output values
q The same input values produce the same output value every 

time
q No memory (does not depend on the history of input values)

n Example (full 1-bit adder – more later): 

S = F(A, B, Cin)
Cout = G(A, B, Cin) 
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A S

S      = A Å B Å Cin
Cout  = AB + ACin + BCin

B
Cin

CL Cout



Simple Equations: NOT / AND / OR
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A
B A • B

A • B (reads “A and B”) is 1 iff A and B are both 1

A
B A + B

A + B (reads “A or B”) is 1 iff either A or B is 1

A 𝑨

𝑨 (reads “not A”) is 1 iff A is 0 𝑨 𝑨
0 1
1 0

𝑨 𝑩 𝑨 • 𝑩
0 0 0
0 1 0
1 0 0
1 1 1

𝑨 𝑩 𝑨 + 𝑩
0 0 0
0 1 1
1 0 1
1 1 1



Boolean Algebra: Big Picture
n An algebra on 1’s and 0’s

q with AND, OR, NOT operations 

n What you start with
q Axioms: basic things about objects and operations

you just assume to be true at the start

n What you derive first
q Laws and theorems: allow you to manipulate Boolean expressions
q …also allow us to do simplification on Boolean expressions

n What you derive later
q More “sophisticated” properties useful for manipulating digital 

designs represented in the form of Boolean equations

90George Boole, “The Mathematical Analysis of Logic,” 1847.



Boolean Algebra: Axioms
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1.  B contains at least two elements,  
0 and 1,  such that 0 ≠ 1

2.  Closure a,b ∈ B,
(i)   a + b ∈ B
(ii)  a • b ∈ B

3.  Commutative Laws: a,b ∈ B, 
(i)   a + b = b + a
(ii)  a • b = b • a

4.  Identities: 0, 1 ∈ B
(i)  a + 0 = a
(ii) a • 1 = a

5.  Distributive Laws:
(i)  a + (b • c) = (a + b) • (a + c)
(ii) a • (b + c) = a • b +  a • c

6.  Complement:
(i) 𝐚 + %𝒂= 1
(ii) 𝐚 • %𝒂 = 0

English version

Result of  AND, OR stays
in set you start with

For primitive AND, OR of
2 inputs, order doesn’t matter

There are identity elements
for AND, OR, that give you back
what you started with

• distributes over +, just like algebra
…but + distributes over •, also (!!)

There is a complement element;
AND/ORing with it gives the identity elm.

Formal version

Math formality...



Boolean Algebra: Duality
n Observation 

q All the axioms come in “dual” form 
q Anything true for an expression also true for its dual
q So any derivation you could make that is true, can be flipped into 

dual form, and it stays true

n Duality — More formally
q A dual of a Boolean expression is derived by replacing 

n Every AND operation with... an OR operation
n Every OR operation with... an AND
n Every constant 1 with... a constant 0
n Every constant 0 with... a constant 1
n But don’t change any of the literals or play with the complements!
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➙ a + (b • c) = (a + b) • (a + c)
a • (b + c) = (a • b) + (a • c) Example



Boolean Algebra: Useful Laws
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Operations with 0 and 1:

Idempotent Law:

Involution Law:

Laws of  Complementarity:

Commutative Law:

1.  X + 0 = X
2.  X + 1 = 1

3.  X + X = X

4.  = X

5.  X + = 1

6.  X + Y = Y + X

AND, OR with identities
gives you back the original
variable or the identity

AND, OR with self  = self

double complement = 
no complement

AND, OR with complement
gives you an identity

Just an axiom…

1D.  X • 1 = X
2D.  X • 0 = 0

3D.  X • X = X

5D.  X • = 0

6D.  X • Y = Y • X

Dual

$𝐗$𝐗

($𝑿)



Distributive Laws:

Simplification Theorems:
9.   X • Y  +  X • = X

10.  X + X • Y = X

11.  (X + ) • Y = X • Y

9D.   (X + Y)  •  (X + ) = X

10D.  X • (X + Y) = X

11D.  (X • ) + Y = X + Y

%𝒀

%𝒀

%𝒀

%𝒀

Useful Laws (continued)
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8.  X • (Y+ Z) = (X • Y) + (X • Z) 8D.  X + (Y• Z) = (X + Y) • (X + Z)

