
Digital Design and Computer Architecture (252-0028-00L), Spring 2022

Optional HW 2: Sequential Logic and Verilog

Instructor: Prof. Onur Mutlu
TAs: Juan Gomez Luna, Mohammad Sadrosadati, Hasan Hassan, Mohammed Alser, Ataberk Olgun, Jisung Park,

Giray Yaglikci, Can Firtina, Geraldo De Oliveira Junior, Rahul Bera, Konstantinos Kanellopoulos,
Nika Mansouri Ghiasi, Gagandeep Singh, Behzad Salami, Rakesh Nadig, Joel Lindegger

Released: Monday, March 28, 2022

1 Verilog (I)

Please answer the following three questions about Verilog.

(a) Does the following code result in a D Flip-Flop with a synchronous active-low reset? Please explain your
answer.

1 module mem (input clk , input reset , input [1:0] d, output reg [1:0] q);

2 always @ (posedge clk or negedge reset)

3 begin

4 if (! reset) q <= 0;

5 else q <= d;

6 end

7 endmodule

(b) Does the following code result in a sequential circuit or a combinational circuit? Please explain your
answer.

1 module Mask (input [1:0] data_in , input mask , output reg [1:0] data_out);

2 always @ (*)

3 begin

4 data_out [1] = data_in [1];

5 if (mask)

6 data_out [0] = 0;

7 end

8 endmodule

1/23

(c) Is the following code syntactically correct? If not, please explain the mistake(s) and how to fix it/them.

1 module fulladd(input a, b, c, output reg s, c_out);

2 assign s = a^b;

3 assign c_out = (a & b) | (b & c) & (c & a);

4 endmodule

5

6 module top (input wire [5:0] instr , input wire op, output z);

7

8 reg [1:0] r1 , r2;

9 wire [3:0] w1 , w2;

10

11 fulladd FA1 (.a(instr [0]), .b(instr [1]), .c(instr [2]),

12 .c_out(r1[1]), .z(r1 [0]));

13 fulladd FA2 (.a(instr [3]), .b(instr [4]), .c(instr [5]),

14 .z(r2[0]), .c_out(r2 [1]));

15

16 assign z = r1 | op;

17 assign w1 = r1 + 1;

18 assign w2 = r2 << 1;

19 assign op = r1 ^ r2;

20

21 endmodule

2/23

2 Verilog (II)

Please answer the following four questions about Verilog.

(a) Does the following code result in a D Flip-Flop with asynchronous reset? Please explain why.

1 module dff (input clk , input reset , input [3:0] d, output reg [3:0] q);

2 always @ (posedge clk)

3 begin

4 if (reset == 0) q <= 0;

5 else q <= d;

6 end

7 endmodule

(b) Does the following code result in a sequential circuit or a combinational circuit? Explain why.

1 module concat (input clk , input data_in1 , input data_in2 ,

2 output reg [1:0] data_out);

3 always @ (posedge clk , data_in1 , data_in2)

4 if (data_in1 > data_in2)

5 data_out = {data_in1 , data_in2 };

6 else

7 data_out = {data_in2 , data_in1 };

8 endmodule

3/23

(c) Is the following code syntactically correct? If not, please explain the mistake(s) and how to fix it/them.

1 module Inn3r (input [3:0] d, input op, output s);

2 assign s = op ? (d[1:0] - d[3:2]) :

3 (d[3:2] + d[1:0]);

4 endmodule

5

6 module top (input wire [6:0] instr , input wire op, output reg z);

7

8 reg [1:0] r1 , r2 , r3;

9 wire [3:0] w1, w2;

10

11 Inn3r i0 (. instr(instr [1:0]) , .op(instr [7]), .z(r1));

12 Inn3r i1 (. instr(instr [3:2]) , .op(instr [0]), .z(r2));

13

14 assign z = r1 | r2;

15 assign w1 = r1 + 1;

16 assign w2 = r2 << 1;

17

18 top t (. instr({w1 , w2 , w1==w2}), .op(z), .z(r3));

19

20 assign op = r1 ^ r2 ^ r3;

21

22 endmodule

4/23

(d) Does the following code correctly implement a counter that counts down from 10 to 1 (e.g., 10, 9, 8, ...,
2, 1, 10, 9, ...)? If so, say ”Correct”. If not, correct the code with minimal modification.

1 module the_final_count_down (clk , count);

2 wire clk;

3 reg [3:0] count = 10;

4 reg [3:0] count_next;

5

6 always @ * begin

7 count_next <= count;

8 if(count != 1)

9 count_next <= count_next - 1;

10 else

11 count_next <= 1;

12 end

13

14

15 always@(posedge clk)

16 count = count_next;

17 endmodule

Answer with concise explanation:

5/23

(e) Which of the combinational logic blocks does the following verilog code implement?

