Digital Design & Computer Arch.

Lecture 8: Timing and Verification

Prof. Onur Mutlu

ETH Zlrich
Spring 2022
18 March 2022

Readings (This Week)

Hardware Description Languages and Verilog
o H&H Chapter 4 in full

Timing and Verification
o H&H Chapters 2.9 and 3.5 + (start Chapter 5)

By tomorrow, make sure you are done with
o P&P Chapters 1-3 + H&H Chapters 1-4

Readings (Next Week)

Von Neumann Model, LC-3, and MIPS

o P&P, Chapter 4, 5

o H&H, Chapter 6

o P&P, Appendices A and C (ISA and microarchitecture of LC-3)
o H&H, Appendix B (MIPS instructions)

Programming
o P&P, Chapter 6

Recommended: Digital Building Blocks
o H&H, Chapter 5

Assignment: Lecture Video (April 1)

= Why study computer architecture? Why is it important?
= Future Computing Platforms: Challenges & Opportunities

= Required Assignment
o Watch one of Prof. Mutlu’s lectures and analyze either (or both)
o https://www.youtube.com/watch?v=kgiZISOcGFM (May 2017)
a https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

= Optional Assignment — for 1% extra credit

o Write a 1-page summary of one of the lectures and email us
= What are your key takeaways?
= What did you learn?
= What did you like or dislike?
= Submit your summary to Moodle by April 1

https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=722981

Extra Assignment: Moore’s Law (I)

= Paper review
= G.E. Moore. "Cramming more components onto integrated

circuits,” Electronics magazine, 1965

= Optional Assignment — for 1% extra credit
o Write a 1-page review
o Upload PDF file to Moodle — Deadline: April 7

= I strongly recommend that you follow my guidelines for
(paper) review (see next slide)

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (I1)

= Guidelines on how to review papers critically

a Guideline slides: pdf ppt
a Video: https://www.youtube.com/watch?v=tOL6FANAI8c

o Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)

= Review 1
= Review 2

o Example review on "“Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
= Review 1

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

Agenda

= Wrap up FSMs in Verilog

= Timing in combinational circuits

= Timing in sequential circuits

= Circuit verification

Wrap Up: FSMs in Verilog

Recall: Why Use (Non)-Blocking Statements

Non-blocking statements allow operating on “old” values
o Enable easy sequential logic descriptions

Blocking statements allow a sequence of operations
o Allow operating on immediately updated values
o More like a “'software” programming language

If the sensitivity list is correct, blocks with non-blocking
statements will always evaluate to the same result

o This may require some additional iterations

Rules for Signal Assignment

Use always @(posedge clk) and non-blocking
assignments (<=) to model synchronous sequential logic

always @ (posedge clk)
g <= d; // non-blocking

Use continuous assignments (assign) to model simple
combinational logic

assign y = a & b;

10

Rules for Signal Assignment (Cont.)

Use always @ (*) and blocking assignments (=) to model
more complicated combinational logic.

You cannot make assignments to the same signal in more
than one always block or in a continuous assignment

11

Recall: Finite State Machines (FSMs)

Each FSM consists of three separate parts:
o nhext state logic

o state register

o output logic

M next)k next | k N
mputs state | state y state (oll(J)tpigt OUtpUtS
logic J L J

state register

12

Recall: Finite State Machines (FSMs) Comprise

Sequential circuits CLK
o State register(s)

Store the current state and S S
Next Current
Load the next state at the clock edge State State
Combinational Circuits Next State
o Next state logic Logic -
Determines what the next state will be Stz)t(e
Output

o Output logic Logic

Generates the outputs
P Outputs

13

FSM Example 1: Divide the Clock Frequency by 3

CLK
Y / \ /N

The output Yis HIGH for one clock cycle out of every 3. In other
words, the output divides the frequency of the clock by 3.

Reset

14

Implementing FSM Example 1: Definitions

module divideby3FSM (input clk,
input reset,
output q);

reg [1:0] state, nextstate;

parameter SO = 2'b00;
parameter S1 = 2'b01;

parameter S2 = 2'bl0;

We define state and nextstate as 2-bit reg

The parameter descriptions are optional, it makes reading

easier

15

Implementing FSM

CLK
|
S —+— —+—S
Next Current
State State

Hxample 1: State Register

Reset

VRORS

// state register

always @ (posedge clk, posedge reset)
if (reset) state <= SO;
else state <= nextstate;

This part defines the state register (memorizing process)
Sensitive to only clk, reset
In this example, reset is active when it is ‘1’ (active-high)

16

Implementing FSM Example 1: Next State Logic

CLK Reset
M next) k "€ |

. K
Inputs state state state
logic

// next state logic

always @ (*)
case (state)

SO: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = SO;
default: nextstate = SO;

endcase

Implementing FSM Example 1: Output Logic

CLK
|

M next) k next K N
Inputs state |State , state (oll;tpigt outputs
logic J L J

// output logic
assign g = (state == S0);

In this example, output depends only on state
o Moore type FSM

18

Implementation ot FSM Example 1

module divideby3FSM (input clk, input reset, output q);
reg [1:0] state, nextstate;

parameter SO = 2'b00; parameter S1 = 2'b01l; parameter S2

always @ (posedge clk, posedge reset) // state register
if (reset) state <= SO;

else state <= nextstate;
always @ (*) // next state logic
case (state)
SO: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = SO;
default: nextstate = SO;
endcase
assign q = (state == S0); // output logic

endmodule

2'blo;

FSM Example 2: Smiling Snail

Alyssa P. Hacker has a snail that crawls down a paper tape
with 1's and 0’s on it

