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ABSTRACT

Due to their massive computational power, graphics pro-
cessing units (GPUs) have become a popular platform for
executing general purpose parallel applications. GPU pro-
gramming models allow the programmer to create thou-
sands of threads, each executing the same computing kernel.
GPUs exploit this parallelism in two ways. First, threads are
grouped into fixed-size SIMD batches known as warps, and
second, many such warps are concurrently executed on a sin-
gle GPU core. Despite these techniques, the computational
resources on GPU cores are still underutilized, resulting in
performance far short of what could be delivered. Two rea-
sons for this are conditional branch instructions and stalls
due to long latency operations.

To improve GPU performance, computational resources
must be more effectively utilized. To accomplish this, we
propose two independent ideas: the large warp microarchi-
tecture and two-level warp scheduling. We show that when
combined, our mechanisms improve performance by 19.1%
over traditional GPU cores for a wide variety of general pur-
pose parallel applications that heretofore have not been able
to fully exploit the available resources of the GPU chip.

Categories and Subject Descriptors: C.1.2 [Processor
Architectures]: Multiple Data Stream Architectures (Multi-
processors)
General Terms: Design, Performance.
Keywords: GPGPU, SIMD, Divergence, Warp Scheduling

1. INTRODUCTION
Graphics processing units (GPUs) have recently become a

popular platform for executing general purpose parallel ap-
plications. Programming systems such as CUDA [20], ATI
Stream Technology [1], and OpenCL [13] allow programmers
to parallelize an application into thousands of threads each
of which executes the same code. Previous work [23, 9] has
shown that some applications experience an order of magni-
tude speedup when run on a GPU instead of a CPU. GPUs
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achieve such speedups because of the sheer amount of com-
putational power they possess in relation to CPUs. They
exploit this power by utilizing the thread-level parallelism
(TLP) exposed by the programmer.

GPUs exploit TLP in two major ways. First, threads
executing the same code are grouped into fixed sized batches
known as warps.1 These warps are executed on a processing
core that employs a scalar front end (fetch and decode) and
a SIMD (single instruction, multiple data) backend. The
number of threads in a warp is usually equal to the SIMD
width of the core so that a warp can execute an instruction
for all its threads across the SIMD resources in parallel.

Second, GPUs concurrently execute many warps on a sin-
gle core. For example, 32 warps, each with 32 threads, can
all be assigned to execute on the same core. When one warp
is stalled, other warps can execute which helps tolerate data
dependencies, branch penalties, and long latency operations.

The Problem: Despite these techniques, the computa-
tional resources on a GPU core are still underutilized. For
example, grouping threads into warps is efficient if those
threads remain on the same dynamic execution path (i.e.,
same PC) throughout their execution. Although this holds
true for graphics applications, many general purpose parallel
applications exhibit more complex control flow behavior due
to frequent conditional branches in the code. Conditional
branch instructions can cause threads in a warp to take dif-
ferent dynamic execution paths, or diverge. Since existing
GPU implementations allow a warp to have only one active
PC at any given time, these implementations must execute
each path sequentially. This leads to lower utilization of
SIMD resources while warps are on divergent control-flow
paths because the warp must execute with a fewer number
of active threads than the SIMD width of the core.

Another example of unused computational resources oc-
curs when a GPU core is unable to effectively hide the la-
tency of long latency operations. The warp instruction fetch
scheduling policy employed on a GPU core can significantly
affect the core’s ability to hide such latencies. For exam-
ple, commonly-employed scheduling policies that give equal
priority to each warp (i.e., round-robin scheduling) tend to
result in all warps arriving at the same long latency opera-
tion at roughly the same time. Therefore, there are no other
warps to execute to hide the latency. On the other hand,
allowing warps to progress at very different rates can result
in starvation and destroy the data locality among the warps.
For example, data brought into the cache and row buffers

1Warp sizes for current NVIDIA [20] and ATI [1] GPUs are
32 and 64 respectively.
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Figure 1: Computational resource utilization

opened by one warp are likely to be accessed again by other
warps. However, allowing warps to progress very unevenly
may destroy this locality.

Figure 1 illustrates the unused computational resources
for a set of general purpose parallel benchmarks. Each
benchmark is represented by a stacked bar indicating the
percentage of cycles a certain number of the functional units
(FUs) are active. In this experiment, SIMD width and warp
size is 32, and 32 warps are concurrently executing on a sin-
gle GPU core using round-robin scheduling. Branch diver-
gence results in a reduction of the number of active threads
in a warp which leads to underutilization of the computa-
tional resources. The leftmost benchmarks suffer from this
problem as indicated by the large percentage of cycles where
only a fraction of the FUs are active. On the other hand, the
rightmost benchmarks suffer less from branch divergence but
rather experience a significant fraction of cycles where none
of the FUs are active (idle FU cycles). The main reason for
these idle cycles is that all (or most) warps are stalled wait-
ing on a long latency operation (e.g., a cache miss). Even
with so many warps concurrently executing, several bench-
marks show a significant fraction of idle cycles. For example,
bfs spends approximately 95% of its execution time stalling.

