Assignment: Lecture Video (Due April 1)

- Why study computer architecture? Why is it important?
- Future Computing Platforms: Challenges & Opportunities

Required Assignment
- Watch one of Prof. Mutlu’s lectures and analyze either (or both)
 - https://www.youtube.com/watch?v=mskTeNnf-iO (Feb 2021)

Optional Assignment – for 1% extra credit
- Write a 1-page summary of one of the lectures and email us
 - What are your key takeaways?
 - What did you learn?
 - What did you like or dislike?
 - Submit your summary to Moodle by April 1
Extra Credit Assignment: Due March 15

- **Attend and watch Sean Lie’s talk on Feb 28**
 - Either on Zoom or Youtube
 - https://www.youtube.com/watch?v=x2-qB0J7KHW

- **Optional Assignment – for 1% extra credit**
 - **Write and submit a 1-page summary** of the talk
 - What are the key ideas used in the Cerebras system?
 - What are your key takeaways from the talk?
 - What did you learn?
 - What did you like or dislike?
Assignment: Required Readings

- **This week**
 - Combinational Logic
 - P&P Chapter 3 until 3.3 + H&H Chapter 2

- **Next week**
 - Hardware Description Languages and Verilog
 - H&H Chapter 4 until 4.3 and 4.5
 - Sequential Logic
 - P&P Chapter 3.4 until end + H&H Chapter 3 in full

- **By the end of next week, make sure you are done with**
 - P&P Chapters 1-3 + H&H Chapters 1-4
Combinational Logic Circuits and Design
What We Will Learn in This Lecture

- Building blocks of modern computers
 - Transistors
 - Logic gates

- Combinational circuits

- Boolean algebra

- Using Boolean algebra to represent combinational circuits

- Basic combinational logic blocks

- Simplifying combinational logic circuits
All Computers are Built Upon the Same Building Blocks
Modern General-Purpose Microprocessors

5-nanometer process
The first personal computer chip built with this cutting-edge technology.

16 billion transistors
The most we've ever put into a single chip.

Source: https://www.apple.com/mac/m1/
Modern General-Purpose Microprocessors

Apple M1, 2021

Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
Modern General-Purpose Microprocessors

Source: https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html
Apple M1 Ultra (2022)
Apple M1 Ultra (2022)

- ProRes: Encode and decode
- 5 nm process
- 114 billion Transistors
- Silicon interposer with 2.5TB/s interprocessor bandwidth
- 800GB/s Memory bandwidth
- 20-core CPU
- 64-core GPU
- 32-core Neural Engine: 22 trillion operations per second
- UltraFusion architecture
- Industry-leading performance per watt
- Secure Enclave
- 128GB unified memory

https://stadt-bremerhaven.de/apple-neuer-m1-ultra-chip-ist-offiziell/
Apple M1 Ultra with DRAM (2022)

https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php
Modern General-Purpose Microprocessors

Intel Alder Lake, 2021

Source: https://twitter.com/Locuza_/status/1454152714930331652
FPGAs
Modern FPGAs

Source: https://www.mouser.ch/new/xilinx/xilinx-zynq-7000-zc702-eval-kit/
Special-Purpose ASICs (App-Specific Integrated Circuits)
Modern Special-Purpose ASICs

Figure 3. TPU Printed Circuit Board. It can be inserted in the slot for an SATA disk in a server, but the card uses PCIe Gen3 x16.

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software has the illusion that each 256B input is read at once, and they instantly update one location of each of 256 accumulator RAMs.

Modern Special-Purpose ASICs

New ML applications (vs. TPU3):
- Computer vision
- Natural Language Processing (NLP)
- Recommender system
- Reinforcement learning that plays Go

250 TFLOPS per chip in 2021 vs 90 TFLOPS in TPU3

1 ExaFLOPS per board

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests
Modern Special-Purpose ASICs

- The largest ML accelerator chip (2021)
- 850,000 cores

Cerebras WSE-2
- 2.6 Trillion transistors
- 46,225 mm²

Largest GPU
- 54.2 Billion transistors
- 826 mm²
 - NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
Modern Special-Purpose ASICs

Warehouse-Scale Video Acceleration: Co-design and Deployment in the Wild

(a) Chip floorplan

(b) Two chips on a PCBA

Figure 5: Pictures of the VCU

Source: https://dl.acm.org/doi/pdf/10.1145/3445814.3446723
Modern GPUs

Source: https://en.wikichip.org/wiki/nvidia/tegra/xavier
General Purpose vs. Special Purpose Systems

General Purpose
- CPUs
 - Apple M1

Special Purpose
- GPUs
 - Nvidia GTX 1070
- FPGAs
 - Xilinx Spartan
- ASICs
 - Cerebras WSE-2

Flexible: Can execute any program
- Easy to program & use
- Not the best performance & efficiency

Efficient & High performance
- (Usually) Difficult to program & use
- Inflexible: Limited set of programs
All Computers are Built Upon the Same Building Blocks
Transistors
A 5-Minute Video on Transistor Innovation

https://www.youtube.com/watch?v=Z7M8etXUEUU
A 5-Minute Video on Transistor Innovation

https://www.youtube.com/watch?v=Z7M8etXUEUU
Enabling Manufacturing Tech: EUV

https://www.youtube.com/watch?v=Jv40Viz-KTc
Logic Gates
Now, we know how a MOS transistor works

How do we build logic structures out of MOS transistors?

