
Digital Design & Computer Arch.

Lecture 5: Combinational Logic II

Prof. Onur Mutlu

ETH Zürich

Spring 2022

10 March 2022

Assignment: Lecture Video (Due April 1)
◼ Why study computer architecture? Why is it important?

◼ Future Computing Platforms: Challenges & Opportunities

◼ Required Assignment

❑ Watch one of Prof. Mutlu’s lectures and analyze either (or both)

❑ https://www.youtube.com/watch?v=kgiZlSOcGFM (May 2017)

❑ https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page summary of one of the lectures and email us

◼ What are your key takeaways?

◼ What did you learn?

◼ What did you like or dislike?

◼ Submit your summary to Moodle by April 1
2

https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=722981

Extra Credit Assignment: Due March 15

◼ Attend and watch Sean Lie’s talk on Feb 28

❑ Either on Zoom or Youtube

❑ https://safari.ethz.ch/safari-live-seminar-sean-lie-28-feb-2022/

❑ https://www.youtube.com/watch?v=x2-qB0J7KHw

◼ Optional Assignment – for 1% extra credit

❑ Write and submit a 1-page summary of the talk

◼ What are the key ideas used in the Cerebras system?

◼ What are your key takeaways from the talk?

◼ What did you learn?

◼ What did you like or dislike?

◼ Submit your summary to Moodle: https://moodle-
app2.let.ethz.ch/mod/assign/view.php?id=722952

3

https://safari.ethz.ch/safari-live-seminar-sean-lie-28-feb-2022/
https://www.youtube.com/watch?v=x2-qB0J7KHw
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=722952

Assignment: Required Readings

◼ This week

❑ Combinational Logic

◼ P&P Chapter 3 until 3.3 + H&H Chapter 2

◼ Next week

❑ Hardware Description Languages and Verilog

◼ H&H Chapter 4 until 4.3 and 4.5

❑ Sequential Logic

◼ P&P Chapter 3.4 until end + H&H Chapter 3 in full

◼ By the end of next week, make sure you are done with

❑ P&P Chapters 1-3 + H&H Chapters 1-4

4

Combinational Logic Circuits
and Design

5

What We Will Learn in This Lecture
◼ Building blocks of modern computers

❑ Transistors

❑ Logic gates

◼ Combinational circuits

◼ Boolean algebra

◼ Using Boolean algebra to represent combinational circuits

◼ Basic combinational logic blocks

◼ Simplifying combinational logic circuits
6

All Computers are Built Upon
the Same Building Blocks

7

Modern General-Purpose
Microprocessors

8Source: https://www.apple.com/mac/m1/

https://www.apple.com/mac/m1/

Modern General-Purpose
Microprocessors

9Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,

2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Modern General-Purpose
Microprocessors

10Source: https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html

https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html

Apple M1 Ultra (2022)

11https://www.theverge.com/2022/3/9/22968611/apple-m1-ultra-gpu-nvidia-rtx-3090-comparison

Apple M1 Ultra (2022)

12https://stadt-bremerhaven.de/apple-neuer-m1-ultra-chip-ist-offiziell/

Apple M1 Ultra with DRAM (2022)

13https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php

Modern General-Purpose
Microprocessors

14Source: https://twitter.com/Locuza_/status/1454152714930331652

Intel Alder Lake,

2021

https://twitter.com/Locuza_/status/1454152714930331652

FPGAs

15

Modern FPGAs

16Source: https://www.mouser.ch/new/xilinx/xilinx-zynq-7000-zc702-eval-kit/

https://www.mouser.ch/new/xilinx/xilinx-zynq-7000-zc702-eval-kit/

Special-Purpose ASICs (App-Specific Integrated Circuits)

17

Modern Special-Purpose ASICs

18

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

Modern Special-Purpose ASICs

19

250 TFLOPS per chip in 2021

vs 90 TFLOPS in TPU3

1 ExaFLOPS per board

New ML applications (vs. TPU3):

• Computer vision

• Natural Language Processing (NLP)

• Recommender system

• Reinforcement learning that plays Go

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests

Modern Special-Purpose ASICs

20

Cerebras WSE-2

2.6 Trillion transistors

46,225 mm2

Largest GPU

54.2 Billion transistors

826 mm2

◼ The largest ML

accelerator chip (2021)

◼ 850,000 cores

NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Modern Special-Purpose ASICs