Our goal is to improve GPU performance by better uti-
lizing computational resources. To alleviate the performance
penalty due to branch divergence, we propose the large warp
microarchitecture (LWM). Existing GPU cores statically cre-
ate many warps each with a modest number of threads (usu-
ally equal or close to the SIMD width of the core). In-
stead, we propose creating fewer but correspondingly larger
warps (that have a significantly larger number of threads
than the SIMD width of the core), and dynamically creat-
ing SIMD width sized sub-warps from the active threads in
a large warp. The key insight is that even in the presence
of branch divergence, there will likely be a large number of
active threads in the large warp. These active threads can
be dynamically grouped together into fully populated sub-
warps that better utilize the SIMD resources on the core.

To reduce the number of idle FU cycles, we propose a
novel two-level round-robin warp instruction fetch schedul-
ing policy which can be applied on top of conventional GPU
cores as well as the LWM. This policy splits all concurrently
executing warps into fetch groups (e.g., 32 warps could be
split up into 4 fetch groups of 8 warps each) and prioritizes
warps from a single fetch group until they reach a stalling
point (i.e., long latency operation). Then, the next fetch
group is selected and the policy repeats. The scheduling
policy within a fetch group is round-robin, and switching

from one fetch group to another is also done in a round-
robin fashion (hence two-level round-robin). The key insight
is that each fetch group reaches a long latency instruction
at different points in time; as such, when the warps in one
fetch group are stalled, warps from another fetch group can
be executing thereby effectively tolerating the latency. Since
a fair round-robin policy is used at each level of scheduling,
our two-level policy is still able to exploit the data locality
among warps (which the conventional round-robin schedul-
ing policy does very well). The overall result is reduced idle
FU cycles leading to performance improvement.

We show that when combined, our mechanisms signifi-
cantly improve computational resource utilization, resulting
in 19.1% performance improvement over traditional GPU
cores on a set of general purpose parallel applications.

2. BACKGROUND
We first describe the microarchitecture of a single GPU

core.2 Although we focus on a single GPU core, it should
be noted that many such cores are replicated on the GPU.

2.1 GPU Core Pipeline
Figure 2 illustrates the baseline architecture of a single

GPU core composed of a scalar front end (fetch, decode) and
a SIMD backend. GPU programming models allow the pro-
grammer to create thousands of threads, each executing the
same code. Before execution, threads are grouped into fixed
size SIMD batches called warps. A warp contains threads
with consecutive thread IDs and the number of threads is
equal to the SIMD width of the core (N in Figure 2). Many
warps (M in Figure 2 for a total of M × N threads) are
assigned to execute concurrently on a single GPU core.

In the fetch stage, the scheduler selects a warp from the
list of ready warps using a round-robin policy that gives
equal priority to each warp [7, 16]. Associated with each
warp is a warp ID, a bit vector called the active mask, and
a single Program Counter (PC). Each bit in the active mask
indicates whether the corresponding thread is active. When
a warp is first created, all threads are active.3

Our baseline GPU core employs barrel processing [26, 24]
such that once a warp is selected in the fetch stage, it cannot
be selected again until that warp completes execution. Af-
ter a warp is selected by the scheduler, the instruction cache

2Our term “GPU core” corresponds to a single Streaming
Multiprocessor (SM) in NVIDIA’s terminology [20].
3If the total number of threads is not a multiple of the warp
size, one warp may be created without all threads active.
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is accessed at the PC of the warp and the fetched instruc-
tion is decoded, thereby completing the scalar portion of the
pipeline. Next, register values for all threads in the warp
are read in parallel from the register file indexed by warp
ID and register ID as shown in Figure 2. These register val-
ues are then fed into the SIMD backend of the pipeline (i.e.,
the computational resources) and are processed in parallel
across multiple SIMD lanes. Once a warp reaches the final
stage of the pipeline, its PC and active mask are updated
and the warp is again considered for scheduling.

2.2 Memory Model
Figure 2 also illustrates the memory model for the baseline

GPU core. Data from global memory is cached on chip
in the data cache. An entire cache line can be read (or
written) in parallel in a single transaction. Therefore, the
data accesses of all threads in a warp can be completed in
a single transaction if all accesses map to the same line.
If threads within a warp access different cache lines, the
accesses will be serialized resulting in stalls in the pipeline.
If one or more threads in the warp access a line not present
in the cache, the entire warp stalls and is put aside, allowing
other warps to flow through the pipeline.

Each thread also has access to a small amount of on-chip
private memory which stores private data of each thread
(i.e., local variables). This helps avoid costly accesses to
global memory for applications where each thread’s private
data is too large for the register file. This on-chip memory
is highly banked (one bank per SIMD lane) so that threads
in a warp can read private data efficiently in parallel. This
memory corresponds to private memory in OpenCL [13].