We construct basic logical units out of individual MOS transistors

These logical units are called logic gates
 - They implement simple Boolean functions

George Boole, “The Mathematical Analysis of Logic,” 1847.
Recall: CMOS NOT, NAND, AND Gates

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

3V
0V
Out (Y)
In (A)
P
N

3V
0V
Out (Y)
3V
0V
In (A)
In (B)
P2
N1
P1
N2
N3
P3

SAFARI
Recall: Common Logic Gates

<table>
<thead>
<tr>
<th>Buffer</th>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Combinational Logic Circuits
Recall: Types of Logic Circuits

- **Combinational Logic**
 - Memoryless
 - Outputs are strictly dependent on the combination of input values that are being applied to circuit right now
 - In some books called Combinatorial Logic

- **Later we will learn: Sequential Logic**
 - Has memory
 - Structure stores history → Can ”store” data values
 - Outputs are determined by previous (historical) and current values of inputs
Boolean Logic Equations
Recall: Functional Specification

- **Functional specification** of outputs in terms of inputs
- What do we mean by “function”?
 - Unique **mapping** from input values to output values
 - The **same** input values produce the **same** output value every time
 - **No memory** (does not depend on the history of input values)

Example (full 1-bit adder – more later):

\[
S = F(A, B, C_{in}) \\
C_{out} = G(A, B, C_{in})
\]

\[
S = A \oplus B \oplus C_{in} \\
C_{out} = AB + AC_{in} + BC_{in}
\]
Boolean Equations Enable Us To...

- Represent the function of a combinational logic block
 - Functional Specification

- Methodically transform the function into simpler functions
 - which lead to different hardware realizations
 - Logic Minimization or Logic Simplification
 - We can automate this process → Computer-Aided Design or Electronic Design Automation

- Different Boolean expressions lead to different logic gate implementations
 → Different hardware area, cost, latency, energy properties
Recall: Boolean Algebra: Useful Laws

Operations with 0 and 1:

1. \(X + 0 = X \)
2. \(X + 1 = 1 \)
3. \(X + X = X \)
4. \(X + \overline{X} = 1 \)
5. \(X + Y = Y + X \)

Idempotent Law:

3. \(X + X = X \)

Involution Law:

4. \(\overline{\overline{X}} = X \)

Laws of Complementarity:

5. \(X + \overline{X} = 1 \)
6. \(X + Y = Y + X \)

Commutative Law:

6. \(X \cdot Y = Y \cdot X \)

Dual

AND, OR with identities gives you back the original variable or the identity

1D. \(X \cdot 1 = X \)

2D. \(X \cdot 0 = 0 \)

3D. \(X \cdot X = X \)

5D. \(X \cdot \overline{X} = 0 \)

6D. \(X \cdot Y = Y \cdot X \)

Double complement = no complement

Just an axiom...
Recall: Useful Laws (continued)

Associative Laws:
7. \((X + Y) + Z = X + (Y + Z) = X + Y + Z\)
7D. \((X \cdot Y) \cdot Z = X \cdot (Y \cdot Z) = X \cdot Y \cdot Z\)

Distributive Laws:
8. \(X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)\)
8D. \(X + (Y \cdot Z) = (X + Y) \cdot (X + Z)\)

Simplification Theorems:
9. \(X \cdot Y + X \cdot \overline{X} = X\)
9D. \((X + Y) \cdot (X +) \overline{X} = X\)
10. \(X + X \cdot Y = X\)
10D. \(X \cdot (X + Y) = X\)
11. \((X + \overline{Y}) \cdot Y = X \cdot Y\)
11D. \((X \cdot \overline{Y}) + Y = X + Y\)

Parenthesis order does not matter
Axiom
Useful for simplifying expressions

Actually worth remembering — they show up a lot in real designs...
DeMorgan’s Law: Enabling Transformations

DeMorgan's Law:

12. \((X + Y + Z + \cdots) = \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot \cdots\)

12D. \((X \cdot Y \cdot Z \cdot \cdots) = \overline{X} + \overline{Y} + \overline{Z} + \cdots\)

Think of this as a transformation

- Let’s say we have:

 \[F = A + B + C \]

- Applying DeMorgan’s Law (12), gives us

 \[F = \overline{(A + B + C)} = \overline{A} \cdot \overline{B} \cdot \overline{C} \]

At least one of A, B, C is TRUE --> It is **not** the case that A, B, C are **all** false
DeMorgan’s Law (Continued)

These are conversions between different types of logic functions. They can prove useful if you do not have every type of gate... Or, if some types of gates are more desirable to use than others...

\[A = \overline{(X + Y)} = \overline{X}\overline{Y} \]