21Source: https://dl.acm.org/doi/pdf/10.1145/3445814.3446723

https://dl.acm.org/doi/pdf/10.1145/3445814.3446723

Modern GPUs

22Source: https://en.wikichip.org/wiki/nvidia/tegra/xavier

https://en.wikichip.org/wiki/nvidia/tegra/xavier

General Purpose vs. Special Purpose
Systems

CPUs

Flexible: Can execute any program

Easy to program & use

GPUs FPGAs ASICs

Efficient & High performance

Cerebras WSE-2Apple M1 Nvidia GTX 1070 Xilinx Spartan

General Purpose Special Purpose

(Usually) Difficult to program & use

Inflexible: Limited set of programsNot the best performance & efficiency

All Computers are Built Upon
the Same Building Blocks

24

Transistors

25

A 5-Minute Video on Transistor
Innovation

26https://www.youtube.com/watch?v=Z7M8etXUEUU

https://www.youtube.com/watch?v=Z7M8etXUEUU

A 5-Minute Video on Transistor
Innovation

27https://www.youtube.com/watch?v=Z7M8etXUEUU

https://www.youtube.com/watch?v=Z7M8etXUEUU

Enabling Manufacturing Tech: EUV

28https://www.youtube.com/watch?v=Jv40Viz-KTc

https://www.youtube.com/watch?v=Jv40Viz-KTc

Logic Gates

29

Recall: Transistors to Logic Gates

◼ Now, we know how a MOS transistor works

◼ How do we build logic structures out of MOS transistors?

30

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Devices

Runtime System

(VM, OS, MM)

Electrons

◼ We construct basic logical units out of
individual MOS transistors

◼ These logical units are called logic gates

❑ They implement simple Boolean functions

George Boole, “The Mathematical Analysis of Logic,” 1847.

Recall: CMOS NOT, NAND, AND Gates

31

A
Y

B

A B Y
0 0 0
0 1 0
1 0 0

111

A B Y
0 0 1
0 1 1
1 0 1

011

A
Y

B
A Y

NOT

Y = A

A Y
0 1

1 0

A Y

3V

0V

Out (Y)In (A)

P

N

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

Recall: Common Logic Gates

32

Combinational Logic Circuits

33

Recall: Types of Logic Circuits

◼ Combinational Logic

❑ Memoryless

❑ Outputs are strictly dependent on the combination of input
values that are being applied to circuit right now

❑ In some books called Combinatorial Logic

◼ Later we will learn: Sequential Logic

❑ Has memory

◼ Structure stores history → Can ”store” data values

❑ Outputs are determined by previous (historical) and current
values of inputs

34

inputs outputs
functional spec

timing spec

Boolean Logic Equations

35

Recall: Functional Specification

◼ Functional specification of outputs in terms of inputs

◼ What do we mean by “function”?

❑ Unique mapping from input values to output values

❑ The same input values produce the same output value every
time

❑ No memory (does not depend on the history of input values)

◼ Example (full 1-bit adder – more later):

S = F(A, B, Cin)

Cout = G(A, B, Cin)

36

A
S

S = A  B  C
in

C
out

 = AB + AC
in
 + BC

in

B
C

in

CL
C

out

Boolean Equations Enable Us To…

◼ Represent the function of a combinational logic block

❑ Functional Specification

◼ Methodically transform the function into simpler functions

❑ which lead to different hardware realizations

❑ Logic Minimization or Logic Simplification

❑ We can automate this process → Computer-Aided Design or

Electronic Design Automation

◼ Different Boolean expressions lead to different logic gate
implementations

→ Different hardware area, cost, latency, energy properties
37

Recall: Boolean Algebra: Useful Laws

38

Operations with 0 and 1:

Idempotent Law:

Involution Law:

Laws of Complementarity:

Commutative Law:

1. X + 0 = X
2. X + 1 = 1

3. X + X = X

4. = X

5. X + = 1

6. X + Y = Y + X

AND, OR with identities
gives you back the original
variable or the identity

AND, OR with self = self

double complement =
no complement

AND, OR with complement
gives you an identity

Just an axiom…

1D. X • 1 = X
2D. X • 0 = 0

3D. X • X = X

5D. X • = 0

6D. X • Y = Y • X

Dual

ഥ𝐗ഥ𝐗

(ഥ𝑿)

Distributive Laws:

Simplification Theorems:
9. X • Y + X • = X

10. X + X • Y = X

11. (X +) • Y = X • Y

9D. (X + Y) • (X +) = X

10D. X • (X + Y) = X

11D. (X •) + Y = X + Y

ഥ𝒀

ഥ𝒀

ഥ𝒀

ഥ𝒀

Recall: Useful Laws (continued)

39

8. X • (Y+ Z) = (X • Y) + (X • Z) 8D. X + (Y• Z) = (X + Y) • (X + Z)

Associative Laws:
7. (X + Y) + Z = X + (Y + Z)

= X + Y + Z
7D. (X • Y) • Z = X • (Y • Z)

= X • Y • Z
Parenthesis order
does not matter

Axiom

Useful for
simplifying
expressions

Actually worth remembering — they show up a lot in real designs…

DeMorgan’s Law: Enabling
Transformations

40

Think of this as a transformation

▪ Let’s say we have:

F = A + B + C

▪ Applying DeMorgan’s Law (12), gives us

DeMorgan's Law:

12.