2.3 Conditional Branch Handling
Figure 3 illustrates the baseline branch handling mecha-

nism currently employed by GPUs. In this example, there is

only a single warp consisting of four threads, each of which is
executing the same code whose control flow graph is shown
in Figure 3(a). Since a warp can only have a single active PC
at any given time, when branch divergence occurs, one path
must be chosen first and the other is pushed on a divergence
stack associated with the warp so that it can be executed
later. The divergence stack is also used to bring the warp
back together once the divergent paths have been executed
and all threads have reached a control flow merge (CFM)
point. A divergence stack entry consists of three fields: a
re-convergence PC, an active mask, and an execute PC. Ex-
ecuting divergent paths serially but then re-converging at
the CFM point is accomplished as follows:

1) When a warp encounters a divergent branch, push a
join entry onto the divergence stack. This entry has both
the re-convergence and execute PCs equal to the compiler
identified control flow merge (CFM) point of the branch.
The active mask field is set to the current active mask (i.e.,
the active mask when the branch instruction was executed).
Next, one of the two divergent paths is selected to execute
first and the current PC and active mask of the warp are up-
dated accordingly. Lastly, another entry, the divergent entry,
is pushed on the divergence stack. The execute PC and ac-
tive mask of this entry correspond to the divergent path that
was not selected to be executed first. The re-convergence PC
is set equal to the CFM point of the divergent branch.

2) Each time a warp reaches the last pipeline stage, the
warp’s next PC is compared to the re-convergence PC at
the top of the stack. If equal, the stack is popped, and the
active mask and PC of the warp are updated with the active
mask and execute PC fields of the popped entry.

Figures 3(b) through (e) show the state of a warp’s PC,
active mask, and divergence stack at relevant points in time
as it executes the control flow graph of Figure 3(a). Inside
each basic block of Figure 3(a) is a bit vector indicating
whether the corresponding thread in the warp needs to ex-
ecute the instructions in that basic block, i.e., the current
active mask of the warp. The SIMD lanes are fully utilized
as the instructions in block A execute but are underutilized
when the divergent paths (blocks B and C) execute. Once
all threads reach block D, the warp is restored to four ac-
tive threads and execution once again proceeds efficiently.
However, the under-utilization of SIMD resources before re-
convergence results in performance degradation.

3. MECHANISM
In this section we describe our two new mechanisms: the

Large Warp Microarchitecture, and the two-level round-robin
warp scheduling policy. We first describe each mechanism,
then discuss how the two are combined.

3.1 The Large Warp Microarchitecture
To alleviate the performance penalty due to branch diver-

gence, we propose the large warp microarchitecture (LWM).
While existing GPUs assign several warps to concurrently
execute on the same GPU core, we propose having fewer but
correspondingly larger warps. The total number of threads
and the SIMD width of the core stay the same. The key ben-
efit of having large warps is that fully populated sub-warps
can be formed from the active threads in a large warp even
in the presence of branch divergence.

A large warp is statically composed of consecutive threads
and has a single PC. It also has an active mask organized as
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a two dimensional structure where the number of columns
is equivalent to the SIMD width of the core. Figure 4 shows
the organization of the active mask of a large warp of size
K × N threads executing on a core with a SIMD width of
N. Each cell in Figure 4 is a single bit indicating whether
or not the corresponding thread is currently active. Notice
that the actual storage cost does not change compared to
the baseline. The baseline processor would have K separate
N-bit wide active masks instead (i.e., K separate warps).
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Once a large warp is selected in the fetch stage, the in-
struction cache is accessed at the PC of the large warp and
the instruction is decoded in the following cycle just as in
the baseline processor. In parallel with decode, SIMD-width
sized sub-warps are created which then flow through the rest
of the pipeline. When forming sub-warps, the goal is to pack
as many active threads as possible into a sub-warp so as to
best utilize the SIMD resources further down the pipeline.
To accomplish this, specialized sub-warping logic examines
the two dimensional active mask of the large warp and aims
to pick one active thread from each column.

Sub-warp Creation: When determining how to pack
active threads into a sub-warp, the design of the register
file must be taken into consideration since it is imperative
that the register values for a sub-warp can be sourced in
parallel. Figure 5(a) shows the design of the register file
for the baseline microarchitecture (no large warps). Since
consecutive threads are statically grouped into warps and
this assignment never changes, the register file can be con-
ceptually designed as a very wide single banked structure
indexed by warp ID concatenated with the register ID as
shown in Figure 5(a).4 However, having a single address de-
coder does not give enough flexibility for the LWM to pack
threads into sub-warps. Ideally, we want to allow any set
of active threads to be packed into a sub-warp. This would
require the register file to have a number of ports equivalent
to the SIMD width of the core. Such a design would require
considerable increase in area and power. Therefore, we use
a register file design similar to the one used by Jayasena et
4Such large SRAMs cannot be built for timing/energy rea-
sons [3], so even the baseline register file is slightly banked.

al. [10] and Fung et al. [7, 8] and shown in Figure 5(b). The
register file is split up into separately indexable banks, one
bank per SIMD lane. This design is cost-effective and pro-
vides much more flexibility in grouping active threads into
sub-warps than the baseline register file. Using this design,
we can now group threads into a sub-warp as long as they
come from different columns in the large warp’s active mask.