1 module mystery(input select , input enable , output result);

2 wire [3:0] result;

3 wire [1:0] select;

4 wire enable;

5

6 assign result = enable << (select);

7 endmodule

3 Verilog (III)

Please answer the following questions about Verilog.

3.1 Blocking vs. Non-Blocking Assignments

(a) What is the difference between a blocking and a non-blocking assignment?

6/23

3.2 Verilog Synthesis

For each circuit that results from the following code segments, select and write all applicable relevant words
from the word bank below. If there are any syntactical or semantic issues in a code sequence, list them all
in the code blocks’ corresponding answer box.

word bank: asynchronous, synchronous, active-low, active-high, reset, D Flip-Flop, sequential, combi-
national, inferred latch, trimmed signal, multiple drivers, race condition, tri-state logic

(a) Code Block 1

1 module A (input clk , input rst , input [2:0] d, output wire [1:0] q)

2 always @ (posedge clk or negedge rst) begin

3 if (!rst) q <= 0;

4 else q <= d;

5 end

6 endmodule

(b) Code Block 2

1 module B (input clk , input rst , input [1:0] d, input m, output reg [1:0] q);

2 always @ (*) begin

3 q[1] = d[1];

4 if (m)

5 q[0] = 0;

6 end

7 endmodule

7/23

(c) Code Block 3

1 module C (input clk , input rst , input d, output reg q);

2 always @ (posedge clk or negedge rst) begin

3 if (!rst) q <= 0;

4 else q <= d;

5 end

6 endmodule

8/23

4 Finite State Machines (I)

This question has three parts.

(a) An engineer has designed a deterministic finite state machine with a one-bit input (A) and a two-bit
output (Z). He started the design by drawing the following state transition diagram:

Z=01 Z=01

Z=00

Z=00

A=1,Z=11
A=0,Z=10

A=0

A=0 A=1

S0 S1

S2S3

S4

A=1

A=1

Z=00

Although the exact functionality of the FSM is not known to you, there are at least three mistakes
in this diagram. Please list all the mistakes.

9/23

(b) After learning from his mistakes, your colleague has proceeded to write the following Verilog code
for a much better (and different) FSM. The code has been verified for syntax errors and found to
be OK.

1 module fsm (input CLK , RST , A, output [1:0] Z);

2

3 reg [2:0] nextState , presentState;

4

5 parameter start = 3’b000;

6 parameter flash1 = 3’b010;

7 parameter flash2 = 3’b011;

8 parameter prepare = 3’b100;

9 parameter recovery = 3’b110;

10 parameter error = 3’b111;

11

12 always @ (posedge CLK , posedge RST)

13 if (RST) presentState <= start;

14 else presentState <= nextState;

15

16 assign Z = (presentState == recovery) ? 2’b11 :

17 (presentState == error) ? 2’b11 :

18 (presentState == flash1) ? 2’b01 :

19 (presentState == flash2) ? 2’b10 : 2’b00;

20

21 always @ (presentState , A)

22 case (presentState)

23 start : nextState <= prepare;

24 prepare : if (A) nextState <= flash1;

25 flash1 : if (A) nextState <= flash2;

26 else nextState <= recovery;

27 flash2 : if (A) nextState <= flash1;

28 else nextState <= recovery;

29 recovery : if (A) nextState <= prepare;

30 else nextState <= error;

31 error : if (~A) nextState <=start;

32 default : nextState <= presentState;

33 endcase

34

35 endmodule

10/23

Draw a proper state transition diagram that corresponds to the FSM described in this Verilog code.

(c) Is the FSM described by the previous Verilog code a Moore or a Mealy FSM? Why?

11/23

5 Finite State Machines (II)

You are given the following FSM with two one-bit input signals (TA and TB) and one two-bit output
signal (O). You need to implement this FSM, but you are unsure about how you should encode the
states. Answer the following questions to get a better sense of the FSM and how the three different types
of state encoding we dicussed in the lecture (i.e., one-hot, binary, output) will affect the implementation.

A
O: 10

C
O: 01

B
O: 11

D
O: 00

TA

__
TA

TB

__
TB

__
TB

TB
(a) There is one critical component of an FSM that is missing in this diagram. Please write what is

missing in the answer box below.

(b) What kind of an FSM is this?

12/23

(c) List one major advantage of each type of state encoding below.

• One-hot encoding

• Binary encoding

• Output encoding

(d) Fully describe the FSM with equations given that the states are encoded with one-hot encoding.
Assign state encodings such that numerical values of states increase monotonically for states A
through D while using the minimum possible number of bits to represent the states with one-hot
encoding. Indicate the values you assign to each state and simplify all equations:

13/23

(e) Fully describe the FSM with equations given that the states are encoded with binary encoding.
Assign state encodings such that numerical values of states increase monotonically for states A
through D while using the minimum possible number of bits to represent the states with binary
encoding. Indicate the values you assign to each state and simplify all equations:

14/23

(f) Fully describe the FSM with equations given that the states are encoded with output encoding.
Use the minimum possible number of bits to represent the states with output encoding. Indicate
the values you assign to each state and simplify all equations:

15/23

(g) Assume the following conditions:

• We can only implement our FSM with 2-input AND gates, 2-input OR gates, and D flip-flops.