Associative Laws:
7.  (X + Y) + Z = X + (Y + Z)

= X + Y + Z
7D.  (X • Y) • Z = X • (Y • Z)

= X • Y • Z
Parenthesis order
does not matter

Axiom

Useful for
simplifying
expressions

Actually worth remembering — they show up a lot in real designs…



"𝐘X • ( Y + ) = X Distributive (5)

X • 1 = X Complement (6)

X = X Identity (4)

Boolean Algebra: Proving Things
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Proving theorems via axioms of  Boolean Algebra:

EX: Prove the theorem:   X • Y  +  X • = X

EX2: Prove the theorem:       X  +  X • Y  =  X

X • 1 + X • Y = X Identity (4)

X • ( 1 + Y ) = X Distributive (5)

X • 1 = X Identity (2)

X = X Identity (4)

$𝒀



DeMorgan’s Law: Enabling Transformations
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¢ Think of this as a transformation
§ Let’s say we have:  

F = A + B + C

§ Applying DeMorgan’s Law (12), gives us

DeMorgan's Law:
12.

12D.  (𝑿 . 𝒀. 𝒁.… ) = $𝑿 + $𝒀 + $𝒁 + …
(𝑿 + 𝒀 + 𝒁 +⋯) = $𝑿. $𝒀. $𝒁.…

𝑭 = (𝑨 + 𝑩 + 𝑪) = ($𝑨. $𝑩. $𝑪)

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false



DeMorgan’s Law (Continued)

97

NOR is equivalent to AND
with inputs complemented

NAND is equivalent to OR
with inputs complemented

These are conversions between different types of logic functions
They can prove useful if you do not have every type of gate…
Or, if some types of gates are more desirable to use than others…

𝑨 = (𝑿 + 𝒀) = $𝑿$𝒀

𝑩 = (𝑿𝒀) = $𝑿 + $𝒀

𝑿
𝒀

𝑿
𝒀

𝑿
𝒀 𝑩

𝑩𝑿
𝒀

𝑨

𝑨

𝑿 𝒀 𝑿𝒀 #𝑿 #𝒀 !𝑿 + !𝒀

0 0 1 1 1 1
0 1 1 1 0 1
1 0 1 0 1 1
1 1 0 0 0 0

𝑿 𝒀 𝑿 + 𝒀 #𝑿 #𝒀 #𝑿#𝒀
0 0 1 1 1 1
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 0



Using Boolean Equations 
to Represent a Logic Circuit
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We Covered Until This Point 
in the Lecture
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Sum of Products Form: Key Idea
n Assume we have the truth table of Boolean Function F

n How do we express the function in terms of the inputs in a 
standard manner?

n Idea: Sum of Products form
n Express the truth table as a two-level Boolean expression

q that contains all input variable combinations that result in a 1 
output

q If ANY of the combinations of input variables that results in a 1 
is TRUE, then the output is 1

q F = OR of all input variable combinations that result in a 1
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Some Definitions (for a 3-Input Function)
¢ Complement: variable with a bar over it
𝑨 , 𝑩 , 𝑪

¢ Literal: variable or its complement
𝑨 ,  𝑨 , 𝑩 , 𝑩 , 𝑪 , 𝑪

¢ Implicant: product (AND) of literals
(𝑨 1 𝑩 1 𝑪) , (𝑨 1 𝑪) , (𝑩 1 𝑪)

¢ Minterm: product (AND) that includes all input variables
(𝑨 1 𝑩 1 𝑪) , (𝑨 1 𝑩 1 𝑪) , (𝑨 1 𝑩 1 𝑪)

¢ Maxterm: sum (OR) that includes all input variables
(𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪)
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Two-Level Canonical (Standard) Forms
n Truth table is the unique signature of a Boolean function …

q But, it is an expensive representation

n A Boolean function can have many alternative Boolean 
expressions
q i.e., many alternative Boolean expressions (and gate 

realizations) may have the same truth table (and function)
q If they all say the same thing, why do we care?

n Different Boolean expressions lead to different logic gate 
implementations à Different cost, latency, energy properties

n Canonical form: standard form for a Boolean expression 
q Provides a unique algebraic signature 
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Two-Level Canonical Forms: SOP
Sum of Products Form (SOP)
Also known as disjunctive normal form or minterm expansion

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

All Boolean equations can be written in SOP form

• Each row in a truth table has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)

𝑭 = $𝑨𝐁𝐂 + 𝐀$𝑩$𝑪 + 𝐀$𝑩𝐂 + 𝐀𝐁$𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

Find all the input combinations (minterms) for which the output of the function is TRUE.