The snail smiles whenever the last four digits it has crawled
over are 1101

Design Moore and Mealy FSMs of the snail’s brain

20

Implementing FSM Example 2

Definitions

module SmilingSnail (input clk,
input reset,
input number,
output smile);

reg [1:0] state, nextstate;

parameter SO 2'boo;
parameter S1 2'bo1;
parameter S2 = 2'b10;
parameter S3 = 2°bl1l;

number/smile

21

Implementing FSM Example 2: State Register

// state register
always @ (posedge clk, posedge reset)
if (reset) state <= SO;
else state <= nextstate;

This part defines the state register (memorizing process)
Sensitive to only clk, reset

In this example reset is active when ‘1’ (active-high)

22

Implementing FSM Example 2: Next State Logic

// next state logic
always @ (*)
case (state)
S@: if (number) nextstate = S1;
else nextstate = SO;
S1: if (number) nextstate = S2;
else nextstate = SO;
S2: if (number) nextstate = S2;
else nextstate = S3;
S3: if (number) nextstate = S1;
else nextstate = SO;
default: nextstate = SO;
endcase

Implementing FSM Example 2: Output Logic

// output logic
assign smile = (number & state == S3);

In this example, output depends on state and input
o Mealy type FSM

We used a simple combinational assignment

24

Implementation of FSM Example 2

module SmilingSnail (input clk, always @ (*) // next state logic
input reset, case (state)
input number, Se: if (number)
output smile); nextstate = S1;
else nextstate = SO;
reg [1:0] state, nextstate; S1: if (number)
nextstate = S2;
parameter SO = 2'b00; else nextstate = SO;
parameter S1 = 2'b0O1l; S2: if (number)
parameter S2 = 2'b10; nextstate = S2;
parameter S3 = 2°bll; else nextstate = S3;
S3: if (number)
// state register nextstate = S1;
always @ (posedge clk, posedge else nextstate = SO;
reset) default: nextstate = SO;
if (reset) state <= SO; endcase
else state <= nextstate; // output logic

assign smile = (number & state==S3);

endmodule

What Did We Learn?

Basics of describing sequential circuits in Verilog

The always statement
o Needed for defining memorizing elements (flip-flops, latches)
o Can also be used to define combinational circuits

Blocking vs Non-blocking statements
o = assigns the value immediately
o <= assigns the value at the end of the block

Describing FSMs in Verilog
o Next state logic

o State assignment

o Output logic

26

Now:
Timing and Verification

27

What Will We Learn Today?

Timing in combinational circuits

o Propagation delay and contamination delay
o Glitches

Timing in sequential circuits
o Setup time and hold time
o Determining how fast a circuit can operate

Circuit Verification

o How to make sure a circuit works correctly
o Functional verification

o Timing verification

28

Tradeotts in Circuit Design

29

Circuit Design 1s a Tradeotf Between:

Area
o Circuit area is proportional to the cost of the device

Speed / Throughput
o We want faster, more capable circuits

Power / Energy
o Mobile devices need to work with a limited power supply
o High performance devices dissipate more than 100W/cm?

Design Time
o Designers are expensive in time and money
o The competition will not wait for you

30

Requirements and Goals Depend On Application

31

Circuit Timing

Until now, we investigated logical functionality

What about timing?

o How fast is a circuit?

o How can we make a circuit faster?

o What happens if we run a circuit too fast?

A design that is logically correct can still fail because of
real-world implementation issues!

32

Part 1:
Combinational Circuit Timing

33

Digital Logic Abstraction

= "Digital logic” is a convenient abstraction
o Output changes immediately with the input

34

Combinational Circuit Delay

= In reality, outputs are delayed from inputs
o Transistors take a finite amount of time to switch

Aoy

— »| delay l€«——

time | 2

Real Inverter Delay Example

Volt (V)

00 05 10 15 20 25 30 35
Time (ns)

LI DL B S

a0

45

Image source: Sandoval-Ibarra, F., and E. S. Hernandez-Bernal. "Ring CMOS NOT-based oscillators:

Analysis and design." Journal of applied research and technology, 2008.

36

Circuit Delay and Its Variation

Delay is fundamentally caused by
o Capacitance and resistance in a circuit
o Finite speed of light (not so fast on a nanosecond scale!)

Anything affecting these quantities can change delay:
o Rising (i.e., 0 -> 1) vs. falling (i.e., 1 -> 0) inputs

o Different inputs have different delays

o Changes in environment (e.g., temperature)

o Aging of the circuit

We have a range of possible delays from input to output

37

Delays trom Input to Output Y

Contamination delay (t_,): delay until Y starts changing
Propagation delay (t,;): delay until Y finishes changing

Example Circuit

)

Effect of Changing Input ‘A’

:‘7

D

h
Y

L

Time >

/

Cross-hatching
means value is changing 38

Calculating LLongest & Shortest Delay Paths

= We care about both the /ongest and shortest delay
paths in a circuit (we will see why later in the lecture)

Critical Path
A nl
B n2
C
S —
Short Path
= Critical (Longest) Path: ta = 2t4 anp T ha or

= Shortest Path: ty = cd_AND

39

A

Calculating Longest Delay Path (Critical Path)

Critical Path

:>_n2

0 ni
=1

0

1

S O W
I

= Critical (Longest) Path:
= Shortest Path:

5

- delay —»i

n2

Y

Time

ta = 2t4 anp T ha or
ta =t anp

40

Calculating Shortest Delay Path

B=1-
C=0
D=1->0

n2

Short Path

= Critical (Longest) Path:

= Shortest Path:

delay

\)

Time

ta = 2t4 anp T ha or

ta = tcd_AND

41

Example tod for a Real NAND-2 Gate

1A[] FVee

1BE 4B

1YE§ 4A

2A] &gw

2BE§ 438

2Y [i]3A

GND [} &33\(
Symbol Parameter Conditions 25°C —40 °C to +125 °C |Unit
Min Typ Max Max Max
(85°C) (125°C)

74HCO00
tod propagation delay |nA, nB to nY; see Figure 6 0l

Ve =20V

ns

VCC =45V

ns

Vee=5.0V;C_ =15pF

ns

VCC =6.0V

ns

= Heavy dependence on voltage and temperature!

