
Digital Design & Computer Arch.

Lecture 8: Timing and Verification

Prof. Onur Mutlu

ETH Zürich

Spring 2022

18 March 2022

Readings (This Week)

◼ Hardware Description Languages and Verilog

❑ H&H Chapter 4 in full

◼ Timing and Verification

❑ H&H Chapters 2.9 and 3.5 + (start Chapter 5)

◼ By tomorrow, make sure you are done with

❑ P&P Chapters 1-3 + H&H Chapters 1-4

2

Readings (Next Week)

◼ Von Neumann Model, LC-3, and MIPS

❑ P&P, Chapter 4, 5

❑ H&H, Chapter 6

❑ P&P, Appendices A and C (ISA and microarchitecture of LC-3)

❑ H&H, Appendix B (MIPS instructions)

◼ Programming

❑ P&P, Chapter 6

◼ Recommended: Digital Building Blocks

❑ H&H, Chapter 5

3

Assignment: Lecture Video (April 1)

◼ Why study computer architecture? Why is it important?

◼ Future Computing Platforms: Challenges & Opportunities

◼ Required Assignment

❑ Watch one of Prof. Mutlu’s lectures and analyze either (or both)

❑ https://www.youtube.com/watch?v=kgiZlSOcGFM (May 2017)

❑ https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page summary of one of the lectures and email us

◼ What are your key takeaways?

◼ What did you learn?

◼ What did you like or dislike?

◼ Submit your summary to Moodle by April 1
4

https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=722981

Extra Assignment: Moore’s Law (I)

◼ Paper review

◼ G.E. Moore. "Cramming more components onto integrated
circuits," Electronics magazine, 1965

◼ Optional Assignment – for 1% extra credit

❑ Write a 1-page review

❑ Upload PDF file to Moodle – Deadline: April 7

◼ I strongly recommend that you follow my guidelines for
(paper) review (see next slide)

5

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (II)

◼ Guidelines on how to review papers critically

❑ Guideline slides: pdf ppt

❑ Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

❑ Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)

◼ Review 1

◼ Review 2

❑ Example review on “Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)

◼ Review 1

6

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

Agenda

◼ Wrap up FSMs in Verilog

◼ Timing in combinational circuits

◼ Timing in sequential circuits

◼ Circuit verification

7

Wrap Up: FSMs in Verilog

8

Recall: Why Use (Non)-Blocking Statements

◼ Non-blocking statements allow operating on “old” values

❑ Enable easy sequential logic descriptions

◼ Blocking statements allow a sequence of operations

❑ Allow operating on immediately updated values

❑ More like a “software” programming language

◼ If the sensitivity list is correct, blocks with non-blocking
statements will always evaluate to the same result

❑ This may require some additional iterations

10

Rules for Signal Assignment

◼ Use always @(posedge clk) and non-blocking
assignments (<=) to model synchronous sequential logic

◼ Use continuous assignments (assign) to model simple

combinational logic

always @ (posedge clk)

q <= d; // non-blocking

assign y = a & b;

Rules for Signal Assignment (Cont.)

◼ Use always @ (*) and blocking assignments (=) to model

more complicated combinational logic.

◼ You cannot make assignments to the same signal in more
than one always block or in a continuous assignment

11

always @ (*)

a = b;

always @ (*)

a = c;

always @ (*)

a = b;

assign a = c;

Recall: Finite State Machines (FSMs)

◼ Each FSM consists of three separate parts:

❑ next state logic

❑ state register

❑ output logic

12

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

state

state register

Recall: Finite State Machines (FSMs) Comprise

◼ Sequential circuits

❑ State register(s)

◼ Store the current state and

◼ Load the next state at the clock edge

◼ Combinational Circuits

❑ Next state logic

◼ Determines what the next state will be

❑ Output logic

◼ Generates the outputs

13

Next

State

Current

State

S’ S

CLK

CL

Next State

Logic

Next

State

CL

Output

Logic

Outputs

FSM Example 1: Divide the Clock Frequency by 3

14

The output Y is HIGH for one clock cycle out of every 3. In other
words, the output divides the frequency of the clock by 3.

15

Implementing FSM Example 1: Definitions

module divideby3FSM (input clk,

input reset,

output q);

reg [1:0] state, nextstate;

parameter S0 = 2'b00;

parameter S1 = 2'b01;

parameter S2 = 2'b10;

◼ We define state and nextstate as 2-bit reg

◼ The parameter descriptions are optional, it makes reading
easier

16

Implementing FSM Example 1: State Register

// state register

always @ (posedge clk, posedge reset)

if (reset) state <= S0;

else state <= nextstate;

◼ This part defines the state register (memorizing process)

◼ Sensitive to only clk, reset

◼ In this example, reset is active when it is ‘1’ (active-high)

Next

State

Current

State

S’ S

CLK

17

Implementing FSM Example 1: Next State Logic

// next state logic

always @ (*)

case (state)

S0: nextstate = S1;

S1: nextstate = S2;

S2: nextstate = S0;

default: nextstate = S0;

endcase

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

state

18

Implementing FSM Example 1: Output Logic

// output logic

assign q = (state == S0);

◼ In this example, output depends only on state

❑ Moore type FSM

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

state

19

Implementation of FSM Example 1

module divideby3FSM (input clk, input reset, output q);

reg [1:0] state, nextstate;

parameter S0 = 2'b00; parameter S1 = 2'b01; parameter S2 = 2'b10;

always @ (posedge clk, posedge reset) // state register

if (reset) state <= S0;

else state <= nextstate;

always @ (*) // next state logic

case (state)

S0: nextstate = S1;