SOP Form — Why Does It Work?
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0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

n Only the shaded product term — 𝐀$𝑩𝐂 = 𝟏 1 $𝟎 1 𝟏— will be 1  

n No other product terms will “turn on” — they will all be 0
n So if inputs A B C correspond to a product term in expression,

q We get  0 + 0 + … + 1 + … + 0 + 0 = 1 for output
n If inputs A B C do not correspond to any product term in expression

q We get 0 + 0 + … + 0 = 0 for output 

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
𝑭 = $𝑨𝐁𝐂 + 𝐀$𝑩$𝑪 + 𝐀$𝑩𝐂 + 𝐀𝐁$𝑪 + 𝐀𝐁𝐂

𝐀 𝐁 𝐂 𝐅
This input

Activates
this term

The function evaluates to TRUE (i.e., output is 1) 
if any of the Products (minterms) causes the output to be 1



Aside: Notation for SOP
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111 = decimal 7 so this is minterm #7, or  m7

100 = decimal 4 so this is minterm #4, or  m4

n Standard “shorthand” notation
q If we agree on the order of the variables in the rows of truth 

table…
n then we can enumerate each row with the decimal number that 

corresponds to the binary number created by the input pattern

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

f =

= ∑m(3,4,5,6,7)

m3 + m4 + m5 + m6 + m7 We can write this as a sum of products

Or, we can use a summation notation

𝐀 𝐁 𝐂 𝐅



Canonical SOP Forms
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Shorthand Notation for
Minterms of  3 Variables

F in canonical form:
F(A,B,C) = ∑m(3,4,5,6,7)

= m3 + m4 + m5 + m6 + m7

canonical form ≠ minimal form

2-Level AND/OR
Realization

minterms
0 0 0 = m0
0 0 1 = m1
0 1 0 = m2
0 1 1 = m3
1 0 0 = m4
1 0 1 = m5
1 1 0 = m6
1 1 1 = m7

𝑭 = $𝑨𝐁𝐂 + 𝐀$𝑩$𝑪
+ 𝐀$𝑩𝐂 + 𝐀𝐁$𝑪 + 𝐀𝐁𝐂

𝑭 = 𝐀$𝑩 𝑪 + $𝑪 + $𝑨𝐁𝐂 + 𝐀𝐁(𝑪 + $𝑪)

= 𝐀$𝑩 + $𝑨𝐁𝐂 + 𝐀𝐁

= 𝐀($𝑩 + 𝑩) + $𝑨𝐁𝐂

= 𝐀 + $𝑨𝐁𝐂

= 𝐀 + 𝐁𝐂

%𝑨%𝑩%𝑪
%𝑨%𝑩𝑪
%𝑨𝑩%𝑪
%𝑨𝑩𝑪
𝑨%𝑩%𝑪
𝑨%𝑩𝑪
𝑨𝑩%𝑪
𝑨𝑩𝑪

𝐀 𝐁 𝐂



From Logic to Gates
¢ SOP (sum-of-products) leads to two-level logic

¢ Example: 𝒀 = 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪

108

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C



Canonical Sum of Products Form: Key Idea
n Any 1-bit function can be represented as a Sum of Products

n A “Product” is the Boolean AND that includes ALL input 
variables of the function à minterm

n The 1-bit Output of the Function can be represented as 
q Sum (OR) of all minterms that lead to a 1 in the Output

n Logically
q The function evaluates to TRUE (i.e., output is 1) if ANY of the 

Products (minterms) causes the Output to be 1
q SOP form represents the function as the SUM (OR) of all 

Products (minterms) that cause the Output to be 1 
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0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Alternative Canonical Form: POS
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For the given input, only the shaded sum term 
will equal 0 