12D. (𝑿 . 𝒀. 𝒁.…) = ഥ𝑿 + ഥ𝒀 + ഥ𝒁 + …

(𝑿 + 𝒀 + 𝒁 +⋯) = ഥ𝑿. ഥ𝒀. ഥ𝒁.…

𝑭 = (𝑨 + 𝑩 + 𝑪) = (ഥ𝑨. ഥ𝑩. ഥ𝑪)

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false

DeMorgan’s Law (Continued)

41

NOR is equivalent to AND
with inputs complemented

NAND is equivalent to OR
with inputs complemented

These are conversions between different types of logic functions
They can prove useful if you do not have every type of gate…
Or, if some types of gates are more desirable to use than others…

𝑨 = (𝑿 + 𝒀) = ഥ𝑿ഥ𝒀

𝑩 = (𝑿𝒀) = ഥ𝑿 + ഥ𝒀

𝑿
𝒀

𝑿
𝒀

𝑿
𝒀

𝑩

𝑩𝑿
𝒀

𝑨

𝑨

𝑿 𝒀 𝑿𝒀 ഥ𝑿 ഥ𝒀 ഥ𝑿 + ഥ𝒀

0 0 1 1 1 1

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 0 0 0

𝑿 𝒀 𝑿 + 𝒀 ഥ𝑿 ഥ𝒀 ഥ𝑿ഥ𝒀

0 0 1 1 1 1

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 0

Using Boolean Equations
to Represent a Logic Circuit

42

Standardized Function Representations

◼ Enable a single, universally-agreed-on way of representing
a Boolean function starting from its truth table

❑ Also called “canonical representations”

◼ Sum of Products (SOP) form

◼ Product of Sums (POS) form

43

Sum of Products Form: Key Idea

◼ Assume we have the truth table of Boolean Function F

◼ How do we express the function in terms of the inputs in a
standard manner?

◼ Idea: Sum of Products form

◼ Express the truth table as a two-level Boolean expression

❑ that contains all input variable combinations that result in a 1
output

❑ If ANY of the combinations of input variables that results in a 1
is TRUE, then the output is 1

❑ F = OR of all input variable combinations that result in a 1

44

Some Definitions (for a 3-Input
Function)Complement: variable with a bar over it

𝑨 , 𝑩 , 𝑪

Literal: variable or its complement

𝑨 , 𝑨 , 𝑩 , 𝑩 , 𝑪 , 𝑪

Implicant: product (AND) of literals

(𝑨 ∙ 𝑩 ∙ 𝑪) , (𝑨 ∙ 𝑪) , (𝑩 ∙ 𝑪)

Minterm: product (AND) that includes all input variables

(𝑨 ∙ 𝑩 ∙ 𝑪) , (𝑨 ∙ 𝑩 ∙ 𝑪) , (𝑨 ∙ 𝑩 ∙ 𝑪)

Maxterm: sum (OR) that includes all input variables

(𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪) , (𝑨 + 𝑩 + 𝑪)

45

Two-Level Canonical (Standard) Forms

◼ Truth table is the unique signature of a Boolean function …

❑ But, it is an expensive representation

◼ A Boolean function can have many alternative Boolean
expressions

❑ i.e., many alternative Boolean expressions (and gate
realizations) may have the same truth table (and function)

❑ If they all specify the same thing, why do we care?

◼ Different Boolean expressions lead to different logic gate
implementations → Different cost, latency, energy properties

◼ Canonical form: standard form for a Boolean expression

❑ Provides a unique algebraic signature

46

Two-Level Canonical Forms: SOP

Sum of Products Form (SOP)
Also known as disjunctive normal form or minterm expansion

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

All Boolean equations can be written in SOP form

• Each row in a truth table has a minterm

• A minterm is a product (AND) of literals

• Each minterm is TRUE for that row (and only that row)

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪 + 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

Find all the input combinations (minterms) for which the output of the function is TRUE.

SOP Form — Why Does It Work?

48

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

◼ Only the shaded product term — 𝐀ഥ𝑩𝐂 = 𝟏 ∙ ഥ𝟎 ∙ 𝟏— will be 1

◼ No other product terms will “turn on” — they will all be 0

◼ So if inputs A B C correspond to a product term in expression,
❑ We get 0 + 0 + … + 1 + … + 0 + 0 = 1 for output

◼ If inputs A B C do not correspond to any product term in expression
❑ We get 0 + 0 + … + 0 = 0 for output

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪 + 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

This input

Activates
this term

The function evaluates to TRUE (i.e., output is 1)

if any of the Products (minterms) causes the output to be 1

Standard Notation for SOP Form

49

111 = decimal 7 so this is minterm #7, or m7

100 = decimal 4 so this is minterm #4, or m4

◼ Standard “shorthand” notation

❑ If we agree on the order of the variables in the rows of truth
table…

◼ then we can enumerate each row with the decimal number that
corresponds to the binary number created by the input pattern

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

f =

= ∑m(3,4,5,6,7)

m3 + m4 + m5 + m6 + m7 We can write this as a sum of products

Or, we can use a summation notation

𝐀 𝐁 𝐂 𝐅

Canonical SOP Form

50

Shorthand Notation for
Minterms of 3 Variables

F in canonical form:

F(A,B,C) = ∑m(3,4,5,6,7)

= m3 + m4 + m5 + m6 + m7

canonical form ≠ minimal form

2-Level AND/OR
Realization

minterms
0 0 0 = m0
0 0 1 = m1
0 1 0 = m2
0 1 1 = m3
1 0 0 = m4
1 0 1 = m5
1 1 0 = m6
1 1 1 = m7