NOR is equivalent to AND with inputs complemented

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X+Y</th>
<th>(\overline{X})</th>
<th>(\overline{Y})</th>
<th>(\overline{XY})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[B = \overline{(XY)} = \overline{X} + \overline{Y} \]

NAND is equivalent to OR with inputs complemented

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>(\overline{XY})</th>
<th>(\overline{X})</th>
<th>(\overline{Y})</th>
<th>(\overline{X} + \overline{Y})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Using Boolean Equations to Represent a Logic Circuit
Standardized Function Representations

- Enable a single, universally-agreed-on way of representing a Boolean function starting from its truth table
 - Also called “canonical representations”

- **Sum of Products (SOP)** form

- **Product of Sums (POS)** form
Sum of Products Form: Key Idea

- Assume **we have the truth table of Boolean Function F**

- How do we express the function in terms of the inputs in a **standard** manner?

- Idea: **Sum of Products** form

- Express the truth table as a two-level Boolean expression
 - that contains **all** input variable combinations that result in a 1 output
 - If ANY of the combinations of input variables that results in a 1 is TRUE, then the output is 1
 - $F = \text{OR of all input variable combinations that result in a 1}$
Some Definitions (for a 3-Input Function)

- **Complement:** variable with a bar over it
 \(\overline{A}, \overline{B}, \overline{C} \)

- **Literal:** variable or its complement
 \(A, \overline{A}, B, \overline{B}, C, \overline{C} \)

- **Implicant:** product (AND) of literals
 \((A \cdot B \cdot \overline{C}), (\overline{A} \cdot C), (B \cdot \overline{C}) \)

- **Minterm:** product (AND) that includes all input variables
 \((A \cdot B \cdot \overline{C}), (\overline{A} \cdot \overline{B} \cdot C), (\overline{A} \cdot B \cdot \overline{C}) \)

- **Maxterm:** sum (OR) that includes all input variables
 \((A + \overline{B} + \overline{C}), (\overline{A} + B + \overline{C}), (A + B + \overline{C}) \)
Two-Level Canonical (Standard) Forms

- **Truth table** is the unique **signature** of a Boolean *function* ...
 - But, it is an expensive representation

- A Boolean function can have many alternative Boolean expressions
 - i.e., many alternative Boolean expressions (and gate realizations) may have the same truth table (and function)
 - **If they all specify the same thing, why do we care?**
 - **Different Boolean expressions lead to different logic gate implementations** → **Different cost, latency, energy properties**

- **Canonical form**: **standard form for a Boolean expression**
 - Provides a unique algebraic signature
Two-Level Canonical Forms: SOP

Sum of Products Form (SOP)
Also known as *disjunctive normal form* or *minterm expansion*

All Boolean equations can be written in SOP form

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Each row in a truth table has a minterm
A minterm is a product (AND) of literals
Each minterm is TRUE for that row (and only that row)

\[F = \overline{A}BC + \overline{A}\overline{B}C + \overline{A}BC + AB\overline{C} + ABC \]

Find all the input combinations (minterms) for which the output of the function is TRUE.
SOP Form — Why Does It Work?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
F = \overline{A}BC + \overline{A}BC + \overline{A}BC + \overline{A}BC + \overline{A}BC + ABC \\
\]

- Only the shaded product term — \(\overline{A}BC = 1 \cdot \overline{0} \cdot 1 \) — will be 1
- No other product terms will “turn on” — they will all be 0
- So if inputs A B C correspond to a product term in expression,
 - We get \(0 + 0 + \ldots + 1 + \ldots + 0 + 0 = 1 \) for output
- If inputs A B C do not correspond to any product term in expression
 - We get \(0 + 0 + \ldots + 0 = 0 \) for output

The function evaluates to TRUE (i.e., output is 1) if any of the Products (minterms) causes the output to be 1
Standard Notation for SOP Form

- Standard “shorthand” notation
 - If we agree on the order of the variables in the rows of truth table...
 - then we can enumerate each row with the decimal number that corresponds to the binary number created by the input pattern

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

100 = decimal 4 so this is minterm #4, or \(m_4 \)

111 = decimal 7 so this is minterm #7, or \(m_7 \)

\[
f = m_3 + m_4 + m_5 + m_6 + m_7
\]

We can write this as a sum of products

Or, we can use a summation notation
Canonical SOP Form

Shorthand Notation for Minterms of 3 Variables

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>minterms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(ABC) = m0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(\overline{ABC}) = m1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(\overline{AB}C) = m2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(\overline{ABC}) = m3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(\overline{AB}C) = m4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(\overline{AB}C) = m5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(\overline{AB}C) = m6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(\overline{ABC}) = m7</td>
</tr>
</tbody>
</table>

\(F\) in canonical form:

\[F(A,B,C) = \Sigma m(3,4,5,6,7) = m3 + m4 + m5 + m6 + m7 \]

Canonical form ≠ minimal form

2-Level AND/OR Realization
From SOP to Gates

- **SOP (sum-of-products) leads to two-level logic**

- Example: \(Y = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) \)