Source: Nexperia 2-input NAND (74HC00) Datasheet, Section 10

42

Example Worst-Case t

= Two different implementations of a 4:1 multiplexer

Gate Delays Implementation 1 Implementation 2
S S
Gate tpd (PS) Si S %ZEZ
NOT 30 _XIZ 3'7
2-input AND 60 Do _D__ B
3-input AND 80 Dy

4-input OR 90 D2

tristate (A to Y) 50
tristate (enable to Y) 35 (_j

Qut

JUU

tod_sy=Toa INv + od_AND3 + Ipd OR4 tod_sy= fod INV + fpd_aND2 + Ipd TRI_SY
=30 ps+80 ps+90 ps =30 ps+60 ps +35 ps
(a) ’@ < (0 p ’@
tod dy=Tlod ANDs *+ bd ORa tod dy=1lod TRI_AY

= Different designs lead to very different delays

43

Aside: A Third 4:1 MUX Implementation

s,
D1_£‘§ ~C

2:1 mux

o>
2:1 mux
D3—~l>—

2:1 mux

tod soy=1tpd TRLSY * Ipgd TR AY =82 NS

tod dy=2 tpd TRI_AY

Figure 2.74 4:1 multiplexer propagation
delays: hierarchical using 2:1 multiplexers

44

Disclaimer: Calculating Long/Short Paths

It's not always this easy to determine the long/short paths!
o Not all input transitions affect the output
o Can have multiple different paths from an input to output

In reality, circuits are not all built equally
o Different instances of the same gate have different delays
o Wires have nonzero delay (increasing with length)

o Temperature/voltage affect circuit speeds
Not all circuit elements are affected the same way
Can even change the critical path!

Designers assume “worst-case” conditions and run many
statistical simulations to balance yield/performance

45

Combinational Timing Summary

Circuit outputs change some time after the inputs change
o Caused by finite speed of light (not so fast on a ns scale!)
o Delay is dependent on inputs, environmental state, etc.

The range of possible delays is characterized by:
o Contamination delay (t_,): minimum possible delay
o Propagation delay (t,q): maximum possible delay

Delays change with:

o Circuit design (e.g., topology, materials)
o Operating conditions

46

Output Glitches

47

Glitches

Glitch: one input transition causes multiple output transitions

Circuit initial state

-

B
Bs

48

Glitches

= Glitch: one input transition causes multiple output transitions

B
Bs

1->7

49

Glitches

= Glitch: one input transition causes multiple output transitions

Slow path (3 gates)

1->7

Fast path (2 gates)

50

Glitches

= Glitch: one input transition causes multiple output transitions

Slow path (3 gates)

1->0->1

Fast path (2 gates)

51

Glitches

= Glitch: one input transition causes multiple output transitions

Slow path (3 gates)

(V) 1->0->1

Fast path (2 gates)

Time

52

Optional: Avoiding Glitches Using K-Maps

Glitches are visible in K-maps
o Recall: K-maps show the results of a change in a single input
o A glitch occurs when moving between prime implicants

(A) 0 AB
(B) 1->0
(V) 1->0->1
(C) 1 BC
Y AB
o\ _00 01 11 10

53

Optional: Avoiding Glitches Using K-Maps

= We can fix the issue by adding in the consensus term
o Ensures no transition between different prime implicants

(A) 0

(B) 1->0

(C) 1
00 01 11

(V) 1->1

gob

No dependence on B

Y=AB+BC+AC

=> No glitch!

54

Avolding Glitches

Q: Do we always care about glitches?

o Fixing glitches is undesirable
More chip area
More power consumption
More design effort

o The circuit is eventually guaranteed to converge to the right
value regardless of glitchiness

A: No, not always!

o If we only care about the long-term steady state output,
we can safely ignore glitches

o Up to the designer to decide if glitches matter in their
application
When examining simulation output, important to recognize glitches

55

Part 2:
Sequential Circuit Timing

56

Recall: D Flip-Flop

Flip-flop samples D at the active clock edge
o It outputs the sampled value to Q
o It “stores” the sampled value until the next active clock edge

CLK

D Q

The D flip-flop is made from combinational elements
D, Q, CLK all have timing requirements!

57

D Flip-Flop Input Timing Constraints

D must be stable when sampled (i.e., at active clock edge)

I
I | I
D XA XXX
D @ <« e >
i tsetup |thold i
‘f’

Setup time (t.,,): time before the clock edge that data
must be stable (i.e. not changing)

Hold time (t,,,4): time after the clock edge that data must
be stable

Aperture time (t,): time around clock edge that data
must be stable (t; = tyepyp + thoid)

58

Violating Input Timing: Metastability

If D is changing when sampled, metastability can occur
o Flip-flop output is stuck somewhere between ‘1" and ‘0’
o Output eventually settles non-deterministically

Example Timing Violations (NAND RS Latch)

CLK

Q <= Non-deterministic |
f .\, Convergence " ;‘
Me tas ta b ility B S G U ... VS

Source: W. J. Dally, Lecture notes for EE108A, Lecture 13: Metastability and
Synchronization Failure (When Good Flip-Flops go Bad) 11/9/2005.

Flip-Flop Output Timing

CLK CLK m
|

Q

Contamination delay clock-to-q (t..,): earliest time after
the clock edge that Q starts to change (i.e., is unstable)

Propagation delay clock-to-q (t,.): latest time after the
clock edge that Q stops changing (i.e., is stable)

60

Recall: Sequential System Design

CLK

e

R

CLK

%7

+

R2

= Multiple flip-flops are connected with combinational logic

= Clock runs with period 7_(cycle time)

= Must meet timing requirements for both R1 and R2!