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪
+ 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂

𝑭 = 𝐀ഥ𝑩 𝑪 + ഥ𝑪 + ഥ𝑨𝐁𝐂 + 𝐀𝐁(𝑪 + ഥ𝑪)

= 𝐀ഥ𝑩 + ഥ𝑨𝐁𝐂 + 𝐀𝐁

= 𝐀(ഥ𝑩 + 𝑩) + ഥ𝑨𝐁𝐂

= 𝐀 + ഥ𝑨𝐁𝐂

= 𝐀 + 𝐁𝐂

ഥ𝑨ഥ𝑩ഥ𝑪
ഥ𝑨ഥ𝑩𝑪
ഥ𝑨𝑩ഥ𝑪
ഥ𝑨𝑩𝑪
𝑨ഥ𝑩ഥ𝑪
𝑨ഥ𝑩𝑪
𝑨𝑩ഥ𝑪
𝑨𝑩𝑪

𝐀 𝐁 𝐂

From SOP to Gates

SOP (sum-of-products) leads to two-level logic

Example: 𝒀 = 𝑨 ∙ 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩 ∙ 𝑪

51

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

SOP form does NOT directly lead to minimal logic

Canonical Sum of Products Form: Key Idea

◼ Any 1-bit function can be represented as a Sum of Products

◼ A “Product” is the Boolean AND that includes ALL input
variables of the function → minterm

◼ The 1-bit Output of the Function can be represented as

❑ Sum (OR) of all minterms that lead to a 1 in the Output

◼ Logically

❑ The function evaluates to TRUE (i.e., output is 1) if ANY of the
Products (minterms) causes the Output to be 1

❑ SOP form represents the function as the SUM (OR) of all
Products (minterms) that cause the Output to be 1

52

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Alternative Canonical Form: POS

53

For the given input, only the shaded sum term
will equal 0

Anything ANDed with 0 is 0; Output F will be 0

Product of Sums (POS)

0 0 0 0 0 1

sums

product

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)

𝑭 = 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩+ ഥ𝑪 (𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

Each sum term represents one of the
“zeros” of the function

This input

Activates this term

𝑨 + ഥ𝑩 + 𝑪 = 𝟎 + ഥ𝟏 + 𝟎

0 1 0

Find all the input combinations (maxterms) for which the output of the function is FALSE.

DeMorgan of SOP of ഥ𝑭

The function evaluates to FALSE (i.e., output is 0)

if any of the Sums (maxterms) causes the output to be 0

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Consider A=0, B=1, C=0

54

Only one of the products will be 0, anything ANDed with 0 is 0

Therefore, the output is F = 0

1 1 0

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑭 = 𝟎

𝟎 ഥ𝟏 𝟎𝟎 𝟏 ഥ𝟎𝟎 𝟏 𝟎

0 1 0
Input

POS: How to Write It

55

Maxterm form:

1. Find truth table rows where F is 0

2. 0 in input col ➙ true literal
3. 1 in input col ➙ complemented literal

4. OR the literals to get a Maxterm
5. AND together all the Maxterms

Or just remember” POS of 𝑭 is the same as the DeMorgan of SOP of ഥ𝑭

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

𝑨 ഥ𝑩 𝑪

𝑨 + ഥ𝑩 + 𝑪

Notation for the Canonical POS Form

56

Maxterms

0 0 0 = M0

0 0 1 = M1

0 1 0 = M2

0 1 1 = M3

1 0 0 = M4

1 0 1 = M5

1 1 0 = M6

1 1 1 = M7

Maxterm shorthand notation
for a function of three variables

Note that you
form the

maxterms around
the “zeros” of the

function

This is not the
complement of
the function!

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

𝑨 + 𝑩+ 𝑪
𝑨 + 𝑩+ ഥ𝑪
𝑨 + ഥ𝑩+ 𝑪
𝑨 + ഥ𝑩 + ഥ𝑪
ഥ𝑨 + 𝑩+ 𝑪
ഥ𝑨 + 𝑩 + ഥ𝑪
ഥ𝑨 + ഥ𝑩 + 𝐂
ഥ𝑨 + ഥ𝑩 + ഥ𝑪

𝐅 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)

ෑ𝑴(𝟎, 𝟏, 𝟐)𝐀 𝐁 𝐂

𝐀 𝐁 𝐂 𝐅

Useful Conversions

57

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

3. Expansion of to expansion of :

4. Minterm expansion of to Maxterm expansion of :
rewrite in Maxterm form, using the same indices as

E.g., 𝐅 𝑨,𝑩, 𝑪 = σ𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 = ς𝑴(𝟎, 𝟏, 𝟐)

E.g., 𝐅 𝑨,𝑩, 𝑪 = ς𝑴(𝟎, 𝟏, 𝟐) = σ𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

𝐄. 𝐠. , 𝐅 𝑨,𝑩, 𝑪 =෍𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 ഥ𝑭 𝑨,𝑩, 𝑪 =෍𝒎(𝟎, 𝟏, 𝟐)