SOP form does NOT directly lead to minimal logic
Canonical Sum of Products Form: Key Idea

- Any 1-bit function can be represented as a Sum of Products

- A “Product” is the Boolean AND that includes ALL input variables of the function \(\rightarrow \) minterm

- The 1-bit Output of the Function can be represented as
 - Sum (OR) of all minterms that lead to a 1 in the Output

- Logically
 - The function evaluates to TRUE (i.e., output is 1) if ANY of the Products (minterms) causes the Output to be 1
 - SOP form represents the function as the SUM (OR) of all Products (minterms) that cause the Output to be 1
For the given input, only the shaded sum term will equal 0

\[
A + \overline{B} + C = 0 + 1 + 0
\]

Anything ANDed with 0 is 0; Output F will be 0

The function evaluates to FALSE (i.e., output is 0) if any of the Sums (maxterms) causes the output to be 0
Consider A=0, B=1, C=0

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Input

\[F = (A + B + C)(A + B + \bar{C})(A + \bar{B} + C) \]

Only one of the products will be 0, anything ANDed with 0 is 0

Therefore, the output is \(F = 0 \)
Maxterm form:

1. Find truth table rows where \(F \) is 0

2. 0 in input col \(\rightarrow \) true literal
3. 1 in input col \(\rightarrow \) complemented literal

4. OR the literals to get a Maxterm
5. AND together all the Maxterms

\[
F = (A + B + C)(A + B + \overline{C})(A + \overline{B} + C)
\]

Or just remember” POS of \(F \) is the same as the DeMorgan of SOP of \(\overline{F} \)
Notation for the Canonical POS Form

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

Maxterm shorthand notation for a function of three variables:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Maxterms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(A + B + C) = M0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(A + B + \overline{C}) = M1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(A + \overline{B} + C) = M2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(A + \overline{B} + \overline{C}) = M3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(\overline{A} + B + C) = M4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(\overline{A} + B + \overline{C}) = M5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(\overline{A} + \overline{B} + C) = M6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(\overline{A} + \overline{B} + \overline{C}) = M7</td>
</tr>
</tbody>
</table>

\[F = (A + B + C)(A + B + \overline{C})(A + \overline{B} + C) \]

\[\prod M(0, 1, 2) \]

Note that you form the maxterms around the “zeros” of the function. This is not the complement of the function!
Useful Conversions

1. **Minterm to Maxterm conversion:**
 - rewrite minterm shorthand using maxterm shorthand
 - replace minterm indices with the indices not already used
 - E.g., \(F(A, B, C) = \sum m(3, 4, 5, 6, 7) = \prod M(0, 1, 2) \)

2. **Maxterm to Minterm conversion:**
 - rewrite maxterm shorthand using minterm shorthand
 - replace maxterm indices with the indices not already used
 - E.g., \(F(A, B, C) = \prod M(0, 1, 2) = \sum m(3, 4, 5, 6, 7) \)

3. **Expansion of \(F \) to expansion of \(\overline{F} \):**
 - E.g., \(F(A, B, C) = \sum m(3, 4, 5, 6, 7) \rightarrow \overline{F}(A, B, C) = \sum m(0, 1, 2) \)
 - \(= \prod M(0, 1, 2) \rightarrow = \prod M(3, 4, 5, 6, 7) \)

4. **Minterm expansion of \(F \) to Maxterm expansion of \(\overline{F} \):**
 - rewrite in Maxterm form, using the same indices as \(F \)
 - E.g., \(F(A, B, C) = \sum m(3, 4, 5, 6, 7) \rightarrow \overline{F}(A, B, C) = \prod M(3, 4, 5, 6, 7) \)
 - \(= \prod M(0, 1, 2) \rightarrow = \sum m(0, 1, 2) \)
Logic Simplification (or Minimization)

- Using Boolean Algebra, we can simplify the SOP or POS form of any function in a methodical way.

- Starting with the canonical SOP or POS form enables convenience and automation.
 - Truth table \rightarrow SOP/POS form \rightarrow Boolean Simplification Rules

- **Example (full 1-bit adder – more later):**

\[
S = F(A, B, C_{\text{in}})
\]
\[
C_{\text{out}} = G(A, B, C_{\text{in}})
\]

\[
S = A \oplus B \oplus C_{\text{in}}
\]
\[
C_{\text{out}} = AB + AC_{\text{in}} + BC_{\text{in}}
\]
Logic Simplification Example: SOP Form

- **SOP** (sum-of-products) form of function Y
- **Example:** \(Y = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) \)

SOP form does NOT directly lead to minimal logic
Logic Simplification Example: Simplified

- SOP (sum-of-products) form of function Y

- Example: $Y = (\overline{B} \cdot \overline{C}) + (A \cdot \overline{B})$
Let’s Cover Some Basic Combinational Blocks
Combinational Building Blocks used in Modern Computers
Recall: Common Logic Gates

<table>
<thead>
<tr>
<th>Buffer</th>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Z</td>
<td>A</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inverter</th>
<th>NAND</th>
<th>NOR</th>
<th>XNOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Z</td>
<td>A</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Combinational Building Blocks

