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Assignment: Lecture Video (April 1)

= Why study computer architecture? Why is it important?
= Future Computing Platforms: Challenges & Opportunities

= Required Assighment
o Watch one of Prof. Mutlu’s lectures and analyze either (or both)
a https://www.youtube.com/watch?v=kgiZISOcGFM (May 2017)
o https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

= Optional Assignment — for 1% extra credit
o Write a 1-page summary of one of the lectures and email us
= What are your key takeaways?
= What did you learn?
= What did you like or dislike?
= Submit your summary to Moodle by April 1



https://www.youtube.com/watch?v=kgiZlSOcGFM
https://www.youtube.com/watch?v=mskTeNnf-i0
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=722981

Extra Assignment: Moore’s Law (I)

= Paper review
= G.E. Moore. "Cramming more components onto integrated

circuits,” Electronics magazine, 1965

= Optional Assignment — for 1% extra credit
o Write a 1-page review
o Upload PDF file to Moodle — Deadline: April 7

= I strongly recommend that you follow my guidelines for
(paper) review (see next slide)



https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (11)

= Guidelines on how to review papers critically

a Guideline slides: pdf ppt
a Video: https://www.youtube.com/watch?v=tOL6FANAJSC

o Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)

= Review 1
= Review 2

o Example review on "“Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
= Review 1



https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

What Have We Learned So Far?

= We are mostly done with “Digital Design” part of this course

Spring 2022 Lectures/Schedule

Week Date Livestream Lecture Readings
W1 24.02 Yo Live L1: Introduction and Basics Suggested
Thu. am (PDF) @z (PPT) Mentioned
25.02 Vlll Live L2a: Tradeoffs, Metrics, Mindset Required
Fri. am (PDF) @z (PPT) Suggested
Mentioned

L2b: Mysteries in Computer Architecture Required

am (PDF) zz (PPT) Suggested
Mentioned

W2 03.03  Youll® Live L3a: Mysteries in Computer Architecture Required
Thu. am (PDF) @x (PPT) Suggested
Mentioned

L3b: Introduction to the Labs and FPGAs Required

am (PDF) zz (PPT) Suggested
Mentioned
04.03  Youll® Live L4: Combinational Logic | Video- SyStem SOftwa re
Fri. am (PDF) @z (PPT) Required
Required SW/HW Interface
Suggested
Mentioned
w3 10.03 Yol Live L5: Combinational Logic II Required
Thu. am (PDF) @ (PPT) Suggested
Mentioned
11.03 Vlll Live L6: Sequential Logic Design Required
Fri. am (PDF) @z (PPT) Suggested
Mentioned
w4 17.03 | Youll[ Live L7: Hardware Description Languages and Required
Thu. Verilog Suggested
am (PDF) zz (PPT) Mentioned
18.03  Youllf Premiere = L8: Timing and Verification Required
Fri. am (PDF) @z (PPT) Suggested

Mentioned 5



Agenda for Today & Next Few Lectures

= The von Neumann model

LC-3: An example of von Neumann machine
LC-3 and MIPS Instruction Set Architectures
LC-3 and MIPS assembly and programming

Introduction to microarchitecture and
single-cycle microarchitecture

Multi-cycle microarchitecture

System Sotha re

l SW/HW Interface l




What Will We Learn Today?

= Basic elements of a computer & the von Neumann model
o LC-3: An example von Neumann machine

= Instruction Set Architectures: LC-3 and MIPS
o Operate instructions

: . Problem
o Data movement instructions robl
: : Algorithm
o Control instructions
Program/Language

System Software

SW/HW Interface

= Instruction formats

= Addressing modes




Readings

This week
o Von Neumann Model, ISA, LC-3, and MIPS

P&P, Chapters 4, 5 (we will follow these today & tomorrow)
H&H, Chapter 6 (until 6.5)

P&P, Appendices A and C (ISA and microarchitecture of LC-3)
H&H, Appendix B (MIPS instructions)

o Programming
P&P, Chapter 6 (we will follow this tomorrow)
o Recommended: H&H Chapter 5, especially 5.1, 5.2, 5.4, 5.5

Next week
o Introduction to microarchitecture and single-cycle microarchitecture
H&H, Chapter 7.1-7.3
P&P, Appendices A and C
o Multi-cycle microarchitecture
H&H, Chapter 7.4
P&P, Appendices A and C



Building a Computing System




The von Neumann Model




Recall: What 1s A Computer?

We will cover all three components

Processing

control
(sequencing)

datapath

Memory
dorogram /O
and data)

11



Building Up to A Basic Computer Model

= In past lectures, we learned how to design
a Combinational logic structures
a Sequential logic structures

Problem

Algorithm

Program/Language
System Software

SW/HW Interface

= With logic structures, we can build
Execution units

Decision units

Memory/storage units
Communication units

Q
Q
Q
Q

= All are basic elements of a computer
o We will raise our abstraction level today
o Use logic structures to construct a basic computer model

12



Basic Components of a Computer

To get a task done by a (general-purpose) computer, we need
o A computer program

That specifies what the computer must do
a The computer itself

To carry out the specified task

Program: A set of instructions

o Each instruction specifies a well-defined piece of work for the
computer to carry out

o Instruction: the smallest piece of specified work in a program

Instruction set: All possible instructions that a computer is
designed to be able to carry out

13



The von Neumann Model

= In order to build a computer, we need an execution model for
processing computer programs

= John von Neumann proposed a fundamental model in 1946

= The von Neumann Model consists of 5 components
Memory (stores the program and data)

Processing unit

Input

Output

Control unit (controls the order in which instructions are carried out)

U 0O O O

= Throughout this lecture, we will examine two examples of the
von Neumann model

o LC-3 Burks, Goldstein, von Neumann,
“Preliminary discussion of the logical design
a MIPS of an electronic computing instrument,” 1946.

All general-purpose computers today use the von Neumann model 14



The von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

-
-
-
-

MEMORY

Mem Addr Reg

Mem Data Reg

PROCESSING UNIT

ALU

TEMP

OUTPUT

Monitor,
Printer,
Disk...

CONTROL UNIT

PC or IP

Inst Register

15



The von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

PROCESSING UNIT

ALU TEMP

OUTPUT

Monitor,
Printer,
Disk...

CONTROL UNIT

PC or IP | | Inst Register

16



Recall: A Memory Array (4 locations X 3 bits)

Addr[1:0]

Di[2] Di[1] Di[0]

il

5 ==

T I

T

.‘:. D
;o
Address Decoder

Multiplexer ~ DI[2] D[1] D[0]
17




Memory

Memory stores
o Programs
o Data

Memory contains bits
o Bits are logically grouped into bytes (8 bits) and words (e.qg., 8, 16, 32 bits)

Address space: Total number of uniquely identifiable locations in memory

a In LC-3, the address space is 216
16-bit addresses

a In MIPS, the address space is 232
32-bit addresses

a In x86-64, the address space is (up to) 2%
48-bit addresses

Addressability: How many bits are stored in each location (address)
o E.g., 8-bit addressable (or byte-addressable)
o E.g., word-addressable
a A given instruction can operate on a byte or a word
18



A Simple Example

= A representation of memory with 8 locations
= Each location contains 8 bits (one byte)

o Byte addressable memory; address space of 8
o Value 6 is stored in address 4 & value 4 is stored in address 6

Address
000

001
010
011
100
101
110
111

Data Value

00000110

00000100

Question:

How can we make
same-size memory
bit addressable?

Answer:
64 locations
Each location stores 1 bit

19



Word-Addressable Memory

Each data word has a unique address
o In MIPS, a unique address for each 32-bit data word
o In LC-3, a unique address for each 16-bit data word

Word Address

00000003
00000002
00000001

00000000

Data M

D1617A1C

13C81755

F2F1FOF7

S9ABCDEF

PS memory

Word 3
Word 2
Word 1
Word 0

20



Byte-Addressable Memory

Each byte has a unique address
o MIPS is actually byte-addressable
o LC-3b (updated version of LC-3) is also byte-addressable

Byte Address Data MIPS memory

of the VV_ord

0000000C
00000008
00000004

00000000

D 1

6 1

7 A

1C

Word 3

13

C8

17

55

Word 2

F 2

F 1

FO

F7

" How are these four bytes
ordered?