S1: nextstate = S2;

S2: nextstate = S0;

default: nextstate = S0;

endcase

assign q = (state == S0); // output logic

endmodule

FSM Example 2: Smiling Snail

◼ Alyssa P. Hacker has a snail that crawls down a paper tape
with 1’s and 0’s on it

◼ The snail smiles whenever the last four digits it has crawled
over are 1101

◼ Design Moore and Mealy FSMs of the snail’s brain

20

Moore

Mealy

21

Implementing FSM Example 2: Definitions

module SmilingSnail (input clk,

input reset,

input number,

output smile);

reg [1:0] state, nextstate;

parameter S0 = 2'b00;

parameter S1 = 2'b01;

parameter S2 = 2'b10;

parameter S3 = 2’b11;

number/smile

22

Implementing FSM Example 2: State Register

// state register

always @ (posedge clk, posedge reset)

if (reset) state <= S0;

else state <= nextstate;

◼ This part defines the state register (memorizing process)

◼ Sensitive to only clk, reset

◼ In this example reset is active when ‘1’ (active-high)

23

Implementing FSM Example 2: Next State Logic

// next state logic

always @ (*)

case (state)

S0: if (number) nextstate = S1;

else nextstate = S0;

S1: if (number) nextstate = S2;

else nextstate = S0;

S2: if (number) nextstate = S2;

else nextstate = S3;

S3: if (number) nextstate = S1;

else nextstate = S0;

default: nextstate = S0;

endcase

24

Implementing FSM Example 2: Output Logic

// output logic

assign smile = (number & state == S3);

◼ In this example, output depends on state and input

❑ Mealy type FSM

◼ We used a simple combinational assignment

25

Implementation of FSM Example 2

module SmilingSnail (input clk,

input reset,

input number,

output smile);

reg [1:0] state, nextstate;

parameter S0 = 2'b00;

parameter S1 = 2'b01;

parameter S2 = 2'b10;

parameter S3 = 2’b11;

// state register

always @ (posedge clk, posedge
reset)

if (reset) state <= S0;

else state <= nextstate;

always @ (*) // next state logic

case (state)

S0: if (number)

nextstate = S1;

else nextstate = S0;

S1: if (number)

nextstate = S2;

else nextstate = S0;

S2: if (number)

nextstate = S2;

else nextstate = S3;

S3: if (number)

nextstate = S1;

else nextstate = S0;

default: nextstate = S0;

endcase

// output logic

assign smile = (number & state==S3);

endmodule

What Did We Learn?

◼ Basics of describing sequential circuits in Verilog

◼ The always statement

❑ Needed for defining memorizing elements (flip-flops, latches)

❑ Can also be used to define combinational circuits

◼ Blocking vs Non-blocking statements

❑ = assigns the value immediately

❑ <= assigns the value at the end of the block

◼ Describing FSMs in Verilog

❑ Next state logic

❑ State assignment

❑ Output logic

26

Now:

Timing and Verification

27

What Will We Learn Today?

◼ Timing in combinational circuits

❑ Propagation delay and contamination delay

❑ Glitches

◼ Timing in sequential circuits

❑ Setup time and hold time

❑ Determining how fast a circuit can operate

◼ Circuit Verification

❑ How to make sure a circuit works correctly

❑ Functional verification

❑ Timing verification

28

Tradeoffs in Circuit Design

29

Circuit Design is a Tradeoff Between:

◼ Area

❑ Circuit area is proportional to the cost of the device

◼ Speed / Throughput

❑ We want faster, more capable circuits

◼ Power / Energy

❑ Mobile devices need to work with a limited power supply

❑ High performance devices dissipate more than 100W/cm2

◼ Design Time

❑ Designers are expensive in time and money

❑ The competition will not wait for you

30

Requirements and Goals Depend On Application

31

Circuit Timing

◼ Until now, we investigated logical functionality

◼ What about timing?

❑ How fast is a circuit?

❑ How can we make a circuit faster?

❑ What happens if we run a circuit too fast?

◼ A design that is logically correct can still fail because of
real-world implementation issues!

32

Part 1:

Combinational Circuit Timing

33

Digital Logic Abstraction

◼ “Digital logic” is a convenient abstraction

❑ Output changes immediately with the input

34

A

Y

1 0

0 1

Combinational Circuit Delay

◼ In reality, outputs are delayed from inputs

❑ Transistors take a finite amount of time to switch

A

Y

Time

delay

A Y

35

time

Real Inverter Delay Example

36Image source: Sandoval-Ibarra, F., and E. S. Hernández-Bernal. "Ring CMOS NOT-based oscillators:
Analysis and design." Journal of applied research and technology, 2008.

Circuit Delay and Its Variation

◼ Delay is fundamentally caused by

❑ Capacitance and resistance in a circuit

❑ Finite speed of light (not so fast on a nanosecond scale!)

◼ Anything affecting these quantities can change delay:

❑ Rising (i.e., 0 -> 1) vs. falling (i.e., 1 -> 0) inputs

❑ Different inputs have different delays

❑ Changes in environment (e.g., temperature)

❑ Aging of the circuit

◼ We have a range of possible delays from input to output

37

Delays from Input to Output Y

◼ Contamination delay (tcd): delay until Y starts changing

◼ Propagation delay (tpd): delay until Y finishes changing

38

Example Circuit Effect of Changing Input ‘A’

Cross-hatching
means value is changing

Calculating Longest & Shortest Delay Paths

◼ Critical (Longest) Path: tpd = 2 tpd_AND + tpd_OR

◼ Shortest Path: tcd = tcd_AND

A
B

C

D Y

Critical Path

Short Path

n1

n2

39

◼ We care about both the longest and shortest delay
paths in a circuit (we will see why later in the lecture)

Calculating Longest Delay Path (Critical Path)

◼ Critical (Longest) Path: tpd = 2 tpd_AND + tpd_OR

◼ Shortest Path: tcd = tcd_AND

40

Calculating Shortest Delay Path

◼ Critical (Longest) Path: tpd = 2 tpd_AND + tpd_OR

◼ Shortest Path: tcd = tcd_AND

41

Example tpd for a Real NAND-2 Gate

◼ Heavy dependence on voltage and temperature!