- Combinational logic is often grouped into larger building blocks to build more complex systems

- Hides the unnecessary gate-level details to emphasize the function of the building block

- We now examine:
 - Decoder
 - Multiplexer
 - Full adder
 - PLA (Programmable Logic Array)
Decoder
Decoder

- “Input pattern detector”
- \(n \) inputs and \(2^n \) outputs
- Exactly one of the outputs is 1 and all the rest are 0s
- The output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect
- Example: 2-to-4 decoder

<table>
<thead>
<tr>
<th>(A_1)</th>
<th>(A_0)</th>
<th>(Y_3)</th>
<th>(Y_2)</th>
<th>(Y_1)</th>
<th>(Y_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Diagram of 2:4 Decoder]
n inputs and 2^n outputs
Exactly one of the outputs is 1 and all the rest are 0s
The output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect

A = 1
B = 0

1 if A, B is 00
1 if A, B is 01
1 if A, B is 10
1 if A, B is 11

0
0
0
1
0
0
The decoder is useful in determining how to interpret a bit pattern.

- It could be the address of a location in memory, that the processor intends to read from.
- It could be an instruction in the program and the processor needs to decide what action to take (based on instruction opcode).
Multiplexer (MUX)
Multiplexer (MUX), or Selector

- **Selects** one of the N inputs to connect it to the output
 - based on the value of a $\log_2 N$-bit control input called **select**
- Example: 2-to-1 MUX

<table>
<thead>
<tr>
<th>S</th>
<th>D_1</th>
<th>D_0</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Multiplexer (MUX), or Selector (II)

- **Selects** one of the \(N \) inputs to connect it to the output
 - based on the value of a \(\log_2 N \)-bit control input called **select**
- Example: 2-to-1 MUX

![2-to-1 MUX Diagram]

\[A\] \[B\] \[S\] \[C\]

\[a\] \[b\]

\[S = 0\] \[C\]

\[A\] \[B\] \[C\]

\[S = 0\]
Multiplexer (MUX), or Selector (III)

- The output C is always connected to either the input A or the input B
 - Output value depends on the value of the select line S

- **Your task:** Draw the schematic for an 4-input (4:1) MUX
 - Gate level: as a combination of basic AND, OR, NOT gates
 - Module level: As a combination of 2-input (2:1) MUXes
A 4-to-1 Multiplexer
Aside: Logic Using Multiplexers

- Multiplexers can be used as lookup tables to perform logic functions

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Y = AB \]

Figure 2.59 4:1 multiplexer implementation of two-input AND function

Idea: Formulate the truth table as a multiplexer
Aside: Logic Using Multiplexers (II)

- Multiplexers can be used as lookup tables to perform logic functions

\[Y = A \oplus B \]
Aside: Logic Using Multiplexers (III)

- Multiplexers can be used as lookup tables to perform logic functions

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[Y = \overline{A}B + \overline{B}C + \overline{A}BC \]
Recall: 8-Input Lookup Table (LUT)

3-bit input LUT (3-LUT)

Data Input

output (1 bit)

Multiplexer (Mux):
Chooses one of the 8 data inputs that corresponds to the 3-bit select input

Select Input

input (3 bits)

3-LUT can implement any 3-bit input function
Let’s implement a function that outputs ‘1’ when there are at least two ‘1’s in a 3-bit input

In C:

```c
int count = 0;
for(int i = 0; i < 3; i++) {
    count += input & 1;
    input = input >> 1;
}
if(count > 1) return 1;
return 0;
```

In an FPGA:

```
switch(input){
    case 0:
    case 1:
    case 2:
    case 4:
        return 0;
    default:
        return 1;
}
```
 Aside: Logic Using Decoders (I)

- Decoders can be combined with OR gates to build logic functions.

![Diagram of a 2:4 decoder with minterms and an OR gate output.]

Figure 2.65 Logic function using decoder

Read H&H Chapter 2.8
Full Adder
Full Adder (I)

- **Binary addition**
 - Similar to decimal addition
 - From right to left
 - One column at a time
 - One sum and one carry bit

- Truth table of binary addition on one column of bits within two n-bit operands

<table>
<thead>
<tr>
<th>a_i</th>
<th>b_i</th>
<th>$carry_i$</th>
<th>$carry_{i+1}$</th>
<th>S_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Full Adder (II)

- Binary addition
 - N 1-bit additions
 - **SOP of 1-bit addition**

\[
\begin{array}{c}
\text{Full Adder (1 bit)} \\
\hline
a_i & b_i & c_i & s_i & c_{i+1} \\
\hline
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{align*}
a_{n-1}a_{n-2} \ldots a_1a_0 \\
b_{n-1}b_{n-2} \ldots b_1b_0 \\
c_n c_{n-1} \ldots c_1 \\
S_{n-1} \ldots S_1S_0
\end{align*}
\]
Creating a **4-bit adder** out of 1-bit full adders