Figure 6 illustrates the dynamic creation of sub-warps
from a large warp of 32 threads executing on a core with
a SIMD width of four. Due to branch divergence, the large
warp is shown with only a subset of its threads active. Each
cycle, the hardware searches each column of the active mask
in parallel for an active thread. The selected threads are
grouped together into a sub-warp. Once an active thread is
selected, the corresponding bit in the active mask is cleared.
If there are still active threads remaining, a stall signal is
sent to the fetch stage of the pipeline since the large warp
has not yet been completely broken down into sub-warps.
Once all bits in the active mask have been cleared, sub-
warping for the current warp is complete and sub-warping
for the next large warp (selected in the fetch stage) begins.
Figure 6 illustrates how a large warp is dynamically broken
down into four sub-warps over four successive cycles.

Note that the baseline processor would form eight differ-
ent warps of four threads each rather than grouping all 32
threads into a large warp. Therefore, while the divergent
code executes, SIMD resources will be underutilized since
each warp contains fewer active threads than the SIMD
width. However, with large warps, the inactive slots are
filled with active threads during sub-warp creation. There-
fore, only four efficiently packed sub-warps are created and
SIMD resources are better utilized.

Barrel Processing: In the baseline GPU core, multiple
warps are executed in a barrel processing fashion such that
once a warp is selected by the scheduler in the fetch stage,
it is not considered again for scheduling until the warp com-
pletes execution. For the large warp microarchitecture, we
impose a similar, but slightly relaxed model. Once a large
warp is selected, it is not reconsidered for scheduling until
the first sub-warp completes execution. This re-fetching pol-
icy requires hardware interlocks to ensure that register de-
pendencies are not violated. Rather than having full register
dependency checking hardware for each thread, we employ
a single bit per thread to ensure that if a thread has been
packed into a sub-warp that has not completed execution, it
will not be packed into another sub-warp (corresponding to
the next instruction) until the previous sub-warp completes.

We use this relaxed re-fetching policy with one exception:
conditional branch instructions. When a large warp executes
a conditional branch, it is not refetched until all sub-warps
complete. We do this since it is not known whether or not a
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large warp diverged until all sub-warps complete. As such,
re-fetching a large warp after the first sub-warp completes
requires speculation and complicates the implementation.

Divergence and Reconvergence: Large warps handle
divergence and reconvergence much the same way that base-
line warps do. However, as mentioned before, when a large
warp executes a branch instruction, it is not known for sure
whether or not the large warp diverged until the last sub-
warp completes execution. Therefore, the new active mask
and the active masks to be pushed on the divergence stack
are buffered in temporary active mask buffers. Once all sub-
warps complete execution, the current active mask and PC
of the large warp are updated and divergence stack entries
are pushed on the large warp’s divergence stack (if in fact
the large warp diverged). The divergence stack is popped
just as described in the baseline processor in Section 2.3.

Unconditional Branch Optimization: When a warp
in the baseline processor executes an unconditional branch
instruction (i.e., a jump), only a single PC update is needed.
The same is true for large warps, therefore there is no need
to create multiple sub-warps when a large warp executes a
jump. Thus, sub-warping for a large warp executing a jump
completes in just one cycle, allowing sub-warping for the
next large warp to begin sooner. Note that for large warps
of 256 threads and a SIMD width of 32, this optimization
saves up to 7 cycles by creating one sub-warp instead of 8.

3.2 Two-level Warp Scheduling
GPU cores concurrently execute many warps on the same

core which helps avoid stalls due to long latency operations.
However, the warp instruction fetch scheduling policy em-
ployed on the GPU core can considerably affect the core’s
ability to hide long latencies. In this section, we propose a
new two-level round-robin scheduling policy which more ef-

fectively hides long latencies and therefore reduces idle func-
tional unit (FU) cycles. We first describe our new schedul-
ing policy in the context of the baseline processor (not the
LWM) and later describe how the two can be combined.

The baseline processor uses a round-robin warp instruc-
tion fetch policy giving equal priority to all concurrently exe-
cuting warps [16, 7]. This policy results in warps progressing
through the program at approximately the same rate which
can be beneficial since warps tend to have a lot of data lo-
cality among them.5 When one warp generates a memory
request, other warps are likely to produce memory requests
that map to that same row buffer. This row buffer locality
can be exploited as long as the requests are generated close
enough to each other in time. A fair round-robin policy al-
lows this to happen whereas a scheduling policy that results
in very uneven warp progression could destroy such locality.
However, a pure round-robin scheduling policy also tends to
make all warps arrive at the same long latency operation at
roughly the same time. Since all (or most) of the warps are
stalled, there are not enough active warps to hide the long
latency resulting in several idle FU cycles.

To this end, we propose a two-level round-robin scheduling
policy. The policy groups all concurrently executing warps
into fixed size fetch groups. For example, 32 warps could
be grouped into 4 fetch groups (with fetch group IDs 0-3)
each with 8 warps. The scheduling policy selects a single
fetch group to prioritize (let’s say fetch group 0) and warps
in that fetch group are given priority over warps in other
fetch groups. More specifically, fetch group 0 is given the
highest priority, fetch group 1 the next highest, and so on.