Anything ANDed with 0 is 0; Output F will be 0

Product of Sums (POS)

0  0    0 0  0   1

sums

product

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + %𝑪)(𝑨 + %𝑩 + 𝑪)

𝑭 = 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + %𝑪 (𝑨 + %𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

Each sum term represents one of the 
“zeros” of the function

This input

Activates this term

𝑨 + %𝑩 + 𝑪 = 𝟎 + %𝟏 + 𝟎

0  1 0

We can have another canonical form of representation

DeMorgan of SOP of %𝑭

The function evaluates to FALSE (i.e., output is 0) 
if at least one of the Sums (maxterms) causes the output to be 0



0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Consider A=0, B=1, C=0
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Only one of the products will be 0, anything ANDed with 0 is 0

Therefore, the output is F = 0

1 1 0

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + %𝑪)(𝑨 + %𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑭 = 𝟎

𝟎 %𝟏 𝟎𝟎 𝟏 %𝟎𝟎 𝟏 𝟎

0  1  0
Input



POS: How to Write It
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Maxterm form:
1. Find truth table rows where F is 0

2. 0 in input col ➙ true literal
3. 1 in input col ➙ complemented literal

4. OR the literals to get a Maxterm
5. AND together all the Maxterms

Or just remember, POS of 𝑭 is the same as the DeMorgan of SOP of %𝑭 !!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + %𝑪)(𝑨 + %𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑨 %𝑩 𝑪

𝑨 + %𝑩 + 𝑪



Canonical POS Forms
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Maxterms
0 0 0 = M0
0 0 1 = M1
0 1 0 = M2
0 1 1 = M3
1 0 0 = M4
1 0 1 = M5
1 1 0 = M6
1 1 1 = M7

Maxterm shorthand notation
for a function of three variables

Note that you 
form the 

maxterms around 
the “zeros” of the 

function

This is not the 
complement of 
the function!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

𝑨 + 𝑩 + 𝑪
𝑨 + 𝑩 + %𝑪
𝑨 + %𝑩 + 𝑪
𝑨 + %𝑩 + %𝑪
%𝑨 + 𝑩 + 𝑪
%𝑨 + 𝑩 + %𝑪
%𝑨 + %𝑩 + 𝐂
%𝑨 + %𝑩 + %𝑪

𝐅 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + %𝑪)(𝑨 + %𝑩 + 𝑪)

5𝑴(𝟎, 𝟏, 𝟐)𝐀 𝐁 𝐂

𝐀 𝐁 𝐂 𝐅



Useful Conversions
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1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

3. Expansion of to expansion of :

4. Minterm expansion of to Maxterm expansion of :
rewrite in Maxterm form, using the same indices as 

E.g., 𝐅 𝑨, 𝑩, 𝑪 = ∑𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 = ∏𝑴(𝟎, 𝟏, 𝟐)

E.g., 𝐅 𝑨, 𝑩, 𝑪 = ∏𝑴(𝟎, 𝟏, 𝟐) = ∑𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

𝐄. 𝐠. , 𝐅 𝑨, 𝑩, 𝑪 =D𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 %𝑭 𝑨,𝑩, 𝑪 =D𝒎(𝟎, 𝟏, 𝟐)

=5𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕=5𝑴(𝟎, 𝟏, 𝟐)

𝐅 %𝑭

𝐄. 𝐠. , 𝐅 𝑨, 𝑩, 𝑪 =D𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 %𝑭 𝑨,𝑩, 𝑪 = ∏𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

=D𝒎(𝟎, 𝟏, 𝟐)=5𝑴(𝟎, 𝟏, 𝟐)

𝐅 %𝑭
𝐅



Logic Simplification (or Minimization)
n Using Boolean Algebra, we can simplify the SOP or POS 

form of any function in a methodical way

n Starting with the canonical SOP or POS form enables 
convenience and automation
q Truth table à SOP/POS form à Boolean Simplification Rules

n Example (full 1-bit adder – more later): 

S = F(A, B, Cin)
Cout = G(A, B, Cin) 
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A S

S      = A Å B Å Cin
Cout  = AB + ACin + BCin

B
Cin

CL Cout



Logic Simplification Example: SOP Form
¢ SOP (sum-of-products) form of function Y