=ෑ𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕=ෑ𝑴(𝟎, 𝟏, 𝟐)

𝐅 ഥ𝑭

𝐄. 𝐠. , 𝐅 𝑨,𝑩, 𝑪 =෍𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 ഥ𝑭 𝑨,𝑩, 𝑪 = ς𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

=෍𝒎(𝟎, 𝟏, 𝟐)=ෑ𝑴(𝟎, 𝟏, 𝟐)

𝐅 ഥ𝑭
𝐅

Logic Simplification (or Minimization)

◼ Using Boolean Algebra, we can simplify the SOP or POS
form of any function in a methodical way

◼ Starting with the canonical SOP or POS form enables
convenience and automation

❑ Truth table → SOP/POS form → Boolean Simplification Rules

◼ Example (full 1-bit adder – more later):

S = F(A, B, Cin)

Cout = G(A, B, Cin)

58

A
S

S = A  B  C
in

C
out

 = AB + AC
in
 + BC

in

B
C

in

CL
C

out

Logic Simplification Example: SOP Form

SOP (sum-of-products) form of function Y

Example: 𝒀 = 𝑨 ∙ 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩 ∙ 𝑪

59

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

SOP form does NOT directly lead to minimal logic

Logic Simplification Example: Simplified

SOP (sum-of-products) form of function Y

Example: 𝒀 = 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩

60

Let’s Cover Some
Basic Combinational Blocks

61

Combinational Building Blocks
used in Modern Computers

62

Recall: Common Logic Gates

63

Combinational Building Blocks

◼ Combinational logic is often grouped into larger building
blocks to build more complex systems

◼ Hides the unnecessary gate-level details to emphasize the
function of the building block

◼ We now examine:

❑ Decoder

❑ Multiplexer

❑ Full adder

❑ PLA (Programmable Logic Array)

Decoder

65

Decoder

◼ “Input pattern detector”

◼ n inputs and 2n outputs

◼ Exactly one of the outputs is 1 and all the rest are 0s

◼ The output that is logically 1 is the output corresponding to
the input pattern that the logic circuit is expected to detect

◼ Example: 2-to-4 decoder

66

Decoder (I)

◼ n inputs and 2n outputs

◼ Exactly one of the outputs is 1 and all the rest are 0s

◼ The output that is logically 1 is the output corresponding to
the input pattern that the logic circuit is expected to detect

A
1 if A,B is 00

B

1 if A,B is 01

1 if A,B is 10

1 if A,B is 11

A = 1
0

B = 0

0

1

0

Decoder (II)

◼ The decoder is useful in determining how to interpret a bit
pattern

68

A = 1
0

B = 0

0

1

0

❑ It could be the
address of a location
in memory, that the
processor intends to
read from

❑ It could be an
instruction in the
program and the
processor needs to
decide what action to
take (based on
instruction opcode)

Multiplexer (MUX)

69

Multiplexer (MUX), or Selector

◼ Selects one of the N inputs to connect it to the output

❑ based on the value of a log2N-bit control input called select

◼ Example: 2-to-1 MUX

Multiplexer (MUX), or Selector (II)

◼ Selects one of the N inputs to connect it to the output

❑ based on the value of a log2N-bit control input called select

◼ Example: 2-to-1 MUX

A B

S

C

ba

A B

S = 0

C

0A

A

Multiplexer (MUX), or Selector (III)

◼ The output C is always connected to either the input A or
the input B

❑ Output value depends on the value of the select line S

◼ Your task: Draw the schematic for an 4-input (4:1) MUX

❑ Gate level: as a combination of basic AND, OR, NOT gates

❑ Module level: As a combination of 2-input (2:1) MUXes
72

A B

S

C

S C
0 A
1 B

A 4-to-1 Multiplexer

73

Aside: Logic Using Multiplexers

◼ Multiplexers can be used as lookup tables to perform logic
functions

74Idea: Formulate the truth table as a multiplexer

Aside: Logic Using Multiplexers (II)

◼ Multiplexers can be used as lookup tables to perform logic
functions

75

Aside: Logic Using Multiplexers (III)

◼ Multiplexers can be used as lookup tables to perform logic
functions

76Read H&H Chapter 2.8

◼ 3-bit input LUT (3-LUT)

Recall: 8-Input Lookup Table (LUT)

77

input (3 bits)

output (1 bit)

Data Input

Multiplexer (Mux):

Chooses one of the 8 data inputs

that corresponds to the 3-bit select

input

3

Select Input

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3-LUT can implement

any 3-bit input function

◼ Let’s implement a function that outputs ‘1’ when there are at least two ‘1’s in a
3-bit input

Recall: An Example of Programming a LUT

78

input (3 bits)

output (1 bit)

Data Input

3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Configuration Memory

0

0

0

1

0

1

1

1

int count = 0;
for(int i = 0; i < 3; i++) {

count += input & 1;
input = input >> 1;

}

if(count > 1) return 1;

return 0;

In C:
In an FPGA:

switch(input){
case 0:
case 1:
case 2:
case 4:

return 0;
default:

return 1;}

Aside: Logic Using Decoders (I)

◼ Decoders can be combined with OR gates to build logic
functions.