42Source: Nexperia 2-input NAND (74HC00) Datasheet, Section 10

Example Worst-Case tpd

43

◼ Two different implementations of a 4:1 multiplexer

Gate Delays Implementation 1 Implementation 2

◼ Different designs lead to very different delays

Aside: A Third 4:1 MUX Implementation

44

Disclaimer: Calculating Long/Short Paths

◼ It’s not always this easy to determine the long/short paths!

❑ Not all input transitions affect the output

❑ Can have multiple different paths from an input to output

◼ In reality, circuits are not all built equally

❑ Different instances of the same gate have different delays

❑ Wires have nonzero delay (increasing with length)

❑ Temperature/voltage affect circuit speeds

◼ Not all circuit elements are affected the same way

◼ Can even change the critical path!

◼ Designers assume “worst-case” conditions and run many
statistical simulations to balance yield/performance

45

Combinational Timing Summary

◼ Circuit outputs change some time after the inputs change

❑ Caused by finite speed of light (not so fast on a ns scale!)

❑ Delay is dependent on inputs, environmental state, etc.

◼ The range of possible delays is characterized by:

❑ Contamination delay (tcd): minimum possible delay

❑ Propagation delay (tpd): maximum possible delay

◼ Delays change with:

❑ Circuit design (e.g., topology, materials)

❑ Operating conditions

46

Output Glitches

47

Glitches

◼ Glitch: one input transition causes multiple output transitions

48

Circuit initial state

1

1

0

0

Glitches

49

0

1

1 -> 0
1 -> ?

◼ Glitch: one input transition causes multiple output transitions

Glitches

50

0

1

1 -> 0
1 -> ?

Slow path (3 gates)

Fast path (2 gates)

◼ Glitch: one input transition causes multiple output transitions

Glitches

51

0

1

1 -> 0
1 -> 0 -> 1

Slow path (3 gates)

Fast path (2 gates)

◼ Glitch: one input transition causes multiple output transitions

Glitches

52

0

1

(B) 1 -> 0
(Y) 1 -> 0 -> 1

Slow path (3 gates)

Fast path (2 gates)

n1

n2

◼ Glitch: one input transition causes multiple output transitions

Optional: Avoiding Glitches Using K-Maps

◼ Glitches are visible in K-maps

❑ Recall: K-maps show the results of a change in a single input

❑ A glitch occurs when moving between prime implicants

53

(A) 0

(C) 1

(B) 1 -> 0
(Y) 1 -> 0 -> 1

AB

BC

Optional: Avoiding Glitches Using K-Maps

◼ We can fix the issue by adding in the consensus term

❑ Ensures no transition between different prime implicants

54

(A) 0

(C) 1

(B) 1 -> 0
(Y) 1 -> 1

AB

BC

AC

No dependence on B
=> No glitch!

Avoiding Glitches

◼ Q: Do we always care about glitches?

❑ Fixing glitches is undesirable

◼ More chip area

◼ More power consumption

◼ More design effort

❑ The circuit is eventually guaranteed to converge to the right
value regardless of glitchiness

◼ A: No, not always!

❑ If we only care about the long-term steady state output,
we can safely ignore glitches

❑ Up to the designer to decide if glitches matter in their
application

◼ When examining simulation output, important to recognize glitches

55

Part 2:

Sequential Circuit Timing

56

Recall: D Flip-Flop

◼ Flip-flop samples D at the active clock edge

❑ It outputs the sampled value to Q

❑ It “stores” the sampled value until the next active clock edge

57

D Q

CLK

◼ The D flip-flop is made from combinational elements

◼ D, Q, CLK all have timing requirements!

D Flip-Flop Input Timing Constraints

◼ D must be stable when sampled (i.e., at active clock edge)

CLK

t
setup

D

t
hold

t
a

58

D Q

CLK

◼ Setup time (tsetup): time before the clock edge that data
must be stable (i.e. not changing)

◼ Hold time (thold): time after the clock edge that data must
be stable

◼ Aperture time (ta): time around clock edge that data
must be stable (ta = tsetup + thold)

Violating Input Timing: Metastability

◼ If D is changing when sampled, metastability can occur

❑ Flip-flop output is stuck somewhere between ‘1’ and ‘0’

❑ Output eventually settles non-deterministically

59
Source: W. J. Dally, Lecture notes for EE108A, Lecture 13: Metastability and

Synchronization Failure (When Good Flip-Flops go Bad) 11/9/2005.

CLK

Q

Example Timing Violations (NAND RS Latch)

Metastability

Non-deterministic
Convergence

Flip-Flop Output Timing

◼ Contamination delay clock-to-q (tccq): earliest time after
the clock edge that Q starts to change (i.e., is unstable)

◼ Propagation delay clock-to-q (tpcq): latest time after the
clock edge that Q stops changing (i.e., is stable)

60

CLK

t
ccq

t
pcq

Q

D Q

CLK

Recall: Sequential System Design

◼ Multiple flip-flops are connected with combinational logic

◼ Clock runs with period Tc (cycle time)

61

◼ Must meet timing requirements for both R1 and R2!