61

Ensuring Correct Sequential Operation

= Need to ensure correct input timing on R2

= Specifically, D2 must be stable:

o at least t,, before the clock edge
o at least until t,,,,4 after the clock edge

¢

CLK
ll ,/Q1 r
N
R1

|
CLK ,{
|
|
: | !
D O R
H—N<—>i
i tsetup |thold i
<>

t

a

62

Ensuring Correct Sequential Operation

= This means there is both a minimum and maximum

delay between two flip-flops Potential
o CL too fast -> R2 t,,,4 Violation

o CL too slow -> R2 t,, violation Rz gﬂlﬂ

VIOLATION!
CLK CLK
i e
a) R1 R2
< Te >
CLK \)
| |
o1 | |
| |
D2 | |
i > ¢ P
(b) tHOLD tSE TUP

63

Setup Time Constraint

= Safe timing depends on the maximum delay from R1 to R2
= The input to R2 must be stable at least £, before the clock edge.

CILK CILK

+£[0]]%4—%

Setup Time Constraint

= Safe timing depends on the maximum delay from R1 to R2
= The input to R2 must be stable at least £, before the clock edge.

65

Setup Time Constraint

= Safe timing depends on the maximum delay from R1 to R2
= The input to R2 must be stable at least £, before the clock edge.

ClLK CILK

Q1 D2

66

Setup Time Constraint

= Safe timing depends on the maximum delay from R1 to R2
= The input to R2 must be stable at least £, before the clock edge.

CILK CLK
Q1 D2
-+ ¢)—*IE TSt F g+t
R1 R2
T
l« : »l
CLK \)
I I
QL 1)% |
| | | |
D2 | XXO0C000K |
:(tpcq)i< tpd)l ftsetup):

Setup Time Constraint

= Safe timing depends on the maximum delay from R1 to R2
= The input to R2 must be stable at least £, before the clock edge.

CLK CLK Wasted work
| |

501[]D2: / \
i © i Tc > 1:pcq T tpd T tsetup

H_l
R T R2 Useful work

lq : »

CLK \ T
| . |

Q1 : : (: Sequencing overhead:

! ’ amount of time wasted

D2 | OO | _
TR T | each cycle due to sequencing
Nl S >0 py element timing requirements

68

Constraint and Design Performance

Setup
Critical Path
SIDLVA
B n2
C
. s
Sh?rt Path

= Critical path: path with the longest t4
T >ty ttgtt

= Overall design performance is determined by the critical path t,4
o Determines the minimum clock period (i.e., max operating frequency)
o If the critical path is too long, the design will run slowly

o If critical path is too short, each cycle will do very little useful work
= i.e., most of the cycle will be wasted in sequencing overhead

setup

69

Hold Time Constraint

= Safe timing depends on the minimum delay from R1 to R2

= D2 (i.e., R2 input) must be stable for at least £ ,, after the clock edge

Must not change until
t,.1q after the clock

CLK CLK
+ﬁ’&[e Bl
R1 R2
wf— -
Q1 : AN :
D2 | ROV |
fre I
K] :

ccq

/0

Hold Time Constraint

= Safe timing depends on the minimum delay from R1 to R2
= D2 (i.e., R2 input) must be stable for at least £ ,, after the clock edge

cc cd

CLK CLK
| I
_[V.Q1 D2, M tcc(JI +1 4
R1 R2
N e |
CLK \ Y
| |
Q1 | XX |
| |
D2 | I
| |
|t t |
| |
| |

old

/1

Hold Time Constraint

= Safe timing depends on the minimum delay from R1 to R2

= D2 (i.e., R2 input) must be stable for at least £ ,, after the clock edge

CLK CILK
- 7—[¢]% ——
R1 R2
CLK‘; \ ,}’_
Q1 KX

D2

hold

tCC

a T Y > Yo

72

Hold Time Constraint

Safe timing depends on the minimum delay from R1 to R2
D2 (i.e., R2 input) must be stable for at least .4 after the clock edge

CLK CLK
7 &[¢]% v tecq t Ted > thold
R1I F}2 tea > Yhold - tccq
CLK \ T
o T \
D2 TYRN We need to have a minimum

|
|
|
: combinational delay!
|
|
|

hold

/3

Hold Time Constraint

Safe timing depends on the minimum delay from R1 to R2
D2 (i.e., R2 input) must be stable for at least .4 after the clock edge

CLK CLK
- ,Q[¢]% . tecq ¥ tea > Thold
R1 R2
| I
CLK \ a
QL 1 XX Does NOT depend on T/
D2

Very hard to fix t,,,4 Violations after
manufacturing- must modify circuits!

I

I

I

I

hold |
I

/4

Sequential Timing Summary

|t

teeq / tocq clock-to-q delay (contamination/propagation)
te/ tog combinational logic delay (contamination/propagation)
teetup time that FF inputs must be stable before next clock edge
toi time that FF inputs must be stable after a clock edge
T, clock period
CILK CLK
] 7&[¢]D2 m
o R1 o R2
| | l< ! »!
CLK | \ ,ll/_ CLK | | \ ,ll/_
Q1 | | QL T X |
D2 : YXOOOOOOOONX : D2 : L ROO00C00RK :
oot | U "N
|
|

hold

75

Example: Timing Analysis

CLK

A

e |

_r
_r

1[®

-

CLK

p

1

t,,=

tcd -
Check setup time constraints:

Tc>tpcq+tpd+t

c

T.>

setup

<

Timing Characteristics

tecq =30 ps
teq =50 ps
tsetup =60 ps
thold =70ps
2 [t =35 ps
(@]
2|t =25 ps

Check hold time constraints:

tccq + tcd > thold ?