¢ Example: 𝒀 = 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪
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BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C



Logic Simplification Example: Simplified
¢ SOP (sum-of-products) form of function Y

¢ Example: 𝒀 = 𝑩 1 𝑪 + 𝑨 1 𝑩
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Let’s Cover Some 
Basic Combinational Blocks
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Combinational Building Blocks 
used in Modern Computers
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Combinational Building Blocks
n Combinational logic is often grouped into larger building 

blocks to build more complex systems

n Hides the unnecessary gate-level details to emphasize the 
function of the building block

n We now examine: 
q Decoder
q Multiplexer
q Full adder
q PLA (Programmable Logic Array)



Decoder
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Decoder
n “Input pattern detector”
n n inputs and 2n outputs
n Exactly one of the outputs is 1 and all the rest are 0s
n The one output that is logically 1 is the output 

corresponding to the input pattern that the logic circuit is 
expected to detect

n Example: 2-to-4 decoder
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Decoder (I)
n n inputs and 2n outputs
n Exactly one of the outputs is 1 and all the rest are 0s
n The one output that is logically 1 is the output 

corresponding to the input pattern that the logic circuit is 
expected to detect
A 1 if A,B is 00B

1 if A,B is 01

1 if A,B is 10

1 if A,B is 11

A = 1 0B = 0

0

1

0



Decoder (II)
n The decoder is useful in determining how to interpret a bit 

pattern

124

A = 1 0B = 0

0

1

0

q It could be the 
address of a row in 
DRAM, that the 
processor intends to 
read from

q It could be an 
instruction in the 
program and the 
processor needs to 
decide what action to 
take (based on 
instruction opcode)



Multiplexer (MUX)
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Multiplexer (MUX), or Selector
n Selects one of the N inputs to connect it to the output

q based on the value of a log2N-bit control input called select
n Example: 2-to-1 MUX



Multiplexer (MUX), or Selector (II)
n Selects one of the N inputs to connect it to the output

q based on the value of a log2N-bit control input called select
n Example: 2-to-1 MUX

A B

S

C

ba

A B

S = 0

C

0A

A



Multiplexer (MUX), or Selector (III)
n The output C is always connected to either the input A or 

the input B
q Output value depends on the value of the select line S

n Your task: Draw the schematic for an 4-input (4:1) MUX
q Gate level: as a combination of basic AND, OR, NOT gates
q Module level: As a combination of 2-input (2:1) MUXes
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A B

S

C

S C
0 A
1 B



A 4-to-1 Multiplexer
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Full Adder
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Full Adder (I)
n Binary addition

q Similar to decimal addition
q From right to left
q One column at a time
q One sum and one carry bit

n Truth table of binary addition on one column of bits within 
two n-bit operands
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𝒂𝒏F𝟏𝒂𝒏F𝟐…𝒂𝟏𝒂𝟎
𝒃𝒏F𝟏𝒃𝒏F𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏F𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏F𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1



Full Adder (II)
n Binary addition

q N 1-bit additions
q SOP of 1-bit addition
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𝒂𝒏F𝟏𝒂𝒏F𝟐…𝒂𝟏𝒂𝟎
𝒃𝒏F𝟏𝒃𝒏F𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏F𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏F𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci
ci+1

si

Full Adder (1 bit)



4-Bit Adder from Full Adders
n Creating a 4-bit adder out of 1-bit full adders

q To add two 4-bit binary numbers A and B
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𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒂𝟎
𝒃𝟑 𝒃𝟐 𝒃𝟏 𝒃𝟎

𝒔𝟑 𝒔𝟐 𝒔𝟏 𝒔𝟎

𝒄𝟒 𝒄𝟑 𝒄𝟐 𝒄𝟏
+

𝟏 𝟎 𝟏 𝟏

𝟏 𝟎 𝟎 𝟏

𝟎 𝟏 𝟎 𝟎
𝟏 𝟎 𝟏 𝟏
+

Full Adder

a0b0

s0

0c1Full Adder

a1b1

s1

c2Full Adder

a2b2

s2

c3Full Adder

a3b3

s3

c4



Adder Design: Ripple Carry Adder
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Adder Design: Carry Lookahead Adder
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Programmable Logic Array (PLA)
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PLA: Recall: From Logic to Gates
¢ SOP (sum-of-products) leads to two-level logic