Ensuring Correct Sequential Operation

◼ Need to ensure correct input timing on R2

◼ Specifically, D2 must be stable:

❑ at least tsetup before the clock edge

❑ at least until thold after the clock edge

62

CLK

t
setup

D

t
hold

t
a

Ensuring Correct Sequential Operation

◼ This means there is both a minimum and maximum
delay between two flip-flops

❑ CL too fast -> R2 thold violation

❑ CL too slow -> R2 tsetup violation

CL

CLKCLK

R1 R2

Q1 D2

(a)

CLK

Q1

D2

(b)

T
c

63

Potential
R2 tHOLD

VIOLATION!

Potential
R2 tSETUP

VIOLATION!

tHOLD tSETUP

Setup Time Constraint

◼ Safe timing depends on the maximum delay from R1 to R2

◼ The input to R2 must be stable at least tsetup before the clock edge.

CLK

Q1

D2

T
c

t
pcq

t
pd

t
setup

CL

CLKCLK

Q1 D2

R1 R2

Tc

64

CLK

Q1

D2

T
c

t
pcq

t
pd

t
setup

CL

CLKCLK

Q1 D2

R1 R2

Setup Time Constraint

Tc > tpcq

65

◼ Safe timing depends on the maximum delay from R1 to R2

◼ The input to R2 must be stable at least tsetup before the clock edge.

Setup Time Constraint

CLK

Q1

D2

T
c

t
pcq

t
pd

t
setup

CL

CLKCLK

Q1 D2

R1 R2

Tc > tpcq + tpd

66

◼ Safe timing depends on the maximum delay from R1 to R2

◼ The input to R2 must be stable at least tsetup before the clock edge.

Setup Time Constraint

CLK

Q1

D2

T
c

t
pcq

t
pd

t
setup

CL

CLKCLK

Q1 D2

R1 R2

Tc > tpcq + tpd + tsetup

67

◼ Safe timing depends on the maximum delay from R1 to R2

◼ The input to R2 must be stable at least tsetup before the clock edge.

◼ Safe timing depends on the maximum delay from R1 to R2

◼ The input to R2 must be stable at least tsetup before the clock edge.

Setup Time Constraint

CLK

Q1

D2

T
c

t
pcq

t
pd

t
setup

CL

CLKCLK

Q1 D2

R1 R2

Tc > tpcq + tpd + tsetup

68

Useful work

Wasted work

Sequencing overhead:
amount of time wasted
each cycle due to sequencing
element timing requirements

tsetup Constraint and Design Performance

◼ Critical path: path with the longest tpd

◼ Overall design performance is determined by the critical path tpd

❑ Determines the minimum clock period (i.e., max operating frequency)

❑ If the critical path is too long, the design will run slowly

❑ If critical path is too short, each cycle will do very little useful work

◼ i.e., most of the cycle will be wasted in sequencing overhead

69

Tc > tpcq + tpd + tsetup

Hold Time Constraint

◼ Safe timing depends on the minimum delay from R1 to R2

◼ D2 (i.e., R2 input) must be stable for at least thold after the clock edge

CLK

Q1

D2

t
ccq

t
cd

t
hold

CL

CLKCLK

Q1 D2

R1 R2

70

tccq

Must not change until
thold after the clock

Hold Time Constraint

CLK

Q1

D2

t
ccq

t
cd

t
hold

CL

CLKCLK

Q1 D2

R1 R2

71

tccq + tcd

◼ Safe timing depends on the minimum delay from R1 to R2

◼ D2 (i.e., R2 input) must be stable for at least thold after the clock edge

Hold Time Constraint

CLK

Q1

D2

t
ccq

t
cd

t
hold

CL

CLKCLK

Q1 D2

R1 R2

72

◼ Safe timing depends on the minimum delay from R1 to R2

◼ D2 (i.e., R2 input) must be stable for at least thold after the clock edge

tccq + tcd > thold

Hold Time Constraint

CLK

Q1

D2

t
ccq

t
cd

t
hold

CL

CLKCLK

Q1 D2

R1 R2

73

tccq + tcd > thold

tcd > thold - tccq

We need to have a minimum
combinational delay!

◼ Safe timing depends on the minimum delay from R1 to R2

◼ D2 (i.e., R2 input) must be stable for at least thold after the clock edge

◼ Safe timing depends on the minimum delay from R1 to R2

◼ D2 (i.e., R2 input) must be stable for at least thold after the clock edge

Hold Time Constraint

CLK

Q1

D2

t
ccq

t
cd

t
hold

CL

CLKCLK

Q1 D2

R1 R2

74

Does NOT depend on Tc!

tccq + tcd > thold

tcd > thold - tccq

Very hard to fix thold violations after

manufacturing- must modify circuits!

Sequential Timing Summary

CLK

Q1

D2

t
ccq

t
cd

t
hold

CL

CLKCLK

Q1 D2

R1 R2

75

CLK

Q1

D2

T
c

t
pcq

t
pd

t
setup

CL

CLKCLK

Q1 D2

R1 R2

tccq / tpcq clock-to-q delay (contamination/propagation)

tcd / tpd combinational logic delay (contamination/propagation)

tsetup time that FF inputs must be stable before next clock edge

thold time that FF inputs must be stable after a clock edge

Tc clock period

Example: Timing Analysis
CLK CLK

A

B

C

D

X'

Y'

X

Y

p
e
r

g
a
te

Timing Characteristics

tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 ps
tpd =

tcd =

Check setup time constraints:

Tc > tpcq + tpd + tsetup

Tc >

fmax = 1/Tc =

Check hold time constraints:

tccq + tcd > thold ?