76

Example: Timing Analysis

CLK CIK . . < 4
A Timing Characteristics
tecq =30 ps
/1B
‘r teq =50 ps
X Y] X

—F7C L]_ tsetup =60 ps

-ED Y'MY thold =70 ps

fgi thy =35 ps

t,s =3 x35ps=105ps g t = 25 ps

tcd =

Check setup time constraints: Check hold time constraints:

T.> toog t g+t teeq + teg > thold ?

setup
T >
fmax = 1/Tc =

77

Example: Timing Analysis

CLK CLK

Timing Characteristics

7
} tecq =30 ps

teq =50 ps

X [Y]X
' thold =70ps

fgi thy =35 ps
t,s =3 x35ps=105ps g t = 25 ps
t. =25ps
Check setup time constraints: Check hold time constraints:

T.> toog t g+t teeq + teg > thold ?

setup
T >
fmax = 1/Tc =

/8

Example: Timing Analysis

CLK

g

t,s =3 x35ps=105ps
t.,=25ps

Check setup time constraints:
Tc > tpcq + tpd + tsetup

T.> (50 + 105 + 60) ps = 215 ps
Frnax = 1/T. = 4.65 GHz

CLK _. . . .
Timing Characteristics
tecq =30 ps
teq =50 ps
X

]— tep =60 PS
Y thold =70ps

Q -
tsetup 2 tog =35 ps
2|t =25 ps

Check hold time constraints:

tccq + tcd > thold ?

/9

Example: Timing Analysis

CLK CLK o o
_[A Timing Characteristics
s t, ~ =30ps
_[B
tocq =50 ps
X
[C;D-L‘[]‘ tep =60 PS
t: { d MY thold =70 ps

L —— e S

*S!i thy =35 ps
t,s =3 x35ps=105ps g t, = 25 ps
t.,=25ps
Check setup time constraints: Check hold time constraints:

T.> toog t g+t teq + tea > thold ?

setup
T.> (50 + 105 + 60) ps = 215 ps (30+25)ps>70ps?
Frnax = 1/T. = 4.65 GHz

80

Example: Timing Analysis

1Y :>_

v

t,s =3 x35ps=105ps
t.,=25ps

Check setup time constraints:
Tc > tpcq + tpd + tsetup

T.> (50 + 105 + 60) ps = 215 ps
Frnax = 1/T. = 4.65 GHz

CLK _.
Timing Characteristics
tecq =30 ps
teq =50 ps
X [¥1x

[]— tep =60 PS
Y'MY tiold =70 ps
2 [t =35 ps

(@))
2|t =25 ps

Check hold time constraints:

T\

81

t cq + tcd > thold ?

o

(30+25)ps>70p

Example: Fixing Hold Time Violation

Add buffers to the short paths:

CLK CLK
A

XX

el oty

Check setup time constraints:
Tc > tpcq + tpd + tsetup

T >
fe=

per gate

Timing Characteristics

tecq =30 ps
teq =50 ps
tsetup =60 ps
thold =70ps

toa =35 ps
t.y =25 ps

Check hold time constraints:

tccq + tcd > thold ?

Example: Fixing Hold Time Violation

Add buffers to the short paths:

CLK CLK
YA
e |
i XY
- L/ L J
%
{7 - ¥

t,s =3 x35ps=105ps
t.;=2x25ps=>50ps

Check setup time constraints:
T.> b+ tog + Yo

T >
fe=

Timing Characteristics

tecq =30 ps
teq =50 ps
tsetup =60 ps
thold =70ps
AR =35 ps
(@]
2|t =25 ps

Check hold time constraints:

tccq + tcd > thold ?

83

Example: Fixing Hold Time Violation

Add buffers to the short paths:
Timing Characteristics

t CLK CLK
tecq =30 ps
teq =50 ps
tsetup =60 ps
thold =70ps

] £ AR =35 ps
_ _ setup >
t,s =3 x35ps=105ps 8{% = 25 ps
t.,=2x25ps=50ps
Check setup time constraints: Check hold time constraints:

T.> toog t g+t teeq + teg > thold ?

setup

T.> (50 + 105 + 60) ps = 215 ps
f.=1/T.=4.65 GHz

84

Example: Fixing Hold Time Violation

Add buffers to the short paths:
Timing Characteristics

CLK CLK
AT A tocq =30 ps
ha: teq =50 ps
c X[X Eeetup =60 ps
N g |
oy thold =70ps
D L
1] Di_ % tpd =35 ps
(@)}
t,s =3 x35ps=105ps g{ta’ = 25 ps
t.,=2x25ps=50ps
Check setup time constraints: Check hold time constraints:

T.> toog t g+t teeq + teg > thold ?

setup

T.> (50 + 105 + 60) ps = 215 ps
_ Note: no change
fe= 1T, to max frequency!

85

Example: Fixing Hold Time Violation

Add buffers to the short paths:
Timing Characteristics

CLK CLK
tecq =30 ps
teq =50 ps

tccq tep =60 PS
thold =70ps

?Ggi thy =35 ps
t,s =3 x35ps=105ps gLCd = 25 ps
t.,=2x25ps=50ps
Check setup time constraints: Check hold time constraints:

T.> toog t g+t teeq + teg > thold ?

setup

T.> (50 + 105 + 60) ps = 215 ps (30 +50) ps>70 ps ?
f.=1/T.=4.65 GHz

86

Example: Fixing Hold Time Violation

Add buffers to the short paths:

CLK CLK
YA
e |
i XY
- L/ L J
%
{7 - ¥

t,s =3 x35ps=105ps
t.;=2x25ps=50ps

Check setup time constraints:
T.> b+ tog + Yo

T.> (50 + 105 + 60) ps = 215 ps
f.=1/T.=4.65 GHz

Timing Characteristics

tecq =30 ps
teq =50 ps
tsetup =60 ps
thold =70ps
2 [t =35 ps
(@]
2|t =25 ps

Check hold time constraints:

tccq + tcd > thold ?