¢ Example: 𝒀 = 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪 + 𝑨 1 𝑩 1 𝑪

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

A PLA enables the two-level SOP implementation of any N-input M-output function



The Programmable Logic Array (PLA)
n The below logic structure is a very common building block 

for implementing any collection of logic functions one 
wishes to

n An array of AND gates 
followed by an array of OR 
gates

n How do we determine the 
number of AND gates?
q Remember SOP: the 

number of possible minterms
q For an n-input logic function, we need a PLA with 2n n-input 

AND gates
n How do we determine the number of OR gates? The 

number of output columns in the truth table

A

B

C

X

Y

Z

Connections

A PLA enables the two-level SOP implementation of any N-input M-output function



n How do we implement a logic function?
q Connect the output of an AND gate to the input of an OR gate 

if the corresponding minterm is included in the SOP

The Programmable Logic Array (PLA)
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q This is a simple programmable 
logic construct

n Programming a PLA: we 
program the connections from 
AND gate outputs to OR gate 
inputs to implement a desired 
logic function

n Have you seen any other type of programmable logic?
q Yes! An FPGA…
q An FPGA uses more advanced structures, as we saw in Lecture 3

A

B

C

X

Y

Z

Connections

A PLA enables the two-level SOP implementation of any N-input M-output function



PLA Example (I)

140Read H&H Chapter 5.6.1



PLA Example Function (II)

141Read H&H Chapter 5.6.1



PLA Example Function (III)

142Read H&H Chapter 5.6.1



Implementing a Full Adder Using a PLA

ai

bi

ci
ci+1

si

X
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A

B

C

X

Y

Z

Connections

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Truth table of a full adder

This input should not be
connected to any outputs We do not need

this output



Logical Completeness
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Logical (Functional) Completeness
n Any logic function we wish to implement could be 

accomplished with a PLA
q PLA consists of only AND gates, OR gates, and inverters
q We just have to program connections based on SOP of the 

intended logic function

n The set of gates {AND, OR, NOT} is logically complete 
because we can build a circuit to carry out the specification 
of any truth table we wish, without using any other kind of 
gate

n NAND is also logically complete. So is NOR.
q Your task: Prove this.
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More Combinational Blocks
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More Combinational Building Blocks
n H&H Chapter 2 in full

q Required Reading
q E.g., see Tri-state Buffer and Z values in Section 2.6

n H&H Chapter 5
q Will be required reading soon.

n You will benefit greatly by reading the “combinational” 
parts of Chapter 5 soon.
q Sections 5.1 and 5.2
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Comparator
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Equality Checker (Compare if Equal)
n Checks if two N-input values are exactly the same
n Example: 4-bit Comparator



ALU (Arithmetic Logic Unit)
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ALU (Arithmetic Logic Unit)
n Combines a variety of arithmetic and logical operations into 

a single unit (that performs only one function at a time)
n Usually denoted with this symbol:



Example ALU (Arithmetic Logic Unit)
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More Combinational Building Blocks
n See H&H Chapter 5.2 for

q Subtractor (using 2’s Complement Representation)
q Shifter and Rotator
q Multiplier
q Divider
q …
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More Combinational Building Blocks
n H&H Chapter 2 in full

q Required Reading
q E.g., see Tri-state Buffer and Z values in Section 2.6

n H&H Chapter 5
q Will be required reading soon.

n You will benefit greatly by reading the “combinational” 
parts of Chapter 5 soon.
q Sections 5.1 and 5.2
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Tri-State Buffer
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Example: Use of Tri-State Buffers
n Imagine a wire connecting the CPU and memory

q At any time only the CPU or the memory can place a value on 
the wire, both not both

q You can have two tri-state buffers: one driven by CPU, the 
other memory; and ensure at most one is enabled at any time
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Example Design with Tri-State Buffers
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CPU

Memory

GateMem

GateCPU

Shared Bus



Another Example
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Multiplexer Using Tri-State Buffers
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Aside: Logic Using Multiplexers
n Multiplexers can be used as lookup tables to perform logic 

functions
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Tri-State Buffer
n A tri-state buffer enables gating of different signals onto a 

wire

n Floating signal (Z): Signal that is not driven by any circuit
q Open circuit, floating wire

161



Aside: Logic Using Multiplexers (II)
n Multiplexers can be used as lookup tables to perform logic 

functions
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Aside: Logic Using Multiplexers (III)
n Multiplexers can be used as lookup tables to perform logic 

functions

163Read H&H Chapter 2.8



Aside: Logic Using Decoders (I)
n Decoders can be combined with OR gates to build logic 

functions.