5GPU programmers are encouraged to make consecutive
threads access consecutive memory locations so that mem-
ory accesses can be coalesced [20, 14], implying requests from
different warps have significant spatial locality.
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Warps within the same fetch group have equal priority and
are scheduled in a round-robin fashion amongst each other.
Once all warps in the highest prioritized fetch group are
stalled on a long latency operation, a fetch group switch
occurs giving fetch group 1 the highest priority, fetch group
2 the next highest, and so on. Fetch group 0, which used to
have the highest priority, now has the least.

Note that the scheduling policy within a fetch group is
round-robin, and switching fetch group priorities is also
round-robin (hence two-level round-robin). Prioritizing
fetch groups prevents all warps from stalling together. In-
stead, a smaller subset of warps (i.e., a fetch group) arrives
at the stall together leaving other warps to execute while
warps in one fetch group are stalled. Since both levels of
scheduling are round-robin, row-buffer locality among warps
remains high just as in conventional round-robin scheduling.

Figure 7 shows execution on a GPU core (a) with round-
robin scheduling, and (b) with two-level scheduling. In this
example, there are 16 total warps. With round-robin, all
warps progress evenly through the compute phase of the pro-
gram but then all stall waiting on data from memory. How-
ever, two-level scheduling with 2 fetch groups of 8 warps each
reduces the number of idle cycles as shown in Figure 7(b).
With two-level scheduling, warps in fetch group 0 proceed
through the computation in half the time it took all 16 warps
and therefore reach the stalling point sooner. Since all warps
in fetch group 0 are stalled, a fetch group switch occurs and
warps in fetch group 1 begin to execute the compute phase
while requests created by fetch group 0 are serviced.

For two-level scheduling to be effective, the fetch group
size must be set judiciously. The fetch group size should
have enough warps to keep the pipeline busy in the absence
of long latency operations. Recall from Section 2 that the
baseline GPU core uses a barrel processing model where once
a warp is selected in the fetch stage, it is not reconsidered
for scheduling until it completes execution. Therefore, the
minimum fetch group size is equal to the number of pipeline
stages. Having too large a fetch group size limits the effec-
tiveness of two-level scheduling for two reasons: 1) A larger
fetch group takes longer to progress through computation
than a smaller fetch group and therefore will not reach the
stalling point as soon, and 2) A larger fetch group implies a
greater number of warps stalling at the same time, leaving
fewer warps to hide the latency. We evaluate the effect of
fetch group size in our results section.

3.3 The LWM and Two-Level Scheduling
The LWM and two-level scheduling can be combined. In

our results section, we show that when the LWM is eval-

uated independently, the best performing large warp size
is 256 threads. Likewise, the best performing fetch group
size for two-level scheduling is 8 regular-sized warps (i.e.,
256 total threads since there are 32 threads per warp in the
baseline). One would think that when the two mechanisms
are combined, we should use a large warp size of 256 threads,
and the fetch group size should be a single large warp.

However, the combination of the large warp re-fetch policy
for branch instructions (i.e., waiting for all sub-warps to
complete) and two-level scheduling with a fetch group size
of one can be problematic and limit the effectiveness of the
combination. For example, consider an application that has
no stalls after a short warmup period. With no stalls, two-
level scheduling continues prioritizing a single large warp
until the entire program completes. Only then will a fetch
group switch occur. This will ultimately result in a single
large warp having to execute the entire program with no
other large warps active (since they all finished executing the
program). Having only one large warp active for such a long
time is problematic since every time a conditional branch
instruction is fetched, the large warp must wait until all sub-
warps complete before being re-fetched thereby introducing
several bubbles in the pipeline.

To alleviate this, we implement a two-level scheduling
timeout rule whereby if a single large warp is prioritized
for more than timeout instructions, we preemptively invoke
a fetch group switch. Note that for most applications, the
timeout is never invoked. However, for branch-intensive ap-
plications with few long latency stalls (e.g., the blackjack
benchmark used in our evaluation), this rule helps signifi-
cantly by bounding the time only a single large warp is ac-
tive. We determine empirically that 32K instructions works
well for the timeout period.

3.4 Hardware Cost
Most of the hardware cost for the LWM comes from re-

structuring the register file. As shown in Section 3.1, instead
of a single address decoder, our mechanism requires a sep-
arate address decoder per SIMD lane. Previous work [10,
7, 8] estimates that such a design results in little die area
increase. Jayasena et al. [10] propose stream register files
with indexed access which require dedicated row decoders
for each bank instead of a single shared decoder. They show
that this results in an 11% to 18% increase in register file
area which corresponds to a 1.5% to 3% increase in chip area
of the Imagine processor [12]. Fung et al. [8] show similar
results with an estimated 18.7% increase in register file area,
corresponding to 2.5% of GPU area.