- To add two 4-bit binary numbers A and B
Adder Design: Ripple Carry Adder

Figure 5.5 32-bit ripple-carry adder
Adder Design: Carry Lookahead Adder

Example of logic specialization: Specialized logic for fast carry generation
Programmable Logic Array (PLA)
PLA: Recall: SOP Form

- SOP (sum-of-products) leads to two-level logic
- Example: $Y = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C)$

A PLA enables the two-level SOP implementation of any N-input M-output function
The Programmable Logic Array (PLA)

- The below logic structure is a very common building block for implementing any collection of logic functions one wishes to.
- An array of AND gates followed by an array of OR gates.
- **How do we determine the number of AND gates?**
 - Remember SOP: the number of possible minterms.
 - For an n-input logic function, we need a PLA with 2^n n-input AND gates.
- **How do we determine the number of OR gates?** The number of output columns in the truth table.

A PLA enables the two-level SOP implementation of any N-input M-output function.
The Programmable Logic Array (PLA)

- How do we implement a logic function?
 - Connect the output of an AND gate to the input of an OR gate if the corresponding minterm is included in the SOP.
 - This is a simple programmable logic construct.

- Programming a PLA: we program the connections from AND gate outputs to OR gate inputs to implement a desired logic function.

- Have you seen any other type of programmable logic?
 - Yes! An FPGA...
 - An FPGA uses more advanced structures, as we saw in Lecture 3.

A PLA enables the two-level SOP implementation of any N-input M-output function.
PLA Example (I)

Read H&H Chapter 5.6.1
PLA Example Function (II)

Read H&H Chapter 5.6.1
PLA Example Function (III)

Read H&H Chapter 5.6.1
Implementing a Full Adder Using a PLA

Truth table of a full adder

<table>
<thead>
<tr>
<th>a_i</th>
<th>b_i</th>
<th>carry_i</th>
<th>carry_{i+1}</th>
<th>S_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

This input should not be connected to any outputs

We do not need this output
Logical Completeness
Logical (Functional) Completeness

- Any logic function we wish to implement could be accomplished with a PLA
 - PLA consists of only AND gates, OR gates, and inverters
 - We just have to program connections based on SOP of the intended logic function

- The set of gates \{AND, OR, NOT\} is logically complete because we can build a circuit to carry out the specification of any truth table we wish, without using any other kind of gate

- NAND is also logically complete. So is NOR.
 - Your task: Prove this.
More Combinational Blocks
More Combinational Building Blocks

- H&H Chapter 2 in full
 - Required Reading
 - E.g., see Tri-state Buffer and Z values in Section 2.6

- H&H Chapter 5
 - Will be required reading soon.

- You will benefit greatly by reading the "combinational" parts of Chapter 5 soon.
 - Sections 5.1 and 5.2
Comparator
Equality Checker (Compare if Equal)

- Checks if two N-input values are exactly the same
- Example: 4-bit Comparator
ALU (Arithmetic Logic Unit)
ALU (Arithmetic Logic Unit)

- Combines a variety of arithmetic and logical operations into a single unit (that performs only one function at a time)
- Usually denoted with this symbol:

![ALU symbol](image)

Table 5.1 ALU operations

<table>
<thead>
<tr>
<th>$F_{2:0}$</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>A AND B</td>
</tr>
<tr>
<td>001</td>
<td>A OR B</td>
</tr>
<tr>
<td>010</td>
<td>A + B</td>
</tr>
<tr>
<td>011</td>
<td>not used</td>
</tr>
<tr>
<td>100</td>
<td>A AND \overline{B}</td>
</tr>
<tr>
<td>101</td>
<td>A OR \overline{B}</td>
</tr>
<tr>
<td>110</td>
<td>A - B</td>
</tr>
<tr>
<td>111</td>
<td>SLT</td>
</tr>
</tbody>
</table>

Figure 5.14 ALU symbol
Example ALU (Arithmetic Logic Unit)

Table 5.1 ALU operations

<table>
<thead>
<tr>
<th>$F_{2:0}$</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>A AND B</td>
</tr>
<tr>
<td>001</td>
<td>A OR B</td>
</tr>
<tr>
<td>010</td>
<td>A + B</td>
</tr>
<tr>
<td>011</td>
<td>not used</td>
</tr>
<tr>
<td>100</td>
<td>A AND \overline{B}</td>
</tr>
<tr>
<td>101</td>
<td>A OR \overline{B}</td>
</tr>
<tr>
<td>110</td>
<td>A – B</td>
</tr>
<tr>
<td>111</td>
<td>SLT</td>
</tr>
</tbody>
</table>

Diagram

The diagram illustrates the ALU circuit, showing the interactions of inputs A and B and the output Y with control signals $F_{1:0}$ and F_2. The circuit includes logic gates for AND, OR, and subtraction operations, along with additional components for control and output formatting.
More Combinational Building Blocks

- See H&H Chapter 5.2 for
 - Subtractor (using 2’s Complement Representation)
 - Shifter and Rotator
 - Multiplier
 - Divider
 - ...
More Combinational Building Blocks

- H&H Chapter 2 in full
 - Required Reading
 - E.g., see Tri-state Buffer and Z values in Section 2.6

- H&H Chapter 5
 - Will be required reading soon.