79Read H&H Chapter 2.8

Full Adder

80

Full Adder (I)

◼ Binary addition

❑ Similar to decimal addition

❑ From right to left

❑ One column at a time

❑ One sum and one carry bit

◼ Truth table of binary addition on one column of bits within
two n-bit operands

81

𝒂𝒏−𝟏𝒂𝒏−𝟐…𝒂𝟏𝒂𝟎

𝒃𝒏−𝟏𝒃𝒏−𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏−𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏−𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder (II)

◼ Binary addition

❑ N 1-bit additions

❑ SOP of 1-bit addition

82

𝒂𝒏−𝟏𝒂𝒏−𝟐…𝒂𝟏𝒂𝟎

𝒃𝒏−𝟏𝒃𝒏−𝟐…𝒃𝟏𝒃𝟎

𝑺𝒏−𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏−𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci

ci+1

si

Full Adder (1 bit)

4-Bit Adder from Full Adders

◼ Creating a 4-bit adder out of 1-bit full adders

❑ To add two 4-bit binary numbers A and B

83

𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒂𝟎

𝒃𝟑 𝒃𝟐 𝒃𝟏 𝒃𝟎

𝒔𝟑 𝒔𝟐 𝒔𝟏 𝒔𝟎

𝒄𝟒 𝒄𝟑 𝒄𝟐 𝒄𝟏

+
𝟏 𝟎 𝟏 𝟏

𝟏 𝟎 𝟎 𝟏

𝟎 𝟏 𝟎 𝟎

𝟏 𝟎 𝟏 𝟏

+

Full Adder

a0b0

s0

0c1
Full Adder

a1b1

s1

c2
Full Adder

a2b2

s2

c3
Full Adder

a3b3

s3

c4

Adder Design: Ripple Carry Adder

84

Adder Design: Carry Lookahead Adder

85

Example of

logic specialization:

Specialized logic for

fast carry generation

Programmable Logic Array (PLA)

86

PLA: Recall: SOP Form

SOP (sum-of-products) leads to two-level logic

Example: 𝒀 = 𝑨 ∙ 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩 ∙ 𝑪 + 𝑨 ∙ 𝑩 ∙ 𝑪

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

A PLA enables the two-level SOP implementation of any N-input M-output function

The Programmable Logic Array (PLA)

◼ The below logic structure is a very common building block
for implementing any collection of logic functions one
wishes to

◼ An array of AND gates
followed by an array of OR
gates

◼ How do we determine the
number of AND gates?

❑ Remember SOP: the
number of possible minterms

❑ For an n-input logic function, we need a PLA with 2n n-input
AND gates

◼ How do we determine the number of OR gates? The
number of output columns in the truth table

A

B

C

X

Y

Z

Connections

A PLA enables the two-level SOP implementation of any N-input M-output function

◼ How do we implement a logic function?

❑ Connect the output of an AND gate to the input of an OR gate
if the corresponding minterm is included in the SOP

The Programmable Logic Array (PLA)

89

❑ This is a simple programmable
logic construct

◼ Programming a PLA: we
program the connections from
AND gate outputs to OR gate
inputs to implement a desired
logic function

◼ Have you seen any other type of programmable logic?

❑ Yes! An FPGA…

❑ An FPGA uses more advanced structures, as we saw in Lecture 3

A

B

C

X

Y

Z

Connections

A PLA enables the two-level SOP implementation of any N-input M-output function

PLA Example (I)

90Read H&H Chapter 5.6.1

PLA Example Function (II)

91Read H&H Chapter 5.6.1

PLA Example Function (III)

92Read H&H Chapter 5.6.1

Implementing a Full Adder Using a PLA

ai

bi

ci
ci+1

si

X

93

A

B

C

X

Y

Z

Connections

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Truth table of a full adder

This input should not be

connected to any outputs We do not need

this output

Logical Completeness

Logical (Functional) Completeness

◼ Any logic function we wish to implement could be
accomplished with a PLA

❑ PLA consists of only AND gates, OR gates, and inverters

❑ We just have to program connections based on SOP of the
intended logic function

◼ The set of gates {AND, OR, NOT} is logically complete
because we can build a circuit to carry out the specification
of any truth table we wish, without using any other kind of
gate

◼ NAND is also logically complete. So is NOR.

❑ Your task: Prove this.

95

More Combinational Blocks

96

More Combinational Building Blocks

◼ H&H Chapter 2 in full

❑ Required Reading

❑ E.g., see Tri-state Buffer and Z values in Section 2.6

◼ H&H Chapter 5

❑ Will be required reading soon.

◼ You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.