76

CLK CLK

A

B

C

D

X'

Y'

X

Y

Example: Timing Analysis

p
e
r

g
a
te

Timing Characteristics

tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 ps
tpd = 3 x 35 ps = 105 ps

tcd =

Check setup time constraints:

Tc > tpcq + tpd + tsetup

Tc >

fmax = 1/Tc =

77

Check hold time constraints:

tccq + tcd > thold ?

Example: Timing Analysis
CLK CLK

A

B

C

D

X'

Y'

X

Y

p
e
r

g
a
te

Timing Characteristics

tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 ps
tpd = 3 x 35 ps = 105 ps

tcd = 25 ps

Check setup time constraints:

Tc > tpcq + tpd + tsetup

Tc >

fmax = 1/Tc =

Check hold time constraints:

tccq + tcd > thold ?

78

Example: Timing Analysis
CLK CLK

A

B

C

D

X'

Y'

X

Y

tpd = 3 x 35 ps = 105 ps

tcd = 25 ps

Check setup time constraints:

Tc > tpcq + tpd + tsetup

Tc > (50 + 105 + 60) ps = 215 ps

fmax = 1/Tc = 4.65 GHz
p
e
r

g
a
te

Timing Characteristics

tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 ps

79

Check hold time constraints:

tccq + tcd > thold ?

tpd

tpcq

tsetup

Example: Timing Analysis
CLK CLK

A

B

C

D

X'

Y'

X

Y

tpd = 3 x 35 ps = 105 ps

tcd = 25 ps

Check setup time constraints:

Tc > tpcq + tpd + tsetup

Tc > (50 + 105 + 60) ps = 215 ps

fmax = 1/Tc = 4.65 GHz

Check hold time constraints:

tccq + tcd > thold ?

(30 + 25) ps > 70 ps ?
p
e
r

g
a
te

Timing Characteristics

tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 ps

80

tccq

tcd

Example: Timing Analysis
CLK CLK

A

B

C

D

X'

Y'

X

Y

tpd = 3 x 35 ps = 105 ps

tcd = 25 ps

Check setup time constraints:

Tc > tpcq + tpd + tsetup

Tc > (50 + 105 + 60) ps = 215 ps

fmax = 1/Tc = 4.65 GHz

Check hold time constraints:

tccq + tcd > thold ?

(30 + 25) ps > 70 ps ?
p
e
r

g
a
te

Timing Characteristics

tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 ps

81

Example: Fixing Hold Time Violation

CLK CLK

A

B

C

D

X'

Y'

X

Y

tpd =

tcd =

Check setup time constraints:

Tc > tpcq + tpd + tsetup

Tc >

fc =

Check hold time constraints:

tccq + tcd > thold ?

Add buffers to the short paths:

p
e
r

g
a
te

Timing Characteristics

tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 ps

82

Example: Fixing Hold Time Violation

CLK CLK

A

B

C

D

X'

Y'

X

Y

tpd = 3 x 35 ps = 105 ps

tcd = 2 x 25 ps = 50 ps

Check setup time constraints:

Tc > tpcq + tpd + tsetup

Tc >

fc =

Check hold time constraints:

tccq + tcd > thold ?

Add buffers to the short paths:

p
e
r

g
a
te

Timing Characteristics

tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 ps

83

Example: Fixing Hold Time Violation

CLK CLK

A

B

C

D

X'

Y'

X

Y

tpd = 3 x 35 ps = 105 ps

tcd = 2 x 25 ps = 50 ps

Check setup time constraints:

Tc > tpcq + tpd + tsetup

Tc > (50 + 105 + 60) ps = 215 ps

fc = 1/Tc = 4.65 GHz

Check hold time constraints:

tccq + tcd > thold ?

Add buffers to the short paths:

p
e
r

g
a
te

Timing Characteristics

tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 ps

84

tpd

tpcq

tsetup

Example: Fixing Hold Time Violation

CLK CLK

A

B

C

D

X'

Y'

X

Y

tpd = 3 x 35 ps = 105 ps

tcd = 2 x 25 ps = 50 ps

Check setup time constraints:

Tc > tpcq + tpd + tsetup

Tc > (50 + 105 + 60) ps = 215 ps

fc = 1/Tc = 4.65 GHz

Check hold time constraints:

tccq + tcd > thold ?

Add buffers to the short paths:

p
e
r

g
a
te

Timing Characteristics

tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 ps

85

Note: no change
to max frequency!

Example: Fixing Hold Time Violation

CLK CLK

A

B

C

D

X'

Y'

X

Y

tpd = 3 x 35 ps = 105 ps

tcd = 2 x 25 ps = 50 ps

Check setup time constraints:

Tc > tpcq + tpd + tsetup

Tc > (50 + 105 + 60) ps = 215 ps

fc = 1/Tc = 4.65 GHz

Check hold time constraints:

tccq + tcd > thold ?

(30 + 50) ps > 70 ps ?

Add buffers to the short paths:
Timing Characteristics

tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 ps

86

tccq

tcd

p
e
r

g
a
te

Example: Fixing Hold Time Violation

CLK CLK

A

B

C

D

X'

Y'

X

Y

tpd = 3 x 35 ps = 105 ps

tcd = 2 x 25 ps = 50 ps

Check setup time constraints:

Tc > tpcq + tpd + tsetup

Tc > (50 + 105 + 60) ps = 215 ps

fc = 1/Tc = 4.65 GHz

Check hold time constraints:

tccq + tcd > thold ?

(30 + 50) ps > 70 ps ?