In addition to the register file overhead, there are a few
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1-wide fetch and decode stages, round-robin warp schedulingScalar front end
4KB single-ported instruction cache

SIMD back end In order, 5 stages, 32 parallel SIMD lanes
64KB register file (16 32-bit registers per thread, 1024 concurrent threads)

Register file and on-chip memories 128KB, 4-way, single cycle data cache, 1 read, 1 write port, 128-byte line size
128KB, 32-banked private memory (128 bytes per thread)
Open-row, first-come first-serve scheduling policy, 8 banks, 4KB row bufferMemory system
100-cycle row-hit, 300-cycle row-conflict latency, 32 GB/s memory bandwidth

Table 1: Baseline GPU core and memory configuration

Benchmark Description Input Set
blackjack Simulation of blackjack card game to compute house edge Standard 52-card deck per thread

sort Parallel bucket sort of a list of integers 1M random integers
viterbi Viterbi algorithm for decoding convolutional codes 4M convolutionally encoded bits
kmeans Partitioning based clustering algorithm 16K 1-dimensional 8-bit data points
decrypt Advanced Encryption Standard decryption algorithm 256K AES encrypted bytes

blackscholes Call/put option pricing using blackscholes equation Initial values for 512K options
needleman Calculate optimal alignment for 2 DNA sequences 2 DNA Sequences of length 2048
hotspot Processor temperature simulation 512x512 grid of initial values

matrix mult Classic matrix multiplication kernel 2 256x256 integer matrices
reduction Reduce input values into single sum 32M random boolean values
histogram Binning ASCII characters into a histogram 16M ASCII characters

bfs Breadth first search graph traversal 1 million node arbitrary graph

Table 2: Benchmarks

extra storage structures required by the LWM not present
in the baseline GPU core. As explained in Section 3.1, sub-
warp creation is done in parallel with decode by searching
the columns of the two dimensional active mask of a large
warp and clearing the bits corresponding to the selected
threads. We cannot clear the bits in the large warp’s ac-
tual active mask and therefore a copy must be made before
the large warp can be broken down into sub-warps. For large
warps of size 256 threads, this corresponds to 256 bits of stor-
age. In addition, as explained in Section 3.1, the large warp
microarchitecture uses temporary active mask buffers while
executing branch instructions. Since a temporary buffer is
required for each path of the divergent branch, this corre-
sponds to 512 bits of storage. Lastly, the LWM requires
extra bits and some simple logic for dependency handling as
explained in Section 3.1. This additional storage amounts
to just a single bit per thread. The total additional storage
cost is 256+512+1024 bits (i.e., 224 bytes).

Two-level warp scheduling does not require any additional
storage cost. The only change is a simple logic block in the
fetch stage implementing two-level round-robin scheduling.

4. METHODOLOGY
We use a cycle accurate simulator that simulates parallel

x86 threads, each executing the same compute kernel. In our
results, we simulate a single GPU core concurrently execut-
ing 1024 threads. Table 1 presents the system parameters
used in our simulations for the baseline processor.

Since x86 does not have instructions to aid with branch
divergence/re-convergence of parallel threads like GPU ISAs
do [21], we created instrumentation tools to identify con-
ditional branch instructions and their control flow merge
points. We used a similar procedure to identify barrier syn-
chronization points since x86 does not support single in-
struction barrier synchronization present in GPU ISAs [21].

We created parallel applications adapted from existing
benchmark suites including Rodinia [5], MineBench [18], and
NVIDIA’s CUDA SDK [19] in addition to creating one of our
own (blackjack). Each benchmark was parallelized using
POSIX threads (Pthreads) and compiled with Intel’s ICC

compiler. We optimized each benchmark for GPU execu-
tion using principles found in [23] and [14]. Each benchmark
runs to completion and consists of 100-200 million dynamic
instructions across all 1024 threads. Table 2 lists the bench-
marks (along with input set) used in this study.

The metric we use to compare performance is retired in-
structions per cycle (IPC). Note that when a warp (or a sub-
warp) executes an instruction, we treat each active thread
in the warp as executing a single instruction. Therefore, if
the warp (or sub-warp) size is 32, the maximum IPC is 32.

5. RESULTS
In this section we provide the overall results of the large

warp microarchitecture and two-level scheduling. We also
compare our work to recent state of the art work in diver-
gent control flow handling on GPUs, Thread Block Com-
paction [6] (TBC). TBC groups multiple regular-sized warps
into a block and synchronizes them at every branch instruc-
tion. Special hardware is used to dynamically create new
warps (i.e., compact into fewer warps) based on the active
mask of all warps in the block after the divergent branch.