164Read H&H Chapter 2.8



Logic Simplification using 
Boolean Algebra Rules

165



Recall: Full Adder in SOP Form Logic
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ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci
ci+1

si



Goal: Simplified Full Adder
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How do we simplify Boolean logic?



Quick Recap on Logic Simplification
n The original Boolean expression (i.e., logic circuit) may not 

be optimal

n Can we reduce a given Boolean expression to an equivalent 
expression with fewer terms?

n The goal of logic simplification:
q Reduce the number of gates/inputs
q Reduce implementation cost

168

F = ~A(A + B) + (B + AA)(A + ~B)

F = A + B

A basis for what the automated design tools are doing today



Logic Simplification
n Systematic techniques for simplifications

q amenable to automation
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Key Tool:  The Uniting Theorem —

𝑭 =

A's value does NOT change within the ON-set rows

B's value changes within the rows where F==1 (“ON set”)

B's value stays the same within the ON-set rows

A's value changes within the ON-set rows

➙ B is eliminated, A remains

➙ A is eliminated, B remains

If an input (B) can change without changing the output, that input 
value is not needed

𝑭 = 𝑨$𝑩 + 𝑨𝑩

𝑨$𝑩 + 𝑨𝑩 = 𝑨 $𝑩 + 𝑩 = 𝑨 𝟏 = 𝑨

𝑮 = $𝑨$𝑩 + 𝑨$𝑩 = $𝑨 + 𝑨 $𝑩 = $𝑩

Essence of Simplification:
Find two element subsets of the ON-set where only one variable 
changes its value.  This single varying variable can be eliminated!



Logic Simplification Example: Priority Circuit
n Priority Circuit

q Inputs: “Requestors” with priority levels
q Outputs: “Grant” signal for each requestor
q Example 4-bit priority circuit
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Simplified Priority Circuit
n Priority Circuit

q Inputs: “Requestors” with priority levels
q Outputs: “Grant” signal for each requestor
q Example 4-bit priority circuit
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X (Don’t Care) means I don’t care what the value of this input is



Logic Simplification:
Karnaugh Maps (K-Maps)

172



Karnaugh Maps are Fun…
n A pictorial way of minimizing circuits by visualizing 

opportunities for simplification
n They are for you to study on your own…

n See Backup Slides 
n Read H&H Section 2.7
n Watch videos of Lectures 5 and 6 from 2019 DDCA course:

q https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNF
QFHRO3GrXxA9&t=4570

q https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBN
FQFHRO3GrXxA9&t=220
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https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=4570
https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=220


Backup Slides on
Karnaugh Maps (K-Maps)
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Complex Cases
n One example

n Problem
q Easy to see how to apply Uniting Theorem…
q Hard to know if you applied it in all the right places…
q …especially in a function of many more variables

n Question
q Is there an easier way to find potential simplifications?
q i.e., potential applications of Uniting Theorem…? 

n Answer
q Need an intrinsically geometric representation for Boolean f( ) 
q Something we can draw, see…
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𝑪𝒐𝒖𝒕 = &𝑨𝑩𝑪 + 𝑨&𝑩𝑪 + 𝑨𝑩&𝑪 + 𝑨𝑩𝑪



Karnaugh Map
n Karnaugh Map (K-map) method

q K-map is an alternative method of representing the truth table 
that helps visualize adjacencies in up to 6 dimensions

q Physical adjacency ↔ Logical adjacency
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2-variable K-map
0 1

0 00 01

1 10 11

Numbering Scheme: 00, 01, 11, 10  is called a
“Gray Code” — only a single bit (variable) changes

from one code word and the next code word

00 01 11 10
00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10
0 000 001 011 010