(30 +50) ps>70ps ? ?

or

87

Clock Skew

= To make matters worse, clocks have delay too!
o The clock does not reach all parts of the chip at the same time!
= Clock skew: time difference between two clock edges

CLOCK
SOURCE

Long, slow _~7
clock path

Cutput
Logic

Clock Source 1[I LI LI

> —

clock skew

Point 4 [L L LI LT
Point B _ [

88

Clock Skew Example

Example of the Alpha 21264 clock skew spatial distribution

75 — fﬁg{? ,,i
i P éfve@:gﬁﬁ\%\
60 — Ry -ffffl; AR
ORI Y
S 45 RN TR A AR
0 ﬂ‘%nfiféﬁ'ﬁ"*&t}}ag&‘y@%ﬂ
2 30— N IS I A TSN
- \%}&}‘g}ﬂ#f‘?’*ﬁ:{iﬁ%’ﬁ{{j!;fg’ TSI
Ly g, 2/
15 — Mo idf 1/ E%
_ e W,
0 W

P. E. Gronowski+, "High-performance Microprocessor Design," JSSC'98.

89

Clock Skew: Setup Time Revisited

Safe timing requires considering the worst-case skew

o Clock arrives at R2 before R1

o Leaves as little time as possible for the combinational logic

C{_K CILK
Y LQIf D2, [V,
7 7 L (E J 7 7
R1 R2
< e > Signal must arrive at D2 earlier
A\

CLK1// (,AI

CLKng/; ARRNN / 77,7}
o

D2

tsetup tskew

< i
boeq loa

This effectively /ncreases tgg,,:

Tc > tpcq + tpd + tsetup T tskew
\ J
Y

T.> tpcq + tpd +t

setup, effective

90

Clock Skew: Hold Time Revisited

= Safe timing requires considering the worst-case skew
o Clock arrives at R2 after R1
o Increases the minimum required delay for the combinational logic

C{_K CILK
L L Q1 (\ D2f /
7 7 L (E J 7 7
R1 R2
CLK_WZ/E(IRAAY /777— Signal must arrive at D2 /ater

CLKz/zZ/r ANNAN /7;75 This effectively increasest, ,;:

Qi OO
- T ' tgt tccq > thold T tokew
7
t;:cqi l;:d \ Y j

tcd + tccq > thold, effective

tskew thold

Clock Skew: Summary

= Skew effectively increases both tgg,, and t,,4
o Increased sequencing overhead
a i.e., less useful work done per cycle

= Designers must keep skew to a minimum
o Requires intelligent “"clock network” across a chip
o Goal: clock arrives at all locations at roughly the same time

E(b) 0i(c) gi(d) o i(e) ©

| Crosslink 8 4 tree | g

? 1

: Global : =
= =i mesh | == }35

= D Local | ZZZZA XX (3
Y goo | Y 2 ,’ﬂ Ul }% Trees | A7 E";-ig
3076979} pone (b Ohoa 1

Source: Abdelhadi, Ameer, et al. "Timing-driven variation-aware nonuniform clock mesh synthesis." GLSVLSI'10.

92

Part 3:
Circuit Verification

93

How Do You Know That A Circuit Works?

You have designed a circuit
o Is it functionally correct?

o Even if it is logically correct, does the hardware meet all
timing constraints?

How can you test for:
o Functionality?
o Timing?

Answer: simulation tools!

o Formal verification tools (e.g., SAT solvers)
o HDL timing simulation (e.g., Vivado)

o Circuit simulation (e.qg., SPICE)

94

Testing Large Digital Designs

Testing can be the most time consuming design stage
o Functional correctness of all logic paths
o Timing, power, etc. of all circuit elements

Unfortunately, low-level (e.qg., circuit) simulation is much
slower than high-level (e.g., HDL, C) simulation

Solution: we split responsibilities:

o 1) Check only functionality at a high level (e.g., C, HDL)
(Relatively) fast simulation time allows high code coverage
Easy to write and run tests

o 2) Check only timing, power, etc. at low level (e.g., circuit)
No functional testing of low-level model

Instead, test functional equivalence to high-level model
0 Hard, but easier than testing logical functionality at this level

Adapted from "CMOS VLSI Design 4e’] Neil H. E. Weste and David Money Harris ©2011 Pearson o5

Testing Large Digital Designs

We have tools to handle different levels of verification

a Logic synthesis tools guarantee equivalence of high-level logic
and synthesized circuit-level description

a Timing verification tools check all circuit timings
o Design rule checks ensure that physical circuits are buildable

The task of a logic designer is to:
o Provide functional tests for logical correctness of the design
o Provide timing constraints (e.g., desired operating frequency)

Tools and/or circuit engineers will decide if it can be built!

Adapted from "CMOS VLSI Design 4e’] Neil H. E. Weste and David Money Harris ©2011 Pearson 06

Part 4:

Functional Verification

97

Functional Verification

Goal: check logical correctness of the design

Physical circuit timing (e.g., tsetup/thoia) is typically ignored
o May implement simple checks to catch obvious bugs
o We'll discuss timing verification later in this lecture

There are two primary approaches
o Logic simulation (e.g., C/C++/Verilog test routines)
o Formal verification techniques

In this course, we will use Verilog for functional verification

Testbench-Based Functional Testing

Testbench: a module created specifically to test a design
o Tested design is called the “device under test (DUT)”

Output
Pattern —lp Checking

Generator Logic

Testbench

Testbench provides inputs (test patterns) to the DUT
o Hand-crafted values

o Automatically generated (e.g., sequential or random values)
Testbench checks outputs of the DUT against:

o Hand-crafted values

o A “golden design” that is known to be bug-free

Testbench-Based Functional Testing

A testbench can be:
o HDL code written to test other HDL modules
o Circuit schematic used to test other circuit designs

The testbench is not designed for hardware synthesis!
a2 Runs in simulation only

HDL simulator (e.g., Vivado simulator)

SPICE circuit simulation
o Testbench uses simulation-only constructs

E.g., “wait 10ns”

E.qg., ideal voltage/current source

Not suitable to be physically built!