(=

Word 1
Word 0

Which of the four bytes is most vs. least significant?

21



Big Endian vs. Little Endian

= Jonathan Swift's Gulliver’s Travels

o Big Endians broke their eggs on the big end of the egg
o Little Endians broke their eggs on the little end of the egg

TRAVELS

nnnnnnnnnnnn

rrrrr

o . .
BIG ENDIAN - The way LITTLE ENDIAN - The
people always broke way the king then
their eggs in the ordered the people to
Lilliput land break their eggs

22



Big Endian vs. Little Endian

Big Endian Little Endian

Byte Word Byte
Address Address Address

@ O

=
B
I

C
8
4

o | © | O
o | © | O

E
A
6
2

W | N |0 T

E
A
6
2

C
8
4
0

0 1 3
MSB LSB MSB LSB

(Most Significant Byte) (Ceast Significant Byte)
LSB in higher byte address LSB in lower byte address

23



Big Endian vs. Little Endian

Big Endian Little Endian

Does this really matter?

Qualified answer: No, except when one big-
endian system and one little-endian system
have to share or exchange data

MSB LSB MSB LSB

(Most Significant Byte) (Least Significant Byte) 24

LSB in higher byte address LSB in lower byte address



Accessing Memory: MAR and MDR

= There are two ways of accessing memory
o Reading or loading data from a memory location
a  Writing or storing data to a memory location

= Two registers are usually used to access memory
o Memory Address Register (MAR)
o Memory Data Register (MDR) Mem Addr Reg

Mem Data Reg

= To read

o Step 1: Load the MAR with the address we wish to read from
a Step 2: Data in the corresponding location gets placed in MDR

= [0 write

o Step 1: Load the MAR with the address and the MDR with the data
we wish to write

o Step 2: Activate Write Enable signal - value in MDR is written to
address specified by MAR

25



The von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

-
-
-
-

MEMORY
Mem Addr Reg

Mem Data Reg

OUTPUT

Monitor,
Printer,
Disk...

CONTROL UNIT

PC or IP | | Inst Register

26



Processing Unit

Performs the actual computation(s)
The processing unit can consist of many functional units

We start with a simple Arithmetic and Logic Unit (ALU),
which executes computation and logic operations

o LC-3: ADD, AND, NOT (XOR in LC-3b)
o MIPS: add, sub, mult, and, nor, sll, slr, slt...

The ALU processes quantities that are referred to as words
o Word length in LC-3 is 16 bits
o Word length in MIPS is 32 bits

27



Recall: ALU (Arithmetic Logic Unit)

= Combines a variety of arithmetic and logical operations into
a single unit (that performs only one function at a time)

= Usually denoted with this symbol:

Table 5.1 ALU operations

A B e Function
YN AN
I v | 000 A AND B
\ ALU /’§ 2 001 A OR B
AN 010 A+B
Y
011 not used
Figure 5.14 ALU symbol 100 A AND B
101 A ORB
110 A-B

111 SLT




Recall: Example ALU (Arithmetic Logic Unit)

A B
YN N
Table 5.1 ALU operations
Fy. Function
000 A AND B <AL
> | F
_ °
001 A ORB TN
010 A+B =
011 not used
100 A AND B
101 A OR B
110 A-B
111 SLT

29



Processing Unit: Fast Temporary Storage

It is almost always the case that a computer provides a
small amount of storage very close to ALU
o Purpose: to store temporary values and quickly access them later

E.g., to calculate ((A+B)*C)/D, the intermediate result of
A+B can be stored in temporary storage

o Why? It is too slow to store each ALU result in memory & then
retrieve it again for future use
A memory access is much slower than an addition, multiplication
or division
o Ditto for the intermediate result of ((A+B)*C)

This temporary storage is usually a set of registers

o Called Register File
30



Registers: Fast Temporary Storage

= Memory is large but slow

o | e

= Registers in the Processing Unit
o Ensure fast access to values to be processed in the ALU
o Typically one register contains one word (same as word length)

m Register Set or Register File
a Set of registers that can be manipulated by instructions
o LC-3 has 8 general purpose registers (GPRS)
= RO to R7: 3-bit register number
= Register size = Word length = 16 bits
a MIPS has 32 general purpose registers
= RO to R31: 5-bit register number (or Register ID)
= Register size = Word length = 32 bits

31



Recall: The Register

How can we use D latches to store more data?

« Use more D latches!
A single WE signal for all latches for

simultaneous writes

D, D, D, Do
Write
Enable ﬁ] ?—‘ﬁ\r#flﬁj} \rhlﬁ\r
Q3 QZ Ql QO

Here we have a
register, or a
structure that
stores more than
one bit and can be
read from and
written to

This register holds
4 bits, and its data

is referenced as
Q[3:0]

32



Recall: The Register

How can we use D latches to store more data?

« Use more D latches!
A single WE signal for all latches for

simultaneous writes
D3:0

1L4

WE — Register x (Rx)

$4

Q3:O

Here we have a
register, or a
structure that
stores more than
one bit and can be
read from and
written to

This register holds
4 bits, and its data

is referenced as

Q[3:0]



Recall: D Flip-Flop Based Register

Multiple parallel D flip-flops, each of which storing 1 bit

CLK

Co
"de
Nseqy CLK
|

DZiL jLQ

3:0 \ 3.0
/ This line represents 4 wires

This register stores 4 bits

34



Recall: A 4-Bit D-Flip-Flop-Based Register (Internally)

Clock

35

e: Patt and Patel, “Introduction to Computing Systems”, 3" ed., tentative page 95.

Image sourc



MIPS Register File

$0 0 the constant value 0
Sat 1 assembler temporary
Sv0-Svl 2-3 function return value
$a0-$a3 4-7 function arguments
$t0-$t7 8-15 temporary variables
$s0-$s7 16-23 saved variables
$t8-$t9 24-25 temporary variables
$k0-$k1 26-27 OS temporaries

Sgp 28 global pointer

$sp 29 stack pointer

Sfp 30 frame pointer

Sra 31 function return address



The Von Neumann Model

MEMORY

INPUT

Keyboard,
Mouse,
Disk...

-
-
-
-

Mem Addr Reg

Mem Data Reg

PROCESSING UNIT

ALU

TEMP

OUTPUT

Monitor,
Printer,
Disk...

CONTROL UNIT

PC or IP

Inst Register

37



Input and Output

Enable information to get into and out of a computer

Many devices can be used for input and output

They are called peripherals

o Input
Keyboard
Mouse
Scanner
Disks
Etc.

o Output
Monitor
Printer
Disks
Etc.

o In LC-3, we consider keyboard and monitor

38



The Von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

-
-
-
-

MEMORY
Mem Addr Reg

Mem Data Reg

PROCESSING UNIT

ALU TEMP

OUTPUT

Monitor,
Printer,
Disk...

39



Control Unit

The control unit is like the conductor of an orchestra

It conducts the step-by-step process of executing (every
instruction in) a program

It keeps track of which instruction being processed, via
o Instruction Register (IR), which contains the instruction

It also keeps track of which instruction to process next, via

a Program Counter (PC) or Instruction Pointer (IP), another
register that contains the address of the (next) instruction to
process

PC or IP | | Inst Register 20



Programmer Visible (Architectural) State

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Memory [Program Counter |

array of storage locations memory address
indexed by an address of the current (or next) instruction

Instructions (and programs) specify how to transform
the values of programmer visible state

41



The von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...