1 100 101 111 110

𝑨𝑩𝑨 𝑩 𝑪𝑫
𝑨
𝑩𝑪



Karnaugh Map Methods
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Adjacent

000

001

010

011

110

111

100

101

000

001
010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”
Wrap around from first to last column
Wrap around from top row to bottom row

00 01 11 10
0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪



K-map Cover - 4 Input Variables
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00 01 11 10
00 1 0 0 1
01 0 1 0 0
11 1 1 1 1
10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅(𝐀, 𝐁, 𝐂, 𝐃) =D𝒎(𝟎, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)

𝐅 = 𝐀 + %𝑩%𝑫 + 𝐁%𝑪𝑫𝐀 + %𝑩%𝑫𝐀



Logic Minimization Using K-Maps
n Very simple guideline:

q Circle all the rectangular blocks of 1’s in the map, using the 
fewest possible number of circles
n Each circle should be as large as possible

q Read off the implicants that were circled

n More formally:
q A Boolean equation is minimized when it is written as a sum of 

the fewest number of prime implicants
q Each circle on the K-map represents an implicant
q The largest possible circles are prime implicants
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K-map Rules
n What can be legally combined (circled) in the K-map?

q Rectangular groups of size 2k for any integer k
q Each cell has the same value (1, for now)
q All values must be adjacent

n Wrap-around edge is okay

n How does a group become a term in an expression?
q Determine which literals are constant, and which vary across group
q Eliminate varying literals, then AND the constant literals

n constant 1 ➙ use 𝐗,  constant 0 ➙ use %𝑿

n What is a good solution?
q Biggest groupings ➙ eliminate more variables (literals) in each term 
q Fewest groupings ➙ fewer terms (gates) all together
q OR together all AND terms you create from individual groups
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K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map
for each of the 3
output functions
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A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

A
F1 AB = CD

B
F2 AB < CD

C
F3 AB > CD

D



K-map Example: Two-bit Comparator (2)
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A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

00 01 11 10
00 1
01 1
11 1
10 1

K-map for F1

𝑨𝑩
𝑪𝑫

F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

𝑨
𝑩

𝑫

𝑪



K-map Example: Two-bit Comparator (3)

184

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

00 01 11 10
00 1 1 1
01 1 1
11

10 1

K-map for F2

𝑨𝑩
𝑪𝑫

F2 = A'C + A'B'D + B'CD

F3 = ? (Exercise for you)

𝑨
𝑩

𝑫

𝑪



K-maps with “Don’t Care”
n Don’t Care really means I don’t care what my circuit outputs if this 

appears as input
q You have an engineering choice to use DON’T CARE patterns 

intelligently as 1 or 0 to better simplify the circuit
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I can pick 00, 01, 10, 11
independently of below

I can pick 00, 01, 10, 11
independently of above

A B C D F G

• • •

0 1 1 0 X X
0 1 1 1
1 0 0 0 X X
1 0 0 1

• • •



A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

Example: BCD Increment Function
n BCD (Binary Coded Decimal) digits 

q Encode decimal digits 0 - 9 with bit patterns 00002 — 10012
q When incremented, the decimal sequence is 0, 1, …, 8, 9, 0, 1

186

These input patterns should
never be encountered in practice

(hey -- it’s a BCD number!)
So, associated output values are

“Don’t Cares”



00 01 11 10
00 1 1
01 1 1
11 X X X X
10 1 X X

K-map for BCD Increment Function

A B C D
+         1
W X Y Z
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00 01 11 10
00
01 1
11 X X X X
10 1 X X

00 01 11 10
00 1
01 1 1 1
11 X X X X
10 X X

00 01 11 10
00 1 1
01 1 1
11 X X X X
10 X X

W
𝑨𝑩

𝑪𝑫
X
𝑨𝑩

𝑪𝑫

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫 ZY

Z (without don’t cares) = A'D' + B'C'D’ 

Z (with don’t cares) = D'

𝑨
𝑩

𝑫

𝑪



K-map Summary

n Karnaugh maps as a formal systematic approach
for logic simplification

n 2-, 3-, 4-variable K-maps

n K-maps with “Don’t Care” outputs

n H&H Section 2.7
188