5.1 Overall IPC Results
Figures 8 and 9 show IPC and functional unit utiliza-

tion for the baseline (32 warps of 32 threads each, round-
robin scheduling), Thread Block Compaction (TBC), large
warp microarchitecture (LWM), two-level scheduling (2Lev),
and large warp microarchitecture combined with two-level
scheduling (LWM+2Lev). Note that the SIMD width (32)
and total thread count (1024) is the same for each configura-
tion. For TBC, we used a block size of 256 threads and sticky
round robin (SRR) scheduling, which performed slightly bet-
ter than round-robin in our evaluation. For the LWM, we
created 4 large warps of 256 threads each. For two-level
scheduling only, we set the fetch group size to 8 (i.e., 4 fetch
groups, each consisting of 8 warps). For the combination
of LWM and two-level scheduling, we again formed 4 large
warps of 256 threads each and set the fetch group size to 1
(i.e., 4 fetch groups, each consisting of 1 large warp).
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Figure 8: Performance
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As expected, the LWM (third bar) significantly improves
performance for branch-intensive applications (the leftmost
4 benchmarks), whereas two-level scheduling (fourth bar)
does not provide much benefit compared to the baseline
for these applications. The reason for this is that these
benchmarks make very good use of the on chip data cache
and private memory and therefore do not suffer much from
long latencies. However, they do contain frequent divergent
branches which is the main reason for performance degrada-
tion for these applications. This is justified by looking at the
computational resource utilization for these applications in
Figure 9. There are relatively few idle cycles (0 active FUs)
for these benchmarks even in the baseline architecture, how-
ever they do have a significant number of cycles where only
a small portion of the FUs are active. The LWM improves
this by efficiently packing active threads into sub-warps,
thereby increasing SIMD utilization and improving perfor-
mance. TBC also improves performance for these applica-
tions but not as much as the LWM does. There are two main
reasons for LWM’s edge. First, the LWM benefits from the
optimization for unconditional branch instructions discussed
in Section 3.1. TBC cannot benefit from this optimization
since it does not keep a large number of threads together be-
tween branch instructions. After compacting threads after a
branch, warps are treated as individual scheduling units and
therefore this optimization does not apply. Second, when a
large warp executes a predicated instruction (e.g., cmov in
x86), it creates efficiently packed sub-warps based on the
predicated active mask, whereas TBC does not efficiently
execute predicated code since it only performs compaction
after divergent branch instructions.

The rightmost benchmarks show the opposite behavior.
These benchmarks suffer from long latency stalls and there-

fore the LWM provides no benefit but two-level scheduling
effectively reduces idle FU cycles as shown in Figure 9. Two-
level scheduling results in only a subset of warps (i.e., fetch
group) stalling at the same time, allowing warps in differ-
ent fetch groups to effectively hide the latency. In addition,
row buffer locality remains high (hit rate within 1.7% of
traditional round-robin on average) since at each level of
scheduing a round-robin policy is used. TBC, even with
SRR scheduling, does not provide as much benefit due to
the synchronization required at each branch instruction.

In summary, LWM alone improves performance by 7.9%,
two-level scheduling alone improves performance by 9.9%,
and when our two mechanisms are combined, the benefits of
each are preserved resulting in 19.1% performance improve-
ment over the baseline and 11.5% over TBC.

5.2 Large Warp Microarchitecture Analysis
In this section we provide results relating to the LWM

and use round-robin scheduling among the large warps (not
two-level) in order to isolate the effects of the LWM.

Varying the Large Warp Size: We vary the warp size
from the baseline of 32 threads per warp to a maximum of
512.6 As seen in Figure 10, increasing warp size improves
performance up to 256 threads. Larger warp sizes give more
potential for sub-warping logic to create efficiently packed
sub-warps and therefore in general, are beneficial. However,
extremely large warp sizes can also be harmful. Having too
large a warp size is inefficient for cases where most of the
threads have reached the reconvergence point of a divergent
branch and are waiting on just a few threads to arrive so

6All 1024 threads in a warp is not evaluated since the branch
re-fetch policy would result in inefficient use of the pipeline.
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Figure 10: Effect of large warp size
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Figure 11: Effect of fetch group size on two-level scheduling

that reconvergence can be done and execution can continue.
For example, if each thread of a large warp executes a loop
for a different number of iterations (i.e., the number of it-
erations is data dependent), at some point almost all of the
threads will have exited the loop but will have to wait and sit
idle (on the divergence stack) while the last few threads fi-
nally exit. Only then can the reconvergence stack be popped
and execution of the reconverged large warp continue. This
problem becomes more severe as large warp size increases
since a greater number threads will be sitting idle on the di-
vergence stack until the final thread exits the loop. We find
this behavior prominent in blackjack and sort, explaing why
256 threads performs better than 512. On the other hand,
a large warp size of 512 slightly outperforms 256 for a few
of the benchmarks which don’t exhibit the loop divergence
discussed above but rather have more regular if-then-else
control flow constructs. Having too small a large warp size
(64, 128 threads) does not provide enough opportunity for
sub-warping logic to efficiently pack threads into sub-warps.
Overall, we find a large warp size of 256 balances these trade-
offs well and provides the best average performance.

5.3 Analysis of Two-level Scheduling
In this section, we apply two-level scheduling on top of the

baseline microarchitecture (not LWM) and vary the fetch
group size. Since there are 32 total warps concurrently exe-
cuting on our baseline 7-stage GPU core, we use fetch group
sizes of 8, 16 and 32 warps. In our notation, “2Lev8” stands
for two-level scheduling, with a fetch group size of 8 (i.e., 4
fetch groups each consisting of 8 warps). Figure 11 shows
the IPC as we vary the fetch group size.