100

Common Verilog Testbench Types

Generation

Simple Manual Manual
Self-Checking Manual Automatic
Automatic Automatic Automatic

Example DUT

We will walk through different types of testbenches to test
a module that implements the logic function:

y=(b-c)+ (a-b)

// performs y = ~b & ~c | a & ~b
module sillyfunction (input a, b, c,
output vy);

wire b n, c n;
wire ml, m2;

not not b(b n, b);
not not c(c n, c);

and minterml (ml, b n, c n);

and minterm2 (m2, a, b n);

or out func(y, ml, m2);
endmodule

Usetul Verilog Syntax for Testbenching

module example syntax();

reg a;

// like “always” block, but runs only once at sim start
initial
begin
a = 0; // set value of reg: use blocking assignments
#10; // wait (do nothing) for 10 ns
a = 1;

Sdisplay (“printf () style message!"); // print message
end

endmodule

103

Simple Testbench

104

Simple Testbench

module testbenchl(); // No inputs, outputs
reg a, b, c; // Manually assigned
wire vy; // Manually checked

// instantiate device under test

sillyfunction dut (.a(a), .b(b), .c(c), .v(y))=

// apply hardcoded inputs one at a time
initial begin

a=20; b=20; c¢c=20; #10; // apply inputs, wait 10ns

c = 1; #10; // apply inputs, wait 10ns
b =1; c¢c = 0; #10; // etc .. etc..
c = 1; #10;
a=1; b =20; c=0; #10;
end
endmodule

105

Simple Testbench: Output Checking

Most common method is to look at waveform diagrams
a Thousands of signals over millions of clock cycles
o Too many to just printf()!

{kestbench/TENTH. . IR
frestbenchOMES. .. I—I I
frestbench) TEMS. ..

frestbenchiCLE

ftestbenchfRESET

ftesthench)3TRTS. ..

ftestbench)GSR,

falblfG3R

time
Manually check that output is correct at all times

106

Simple Testbench

Pros:
o Easy to design
o Can easily test a few, specific inputs (e.g., corner cases)

Cons:
o Not scalable to many test cases

a Outputs must be checked manually outside of the simulation
E.qg., inspecting dumped waveform signals
E.qg., printf() style debugging

107

Selt-Checking Testbench

108

Selt-Checking Testbench

module testbench?2 () ;
reg a, b, c;

wire vy;
sillyfunction dut(.a(a), .b(b), .c(c), .y(y));

initial begin

a=20; b=20; c=0; #10; // apply input, wait 10ns
)

if (y !== 1) $display("000 failed."); // check result
c = 1; #10;
if (y !'== 0) $display ("001 failed.");
b =1; ¢ = 0; #10;
if (y !'== 0) $display("010 failed.");
end
endmodule

109

Selt-Checking Testbench

Pros:

o Still easy to design

o Still easy to test a few, specific inputs (e.g., corner cases)
o Simulator will print whenever an error occurs

Cons:
o Still not scalable to millions of test cases

o Easy to make an error in hardcoded values
You make just as many errors writing a testbench as actual code
Hard to debug whether an issue is in the testbench or in the DUT

110

Self-Checking Testbench using Testvectors

Write testvector file
o List of inputs and expected outputs

o Can create vectors manually or automatically using an
already verified, simpler “golden model” (more on this later)

Example file:

$ cat testvectors.tv
000 1
001_0
010 _0

011 0
100 1 < Format:

101 1 ~ input_output
110_0
111_0

111

Testbench with Testvectors Design

Use a “clock signal” for assigning inputs, reading outputs
o Test one testvector each “clock cycle”

Clock cycle

~

T

T | i

Apply input Check outputs
on rising edge on falling edge

Note: “clock signal” simply separates inputs from outputs
o Allows us to observe the inputs/outputs in waveform diagrams
o Not used for checking physical circuit timing (e.9., tsetup/thold)
o We'll discuss circuit timing verification later in this lecture

112

Testbench Example (1/5): Signal Declarations

= Declare signals to hold internal state

module testbench3 () ;

reg clk, reset; // clock and reset are internal
reg a, b, c, yexpected; // values from testvectors
wire Vi // output of circuit

reg [31:0] vectornum, errors; // bookkeeping variables

reg [3:0] testvectors[10000:0];// array of testvectors

// 1nstantiate device under test

sillyfunction dut(.a(a), .b(b), .c(c), .yv(y));

H&H Section 4.9, Example 4.39

113

Testbench Example (2/5): Clock Generation

// generate clock

always // no sensitivity list, so it always executes
begin
clk = 1; #5; clk = 0; #5; // 10ns period
end

114

Testbench Example (3/5): Read Testvectors into Array

// at start of test, load vectors and pulse reset

initial // Only executes once

begin

Sreadmemb ("example.tv", testvectors); // Read vectors
// Initialize

vectornum = 0; errors = 0;
// Apply reset wait

reset = 1; #27; reset = 0;

end

// Note: Sreadmemh reads testvector files written in

// hexadecimal

115

Testbench Example (4/5): Assign Inputs/Outputs

// apply test vectors on rising edge of clk
always ((posedge clk)

begin
{a, b, c, yexpected} = testvectors|[vectornum];

end

Apply {a, b, ¢} inputs on the rising edge of the clock

Get yexpected for checking the output on the /alling edge

Rising/falling edges are chosen only by convention

o You can use any part of the clock signal
o Your H+H textbook uses this convention