❑ Sections 5.1 and 5.2

97

Comparator

98

Equality Checker (Compare if Equal)

◼ Checks if two N-input values are exactly the same

◼ Example: 4-bit Comparator

ALU (Arithmetic Logic Unit)

100

ALU (Arithmetic Logic Unit)

◼ Combines a variety of arithmetic and logical operations into
a single unit (that performs only one function at a time)

◼ Usually denoted with this symbol:

Example ALU (Arithmetic Logic Unit)

102

More Combinational Building Blocks

◼ See H&H Chapter 5.2 for

❑ Subtractor (using 2’s Complement Representation)

❑ Shifter and Rotator

❑ Multiplier

❑ Divider

❑ …

103

More Combinational Building Blocks

◼ H&H Chapter 2 in full

❑ Required Reading

❑ E.g., see Tri-state Buffer and Z values in Section 2.6

◼ H&H Chapter 5

❑ Will be required reading soon.

◼ You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.

❑ Sections 5.1 and 5.2

104

Tri-State Buffer

105

Tri-State Buffer

◼ A tri-state buffer enables gating of different signals onto a
wire

◼ Floating signal (Z): Signal that is not driven by any circuit

❑ Open circuit, floating wire

106

A tri-state buffer

acts like a switch

Example: Use of Tri-State Buffers

◼ Imagine a wire connecting the CPU and memory

❑ At any time only the CPU or the memory can place a value on
the wire, both not both

❑ You can have two tri-state buffers: one driven by CPU, the
other memory; and ensure at most one is enabled at any time

107

Example Design with Tri-State Buffers

108

CPU

Memory

GateMem

GateCPU

Shared Bus

Another Example

109

Multiplexer Using Tri-State Buffers

110

Recall: A 4-to-1 Multiplexer

111

We Covered Until This Point
in the Lecture

112

Logic Simplification using
Boolean Algebra Rules

113

Recall: Full Adder in SOP Form Logic

114

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci

ci+1

si

Goal: Simplified Full Adder

115

How do we simplify Boolean logic?

How do we automate simplification?

Quick Recap on Logic Simplification

◼ The original Boolean expression (i.e., logic circuit) may not
be optimal

◼ Can we reduce a given Boolean expression to an equivalent
expression with fewer terms?

◼ The goal of logic simplification:

❑ Reduce the number of gates/inputs

❑ Reduce implementation cost

116

F = ~A(A + B) + (B + AA)(A + ~B)

F = A + B

A basis for what the automated design tools are doing today

Logic Simplification

◼ Systematic techniques for simplifications

❑ amenable to automation

117

Key Tool: The Uniting Theorem —

𝑭 =

A's value does NOT change within the ON-set rows

B's value changes within the rows where F==1 (“ON set”)

B's value stays the same within the ON-set rows

A's value changes within the ON-set rows

➙ B is eliminated, A remains

➙ A is eliminated, B remains

If an input (B) can change without changing the output, that input
value is not needed

𝑭 = 𝑨ഥ𝑩 + 𝑨𝑩

𝑨ഥ𝑩 + 𝑨𝑩 = 𝑨 ഥ𝑩 + 𝑩 = 𝑨 𝟏 = 𝑨

𝑮 = ഥ𝑨ഥ𝑩 + 𝑨ഥ𝑩 = ഥ𝑨 + 𝑨 ഥ𝑩 = ഥ𝑩

Essence of Simplification:

Find two element subsets of the ON-set where only one variable
changes its value. This single varying variable can be eliminated!

Logic Simplification Example: Priority Circuit

◼ Priority Circuit

❑ Inputs: “Requestors” with priority levels

❑ Outputs: “Grant” signal for each requestor

❑ Example 4-bit priority circuit

118

Simplified Priority Circuit

◼ Priority Circuit

❑ Inputs: “Requestors” with priority levels

❑ Outputs: “Grant” signal for each requestor

❑ Example 4-bit priority circuit

119

X (Don’t Care) means I don’t care what the value of this input is

Logic Simplification:
Karnaugh Maps (K-Maps)

120

Karnaugh Maps are Fun…

◼ A pictorial way of minimizing circuits by visualizing
opportunities for simplification

◼ They are for you to study on your own…

◼ See remaining slides

◼ Read H&H Section 2.7

◼ Watch videos of Lectures 5 and 6 from 2019 DDCA course:

❑ https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNF
QFHRO3GrXxA9&t=4570

❑ https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBN
FQFHRO3GrXxA9&t=220

121

https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=4570
https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=220

Backup Slides on
Karnaugh Maps (K-Maps)

122

Complex Cases

◼ One example

◼ Problem
❑ Easy to see how to apply Uniting Theorem…

❑ Hard to know if you applied it in all the right places…

❑ …especially in a function of many more variables

◼ Question
❑ Is there an easier way to find potential simplifications?

❑ i.e., potential applications of Uniting Theorem…?