42



von Neumann Model: Two Key Properties

Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

Stored program
o Instructions stored in a linear memory array
o Memory is unified between instructions and data
The interpretation of a stored value depends on the control signals

Sequential instruction processing
o One instruction processed (fetched, executed, completed) at a time
o Program counter (instruction pointer) identifies the current instruction

o Program counter is advanced sequentially except for control transfer
instructions

43



L.C-3: A von Neumann Machine




LC-3: A von Neumann Machine




Another von Neumann Machine
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https://twitter.com/Locuza_/status/1454152714930331652

Another von Neumann

Machine
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Another von Neumann Machine
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LC-3: A von Neumann Machine

Prog ram PROCESSOR BUS GatePC Aie

Counter \

Control signals ﬁ;\\ 8 General Purpose
3 REG Registers (GPR)
Data OR FILE
T T — LD.REG
- 3, \| SR2 SR1 3 -

uT__out
Finite State Machine Clock —_ R

(for Generating Control Signals) e fis

\
i JV
SR2|

<

;
>

Instruction Af>{ eme = '\_ﬁ .

Register d@m JSTATE Lo ":ﬁ ALU: 2 inputs, 1 output
-
e ——u

Ate " w \ :ALU
A, y. 1 .
s ALU operation
CONTROL UNIT PROCESSING
UNIT
(GateALU J GateALU

GateMDR

Memory Data
: 164 116 16
Register MEM.EN, R.W
Lo.MoR —] MDR g MAR [9- LD.MAR

Keyboard
KBDR (data), KBSR (status)

N | Monitor (Display)
II\?/lemotry Address 16-bit - DDR (data), DSR (status)
egister addressablg
MEMORY INPUT ouTPUT 50

Figure 4.3  The LC-3 as an example of the von Neumann model



Stored Program & Sequential Execution

= Instructions and data are stored in memory
o Typically the instruction length is the word length

= The processor fetches instructions from memory sequentially
o Fetches one instruction
o Decodes and executes the instruction
o Continues with the next instruction

= The address of the current instruction is stored in the program
counter (PC)

0 ?_‘ wLoCrdB-?ddressable memory, the processor increments the PC by 1
in LC-

o If byte-addressable memory, the processor increments the PC by the
instruction length in bytes (4 in MIPS)

= In MIPS the OS typically sets the PC to 0x00400000 (start of a
program)

51



A Sample Program Stored in Memory

A sample MIPS program

o 4 instructions stored in consecutive words in memory
No need to understand the program now. We will get back to it

MIPS assembly

1w $t2, 32($0) Byte Address
add $s0, S$sl, S$s2

addi $t0, $s3, -12

sub §$t0, $t3, $t5 0040000C
Machine code (encoded instructions) — °**°%°%®
0x8CO0A0020 00400004
0x02328020 00400000
0x2268FFF4 '

0x016D4022

Instructions

016D4022

2268FFFA4

02328020

8CO0A0020

— PC

52



The Instruction

An instruction is the most basic unit of computer processing
o Instructions are words in the language of a computer
o Instruction Set Architecture (ISA) is the vocabulary

The language of the computer can be written as

o Machine language: Computer-readable representation (that is,
O'sand 1's)

o Assembly language: Human-readable representation

We will study LC-3 instructions and MIPS instructions
o Principles are similar in all ISAs (x86, ARM, RISC-V, ...)
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The Instruction: Opcode & Operands

An instruction is made up of two parts
= Opcode and Operands

Opcode specifies what the instruction does
Operands specify who the instruction is to do it to

Both are specified in instruction format (or instr. encoding)
= An LC-3 instruction consists of 16 bits (bits [15:0])

= Bits [15:12] specify the opcode > 16 distinct opcodes in LC-3
= Bits [11:0] are used to figure out where the operands are

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o o0 o 141 1T OO0 I O0]J0O0(O0 O1 1 O

ADD R6 R2 R6




Instruction Types

= There are three main types of instructions

= Operate instructions
o Execute operations in the ALU

= Data movement instructions
o Read from or write to memory

= Control flow instructions
o Change the sequence of execution

= Let us start with some example instructions
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An Example Operate Instruction

= Addition
High-level code Assembly
a=>b + c; add a, b, c

Q

Q

add: mnemonic to indicate the operation to perform
b, C: source operands

a: destination operand

a—b+c
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Registers

= We map variables to registers

Assembly LC-3 registers
add a, b, c b = R1

c = R2

a = RO

MIPS registers

b = Ssl
c = Ss2
a = Ss0




From Assembly to Machine Code in LLC-3

Addition
LC-3 assembly

ADD RO, R1l, R2

Field Values
OP DR SR1 SR2
1 0 1 0] 00 2

Machine Code (Instruction Encoding)
OoP DR SR1 SR2

0001 | 000 | OO1 |0|00] O1O0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1042

Machine Code, in short (hexadecimal)




Instruction Format (or Encoding)

= LC-3 Operate Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

OP DR SR1 |0] 00| SR2
4 bits 3 bits 3 bits 3 bits

o OP = opcode (what the instruction does)
« E.g., ADD = 0001
a Semantics: DR «— SR1 + SR2
= E.g., AND = 0101
a Semantics: DR «— SR1 AND SR2

o SR1, SR2 = source registers

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo o o 1|1 1 oflo 1 ojoflo of1 1 o]

o DR = destination register ADD RS = R6
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From Assembly to Machine Code 1n MIPS

Addition
MIPS assembly
add $s0, S$sl, $s2
Field Values
op rs rt rd shamt funct
0 17 18 16 0 32
rd «—rs +rt
Machine Code (Instruction Encoding)
op rs rt rd shamt funct
000000 | 10001 | 10010 | 10000 | 00000 | 100000

31 26 25 21 20 16 15 11 10 6

0x02328020

5

0
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Instruction Format: R-Type 1n MIPS

MIPS R-type Instruction Format
o 3 register operands

0 rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

o 0 = opcode

o s, rt = source registers

o rd = destination register

o shamt = shift amount (only shift operations)

o funct = operation in R-type instructions



Reading Operands from Memory

= With operate instructions, such as addition, we tell the

computer to execute arithmetic (or logic) computations in
the ALU

= We also need instructions to access the operands from
memory

a Load them from memory to registers
a Store them from registers to memory

= Next, we see how to read (or load) from memory

= Writing (or storing) is performed in a similar way, but we
will talk about that later
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Reading Word-Addressable Memory

= Load word
High-level code Assembly
a = A[i]; load a, A, i

Q

Q

Q

Q

Q

load: mnemonic to indicate the load word operation
A: base address

i: offset
= E.g., immediate or literal (a constant)

a: destination operand

Semantics: a < Memory[A + i]
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Looad Word in LLC-3 and MIPS

= LC-3 assembly
High-level code LC-3 assembly

a = A[2]; LDR R3, RO, #2

R3 «— Memory[RO + 2]

= MIPS assembly (assuming word-addressable)

High-level code MIPS assembly

a = A[2]; 1w $Ss3, 2($s0)

$s3 «— Memory[$s0 + 2]

These instructions use a particular addressing mode

(i.e., the way the address is calculated), called base+offset
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Load Word in Byte-Addressable MIPS

= MIPS assembly
High-level code MIPS assembly

a = A[2]; 1w $s3, 8(S$s0)

$s3 «— Memory[$s0 + 8]

= Byte address is calculated as: word_address * bytes/word
o 4 bytes/word in MIPS

a If LC-3 were byte-addressable (i.e., LC-3b), 2 bytes/word
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Instruction Format With Immediate

LC-3
LC-3 assembly
LDR R3, RO, #2
Field Values
OP DR BaseR offset6
6 3 0 2
MIPS
MIPS assembly

lw S$s3, 8(S$s0)

Field Values
op rs rt imm
35 16 19 8

31 26 25 21 20 16 15 0

I-Type
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Instruction (Processing) Cycle
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How Are These Instructions Executed?