For the benchmarks on the left, there is no variation since
these benchmarks have very few idle cycles even with the

baseline round-robin policy. However, the rightmost bench-
marks do illustrate that a fetch group size of 8 warps works
best. Recall from Section 3.2 that the fetch group size should
have just enough warps to keep the pipeline busy, but that
too many warps in a fetch group limits the effectiveness of
two-level scheduling. A fetch group size of 16 (half of all the
warps) still improves performance over the baseline round-
robin policy but not as much as 8. 16 warps is more than
necessary to keep the pipeline busy and results in a larger
subset of warps arriving at the long latency operation to-
gether and therefore is unable to hide latencies as well as 8
warps. Note that a fetch group size of 32 (i.e., all 32 warps in
a single fetch group) is by definition equivalent to the base-
line round-robin policy and therefore performs identically to
it. Having only a single fetch group removes one of the lev-
els of scheduling (the prioritization of the fetch groups) and
therefore all the benefits of two-level scheduling are lost.

6. RELATED WORK
Conditional Execution on SIMD Processors: Using

bit masks to execute conditional code in SIMD processors
is an old concept. The Illiac IV [4] had a mode bit per
Processing Element (PE) which turned on or off a PE during
execution. CRAY-1 [22] had a vector mask register which
was used to vectorize loops with if/else statements. These
bit masks are akin to the active mask on GPU cores.

Smith et al. [25] introduced the concept of density-time
execution whereby the time taken to execute a masked vector
instruction is a function of the number of true values in the
mask. False values in the vector mask register are skipped,
thereby reducing the number of cycles it takes to execute
the vector instruction. Rather than skipping false values,
our approach finds active operations from threads in a large
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warp to fill the holes caused by branch divergence.
Kapasi et al. [11] introduced conditional streams, which

allow stream processors to filter an input stream before it
is processed. However, this mechanism requires 1) commu-
nication between different SIMD lanes, and 2) effort from
the programmer to declare conditional streams and imple-
ment new kernels to perform the filtering. In contrast, our
approach 1) does not require communication between SIMD
lanes and 2) is a pure hardware mechanism and therefore
does not require any programmer effort.

Krashinsky et al. [15] proposed the Vector-Thread archi-
tecture (VT), which employs a control processor and a vec-
tor of virtual processors (VPs). The control processor uses
vector-fetch commands to broadcast the same instruction to
all the VPs. However, if divergence occurs, each VP also has
the ability to direct its own control flow with thread-fetch
commands. In this sense, the architecture is not strictly
SIMD. In contrast, the LWM is strictly SIMD and toler-
ates branch divergence by dynamically breaking down large
warps into efficiently packed sub-warps.

Fung et al. [7, 8] were the first to propose the idea of
combining threads from different warps to address under-
utilized SIMD resources due to branch divergence on GPU
cores. This work has been superseded by Thread Block
Compaction [6] which we compare to in our results section.

Meng et al. [17] proposed Dynamic Warp Subdivision
(DWS) whereby upon divergence, two warp-splits are
formed which can be scheduled independently. Although
this does not increase SIMD resource utilization, it may in-
crease memory-level parallelism since both sides of a diver-
gent branch are executed concurrently. As such, DWS is
orthogonal to the LWM and can be employed on top of the
LWM by splitting up a large warp upon branch divergence.

Fetch Scheduling: Many previous proposals analyzed
and proposed scheduling policies for threads on MT or SMT
cores [2, 27]. However, none of these policies were designed
for scheduling warps on GPUs. GPU scheduling is unique
in that warps tend to have much data locality among them.
Also, GPUs support many more warp contexts compared to
MT and SMT cores and allow zero-cycle context switching
among all concurrently executing warps.

Lakshminarayana et al. [16] evaluate several possible fetch
scheduling policies for GPUs. However, the policies they
evaluate do not include two-level scheduling. Furthermore,
most of the scheduling policies they evaluate result in warps
progressing uniformly through the program (similar to pure
round-robin). In contrast, our two-level policy allows warps
to arrive at a long latency instruction slightly apart from
each other in time thereby effectively hiding long latencies.

7. SUMMARY AND CONCLUSION
In this paper, we propose two mechanisms to improve

GPU performance by better utilizing computational re-
sources on GPUs. To alleviate the performance penalty due
to branch divergence, we propose the large warp microar-
chitecture. While existing GPU cores concurrently execute
multiple SIMD-width sized warps, we propose forming fewer
but correspondingly larger warps and dynamically creating
efficiently packed SIMD-width sized sub-warps from the ac-
tive threads in a large warp. This leads to improved SIMD
resource utilization in the presence of branch divergence.
To improve long latency tolerance, we propose a two-level
round-robin warp scheduling policy. This policy prevents all

warps from arriving at the same long latency operation at
the same time, thereby reducing idle execution cycles.

Our experimental evaluations show that when combined,
our mechanisms improve performance by 19.1% on average
for a wide variety of general purpose parallel applications.
We believe that our mechanisms increase the scope of gen-
eral purpose parallel applications that can achieve significant
speedup when executed on a GPU.
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