◼ Answer
❑ Need an intrinsically geometric representation for Boolean f()

❑ Something we can draw, see…

123

𝑪𝒐𝒖𝒕 = ഥ𝑨𝑩𝑪 + 𝑨ഥ𝑩𝑪 + 𝑨𝑩ഥ𝑪 + 𝑨𝑩𝑪

Karnaugh Map

◼ Karnaugh Map (K-map) method

❑ K-map is an alternative method of representing the truth table
that helps visualize adjacencies in up to 6 dimensions

❑ Physical adjacency ↔ Logical adjacency

124

2-variable K-map

0 1

0 00 01

1 10 11

Numbering Scheme: 00, 01, 11, 10 is called a
“Gray Code” — only a single bit (variable) changes

from one code word and the next code word

00 01 11 10

00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨𝑩𝑨
𝑩 𝑪𝑫

𝑨
𝑩𝑪

Karnaugh Map Methods

125

Adjacent

000

001

010

011

110

111

100

101

000

001

010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”

Wrap around from first to last column

Wrap around from top row to bottom row

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪

K-map Cover - 4 Input Variables

126

00 01 11 10

00 1 0 0 1

01 0 1 0 0

11 1 1 1 1

10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅(𝐀, 𝐁, 𝐂, 𝐃) =෍𝒎(𝟎, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)

𝐅 = 𝐀 + ഥ𝑩ഥ𝑫 + 𝐁ഥ𝑪𝑫𝐀 + ഥ𝑩ഥ𝑫𝐀

Logic Minimization Using K-Maps

◼ Very simple guideline:

❑ Circle all the rectangular blocks of 1’s in the map, using the
fewest possible number of circles

◼ Each circle should be as large as possible

❑ Read off the implicants that were circled

◼ More formally:

❑ A Boolean equation is minimized when it is written as a sum of
the fewest number of prime implicants

❑ Each circle on the K-map represents an implicant

❑ The largest possible circles are prime implicants

128

K-map Rules
◼ What can be legally combined (circled) in the K-map?

❑ Rectangular groups of size 2k for any integer k

❑ Each cell has the same value (1, for now)

❑ All values must be adjacent

◼ Wrap-around edge is okay

◼ How does a group become a term in an expression?

❑ Determine which literals are constant, and which vary across group

❑ Eliminate varying literals, then AND the constant literals

◼ constant 1 ➙ use 𝐗, constant 0 ➙ use ഥ𝑿

◼ What is a good solution?

❑ Biggest groupings ➙ eliminate more variables (literals) in each term

❑ Fewest groupings ➙ fewer terms (gates) all together

❑ OR together all AND terms you create from individual groups

129

K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map
for each of the 3
output functions

130

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

A
F1

AB = CD

B
F2

AB < CD

C
F3

AB > CD

D

K-map Example: Two-bit Comparator (2)

131

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

00 01 11 10

00 1

01 1

11 1

10 1

K-map for F1

𝑨𝑩
𝑪𝑫

F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

𝑨
𝑩

𝑫

𝑪

K-map Example: Two-bit Comparator (3)

132

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

00 01 11 10

00 1 1 1

01 1 1

11

10 1

K-map for F2

𝑨𝑩
𝑪𝑫

F2 = A'C + A'B'D + B'CD

F3 = ? (Exercise for you)

𝑨

𝑩

𝑫

𝑪

K-maps with “Don’t Care”
◼ Don’t Care really means I don’t care what my circuit outputs if this

appears as input

❑ You have an engineering choice to use DON’T CARE patterns
intelligently as 1 or 0 to better simplify the circuit

133

I can pick 00, 01, 10, 11
independently of below

I can pick 00, 01, 10, 11
independently of above

A B C D F G

• • •

0 1 1 0 X X

0 1 1 1

1 0 0 0 X X

1 0 0 1

• • •

A B C D W X Y Z

0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 1

0 0 1 1 0 1 0 0

0 1 0 0 0 1 0 1

0 1 0 1 0 1 1 0

0 1 1 0 0 1 1 1

0 1 1 1 1 0 0 0

1 0 0 0 1 0 0 1

1 0 0 1 0 0 0 0

1 0 1 0 X X X X

1 0 1 1 X X X X

1 1 0 0 X X X X

1 1 0 1 X X X X

1 1 1 0 X X X X

1 1 1 1 X X X X

Example: BCD Increment Function
◼ BCD (Binary Coded Decimal) digits

❑ Encode decimal digits 0 - 9 with bit patterns 00002 — 10012

❑ When incremented, the decimal sequence is 0, 1, …, 8, 9, 0, 1

134

These input patterns should
never be encountered in practice

(hey -- it’s a BCD number!)
So, associated output values are

“Don’t Cares”

00 01 11 10

00 1 1

01 1 1

11 X X X X

10 1 X X

K-map for BCD Increment Function

A B C D

+ 1

W X Y Z

135

00 01 11 10

00

01 1

11 X X X X

10 1 X X

00 01 11 10

00 1

01 1 1 1

11 X X X X

10 X X

00 01 11 10

00 1 1

01 1 1

11 X X X X

10 X X

W

𝑨𝑩
𝑪𝑫

X

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫

ZY

Z (without don’t cares) = A'D' + B'C'D’

Z (with don’t cares) = D'

𝑨
𝑩

𝑫

𝑪

K-map Summary

◼ Karnaugh maps as a formal systematic approach
for logic simplification

◼ 2-, 3-, 4-variable K-maps

◼ K-maps with “Don’t Care” outputs

◼ H&H Section 2.7
136

Digital Design & Computer Arch.

Lecture 5: Combinational Logic II

Prof. Onur Mutlu

ETH Zürich

Spring 2022

10 March 2022