= By using instructions, we can speak the language of the
computer

= Thus, we now know how to tell the computer to

o Execute computations in the ALU by using, for instance, an
addition

a Access operands from memory by using the load word
instruction

= But, how are these instructions executed on the computer?

o The process of executing an instruction is called is the
instruction cycle (or, instruction processing cycle)
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The Instruction Cycle

= The instruction cycle is a sequence of steps or phases, that an
instruction goes through to be executed

o FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o 0O 0O 0O O

= Not all instructions require the six phases
o LDR does not require EXECUTE

o ADD does not require EVALUATE ADDRESS

o Intel x86 instruction ADD [eax], edx is an example of instruction
with six phases

09



After STORE RESULT, a New FETCH

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O O O 0O DO
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FETCH

The FETCH phase obtains the instruction from memory and
loads it into the Instruction Register (IR)

This phase is common to every instruction type

Complete description

o Step 1: Load the MAR with the contents of the PC, and
simultaneously increment the PC

o Step 2: Interrogate memory. This results in the instruction
being placed in the MDR by memory

o Step 3: Load the IR with the contents of the MDR
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FETCH in LC-3

Step 1: Load
MAR and -
increment PC on ol P
se—¥e 001 oUT [R5
Step 2: Access x| Lo o
memory " r_uj
o> . ésﬂv_x
’ [ Al '\_ALU_7
Step 3: Load IR = L
with the content
Of MDR GateALU
LD.MDR MDR MEM.I;N' W MAR LD.MAR
:

Figure 4.3

The LC-3 as an example of the von Neumann model

OUTPUT
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DECODE

The DECODE phase identifies the instruction

o Also generates the set of control signals to process the
identified instruction in later phases of the instruction cycle

Recall the decoder (from Lecture 5)

o A 4-to-16 decoder identifies which of the 16 opcodes is going
to be processed

The input is the four bits IR[15:12]

The remaining 12 bits identify what else is needed to
process the instruction
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DECODE 1n LLC-3

DECODE
identifies the
instruction to be
processed

Also generates
the set of
control signals
to process the

instruction

PROCESSOR BUS

3
DR—-“*  FILE

LD.REG —>|

3
SR2 %> QUT _ OUT [<72~SA1

\

REG

SR2  SR1

18
y
SR2MUX}

fie

CONTROL UNIT

MEMORY

u

PROCESSING

NIT

LD.MAR T

G.ateAliJf

|

INPUT

Figure 4.3  The LC-3 as an example of the von Neumann model|

OUTPUT
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Recall: Decoder

“Input pattern detector”
n inputs and 2" outputs
Exactly one of the outputs is 1 and all the rest are 0s

The output that is logically 1 is the output corresponding to
the input pattern that the logic circuit is expected to detect

Example: 2-to-4 decoder

24
A AlYs Y. Y Y, Decoder
0 010 0 0 1 i Mi—7Y;
o 110 o 1 o — 10— Y,
1 olo 1 o o Ao — 01— Y,
1 111 o o o 00— Yo
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Recall: Decoder (1)

The decoder is useful in determining how to interpret a bit
pattern

o It could be the A=1 —
address of a location ﬁB d

in memory, that the

processor intends to ! -
read from | } o

o It could be an — T
instruction in the
program and the
processor needs to |
decide what action to ¢
take (based on
instruction opcode)
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EVALUATE ADDRESS

= The EVALUATE ADDRESS phase computes the address of

the memory location that is needed to process the
Instruction

= This phase is necessary in LDR

o It computes the address of the data word that is to be read
from memory

o By adding an offset to the content of a register

= But not necessary in ADD
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EVALUATE ADDRESS in LC-3

PROCESSOR BUS

A

LDR calculates : onFel Fie
the adc_:lress by ADD ;C’“*
adding a —,

CLK —¥ >

register and an S

7
: : R—> FINITE '\Sf@
immediate Eéé el * |
L, 2 B A
e N ALUK ALU

CONTROL UNIT PROCESSING
UNIT

¥

KE

GateALU J

MEMORY INPUT

OUTPUT

Figure 4.3  The LC-3 as an example of the von Neumann model|



FETCH OPERANDS

The FETCH OPERANDS phase obtains the source operands
needed to process the instruction

In LDR

o Step 1: Load MAR with the address calculated in EVALUATE
ADDRESS

o Step 2: Read memory, placing source operand in MDR

In ADD
o Obtain the source operands from the register file

o In some microprocessors, operand fetch from register file can
be done at the same time the instruction is being decoded
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FETCH OPERANDS in LC-3

LDR loads MAR
(step 1), and
places the
results in MDR
(step 2)

Figure 4.3

GateMDR

PROCESSOR BUS

\

3 REG
DR—-“*  FILE

LD.REG —>|

s |SR2  SR1| 4
SR2—*>| QUT _ OUT [+ SR1

16 16

MEM.EN, RW

16 18
CLK —¥ >
16, .
7S > v Jr
R—> FINITE '\SRZMUX;
STATE %
IR LD.IR = Ale
I 1}:|<- MACHINE L i !
L 2 B A
Vi
* ALUK ALU
>
] /16
CONTROL UNIT PROCESSING
UNIT
GateALU J

MEMORY

feor) | [ [oom]

INPUT OUTPUT

The LC-3 as an example of the von Neumann model
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EXECUTE

= The EXECUTE phase executes the instruction
o In ADD, it performs addition in the ALU

o In XOR, it performs bitwise XOR in the ALU
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EXECUTE in LC-3

PROCESSOR BUS

REG
DR—Zo>
ADD adds SR1 e R
. A~
and SR2 YD ) T
S,
16 /18
CLK —» >
2 > TUV
R—{ FINITE '\SE@
B MAGHINE e

.

*/ — 2 %_\/ A’

e . ALUK i ¢ /
Lo

CONTROL UNIT PROCESSING
UNIT

GateAl&?

MEMORY INPUT OUTPUT

Figure 4.3  The LC-3 as an example of the von Neumann model|



STORE RESULT

= The STORE RESULT phase writes the result to the
designated destination

= Once STORE RESULT is completed, a new instruction cycle
starts (with the FETCH phase)
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STORE RESULT in LLC-3

PROCESSOR BUS

ADD loads ALU
Result into DR

MEMORY

Figure 4.3

UNIT

2 FILE
LD.REG—|
s, |SR2 SR1| 4
SR2—*>| QUT _ OUT [+ SR1
16 /18
CLK —¥ >
16, .
e . v Jr
R—>{ FINITE A\SRRMUY
STATE [
LD.IR > Ate
| 'AFDQ_ MACHINE i J,
} =
L, 2 B A
A16
: ALUK i
o>
] /46
CONTROL UNIT PROCESSING

INPUT

The LC-3 as an example of the von Neumann model

OUTPUT
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STORE RESULT in LLC-3

PROCESSOR BUS GatePC

¥

LDR loads W iy
MDR into DR '

3, | SR2 SR1 3
SR2 -4 OuUT OuUT <<~ SR

16 Afe
CLK —¥ >
16 .
— . v Jr
R—>{ FINITE A\SRRMUY
STATE %
| LD.IR = A1e
I ‘F:F’— MACHINE i J,
} >
L 2 B A
/16 =
* ALUK \ ALU
o>
. s
CONTROL UNIT PROCESSING
UNIT
GateALUJ

GateMDR -$

164 | 116 f16

MEM.EN, R.W
LD.MDR MDR g [MAR |<— LD.MAR

15

MEMORY INPUT OUTPUT

Figure 4.3  The LC-3 as an example of the von Neumann model|




The Instruction Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O O O 0O DO
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Changing the Sequence of Execution

A computer program executes in sequence (i.e., in program
order)

a First instruction, second instruction, third instruction and so on

Unless we change the sequence of execution

Control instructions allow a program to execute out of
sequence

o They can change the PC by loading it during the EXECUTE
phase

o That wipes out the incremented PC (loaded during the FETCH
phase)

87



Jump 1n LC-3

= Unconditional branch or jump

s LC-3 JMP R2

1100

000

BaseR

000000

4 bits

o BaseR = Base register

3 bits

o PC «— R2 (Register identified by BaseR)

o Variations

= RET: special case of JMP where BaseR = R7
= JSR, JSRR: jump to subroutine

This is register

addressing mode
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Jump 1n MIPS