Add buffers to the short paths:

p
e
r

g
a
te

Timing Characteristics

tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 ps

87

Clock Skew

◼ To make matters worse, clocks have delay too!

❑ The clock does not reach all parts of the chip at the same time!

◼ Clock skew: time difference between two clock edges

88

Clock Source
Point A
Point B

clock skew

A

BLong, slow
clock path

CLOCK
SOURCE

Clock Skew Example

◼ Example of the Alpha 21264 clock skew spatial distribution

89P. E. Gronowski+, "High-performance Microprocessor Design," JSSC’98.

Clock Skew: Setup Time Revisited

◼ Safe timing requires considering the worst-case skew

❑ Clock arrives at R2 before R1

❑ Leaves as little time as possible for the combinational logic

90

Tc > tpcq + tpd + tsetup + tskew

Signal must arrive at D2 earlier!

This effectively increases tsetup:

Tc > tpcq + tpd + tsetup, effective

Clock Skew: Hold Time Revisited

91

tcd + tccq > thold + tskew

◼ Safe timing requires considering the worst-case skew

❑ Clock arrives at R2 after R1

❑ Increases the minimum required delay for the combinational logic

Signal must arrive at D2 later!

This effectively increases thold:

tholdtskew

tcdtccq

tcd + tccq > thold, effective

Clock Skew: Summary

◼ Skew effectively increases both tsetup and thold

❑ Increased sequencing overhead

❑ i.e., less useful work done per cycle

◼ Designers must keep skew to a minimum

❑ Requires intelligent “clock network” across a chip

❑ Goal: clock arrives at all locations at roughly the same time

92

Source: Abdelhadi, Ameer, et al. "Timing-driven variation-aware nonuniform clock mesh synthesis." GLSVLSI’10.

Part 3:

Circuit Verification

93

How Do You Know That A Circuit Works?

◼ You have designed a circuit

❑ Is it functionally correct?

❑ Even if it is logically correct, does the hardware meet all
timing constraints?

◼ How can you test for:

❑ Functionality?

❑ Timing?

◼ Answer: simulation tools!

❑ Formal verification tools (e.g., SAT solvers)

❑ HDL timing simulation (e.g., Vivado)

❑ Circuit simulation (e.g., SPICE)

94

Testing Large Digital Designs

◼ Testing can be the most time consuming design stage

❑ Functional correctness of all logic paths

❑ Timing, power, etc. of all circuit elements

◼ Unfortunately, low-level (e.g., circuit) simulation is much
slower than high-level (e.g., HDL, C) simulation

◼ Solution: we split responsibilities:

❑ 1) Check only functionality at a high level (e.g., C, HDL)

◼ (Relatively) fast simulation time allows high code coverage

◼ Easy to write and run tests

❑ 2) Check only timing, power, etc. at low level (e.g., circuit)

◼ No functional testing of low-level model

◼ Instead, test functional equivalence to high-level model
❑ Hard, but easier than testing logical functionality at this level

95Adapted from ”CMOS VLSI Design 4e”, Neil H. E. Weste and David Money Harris ©2011 Pearson

Testing Large Digital Designs

◼ We have tools to handle different levels of verification

❑ Logic synthesis tools guarantee equivalence of high-level logic
and synthesized circuit-level description

❑ Timing verification tools check all circuit timings

❑ Design rule checks ensure that physical circuits are buildable

◼ The task of a logic designer is to:

❑ Provide functional tests for logical correctness of the design

❑ Provide timing constraints (e.g., desired operating frequency)

◼ Tools and/or circuit engineers will decide if it can be built!

96Adapted from ”CMOS VLSI Design 4e”, Neil H. E. Weste and David Money Harris ©2011 Pearson

Part 4:

Functional Verification

97

Functional Verification

◼ Goal: check logical correctness of the design

◼ Physical circuit timing (e.g., tsetup/thold) is typically ignored

❑ May implement simple checks to catch obvious bugs

❑ We’ll discuss timing verification later in this lecture

◼ There are two primary approaches

❑ Logic simulation (e.g., C/C++/Verilog test routines)

❑ Formal verification techniques

◼ In this course, we will use Verilog for functional verification

98

Testbench-Based Functional Testing

◼ Testbench: a module created specifically to test a design

❑ Tested design is called the “device under test (DUT)”

99

Testbench

DUT

In
p
u
ts

O
u
tp

u
ts

Test
Pattern

Generator

Output
Checking

Logic

◼ Testbench provides inputs (test patterns) to the DUT

❑ Hand-crafted values

❑ Automatically generated (e.g., sequential or random values)

◼ Testbench checks outputs of the DUT against:

❑ Hand-crafted values

❑ A “golden design” that is known to be bug-free

Testbench-Based Functional Testing

◼ A testbench can be:

❑ HDL code written to test other HDL modules

❑ Circuit schematic used to test other circuit designs

◼ The testbench is not designed for hardware synthesis!

❑ Runs in simulation only

◼ HDL simulator (e.g., Vivado simulator)

◼ SPICE circuit simulation

❑ Testbench uses simulation-only constructs

◼ E.g., “wait 10ns”

◼ E.g., ideal voltage/current source

◼ Not suitable to be physically built!