Testbench Example (5/5): Check Outputs

always (¢ (negedge clk)

begin
if (~reset) // don’t test during reset
begin
if (y !== yexpected)
begin
Sdisplay ("Error: inputs = %$b", {a, b, c});
Sdisplay (" outputs = %b (%b exp)",y,yexpected) ;
errors = errors + 1;
end
// increment array index and read next testvector
vectornum = vectornum + 1;
if (testvectors|[vectornum] === 4'bx)
begin
Sdisplay ("%d tests completed with %d errors",
vectornum, errors);
$finish; // End simulation
end
end
end

117

Selt-Checking Testbench with Testvectors

Pros:

o Still easy to design

o Still easy to test a few, specific inputs (e.g., corner cases)
o Simulator will print whenever an error occurs

o No need to change hardcoded values for different tests

Cons:
o May be error-prone depending on source of testvectors

o More scalable, but still limited by reading a file

Might have many more combinational paths to test than will fit in
memory

118

Automatic Testbench

119

Golden Models

A golden model represents the ideal circuit behavior
o Must be developed, and might be difficult to write
o Can be done in C, Perl, Python, Matlab or even in Verilog

For our example circuit:

module golden model (input a, b, c,
output vy) ;

assign y = ~b & ~c | a & ~b;// high-level abstraction
endmodule

Simpler than our earlier gate-level description

o Golden model is usually easier to design and understand
o Golden model is much easier to verify

120

Automatic Testbench

The DUT output is compared against the golden model

Outputs

Generation | .
G

olden

H 4 <
Model L\ ;

Testbench

Challenge: need to generate inputs to the designs
o Sequential values to cover the entire input space?
o Random values?

Automatic Testbench: Code

module testbenchl () ;
// variable declarations, clock, etc.

// instantiate device under test
sillyfunction dut (a, b, ¢, y dut);
golden model gold (a, b, ¢, y gold);

// instantiate test pattern generator

test pattern generator tgen (a, b, ¢, clk);

// check if y dut is ever not equal to y gold
always (@ (negedge clk)

begin
if(y dut !== y gold)
Sdisplay(...)
end
endmodule

122

Automatic Testbench

Pros:
o Output checking is fully automated
o Could even compare timing using a golden timing model

o Highly scalable to as much simulation time as is feasible
Leads to high coverage of the input space

o Better separation of roles
Separate designers can work on the DUT and the golden model

DUT testing engineer can focus on important test cases
instead of output checking

Cons:
o Creating a correct golden model may be (very) difficult
o Coming up with good testing inputs may be difficult

123

However, Even with Automatic Testing...

How long would it take to test a 32-bit adder?
o In such an adder there are 64 inputs = 264 possible inputs

o If you test one input in 1ns, you can test 102 inputs per
second

or 8.64 x 1014 inputs per day
or 3.15 x 1017 inputs per year

o we would still need 58.5 years to test all possibilities

Brute force testing is not feasible for most circuits!
o Need to prune the overall testing space
o E.g., formal verification methods, choosing ‘important cases’

Verification is a hard problem

124

Part 5:
Timing Verification

125

Timing Veritication Approaches

High-level simulation (e.g., C, Verilog)
o Can model timing using "#x” statements in the DUT
o Useful for hierarchical modeling

Insert delays in FF's, basic gates, memories, etc.
High level design will have some notion of timing

o Usually not as accurate as real circuit timing

Circuit-level timing verification
o Need to first synthesize your design to actual circuits

No one general approach- very design flow specific

Your FPGA/ASIC/etc. technology has special tool(s) for this
o E.g., Xilinx Vivado (what you're using in lab)
o E.g., Synopsys/Cadence Tools (for VLSI design)

126

The Good News

= Tools will try to meet timing for you!
o Setup times, hold times
o Clock skews

a ...

= They usually provide a ‘timing report’ or ‘timing summary’
o Worst-case delay paths
o Maximum operation frequency
o Any timing errors that were found

127

The Bad News

The tool can fail to find a solution

o Desired clock frequency is too aggressive

Can result in setup time violation on a particularly long path
o Too much logic on clock paths

Introduces excessive clock skew

o Timing issues with asynchronous logic
The tool will provide (hopefully) helpful errors

o Reports will contain paths that failed to meet timing
o Gives a place from where to start debugging

Q: How can we fix timing errors?

128

Meeting Timing Constraints

Unfortunately, this is often a manual, iterative process

o Meeting strict timing constraints (e.g., high performance
designs) can be tedious

Can try synthesis/place-and-route with different options
o Different random seeds
o Manually provided hints for place-and-route

Can manually optimize the reported problem paths
o Simplify complicated logic

a Split up long combinational logic paths

o Recall: fix hold time violations by adding more logic!

129

Meeting Timing Constraints: Principles

Let’'s go back to the fundamentals

Clock cycle time is determined by the maximum logic delay
we can accommodate without violating timing constraints

Good design principles
o Critical path design: Minimize the maximum logic delay
- Maximizes performance

o Balanced design: Balance maximum logic delays across different
parts of a system (i.e., between different pairs of flip flops)
- No bottlenecks + minimizes wasted time

o Bread and butter design: Optimize for the common case, but
make sure non-common-cases do not overwhelm the design

- Maximizes performance for realistic cases
130

Lecture Summary

Timing in combinational circuits

o Propagation delay and contamination delay
o Glitches

Timing in sequential circuits
o Setup time and hold time
o Determining how fast a circuit can operate

Circuit Verification

o How to make sure a circuit works correctly
o Functional verification
o Timing verification

131

Digital Design & Computer Arch.

Lecture 8: Timing and Verification

Prof. Onur Mutlu

ETH Zlrich
Spring 2022
18 March 2022