= Unconditional branch or jump

= MIPS |§ target

2 target ]—Type

6 bits 26 bits

o 2 = opcode
o target = target address

a PC «— PC*[31:28] | sign-extend(target) * 4 j uses pseudo-
direct addressing
mode

o Variations
= jal: jump and link (function calls)

o _ jr uses register
= Jrijumpregister | 4r $s0 addressing mode

"This is the incremented PC



PC UPDATE in LC-3

PROCESSOR BUS

s | REG
DR->  FILE

LD.REG —>|

JMP loads
SR1 into PC

s | SR2 ZBRT\3
SR2—“>| ouT \\.OUT SR1

16 /18
CLK — >
16, .
7 4 . HJ’
R—>{ FINITE A\SRRMUY
STATE "
LD.IR = e
[ R MACHINE i !
A =
L, 2 B A
A6
. ALUK i
>
] /48
CONTROL UNIT PROCESSING

UNIT

GateALU J

MEMORY INPUT

OUTPUT

Figure 4.3  The LC-3 as an example of the von Neumann model|



Control of the Instruction Cycle

State 1 - State 1
e 5 o The FSM asserts GatePC and
LD.MAR

o It selects input (+1) in PCMUX and

A State 2

SR asserts LD.PC
FETCH MDR <— M[MAR]

R E— = State 2

v State3 o MDR is loaded with the instruction

IR <— MDR

N = State 3

¥ stutes o 'II_'BeIESM asserts GateMDR and
DECODE [opcode] '

= State 4

o The FSM goes to next state
depending on opcode

First state after First state after First state after
DECODE for DECODE for DECODE for
ADD instruction LDR instruction JMP instruction

= State 63
. . . o JMP loads register into PC
. . . State 63
Last state Last state . . .
ADD nstruction LR nstuction | | PO fegser = Full state diagram in Patt&Pattel,

Appendix C

To state 1 To state 1 To state 1

Fi 4.4  An abbreviated state diagram of the LC- . . .
e poreviated state disgram o the L% This is an FSM Controlling the LC-3 Processor 9!



The Instruction Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O O O 0O DO
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We Covered Until Here

in Lecture
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1.C-3 and MIPS
Instruction Set Architectures




The Instruction Set

= It defines opcodes, data types, and addressing modes
= ADD and LDR have been our first examples

ADD
OoP DR SR1 SR2
1 0 1 0| 00 2
Register mode
LDR
OP DR BaseR offset6
6 3 0 4

Base+offset mode
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The Instruction Set Architecture

= The ISA is the interface between what the software commands
and what the hardware carries out

= The ISA specifies Problem
o The memory organization :
Algorith
= Address space (LC-3: 216, MIPS: 232) =Sl
=« Addressability (LC-3: 16 bits, MIPS: 8 bits) Program
= Word- or Byte-addressable ISA

o The register set
= ROtoR7inLC-3
= 32 registers in MIPS

o The instruction set
= Opcodes
= Data types
= Addressing modes
= Length and format of instructions
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Opcodes

A large or small set of opcodes could be defined
o E.g, HP Precision Architecture: an instruction for A*B+C
o E.g, x86 ISA: multimedia extensions (MMX), later SSE and AVX

o E.g, VAX ISA: opcode to save all information of one program
prior to switching to another program

Tradeoffs are involved
o Hardware complexity vs. software complexity

In LC-3 and in MIPS there are three types of opcodes
o Operate

o Data movement

a Control
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Opcodes 1n L.C-3

Figure 5.3

1514 1312 11 109 8 7 6 5 4 3 2

0

T T T T T T
DR SR1 0| 00 SR2
1 1 1 1 1 1 1
T T T T T T T
DR SR1 1 imm5
1 1 1 1 1 1 1
T T T T T T
DR SR1 0| 00 SR2
1 1 1 1 1 1
T T T T T T T
DR SR1 1 imm5
1 1 1 1 1 1 1
T T T T T T T
nfz|p PCoffset9
1 1 1 1 1 1 1
T T T T T T T T
000 BaseR 000000
1 1 1 1 1 1 1 1
T T T T T T T T T
1 PCoffset11
1 1 1 1 1 1 1 1 1
T T T T T T T
0| 00 BaseR 000000
1 1 1 1 1 1 1
T T T T T T T T T
DR PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T T
DR i PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T
DR BaseR offset6
1 1 1 1 1 1 1 1
T T T T T T T T T
DR PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T
DR SR 111111
1 1 1 1 1 1 1 1
T T T T T T T T
000 111 000000
1 1 1 1 1 1 1 1
T T T T T T T T T T
000000000000
1 1 1 1 1 1 1 1 1 1
T T T T T T T T T
SR PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T
SR PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T
SR BaseR offset6
1 1 1 1 1 1 1 1
T T T T T T T T T
0000 trapvect8
1 1 1 1 1 1 1 1 1
T T T T T T T T T T
1 1 1 1 1 1 1 1 1 1

Formats of the entire LC-3 instruction set. NOTE: * indicates instructions

that modify condition codes
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Opcodes in L.C-3b

I I I I I I I I I I I
ADD' 0001 DR SR1 |A| op.spec

| | 1 1 | | 1 | 1 1 1
AND’ 0101 DR SR1 |A| opspec
BR 0000 nlz|p PColffset9

1 | 1 1 1 1 1 | 1 1 1

I I I I I I I I I I I I
JMP 1100 000 | BaseR 000000

LDB" 0010 DR | BaseR boffseté
1 L 1 1 1 1 1 1 1 1 1 1
+ I I I I I I I I I I I I
LDW 0110 DR BaseR offseté
| 1 1 | | 1 1 | | 1 1 |
LEA‘ T T T T T T T T T T T T T
m DR PColifsel9
1 1 0 1 1 1 1 1 1 Cld sle 1 1 1
RTI 1 1 1 I 1 1 1 Ll I 1 1 1 1 I
1000 000000000000
| | | 1 | 1 | 1 1 | | | 1 1
+ I I I 1 I I I I I 1
SHF 1101 DR SR |A|D| amount4
1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T
STB 0011 SR BaseR boffseté
1 1 1 1 1 1 1 1 1 L1 1
I I I I I I I I I I I I
STW 0111 SR BaseR offseté
| | | 1 | l 1 | | | 1 1
1 1 T
frapvects8
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MIPS Instruction Types

0 rs rt rd shamt | funct
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit
opcode |rs rt immediate

6-bit 5-bit 5-bit 16-bit

opcode |immediate

6-bit 26-bit

R-type

I-type

J-type
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Funct in MIPS R-Type Instructions (I)

Opcode is 0
in MIPS R-
Type
instructions.
Funct defines
the operation

Table B.2 R-type instructions, sorted by funct field

Description Operation
000000 (0) s11 rd, rt, shamt shift left logical [rd]=1[rt] << shamt
000010 (2) srl rd, rt, shamt shift right logical [rd]l=10[rt]>> shamt
000011 (3) sra rd, rt, shamt  shift right arithmetic [rd]=1[rtl>>> shamt
000100 (4) s1lv rd, rt, rs shift left logical variable [rd]l=[rt] << [rsls.o
000110 (6) srlv rd, rt, rs shift right logical variable [rdl=1[rt] > [rsls.o
000111 (7) srav rd, rt, rs shift right arithmetic variable [rdl=1L[rtl>> [rsls.o
001000 (8) jrrs jump register PC=[rs]
001001 (9) jalr rs jump and link register $ra=PC+4, PC=[rs]
001100 (12) syscall system call systemcall exception
001101 (13) break break break exception
010000 (16) mfhi rd move from hi [rd]=T[hil
010001 (17) mthi rs move to hi [hil=1[rs]
010010 (18) mflo rd move from lo [rdl=1[To]
010011 (19) mtlo rs move to lo [1ol=T[rs]
011000 (24) mult rs, rt multiply {Chil, [Tol} =[rsIx[rt]

011001 (25)

multu rs, rt

multiply unsigned

{Chil, [Tol} =[rs]x[rt]

011010 (26) divrs, rt divide [1Tol=10[rsl/[rt],
[hil=1C[rs]%lrt]
011011 (27) divurs, rt divide unsigned [lTol=1[rsl/[rtl],

[hil=T[rsl%lrt]

(continued)