• 2-input AND gates and 2-input OR gates occupy the same area.

• D flip-flops occupy 3x the area of 2-input AND gates.

Which state-encoding do you choose to implement in order to minimize the total area of this FSM?

16/23

6 Finite State Machines (III)

You are given two one-bit input signals (TA and TB) and one one-bit output signal (O) for the following
modular equation: 2N(TA) + N(TB) ≡ 2 (mod 4). In this modular equation, N(TA) and N(TB)
represent the total number of times the inputs TA and TB are high (i.e., logic 1) at each positive
clock edge, respectively. The one-bit output signal, O, is set to 1 when the modular equation is satisfied
(i.e., 2N(TA) + N(TB) ≡ 2 (mod 4)), and 0 otherwise. An example that sets O = 1 at the end of the
fourth cycle would be:

• (1st cycle) TA = 0 (N(TA) = 0), TB = 0 (N(TB) = 0), 2N(TA) + N(TB) ≡ 0 (mod 4)⇒ O = 0

• (2nd cycle) TA = 1 (N(TA) = 1), TB = 1 (N(TB) = 1), 2N(TA) + N(TB) ≡ 3 (mod 4)⇒ O = 0

• (3rd cycle) TA = 1 (N(TA) = 2), TB = 0 (N(TB) = 1), 2N(TA) + N(TB) ≡ 1 (mod 4)⇒ O = 0

• (4th cycle) TA = 0 (N(TA) = 2), TB = 1 (N(TB) = 2), 2N(TA) + N(TB) ≡ 2 (mod 4)⇒ O = 1

(a) You are given a partial Moore machine state transition diagram that corresponds to the modular
equation described above. However, the input labels of most of the transitions are still missing in this
diagram. Please label the transitions with the correct inputs so that the FSM correctly implements
the above specification.

0(mod4)

O:0 O:0

O:1O:0

1(mod4)

2(mod4)3(mod4)

reset

17/23

(b) Describe the FSM with Boolean equations assuming that the states are encoded with one-hot
encoding. Assign state encodings while using the minimum possible number of bits to represent
the states. Please indicate the values you assign to each state.

18/23

(c) Describe the FSM with Boolean equations assuming that the states are encoded with binary en-
coding (i.e., fully encoding). Assign state encodings while using the minimum possible number of
bits to represent the states. Please indicate the values you assign to each state.

19/23

(d) Consider an implementation of the FSM assuming that the states are encoded with output encod-
ing. What is the minimum number of bits required to encode the states with output encoding?

20/23

7 Finite State Machines (IV)

7.1 Mealy Machine and Moore Machine

Figure 1 depicts a Mealy state machine corresponding to a digital circuit design that receives one input
and produces one output. All state transitions in the diagram are labelled with the corresponding
input/output values. Answer the following questions for this state diagram.

1/1Reset

0/0

A B

1/0
0/1

Figure 1: A Mealy Machine.

(a) Can this Mealy machine be converted to its equivalent Moore machine? If so, please convert it to its
equivalent Moore machine. Draw the converted Moore machine. If not, explain why it is not possible.

21/23

(b) Assume the state machine in Figure 1 is used to process binary numbers, from their least significant
bit to their most significant bit. You observe an output bit stream from this FSM, as shown in
Figure 2.

0 1 0 0 1 1 0 0FSM_ _ _ _ _ _ _ _

Most significant bit Least significant bit Least significant bitMost significant bit

 Input bit stream Output bit stream

Figure 2: Usage of the Mealy machine to process a bit stream.

What was the input bit stream supplied to this FSM? Show your work.

22/23

7.2 Designing an FSM

Design a Moore finite state machine (FSM) with one input and one output. The input provides an
unsigned binary number in a bit-serial manner, from the most-significant bit to the least-significant bit.
The output should be logic-1 in a clock cycle if the provided input made up of all the bits received so
far is divisible by 3 (i.e., [the input number] mod 3 = 0). (Hint: Recall that the output depends only on
the current state in a Moore FSM.)

Below are some example bit-streams that should output logic-1.

• 11

• 110

• 1001

• 1100

• 1111

Draw the state diagram and explain why it works. Your state machine should use as few states as
possible and each state should have a comprehensive definition.

23/23

	 Verilog (I)
	 Verilog (II)
	Verilog (III)
	Blocking vs. Non-Blocking Assignments
	Verilog Synthesis

	Finite State Machines (I)
	 Finite State Machines (II)
	 Finite State Machines (III)
	Finite State Machines (IV)
	Mealy Machine and Moore Machine
	Designing an FSM