- You will benefit greatly by reading the “combinational” parts of Chapter 5 soon.
 - Sections 5.1 and 5.2
Tri-State Buffer
Tri-State Buffer

- A tri-state buffer enables gating of different signals onto a wire

![Tri-State Buffer Diagram](image)

- **Floating signal (Z):** Signal that is not driven by any circuit
 - Open circuit, floating wire

Figure 2.40 Tristate buffer
Example: Use of Tri-State Buffers

- Imagine a wire connecting the CPU and memory
 - At any time only the CPU or the memory can place a value on the wire, both not both
 - You can have two tri-state buffers: one driven by CPU, the other memory; and ensure at most one is enabled at any time
Example Design with Tri-State Buffers

- CPU
- Memory
- Gate CPU
- Gate Mem
- Shared Bus
Another Example

- Processor
 - to bus
 - from bus

- Video
 - to bus
 - from bus

- Ethernet
 - to bus
 - from bus

- Memory
 - to bus
 - from bus

shared bus
Multiplexer Using Tri-State Buffers

\[Y = D_0 \bar{S} + D_1 S \]

Figure 2.56 Multiplexer using tristate buffers
Recall: A 4-to-1 Multiplexer
We Covered Until This Point in the Lecture
Logic Simplification using Boolean Algebra Rules
Recall: Full Adder in SOP Form Logic

\[\begin{array}{ccc}
\text{a}_i & \text{b}_i & \text{c}_i \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array} \]

\[\begin{array}{ccc}
\text{c}_{i+1} & \text{carry}_{i} & \text{S}_i \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array} \]
Goal: Simplified Full Adder

How do we simplify Boolean logic?
How do we automate simplification?

Full Adder

\[S = A \oplus B \oplus C_{in} \]
\[C_{out} = AB + AC_{in} + BC_{in} \]

<table>
<thead>
<tr>
<th>(C_{in})</th>
<th>(A)</th>
<th>(B)</th>
<th>(C_{out})</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Quick Recap on Logic Simplification

- The original Boolean expression (i.e., logic circuit) may not be optimal

\[F = \neg A(A + B) + (B + AA)(A + \neg B) \]

- Can we reduce a given Boolean expression to an equivalent expression with fewer terms?

\[F = A + B \]

- The goal of logic simplification:
 - Reduce the number of gates/inputs
 - Reduce implementation cost

A basis for what the automated design tools are doing today
Logic Simplification

- Systematic techniques for simplifications
 - amenable to automation

Key Tool: The Uniting Theorem —

\[F = A\overline{B} + AB \]

Essence of Simplification:

Find two element subsets of the ON-set where only one variable changes its value. This single varying variable can be eliminated!

\[F = \overline{A}B + AB = A(\overline{B} + B) = A(1) = A \]

\[G = \overline{A}\overline{B} + A\overline{B} = (\overline{A} + A)\overline{B} = \overline{B} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\rightarrow \text{B is eliminated, A remains} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\rightarrow \text{A is eliminated, B remains} \]
Priority Circuit

- Inputs: “Requestors” with priority levels
- Outputs: “Grant” signal for each requestor
- Example 4-bit priority circuit

<table>
<thead>
<tr>
<th>A_3</th>
<th>A_2</th>
<th>A_1</th>
<th>A_0</th>
<th>Y_3</th>
<th>Y_2</th>
<th>Y_1</th>
<th>Y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplified Priority Circuit

- Priority Circuit
 - Inputs: “Requestors” with priority levels
 - Outputs: “Grant” signal for each requestor
 - Example 4-bit priority circuit

<table>
<thead>
<tr>
<th>A_3</th>
<th>A_2</th>
<th>A_1</th>
<th>A_0</th>
<th>Y_3</th>
<th>Y_2</th>
<th>Y_1</th>
<th>Y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>0 0 0 1</td>
<td>0 0 0 1</td>
<td>0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>0 0 1 0</td>
<td>0 0 1 0</td>
<td>0 0 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>0 0 1 1</td>
<td>0 0 1 1</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>0 1 0 0</td>
<td>0 1 0 0</td>
<td>0 1 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>0 1 0 1</td>
<td>0 1 0 1</td>
<td>0 1 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>0 1 1 0</td>
<td>0 1 1 0</td>
<td>0 1 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>0 1 1 1</td>
<td>0 1 1 1</td>
<td>0 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>1 0 0 0</td>
<td>1 0 0 0</td>
<td>1 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>1 0 0 1</td>
<td>1 0 0 1</td>
<td>1 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>1 0 1 0</td>
<td>1 0 1 0</td>
<td>1 0 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>1 0 1 1</td>
<td>1 0 1 1</td>
<td>1 0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>1 1 0 0</td>
<td>1 1 0 0</td>
<td>1 1 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>1 1 0 1</td>
<td>1 1 0 1</td>
<td>1 1 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>1 1 1 0</td>
<td>1 1 1 0</td>
<td>1 1 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X (Don’t Care) means *I don’t care what the value of this input is*
Logic Simplification:
Karnaugh Maps (K-Maps)
Karnaugh Maps are Fun...