Harris and Harris, Appendix B: MIPS Instructions

102



Funct in MIPS R-Type Instructions (1I)

Table B.2 R-type instructions, sorted by funct field—Cont’d

Description Operation

100000 (32) add rd, rs, rt add [rdl=1[rsl+[rt]

100001 (33) addu rd, rs, rt add unsigned [rd]l=[rs]+I[rt]

100010 (34) sub rd, rs, rt subtract [rdl=1[rs]-I[rt]

100011 (35) subu rd, rs, rt subtract unsigned [rdl=10[rs]-[rt]

100100 (36) and rd, rs, rt and [rd]=1[rs]&[rt]

100101 (37) or rd, rs, rt or [rdl=10[rs] | [rt]

100110 (38) xor rd, rs, rt xor [rdl="[rs]~[rt]

100111 (39) nor rd, rs, rt nor [rd]l=~([rs] | [rt])

101010 (42) slt rd, rs, rt set less than [rs]<[rt]?[rdl=1:[rdl=0
101011 (43) slturd, rs, rt set less than unsigned [rs]<[rtl?[rdl=1:[rdl=0

= Find the complete list of instructions in the H&H Appendix B

Harris and Harris, Appendix B: MIPS Instructions 103



Data Types

An ISA supports one or several data types

LC-3 only supports 2's complement integers
o Negative of a 2's complement binary value X = NOT(X) + 1

MIPS supports

a 2's complement integers
o Unsigned integers

o Floating point

Again, tradeoffs are involved
o What data types should be supported and what should not be?
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Data Type Tradeotts

What is the benefit of having more or high-level data types
in the ISA?

What is the disadvantage?
Think compiler/programmer vs. microarchitect

Concept of semantic gap

o Data types coupled tightly to the semantic level, or complexity
of instructions - how close are instrs. to high-level languages

Example: Early RISC architectures vs. Intel 432

o Early RISC machines: Only integer data type

o Intel 432: Object data type, capability based machine
o VAX: Complex types, e.qg., doubly-linked list
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Aside: An Example: BinaryCodedDecimal

= Each decimal digit is encoded with a fixed humber of bits

"Binary clot
Wikipedia.
http://commons.wikimedia.org/wiki/File:Binary_clock.svg#mediaviewer/File:Binary_clock.svg

bn the English

"Digital-BCD-clock™ by Julo - Own work. Licensed under Public Domain via Wikimedia Commons - 106
http://commons.wikimedia.org/wiki/File:Digital-BCD-clock.jpg#mediaviewer/File:Digital-BCD-clock.jpg



Addressing Modes

An addressing mode is a mechanism for specifying where
an operand is located

There are five addressing modes in LC-3

o Immediate or literal (constant)

The operand is in some bits of the instruction
o Register

The operand is in one of RO to R7 registers

o Three memory addressing modes
PC-relative
Indirect
Base+offset

MIPS has pseudo-direct addressing (for j and jal),
additionally, but does not have indirect addressing
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Why Have Different Addressing Modes?

Another example of programmer vs. microarchitect tradeoff

Advantage of more addressing modes:

o Enables better mapping of high-level programming constructs to
hardware

some accesses are better expressed with a different mode =>
reduced number of instructions and code size

0 Array indexing

0 Pointer-based accesses (indirection)

0 Sparse matrix accesses

Disadvantages:
o More work for the compiler
o More work for the microarchitect
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Many Tradeotts in ISA Design...

Execution model — sequencing model and processing style
Instruction length
Instruction format

Instruction complexity vs. simplicity

Data types

Number of registers

Memory organization (address space, addressability, endianness, ...)

Memory access restrictions and permissions
Support for multiple instructions to execute in parallel?
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Operate Instructions
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Operate Instructions

In LC-3, there are three operate instructions

o NOT is a unary operation (one source operand)
It executes bitwise NOT

o ADD and AND are binary operations (two source operands)
ADD is 2's complement addition
AND is bitwise SR1 & SR2

In MIPS, there are many more
o Most of R-type instructions (they are binary operations)
E.g., add, and, nor, xor...

o I-type versions (i.e., with one immediate operand) of the R-
type operate instructions

o F-type operations, i.e., floating-point operations
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NOT 1n LC-3

= NOT assembly and machine code

LC-3 assembly

NOT R3, R5

Field Values
OP DR SR
9 3 ) 111111
Machine Code
OP DR SR
1001 011 001 111111
5 1z 1 s 5 6 5 0

There is no NOT in MIPS. How is it implemented?

Register file

RO

R1

R2

B A
NOT
ALU
From -/

FSM

0101000011110000

1010111100001111

TﬁG 16
Y

DR

SR
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Operate Instructions

= We are already familiar with LC-3's ADD and AND with
register mode (R-type in MIPS)

= Now let us see the versions with one literal (i.e., immediate)
operand

= Subtraction is another necessary operation
o How is it implemented in LC-3 and MIPS?

113



Operate Instr. with one Literal in L.C-3

= ADD and AND

OP DR SR1 |1 imm3
4 bits 3 bits 3 bits 5 bits

o OP = operation
= E.g., ADD = 0001 (same OP as the register-mode ADD)
o DR < SR1 + sign-extend(immb5)

= E.g., AND = 0101 (same OP as the register-mode AND)
o DR < SR1 AND sign-extend(immb5)

o SR1 = source register
o DR = destination register

o immb5 = Literal or immediate (sign-extend to 16 bits)

114



ADD with one Literal in 1.C-3

= ADD assembly and machine code

LC-3 assembly

ADD R1, R4, #-2

Field Values

OP DR SR imm5
1 1 4 1 -2
Machine Code
OP DR SR imm5
0001 001 100 (1] 11110
15 12 11 9 8 6 5 4 0

Register file

RO
R1

Instruction register Re
ADD R1 R4

-2 R3

0001

001

100

1{11110 R4

i Sign- e
[sexT] extend

16

.

1111111111111110
I

R6

R7

0000000000000100

0000000000000110

Bit[5]

ADD
From
FSM

DR

SR
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ADD with one Literal in 1.C-3 Data Path

GateMARMUX —/\ GatePC
16
4‘7/MARMUX LDPC— PC
i
7y i -
+1
16 16 2 DR 34 ~ REG
PCMUX FILE
i LD.REG—
o i . SR2  SRI
3 R 3
[ZEXT | SR2—“> QUT  OUT [</“SRI
i
[7:0] 16 16
ADDR2MUX ADDRIMUX
2 (
7 S /T/ i s 16
i 16 16 A6 Al6 16
Slgn ] [10:0] , 0 = 7
extension 4 SEXT |~ SEXT ]
[4:0 v
(Operand) |8:9] -SEXT ﬁgmux
15:0] | —f ™| FINITE [ 16
s SEXT | o —» STATE > ! !
MACHINE
W ALU

Select z]p]e—Lb.cc .

Immediate LDIR— IR . Processing
or Register (s L
(as the 2"d Control Unit \/ GateALU
. 16
input to
instruction) GaeMDR A\, |, .
16
LD.MDR—> MDR MAR [<—LD.MAR

A

MEMORY < INPUT OUTPUT
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Instructions with one Literal in MIPS

I-type MIPS Instructions
o 2 register operands and immediate

Some operate and data movement instructions

opcode rs rt imm
6 bits 5 bits 5 bits 16 bits

o opcode = operation
o s = source register

o rt=
destination register in some instructions (e.g., addi, 1w)
source register in others (e.qg., sw)

o imm = Literal or immediate
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Add with one lLiteral in MIPS

Add immediate

MIPS assembly
addi S$s0, S$sl1, 5
Field Values
op rs rt imm
0 17 16 5

Machine Code

op

rs

rt

t <— rs + sign-extend(imm)

imm

001000

10001

10010

0000 0000 0000 0101

0x22300005
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Subtract in [.C-3

= MIPS assembly

High-level code

MIPS assembly

a=>b+ c - d;

= LC-3 assembly

High-level code

add $t0, $s0, S$sl
sub $s3, $t0, $s2

LC-3 assembly

a=>b+ c - d;

= Tradeoff in LC-3
o More instructions
o But, simpler control logic

R1

ADD R2, RO,
NOT R4, R3
ADD R5, R4,
ADD R6, R2,

2’s
complement
#1 ) of R3

R5




Subtract Immediate

= MIPS assembly

High-level code

MIPS assemk

a

b - 3;

subi S$s1l,

= LC-3

High-level code

Is subi necessary in MIPS?