100

Common Verilog Testbench Types

101

Testbench
Input/Output

Generation
Error Checking

Simple Manual Manual

Self-Checking Manual Automatic

Automatic Automatic Automatic

Example DUT

◼ We will walk through different types of testbenches to test
a module that implements the logic function:

y = (b ∙ c) + (a ∙ b)

102

// performs y = ~b & ~c | a & ~b

module sillyfunction(input a, b, c,

output y);

wire b_n, c_n;

wire m1, m2;

not not_b(b_n, b);

not not_c(c_n, c);

and minterm1(m1, b_n, c_n);

and minterm2(m2, a, b_n);

or out_func(y, m1, m2);

endmodule

Useful Verilog Syntax for Testbenching

103

module example_syntax();

reg a;

// like “always” block, but runs only once at sim start

initial

begin

a = 0; // set value of reg: use blocking assignments

#10; // wait (do nothing) for 10 ns

a = 1;

$display(“printf() style message!"); // print message

end

endmodule

Simple Testbench

104

Simple Testbench

module testbench1(); // No inputs, outputs

reg a, b, c; // Manually assigned

wire y; // Manually checked

// instantiate device under test

sillyfunction dut (.a(a), .b(b), .c(c), .y(y));

// apply hardcoded inputs one at a time

initial begin

a = 0; b = 0; c = 0; #10; // apply inputs, wait 10ns

c = 1; #10; // apply inputs, wait 10ns

b = 1; c = 0; #10; // etc .. etc..

c = 1; #10;

a = 1; b = 0; c = 0; #10;

end

endmodule

105

Simple Testbench: Output Checking

◼ Most common method is to look at waveform diagrams

❑ Thousands of signals over millions of clock cycles

❑ Too many to just printf()!

106

◼ Manually check that output is correct at all times

time

Simple Testbench

◼ Pros:

❑ Easy to design

❑ Can easily test a few, specific inputs (e.g., corner cases)

◼ Cons:

❑ Not scalable to many test cases

❑ Outputs must be checked manually outside of the simulation

◼ E.g., inspecting dumped waveform signals

◼ E.g., printf() style debugging

107

Self-Checking Testbench

108

Self-Checking Testbench
module testbench2();

reg a, b, c;

wire y;

sillyfunction dut(.a(a), .b(b), .c(c), .y(y));

initial begin

a = 0; b = 0; c = 0; #10; // apply input, wait 10ns

if (y !== 1) $display("000 failed."); // check result

c = 1; #10;

if (y !== 0) $display("001 failed.");

b = 1; c = 0; #10;

if (y !== 0) $display("010 failed.");

end

endmodule

109

Self-Checking Testbench

◼ Pros:

❑ Still easy to design

❑ Still easy to test a few, specific inputs (e.g., corner cases)

❑ Simulator will print whenever an error occurs

◼ Cons:

❑ Still not scalable to millions of test cases

❑ Easy to make an error in hardcoded values

◼ You make just as many errors writing a testbench as actual code

◼ Hard to debug whether an issue is in the testbench or in the DUT

110

Self-Checking Testbench using Testvectors

◼ Write testvector file

❑ List of inputs and expected outputs

❑ Can create vectors manually or automatically using an
already verified, simpler “golden model” (more on this later)

◼ Example file:

111

$ cat testvectors.tv

000_1

001_0

010_0

011_0

100_1

101_1

110_0

111_0

…

Format:
input_output

Testbench with Testvectors Design

◼ Use a “clock signal” for assigning inputs, reading outputs

❑ Test one testvector each “clock cycle”

112

Apply input
on rising edge

Check outputs
on falling edge

Clock cycle

◼ Note: “clock signal” simply separates inputs from outputs

❑ Allows us to observe the inputs/outputs in waveform diagrams

❑ Not used for checking physical circuit timing (e.g., tsetup/thold)

❑ We’ll discuss circuit timing verification later in this lecture

Testbench Example (1/5): Signal Declarations

module testbench3();

reg clk, reset; // clock and reset are internal

reg a, b, c, yexpected; // values from testvectors

wire y; // output of circuit

reg [31:0] vectornum, errors; // bookkeeping variables

reg [3:0] testvectors[10000:0];// array of testvectors

// instantiate device under test

sillyfunction dut(.a(a), .b(b), .c(c), .y(y));

113

◼ Declare signals to hold internal state

H&H Section 4.9, Example 4.39

Testbench Example (2/5): Clock Generation

// generate clock

always // no sensitivity list, so it always executes

begin

clk = 1; #5; clk = 0; #5; // 10ns period

end

114

Testbench Example (3/5): Read Testvectors into Array

// at start of test, load vectors and pulse reset

initial // Only executes once

begin

$readmemb("example.tv", testvectors); // Read vectors

vectornum = 0; errors = 0; // Initialize

reset = 1; #27; reset = 0; // Apply reset wait

end

// Note: $readmemh reads testvector files written in

// hexadecimal

115

Testbench Example (4/5): Assign Inputs/Outputs

◼ Apply {a, b, c} inputs on the rising edge of the clock

◼ Get yexpected for checking the output on the falling edge

◼ Rising/falling edges are chosen only by convention

❑ You can use any part of the clock signal

❑ Your H+H textbook uses this convention

// apply test vectors on rising edge of clk

always @(posedge clk)

begin

{a, b, c, yexpected} = testvectors[vectornum];

end

116

Testbench Example (5/5): Check Outputs
always @(negedge clk)

begin

if (~reset) // don’t test during reset

begin

if (y !== yexpected)

begin

$display("Error: inputs = %b", {a, b, c});

$display(" outputs = %b (%b exp)",y,yexpected);

errors = errors + 1;

end

// increment array index and read next testvector

vectornum = vectornum + 1;

if (testvectors[vectornum] === 4'bx)

begin

$display("%d tests completed with %d errors",

vectornum, errors);

$finish; // End simulation

end

end

end

117

Self-Checking Testbench with Testvectors

◼ Pros:

❑ Still easy to design

❑ Still easy to test a few, specific inputs (e.g., corner cases)

❑ Simulator will print whenever an error occurs

❑ No need to change hardcoded values for different tests

◼ Cons:

❑ May be error-prone depending on source of testvectors

❑ More scalable, but still limited by reading a file

◼ Might have many more combinational paths to test than will fit in
memory

118

Automatic Testbench

119

Golden Models

◼ A golden model represents the ideal circuit behavior

❑ Must be developed, and might be difficult to write

❑ Can be done in C, Perl, Python, Matlab or even in Verilog

◼ For our example circuit:

120

module golden_model(input a, b, c,

output y);

assign y = ~b & ~c | a & ~b;// high-level abstraction

endmodule

◼ Simpler than our earlier gate-level description

❑ Golden model is usually easier to design and understand

❑ Golden model is much easier to verify

Automatic Testbench

◼ The DUT output is compared against the golden model

121

Testbench

DUT

Inputs Outputs

Check
Equality

Golden
Model

Test
Pattern

Generation

◼ Challenge: need to generate inputs to the designs

❑ Sequential values to cover the entire input space?

❑ Random values?

Automatic Testbench: Code

122

module testbench1();

... // variable declarations, clock, etc.

// instantiate device under test

sillyfunction dut (a, b, c, y_dut);

golden_model gold (a, b, c, y_gold);

// instantiate test pattern generator

test_pattern_generator tgen (a, b, c, clk);

// check if y_dut is ever not equal to y_gold

always @(negedge clk)

begin

if(y_dut !== y_gold)

$display(...)

end

endmodule

Automatic Testbench

◼ Pros:

❑ Output checking is fully automated

❑ Could even compare timing using a golden timing model

❑ Highly scalable to as much simulation time as is feasible

◼ Leads to high coverage of the input space

❑ Better separation of roles

◼ Separate designers can work on the DUT and the golden model

◼ DUT testing engineer can focus on important test cases
instead of output checking

◼ Cons:

❑ Creating a correct golden model may be (very) difficult

❑ Coming up with good testing inputs may be difficult

123

However, Even with Automatic Testing…

◼ How long would it take to test a 32-bit adder?

❑ In such an adder there are 64 inputs = 264 possible inputs

❑ If you test one input in 1ns, you can test 109 inputs per
second

◼ or 8.64 x 1014 inputs per day

◼ or 3.15 x 1017 inputs per year

❑ we would still need 58.5 years to test all possibilities

◼ Brute force testing is not feasible for most circuits!

❑ Need to prune the overall testing space

❑ E.g., formal verification methods, choosing ‘important cases’

◼ Verification is a hard problem

124

Part 5:

Timing Verification

125

Timing Verification Approaches

◼ High-level simulation (e.g., C, Verilog)

❑ Can model timing using “#x” statements in the DUT

❑ Useful for hierarchical modeling

◼ Insert delays in FF’s, basic gates, memories, etc.

◼ High level design will have some notion of timing

❑ Usually not as accurate as real circuit timing

◼ Circuit-level timing verification

❑ Need to first synthesize your design to actual circuits

◼ No one general approach- very design flow specific

◼ Your FPGA/ASIC/etc. technology has special tool(s) for this

❑ E.g., Xilinx Vivado (what you’re using in lab)

❑ E.g., Synopsys/Cadence Tools (for VLSI design)

126

The Good News

◼ Tools will try to meet timing for you!

❑ Setup times, hold times

❑ Clock skews

❑ …

◼ They usually provide a ‘timing report’ or ‘timing summary’

❑ Worst-case delay paths

❑ Maximum operation frequency

❑ Any timing errors that were found

127

The Bad News

◼ The tool can fail to find a solution

❑ Desired clock frequency is too aggressive

◼ Can result in setup time violation on a particularly long path

❑ Too much logic on clock paths

◼ Introduces excessive clock skew

❑ Timing issues with asynchronous logic

◼ The tool will provide (hopefully) helpful errors

❑ Reports will contain paths that failed to meet timing

❑ Gives a place from where to start debugging

◼ Q: How can we fix timing errors?

128

Meeting Timing Constraints

◼ Unfortunately, this is often a manual, iterative process

❑ Meeting strict timing constraints (e.g., high performance
designs) can be tedious

◼ Can try synthesis/place-and-route with different options

❑ Different random seeds

❑ Manually provided hints for place-and-route

◼ Can manually optimize the reported problem paths

❑ Simplify complicated logic

❑ Split up long combinational logic paths

❑ Recall: fix hold time violations by adding more logic!

129

Meeting Timing Constraints: Principles

◼ Let’s go back to the fundamentals

◼ Clock cycle time is determined by the maximum logic delay
we can accommodate without violating timing constraints

◼ Good design principles

❑ Critical path design: Minimize the maximum logic delay

→ Maximizes performance

❑ Balanced design: Balance maximum logic delays across different
parts of a system (i.e., between different pairs of flip flops)

→ No bottlenecks + minimizes wasted time

❑ Bread and butter design: Optimize for the common case, but
make sure non-common-cases do not overwhelm the design

→ Maximizes performance for realistic cases
130

Lecture Summary

◼ Timing in combinational circuits

❑ Propagation delay and contamination delay

❑ Glitches

◼ Timing in sequential circuits

❑ Setup time and hold time

❑ Determining how fast a circuit can operate

◼ Circuit Verification

❑ How to make sure a circuit works correctly

❑ Functional verification

❑ Timing verification

131

Digital Design & Computer Arch.

Lecture 8: Timing and Verification

Prof. Onur Mutlu

ETH Zürich

Spring 2022

18 March 2022