- A pictorial way of minimizing circuits by visualizing opportunities for simplification
- They are for you to study on your own...

- See remaining slides
- Read H&H Section 2.7
- Watch videos of Lectures 5 and 6 from 2019 DDCA course:
 - https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNTQFHRO3GrXxA9&t=4570
 - https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=220
Backup Slides on Karnaugh Maps (K-Maps)
Complex Cases

- One example
 \[C_{out} = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC \]

- Problem
 - Easy to see how to apply Uniting Theorem...
 - Hard to know if you applied it in all the right places...
 - ...especially in a function of many more variables

- Question
 - Is there an easier way to find potential simplifications?
 - i.e., potential applications of Uniting Theorem...?

- Answer
 - Need an intrinsically \textit{geometric} representation for Boolean \(f() \)
 - Something we can draw, see...
Karnaugh Map

- Karnaugh Map (K-map) method
 - K-map is an alternative method of representing the truth table that helps visualize adjacencies in up to 6 dimensions
 - Physical adjacency \leftrightarrow Logical adjacency

2-variable K-map

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

3-variable K-map

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Numbering Scheme: 00, 01, 11, 10 is called a “Gray Code” — only a single bit (variable) changes from one code word and the next code word

4-variable K-map

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>BC</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

0000 0001 0011 0010
0100 0101 0111 0110
1100 1101 1111 1110
1000 1001 1011 1010
Karnaugh Map Methods

K-map adjacencies go "around the edges"
Wrap around from first to last column
Wrap around from top row to bottom row
K-map Cover - 4 Input Variables

Strategy for “circling” rectangles on Kmap:

Biggest “oops!” that people forget:

\[
F(A, B, C, D) = \sum m(0, 2, 5, 8, 9, 10, 11, 12, 13, 14, 15)
\]

\[
F = A + \overline{B}\overline{D} + B\overline{C}D
\]
Logic Minimization Using K-Maps

- Very simple guideline:
 - Circle all the rectangular blocks of 1’s in the map, using the fewest possible number of circles
 - Each circle should be as large as possible
 - Read off the implicants that were circled

- More formally:
 - A Boolean equation is minimized when it is written as a sum of the fewest number of prime implicants
 - Each circle on the K-map represents an implicant
 - The largest possible circles are prime implicants
K-map Rules

- **What can be legally combined (circled) in the K-map?**
 - Rectangular groups of size 2^k for any integer k
 - Each cell has the same value (1, for now)
 - All values must be adjacent
 - Wrap-around edge is okay

- **How does a group become a term in an expression?**
 - Determine which literals are constant, and which vary across group
 - Eliminate varying literals, then AND the constant literals
 - constant 1 \rightarrow use x, constant 0 \rightarrow use \bar{x}

- **What is a good solution?**
 - Biggest groupings \rightarrow eliminate more variables (literals) in each term
 - Fewest groupings \rightarrow fewer terms (gates) all together
 - OR together all AND terms you create from individual groups
K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map for each of the 3 output functions

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
K-map Example: Two-bit Comparator (2)

K-map for F1

F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>01</td>
<td>00</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>10</td>
<td>01</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>00</td>
<td>01</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>00</td>
<td>01</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>11</td>
<td>00</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>00</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>01</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

131
K-map Example: Two-bit Comparator (3)

K-map for F2

\[
\begin{array}{cccc|c}
A & B & C & D & F2 \\
\hline
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 \\
\end{array}
\]

\[F2 = \text{?} \quad \text{(Exercise for you)}\]
K-maps with “Don’t Care”

- Don’t Care really means *I don’t care what my circuit outputs if this appears as input*

- You have an engineering choice to use DON’T CARE patterns intelligently as 1 or 0 to better simplify the circuit

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

I can pick 00, 01, 10, 11 independently of below

I can pick 00, 01, 10, 11 independently of above
Example: BCD Increment Function

- **BCD (Binary Coded Decimal) digits**
 - Encode decimal digits 0 - 9 with bit patterns 0000_2 — 1001_2
 - When **incremented**, the decimal sequence is 0, 1, ..., 8, 9, 0, 1

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

These input patterns **should never be encountered** in practice (hey -- it’s a BCD number!)
So, associated output values are **“Don’t Cares”**
K-map for BCD Increment Function

\[Z \text{ (without don’t cares)} = A'D' + B'C'D' \]

\[Z \text{ (with don’t cares)} = D' \]
K-map Summary

- **Karnaugh maps** as a formal systematic approach for logic simplification

- 2-, 3-, 4-variable K-maps

- K-maps with "Don’t Care" outputs

- H&H Section 2.7
Digital Design & Computer Arch.

Lecture 5: Combinational Logic II

Prof. Onur Mutlu

ETH Zürich
Spring 2022
10 March 2022