MIPS assembly

addi $sl1l, $s0, -3

LC-3 assembly

a

b - 3;

ADD R1l, RO, #-3
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Data Movement Instructions

and Addressing Modes
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Data Movement Instructions

= In LC-3, there are seven data movement instructions
o LD, LDR, LDI, LEA, ST, STR, STI

= Format of load and store instructions
o Opcode (bits [15:12])
o DR or SR (bits [11:9])
o Address generation bits (bits [8:0])
a

Four ways to interpret bits, called addressing modes
= PC-Relative Mode

= Indirect Mode

= Base+Offset Mode

= Immediate Mode

= In MIPS, there are only Base+offset and immediate modes
for load and store instructions
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PC-Relative Addressing Mode

= LD (Load) and ST (Store)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

o OP = opcode
« E.g.,, LD = 0010
« E.g., ST = 0011

o DR = destination register in LD
o SR = source register in ST

a LD: DR «— Memory[PCT + sign-extend(PCoffset9)]

a ST: Memory[PC" + sign-extend(PCoffset9)] «— SR

t This is the incremented PC 123



LD in LLC-3

= LD assembly and machine code

: - Register file
Instruction register
LC-3 assembly 5 o o
IR |0010{010{ 110101111 R1
LD R2, Ox1AF LD Rz xIAF R2 | 0000000000000101 |DR
Incremented PC '9[2501 Ao
. PC 0100 0000 0001 1001|  [SEXT] 9N Rd
Field Values s
OP DR PCoffset9 1111111110101111 Ej
16
2 2 Ox1AF  ori
b/ loaded
. 1. Address 1 15 16 ©
Machine Code calculation | D
OP DR PCoffset9 MAR MEMORY -
0010|010 110101111 .
. Memory
15 12 11 9 8 0 read
: Limitation: The PC-relative addressing mode
The memory address is only +255 to -256 cannot address far away from the
locations away of the LD or ST instruction instruction
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Indirect Addressing Mode

= LDI (Load Indirect) and STI (Store Indirect)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

o OP = opcode
= E.g., LDI = 1010
= E.g., STI = 1011

o DR = destination register in LDI
o SR = source register in STI

a LDI: DR «— Memory[Memory[PC" + sign-extend(PCoffset9)]]

a STI: Memory[Memory[PC" + sign-extend(PCoffset9)]] — SR

t This is the incremented PC 125



LLDI in I.C-3

= LDI assembly and machine code

LC-3 assembly Instruction register ReF?Oister file
IR|1010{ 011] 111001100 | R1
LDI R3, 0x1CC LDI R3 xiCC Ro
Incremented PC IRjg:.0] R3 [1111111111111111| DR
Sign- R4
. PC|0100 1010 0001 1100| [SEXT|oyten
Field Values . EZ
OP DR PCoffset9 xFFCC R7
16
A 3 0x1CC v, 5. DR is
\ ADD / loaded
1. Address 118 16 ®©
Machine Code calculation | D
[MAR | MEMORY [ MDR ]
OP DR PCoffset9
3. LoadeCc:Is) o
dd X
1010{011| 111001100 address S
to MAR 2. Memory 4. Memory
15 2 11 9 8 0 read read

[ Now the address of the operand can be anywhere in the memory ]
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Base+Oftfset Addressing Mode

= LDR (Load Register) and STR (Store Register)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR/SR | BaseR offsetb
4 bits 3 bits 3 bits 6 bits

o OP = opcode
= E.g., LDR = 0110
= E.g., STR = 0111

o DR = destination register in LDR
o SR = source register in STR

o LDR: DR < Memory[BaseR + sign-extend(offset6)]

o STR: Memory[BaseR + sign-extend(offset6)] « SR
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LLDR in LLC-3

= LDR assembly and machine code

Instruction register Register file
LC-3 assembly 15 0 Ro
IR {0110 ]001|010| 011101 R1| 0000111100001111 | DR
LDR R1, R2, 0x1D LDR R1 R2 xiD R2 | 0010001101000101 |BaseR
IR[5:0] R3
. [SExT] Sign- R4
Field Values e A
R6
OP DR  BaseR offset6 x001D R
6 1 2 0x1D s o
\ ADD / loaded
. 1. Address 116 16 ®
MaCh|ne COde calculation @
OP DR BaseR offset6 MAR MEMORY MDR
0110, 001010011101 T
. Memory
15 12 11 9 8 6 5 0 @ read

[ Again, the address of the operand can be anywhere in the memory ]
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Address Calculation in 1.C-3 Data Path

GateMARMUX

MARMUX : >

16 16

Global bus

MAR
Multiplexer

GatePC

I

ADDR2MUX

ADDRIMUX

Adder

3
DR—4>|

LD.REG—>|
SR2

3
SR2—4={ QUT

REG
FILE

SRI | 3
OUT [</“SRI

Sign
extension
(Address)

GateMDR —/\
16 11

LD.MDR—> MDR
Y

™ FINITE

MEMORY

MAR [<—LD.MAR

STATE (= ! !
MACHINE% ALU
>controL| | AMUK

16 0
Processing
Unit

\/ GateALU

MEM.EN, R W

INPUT

OUTPUT
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Base+Ottset Addressing Mode in MIPS

= In MIPS, Iw and sw use base+offset mode (or base

addressing mode)

High-level code MIPS assembly
A[2] = a; SW Ss3, 8(S$s0)
Memory[$s0 + 8] «— $s3
Field Values
op rs rt imm
43 16 19 8

= imm is the 16-bit offset, which is sign-extended to 32 bits
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An Example Program in MIPS and 1.C-3

High-level code

a = A[0];

C = a + b - 5;
B[O0] = c;

MIPS assembly

lw  $t0, 0($s0)
add $tl, $t0, $s2
addi $t2, S$tl1l, -5
SW St2, 0(S$sl)

MIPS registers

A = S$s0
b = S$Ss2
B = Ssl

LC-3 assembly

LDR R5, RO,
ADD R6, R5,
ADD R7, R6,
STR R7, R1,

LC-3 registers
A = RO
b = R2
B = R1

7#0
R2
#-5
7#0
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Immediate Addressing Mode

= LEA (Load Effective Address)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR PCoffset9
4 bits 3 bits 9 bits

o OP =1110
o DR = destination register

o LEA: DR <« PC' + sign-extend(PCoffset9)

What is the difference from PC-Relative addressing mode?

( )

Answer: Instructions with PC-Relative mode load from memory,
but LEA does not > Hence the name Load Effective Address

\. J

t This is the incremented PC 132



LEA in L.C-3

= LEA assembly and machine code

LC-3 assembly

LEA R5, #-3

Field Values

OP DR PCoffset9

E 5 Ox1FD
Machine Code

OP DR PCoffset9
1110|101 111111101
5 12 11 e g 0

IR

PC

0100000000010110

Instruction register Register file
15 0 RO
1110[101| 111111101 R1
LEA R5  x1FD R2

Incremented PC IRig:0] A3
0100 0000 0001 1001 @ESign- Ra

extend .
16
R6
1111101
16

ADD

16

DR
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Address Calculation in 1.C-3 Data Path

GateMARMUX

MARMUX : >

16 16

Global bus

MAR
Multiplexer

GatePC

I

ADDR2MUX

ADDRIMUX

Adder

3
DR—4>|

LD.REG—>|
SR2

3
SR2—4={ QUT

REG
FILE

SRI | 3
OUT [</“SRI

Sign
extension
(Address)

GateMDR —/\
16 11

LD.MDR—> MDR
Y

™ FINITE

MEMORY

MAR [<—LD.MAR

STATE (= ! !
MACHINE% ALU
>controL| | AMUK

16 0
Processing
Unit

\/ GateALU

MEM.EN, R W

INPUT

OUTPUT
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Immediate Addressing Mode in MIPS

= In MIPS, lui (load upper immediate) loads a 16-bit
immediate into the upper half of a register and sets the

lower half to 0

= It is used to assign 32-bit constants to a register

High-level code

MIPS assembly

a

0x6d5ed4f3c;

lui

ori

$s0,
$s0,

O0x6d5e
0x4f3c
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Addressing Example in L.C-3
What is the final value of R3?

Address 15 14 13

x30F6
x30F7
x30F8
x30F9
x30FA
x30FB
x30FC

12 11 10 9 8 76 543210
I 1.1 0|0 O 1|11 11111O01
O 0 0 110 1 0j0O0T1}]1{j0 1110
o 0o 1 10 1 0O0j11111T1O0T11
O 1 0 110 1 0|01 0|1{00O0O0O
O 0 0 110 1 0j0O10(1{0OO0T1O01
o 1 1 170 1 0j001{]0OO011T1O0
I 01 0|0 1T 1|1 111 101T11

P&P, Chapter 5.3.5

R1<- PC-3

R2<- R1+14
M[x30F4]<- R2
R2<- 0

R2<- R2+5
M[R1+14]<- R2
R3<- M[M[x30F4 ]]
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Addressing Example in L.C-3
= What is the final value of R3?

P&P, Chapter 5.3.5

Address 15 14 13 12 11 10 9 8 76 5 43 2 1 0
x30F6 0 1% R1 = PC — 3 = 0x30F7 — 3 = 0x30F4
x30F7 0 01C 14 R2=R1+ 14 = 0x30F4 + 14 = 0x3102
x30F8 0 0k M[PC - 5] = M[0x030F4] = 0x3102
x30F9 0 0[0 R2 = 0
x30FA 0 010 R2=R2+5=5
x30FB 0 00 1 + 14] = M[0x30F4 + 14] = M[0x3102] = 5
x30FC 0 1 B R3 = M[M[PC - 9]] = M[M[0x30FD - 9]] =

M[M[0x30F4]] = M[0x3102] =5

= The final value of R3 is 5
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Control Flow Instructions
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Control Flow Instructions

Allow a program to execute out of sequence

Conditional branches and unconditional jumps

o Conditional branches are used to make decisions
E.qg., if-else statement

a In LC-3, three condition codes are used

o Jumps are used to implement
Loops
Function calls

o JMP in LC-3 and j in MIPS
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Condition Codes in L.C-3

Each time one GPR (R0-R7) is written, three single-bit registers
are updated

Each of these condition codes are either set (set to 1) or cleared
(set to 0)

o If the written value is negative
N is set, Z and P are cleared

o If the written value is zero
Z is set, N and P are cleared

o If the written value is positive
P is set, N and Z are cleared

x86 and SPARC are examples of ISAs that use condition codes
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Conditional Branches in 1.C-3
BRz (Branch if Zero)

Q

Q

Q

BRz PCoffset9
0000 |niz|p PCoffset9
4 bits 9 bits
n, z, p = which condition code is tested (N, Z, and/or P)
n, z

N, Z,

: values of the corresponding condition codes

PCoffset9 = immediate or constant value

if (n AND N) OR (p AND P) OR (z AND Z))

then PC — PC' + sign-extend(PCoffset9)

Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp

"This is the incremented PC

, p: instruction bits to identify the condition codes to be tested
P
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Conditional Branches in 1.C-3

= BRz

BRz 0x0D9

Program ‘

0100 0001 0000 0001

Counter |

PC | 0100 0000 0010 1000

Instruction

register BR N z P PCoffset9

IR | 0000|{0(1|0|{01101100

1

Condition
registers
N
0
( )
Whatifn=z=p = 1?* H) 4
L (i.e., BRnzp) )
( )
And whatifn=z=p = 0?
L J

[ sExT]

16

7 P 0000000011011001

16

Y

v

Y4

® \wo /

16

Yes!

'n, z, p are the instruction bits to identify the condition codes to be tested
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Conditional Branches in MIPS

= beq (Branch if Equal)

Q

beg $s0, Ssl, offset

4 rs rt offset
6 bits 5bits 5 bits 16 bits
4 = opcode

rs, rt = source registers
offset = immediate or constant value

if rs ==rt
= then PC «— PCT + sign-extend(offset) * 4

Variations: beq, bne, blez, bgtz

"This is the incremented PC
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Branch If Equal in MIPS and 1.C-3

MIPS assembly LC-3 assembly

beg $s0, Ssl, offset

Subtract
(RO - R1)

offset

= This is an example of tradeoff in the instruction set
o The same functionality requires more instructions in LC-3

a But, the control logic requires more complexity in MIPS
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What We Learned

= Basic elements of a computer & the von Neumann model
o LC-3: An example von Neumann machine

= Instruction Set Architectures: LC-3 and MIPS
o Operate instructions

: . Problem
o Data movement instructions robl
: : Algorithm
o Control instructions
Program/Language

System Software

SW/HW Interface

= Instruction formats

= Addressing modes
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here Is A Lot More to Cover on ISAs

A Note on ISA Evolutnon
e day

ISAs have evolved to reflect/satisfy the concerns of th

= Examples:
Limited on-chip and off-chip memory size

Limite« piler optimization tec hnology

Limited memory bandwidth
Need for specialization in important applications (e.g., MMX)

« Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA
, Concept of dynamic/static interface: translation/interpretation
, Contrast it with hardware/software interface
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Lecture 3. ISA Tradeoffs - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
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https://www.youtube.com/onurmutlulectures

Many Ditterent ISAs Over Decades

X86

PDP-x: Programmed Data Processor (PDP-11)
VAX

IBM 360

CDC 6600

SIMD ISAs: CRAY-1, Connection Machine

VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)
PowerPC, POWER

RISC ISAs: Alpha, MIPS, SPARC, ARM, RISC-V, ...

What are the fundamental differences?

o E.g., how instructions are specified and what they do

o E.g., how complex are the instructions
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Complex vs. Simple Instructions

Complex instruction: An instruction does a lot of work, e.g.
many operations

o Insert in a doubly linked list
Compute FFT

a
o String copy
a

Simple instruction: An instruction does little work -- it is a
primitive using which complex operations can be built

o Add
XOR
Multiply

o O O
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Complex vs. Simple Instructions

Advantages of Complex instructions

+ Denser encoding - smaller code size - better memory
utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

Disadvantages of Complex Instructions

- Larger chunks of work = compiler has less opportunity to
optimize (limited in fine-grained optimizations it can do)

- More complex hardware - translation from a high level to
control signals and optimization needs to be done by hardware
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ISA-level Tradeotfs: Number ot Registers

Affects:

o Number of bits used for encoding register address

o Number of values kept in fast storage (register file)

o (uarch) Size, access time, power consumption of register file

Large number of registers:

+ Enables better register allocation (and optimizations) by
compiler > fewer saves/restores

-- Larger instruction size
-- Larger register file size
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Detailed Lectures on ISAs & ISA Tradeoffs

= Computer Architecture, Spring 2015, Lecture 3

o ISA Tradeoffs (CMU, Spring 2015)

o https://www.youtube.com/watch?v=0KdiZSfwg-
g&list=PL5PHM2jkkXmi5CxxI7b3JCL1TWybTDtKg&index=3

= Computer Architecture, Spring 2015, Lecture 4

o ISA Tradeoffs & MIPS ISA (CMU, Spring 2015)

o https://www.youtube.com/watch?v=RBgeCCW5Hjs&list=PL5PHmM2jkkXmi5CxxI7b3]
CL1ITWybTDtKq&index=4

= Computer Architecture, Spring 2015, Lecture 2

o Fundamental Concepts and ISA (CMU, Spring 2015)

o https://www.youtube.com/watch?v=NpC39uS4K4o&list=PL5PHmM2jkkXmi5CxxI7b3]
CL1TWybTDtKg&index=2

https:/ /www.youtube.com/onurmutlulectures 153



https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures

