Many Interesting Things Are Happening Today in Computer Architecture
Many Interesting Things Are Happening Today in Computer Architecture

Performance
Energy Efficiency
Sustainability
Specialized Accelerators
Many Interesting Things Are Happening Today in Computer Architecture

- Reliability
- Safety
- Security
- Privacy
Many Interesting Things Are Happening Today in Computer Architecture

More Demanding Workloads
Many Interesting Things Are Happening Today in Computer Architecture

New (Device) Technologies
The Problem

Computing is Bottlenecked by Data
Data is Key for AI, ML, Genomics, …

- Important workloads are all data intensive

- They require rapid and efficient processing of large amounts of data

- Data is increasing
 - We can generate more than we can process
Data is Key for Future Workloads

In-memory Databases
[Mao+, EuroSys’12; Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15; Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]
Data Overwhelms Modern Machines

In-memory Databases

Graph/Tree Processing

Data → performance & energy bottleneck

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15; Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]
Data is Key for Future Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning framework

VP9
Video Playback
Google’s video codec

VP9
Video Capture
Google’s video codec
Data Overwhelms Modern Machines

Chrome

TensorFlow Mobile

Data → performance & energy bottleneck

VP9

Video Playback

Google’s video codec

Video Capture

Google’s video codec
Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"

62.7% of the total system energy is spent on data movement

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand¹ Rachata Ausavarungnirun¹
Saugata Ghose¹ Eric Shiu³ Rahul Thakur³
Youngsok Kim² Parthasarathy Ranganathan³
Daehyun Kim⁴,³ Aki Kuusela³ Allan Knies³
Onur Mutlu⁵,¹

SAFARI
Data Movement Overwhelms Accelerators

- Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and Compilation Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

> 90% of the total system energy is spent on memory in large ML models

Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand†&
Geraldo F. Oliveira*
Saugata Ghose‡
Xiaoyu Ma§
Berkin Akin§
Eric Shiu§
Ravi Narayanaswami§
Onur Mutlu*†

†Carnegie Mellon Univ. ▲Stanford Univ. ‡Univ. of Illinois Urbana-Champaign §Google *ETH Zürich

SAFARI
A memory access consumes \(\sim 100-1000X \) the energy of a complex addition.
Data Movement vs. Computation Energy

A memory access consumes 6400X the energy of a simple integer addition.
Many Interesting Things Are Happening Today in Computer Architecture
Many Novel Concepts Investigated Today

- **New Computing Paradigms (Rethinking the Full Stack)**
 - Processing in Memory, Processing Near Data
 - Neuromorphic Computing, Quantum Computing
 - Fundamentally Secure and Dependable Computers

- **New Accelerators & Systems (Algorithm-Hardware Co-Designs)**
 - Artificial Intelligence & Machine Learning
 - Graph & Data Analytics, Vision, Video
 - Genome Analysis

- **New Memories, Storage Systems, Interconnects, Devices**
 - Non-Volatile Main Memory, Intelligent Memory Systems, Quantum
 - High-Speed Interconnects, Disaggregated Systems
Increasingly Demanding Applications

Dream

and, they will come

As applications push boundaries, computing platforms will become increasingly strained.
Increasingly Diverging/Complex Tradeoffs

A memory access consumes 6400X the energy of a simple integer addition.
Increasingly Complex Systems

Past systems

Microprocessor Main Memory Storage (SSD/HDD)
Increasingly Complex Systems

- FPGAs
- Hybrid Main Memory
- Persistent Memory/Storage
- (General Purpose) GPUs
- Heterogeneous Processors and Accelerators

Modern systems
Increasingly Complex Systems on Chip

Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
Increasingly Complex Systems on Chip

https://www.theverge.com/2022/3/9/22968611/apple-m1-ultra-gpu-nvidia-rtx-3090-comparison
Computer Architecture Today

- Computing landscape is very different from 10-20 years ago
- Applications and technology both demand novel architectures

Every component and its interfaces, as well as entire system designs are being re-examined
You can revolutionize the way computers are built, if you understand both the hardware and the software (and change each accordingly)

You can invent new paradigms for computation, communication, and storage

Recommended book: Thomas Kuhn, “The Structure of Scientific Revolutions” (1962)

- Pre-paradigm science: no clear consensus in the field
- Normal science: dominant theory used to explain/improve things (business as usual); exceptions considered anomalies
- Revolutionary science: underlying assumptions re-examined
You can revolutionize the way computers are built, if you understand both the hardware and the software (and change each accordingly).

You can invent new paradigms for computation, communication, and storage.

- Pre-paradigm science: no clear consensus in the field
- Normal science: dominant theory used to explain/improve things (business as usual); exceptions considered anomalies
- Revolutionary science: underlying assumptions re-examined
Takeaways

- It is an exciting time to be understanding and designing computing architectures

- Many **challenging and exciting problems**
 - That no one has tackled (or thought about) before
 - That can have huge impact on the world’s future

- Driven by **explosion of data, new applications** (ML/AI, graph analytics, genomics), ever-greater realism, ...
 - We can easily collect more data than we can analyze/understand

- Driven by **significant difficulties** in keeping up with that hunger **at the technology layer**
 - Five walls: Energy, reliability, complexity, security, scalability
Two Major Goals of This Course

- Enable you to **think critically**
- Enable you to **think broadly**
Let’s Start with Some Puzzles

a.k.a. Computer Architecture resembles Building Architecture
What Is This?

Source: https://www.flickr.com/photos/tambako/2286064777/in/photostream/
What About This?
What Do the Following Have in Common?
Gare do Oriente, Lisbon

Milwaukee Art Museum

Source: By Andrew C. from Flagstaff, USA - Flickr, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=379223
Athens Olympic Stadium

Source: By Spyrodrakopoulos - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16172519
City of Arts and Sciences, Valencia

Florida Polytechnic University (I)
Oculus, New York City

What do All Those Have in Common with Bahnhof Stadelhofen?
ETH Alumnus, PhD Civil Engineering

“The train station has several of the features that became signatures of his work; straight lines and right angles are rare.”

Santiago Calatrava Valls (born 28 July 1951) is a Spanish architect, structural engineer, sculptor and painter, particularly known for his bridges supported by single leaning pylons, and his railway stations, stadiums, and museums, whose sculptural forms often resemble living organisms. His best-known works include the Milwaukee Art Museum, the Turning Torso tower in Malmo, Sweden, the Margaret Hunt Hill Bridge in Dallas, Texas, and the Museum of Tomorrow in Rio de Janeiro.

Your First Comp. Architecture Assignment

- Go and find the closest Calatrava building to this classroom
 - For those who like a challenge, find the furthest building that was designed by Calatrava to his classroom 😊

- Appreciate the beauty & out-of-the-box and creative thinking

- Think about tradeoffs in the design
 - Strengths, weaknesses, goals of design

- Derive principles on your own for good design and innovation

- Due date: **Any time during or after this course**
 - Later during the course is better
 - Apply what you have learned in this course
 - Think out-of-the-box
But First, Today’s First Assignment
Find The Differences of This and That
This
That

Source: http://cookiemagik.deviantart.com/art/Train-station-207266944 - Göttingen, DE
Many Tradeoffs Between Two Designs

- You can list them after you complete the first assignment...
Aside: Evaluation Criteria for the Designs

- Functionality (Does it meet the specification?)
- Reliability
- Space requirement
- Cost
- Expandability
- Comfort level of users
- Happiness level of users
- Aesthetics
- Security
- ...

How to evaluate goodness of design is always a critical question → “Performance“ evaluation and metrics
A Key Question

How was Calatrava able to design especially his key buildings?

Can have many guesses

- (Very) hard work, perseverance, dedication (over decades)
- Experience
- Creativity, Out-of-the-box thinking
- A good understanding of past designs
- Good judgment and intuition
- Strong skill combination (math, architecture, art, engineering, ...)
- Initiative, entrepreneurialism, funding ($$$)$, luck
- **Strong understanding of and commitment to fundamentals**
- Principled design
- ...

You will be exposed to and hopefully develop/enhance many of these skills in this course
Principled Design

“To me, there are two overriding principles to be found in nature which are most appropriate for building:

- one is the optimal use of material,
- the other the capacity of organisms to change shape, to grow, and to move.”

Santiago Calatrava

“Calatrava's constructions are inspired by natural forms like plants, bird wings, and the human body.”

Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/
Gare do Oriente, Lisbon, Revisited

Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/
A Principled Design

Zoomorphic architecture

From Wikipedia, the free encyclopedia

Zoomorphic architecture is the practice of using animal forms as the inspirational basis and blueprint for architectural design. "While animal forms have always played a role adding some of the deepest layers of meaning in architecture, it is now becoming evident that a new strand of biomorphism is emerging where the meaning derives not from any specific representation but from a more general allusion to biological processes."[1]

Some well-known examples of Zoomorphic architecture can be found in the TWA Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art Museum by Santiago Calatrava, both inspired by the form of a bird’s wings.[3]
What Does This Remind You Of?

Design [edit]

Calatrava said that the Oculus resembles a bird being released from a child's hand. The roof was originally designed to mechanically open to increase light and ventilation to the enclosed space. Herbert Muschamp, architecture critic of The New York Times, compared the design to the Bethesda Terrace and Fountain in Central Park, and wrote in 2004:
“Santiago Calatrava’s design for the World Trade Center PATH station should satisfy those who believe that buildings planned for ground zero must aspire to a spiritual dimension. Over the years, many people have discerned a metaphysical element in Mr. Calatrava’s work. I hope New Yorkers will detect its presence, too. With deep appreciation, I congratulate the Port Authority for commissioning Mr. Calatrava, the great Spanish architect and engineer, to design a building with the power to shape the future of New York. It is a pleasure to report, for once, that public officials are not overstating the case when they describe a design as breathtaking.”

Source: https://en.wikipedia.org/wiki/World_Trade_Center_station_(PATH)
Design Constraints and Criticism

However, Calatrava's original soaring spike design was scaled back because of security issues. The New York Times observed in 2005:

“In the name of security, Santiago Calatrava's bird has grown a beak. Its ribs have doubled in number and its wings have lost their interstices of glass.... [T]he main transit hall, between Church and Greenwich Streets, will almost certainly lose some of its delicate quality, while gaining structural expressiveness. It may now evoke a slender stegosaurus more than it does a bird.”[45]
Stegosaurus

From Wikipedia, the free encyclopedia

For the *pachycephalosaurid* of a similar name, see Stegoceras.

Stegosaurus (/ˈstɛgəˌsɔːrəs/)[1] is a genus of armored dinosaur. Fossils of this genus date to the Late Jurassic period, where they are found in Kimmeridgian to early Tithonian aged strata, between 155 and 150 million years ago, in the western United States and Portugal. Several

Source: https://en.wikipedia.org/wiki/Stegosaurus

However, Calatrava's original soaring spike design was scaled back because of security issues. The *New York Times* observed in 2005:

“\[
\text{In the name of security, Santiago Calatrava's bird has grown a beak. Its ribs have doubled in number and its wings have lost their interstices of glass.... [T]he main transit hall, between Church and Greenwich Streets, will almost certainly lose some of its delicate quality, while gaining structural expressiveness. It may now evoke a slender *stegosaurus* more than it does a bird.}^{[45]}
\]"

The design was further modified in 2008 to eliminate the opening and closing roof mechanism because of budget and space constraints.\[^{[46]}\]

The Transportation Hub has been dubbed "the world's most expensive transportation hub" for its massive cost for reconstruction—$3.74 billion dollars.\[^{[48][58]}\] By contrast, the proposed two-mile PATH extension...
The Lecture Was Slightly Different When I Was at CMU
What Is This?

Source: https://roadtrippers.com/stories/falling-water
Answer: Masterpiece of A Famous Architect

Fallingwater

Fallingwater or Kaufmann Residence is a house designed by architect Frank Lloyd Wright in 1935 in rural southwestern Pennsylvania, 43 miles (69 km) southeast of Pittsburgh.[4] The home was built partly over a waterfall on Bear Run in the Mill Run section of Stewart Township, Fayette County, Pennsylvania, in the Laurel Highlands of the Allegheny Mountains.

Time cited it after its completion as Wright's "most beautiful job";[5] it is listed among Smithsonian's Life List of 28 places "to visit before you die."[6] It was designated a National Historic Landmark in 1966.[3] In 1991, members of the American Institute of Architects named the house the "best all-time work of American architecture" and in 2007, it was ranked twenty-ninth on the list of America's Favorite Architecture according to the AIA.

Source: https://en.wikipedia.org/wiki/Fallingwater
Find The Differences of This and That
This
That
A Key Question

How was Wright able to design his masterpiece?

Can have many guesses

- (Very) hard work, perseverance, dedication (over decades)
- Experience
- Creativity, Out-of-the-box thinking
- A good understanding of past designs
- Good judgment and intuition
- Strong skill combination (math, architecture, art, engineering, ...)
- Initiative, entrepreneurialism, funding ($$$$), luck
- **Strong understanding of and commitment to fundamentals**
- Principled design
- ...

You will be exposed to and hopefully develop/enhance many of these skills in this course
A Quote from The Architect Himself

- “architecture [...] based upon principle, and not upon precedent”

Source: http://www.fallingwater.org/
Organic architecture is a philosophy of architecture which promotes harmony between human habitation and the natural world through design approaches so sympathetic and well integrated with its site, that buildings, furnishings, and surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a home on this large site, but chose to place the home directly over the waterfall and creek creating a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of stone masonry with daring cantilevers of colored beige concrete blend with native rock outcroppings and the wooded environment.
A Key Question

- How was Wright able to design his masterpiece?
- Can have many guesses
 - (Very) hard work, perseverance, dedication (over decades)
 - Experience
 - Creativity, Out-of-the-box thinking
 - A good understanding of past designs
 - Good judgment and intuition
 - Strong skill combination (math, architecture, art, engineering, ...)
 - Initiative, entrepreneurialism, funding ($$$), luck
 - Strong understanding of and commitment to fundamentals
 - Principled design
 - ...

- You will be exposed to and hopefully develop/enhance many of these skills in this course
Takeaways

- It all starts from the basic building blocks and design principles.

- And, knowledge of how to use, apply, enhance them.

- Underlying technology might change (e.g., steel vs. wood):
 - but methods of taking advantage of technology bear resemblance.
 - methods used for design depend on the principles employed.
The Same Applies to Processor Chips

- There are **basic building blocks and design principles**

- **AMD Barcelona**: 4 cores
- **Intel Core i7**: 8 cores
- **IBM Cell BE**: 8+1 cores
- **IBM POWER7**: 8 cores
- **Sun Niagara II**: 8 cores
- **Nvidia Fermi**: 448 “cores”
- **Intel SCC**: 48 cores, networked
- **Tilera TILE Gx**: 100 cores, networked
The Same Applies to Computing Systems

- There are **basic building blocks** and **design principles**

[source: http://www.sia-online.org (semiconductor industry association)]
The Same Applies to Computing Systems

- There are **basic building blocks** and **design principles**

Different Platforms, Different Goals

Source: https://iq.intel.com/5-awesome-uses-for-drone-technology/
Different Platforms, Different Goals

Source: https://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg
Different Platforms, Different Goals

Source: http://sm.pcmag.com/pcmag_uk/photo/g/google-self-driving-car-the-guts/google-self-driving-car-the-guts_dwx8.jpg
Different Platforms, Different Goals
Different Platforms, Different Goals

Source: https://www.itmagazine.ch/artikel/72401/Fugaku_Der_schnellste_Supercomputer_der_Welt.html
Apple M1 Max System on Chip (2021)

Source: https://www.anandtech.com/show/17024/apple-m1-max-performance-review
Google Tensor Processing Unit (~2016)

Figure 3. TPU Printed Circuit Board. It can be inserted in the slot for an SATA disk in a server, but the card uses PCIe Gen3 x16.

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software has the illusion that each 256B input is read at once, and they instantly update one location of each of 256 accumulator RAMs.

Google TPU Generation IV (2021)

New ML applications (vs. TPU3):
- Computer vision
- Natural Language Processing (NLP)
- Recommender system
- Reinforcement learning that plays Go

250 TFLOPS per chip in 2021
vs 90 TFLOPS in TPU3

1 ExaFLOPS per board

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests
TESLA Full Self-Driving Computer (2019)

- ML accelerator: 260 mm², 6 billion transistors, 600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.
- Two redundant chips for better safety.

https://youtu.be/Ucp0TTmvqOE?t=4236
Cerebras’s Wafer Scale ML Engine-2 (2021)

- The largest ML accelerator chip (2021)
- 850,000 cores

Cerebras WSE-2
2.6 Trillion transistors
46,225 mm²

Largest GPU
54.2 Billion transistors
826 mm²

NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
Google’s Video Coding Unit (2021)

Warehouse-Scale Video Acceleration: Co-design and Deployment in the Wild

(a) Chip floorplan
(b) Two chips on a PCBA

Figure 5: Pictures of the VCU

Source: https://dl.acm.org/doi/pdf/10.1145/3445814.3446723
UPMEM Processing-in-DRAM Engine (2019)

- Processing in DRAM Engine
- Includes **standard DIMM modules**, with a **large number of DPU processors** combined with DRAM chips.

- Replaces **standard** DIMMs
 - DDR4 R-DIMM modules
 - 8GB+128 DPUs (16 PIM chips)
 - Standard 2x-nm DRAM process
 - **Large amounts of** compute & memory bandwidth

[Image of UPMEM module]

Different Platforms, Different Goals

Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture

JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland
IZZAT EL HAJJ, American University of Beirut, Lebanon
IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Zürich, Switzerland
ONUR MUTLU, ETH Zürich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is manifest in the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly available real-world PIM architecture. The UPMEM-PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PIM (processing-in-memory benchmark suite) a benchmark suite of 16 workloads from different application domains (e.g., dense G-space linear algebra, databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which identify as memory-bound. We evaluate the performance and scaling characteristics of PIM benchmarks on the UPMEM-PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM systems with 140 and 2,300 DPUs provides new insights about suitability of different workloads to the PIM system, programming recommendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems.

Samsung Function-in-Memory DRAM (2021)

- FIMDRAM based on HBM2

[3D Chip Structure of HBM with FIMDRAM]

Chip Specification

- 128DQ / 8CH / 16 banks / BL4
- 32 PCU blocks (1 FIM block/2 banks)
- 1.2 TFLOPS (4H)
- FP16 ADD / Multiply (MUL) / Multiply-Accumulate (MAC) / Multiply-and-Add (MAD)

<table>
<thead>
<tr>
<th>ISSCC 2021 / SESSION 25 / DRAM / 25.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications</td>
</tr>
</tbody>
</table>

Young-Cheon Kwon¹, Suk Han Lee¹, Jaehoon Lee¹, Sang-Hyuk Kwon¹, Je Min Ryu¹, Jong-Pil Son¹, Seongil O¹, Hak-Soo Yu¹, Haseuk Lee¹, Soo Young Kim¹, Youngmin Cho¹, Jin Guk Kim¹, Jongyoon Choi¹, Hyun-Sung Shin¹, Jin Kim¹, BengSeng Phua¹, HyoYoung Min Kim¹, Myeong Jun Song¹, Ahn Choi¹, Daeho Kim¹, SooYoung Kim¹, Eun-BongKim¹, David Wang¹, Shinhwaeng Kang¹, Yuuhan Ro¹, Seungwoo Seo¹, JoonHo Song¹, Jaryoun Youn¹, Kyomin Sohn¹, Nam Sung Kim¹

¹Samsung Electronics, Hwasung, Korea
²Samsung Electronics, San Jose, CA
³Samsung Electronics, Suwon, Korea
Samsung AxDIMM (2021)

- DDRx-PIM
 - Deep learning recommendation system

29.1 184QPS/W 64Mb/mm² 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System

Dimin Niu¹, Shuangchen Li¹, Yuhao Wang¹, Wei Han¹, Zhe Zhang², Yijin Guan², Tianchan Guan³, Fei Sun¹, Fei Xue¹, Lide Duan¹, Yuanwei Fang¹, Hongzhong Zheng¹, Xiping Jiang⁴, Song Wang⁴, Fengguo Zuo⁴, Yubing Wang⁴, Bing Yu⁴, Qiwei Ren⁴, Yuan Xie¹
Recall: Takeaways

- It all starts from the **basic building blocks and design principles**

- And, **knowledge of how to use, apply, enhance them**

- **Underlying technology might change** (e.g., steel vs. wood)
 - but **methods of taking advantage of technology bear resemblance**
 - **methods used for design depend on the principles** employed
Basic Building Blocks

- Electrons
- Transistors
- Logic Gates
- Combinational Logic Circuits
- Sequential Logic Circuits
 - Storage Elements and Memory
- ...
- Cores
- Caches
- Interconnect
- Memories
- ...

91
Reading Assignments for This Week

- Chapter 1 in Harris & Harris
- Chapters 1-2 in Patt and Patel
- Supplementary Lecture Slides on Binary Numbers
Recall: High-Level Goals of This Course

- In Digital Design & Computer Architecture
- Understand the basics
- Understand the principles (of design)
- Understand the precedents

Based on such understanding:
- learn how a modern computer works underneath
- evaluate tradeoffs of different designs and ideas
- implement a principled design (a simple microprocessor)
- learn to systematically debug increasingly complex systems
- Hopefully enable you to develop novel, out-of-the-box designs

The focus is on basics, principles, precedents, and how to use them to create/implement good designs
Recall: Why These Goals?

- Because you are here for a Computer Science degree!

- Regardless of your future direction, learning the principles of digital design & computer architecture will be useful to
 - design better hardware
 - design better software
 - design better systems
 - make better tradeoffs in design
 - understand why computers behave the way they do
 - solve problems better
 - think “in parallel”
 - think critically
 - ...

Course Info and Logistics
Brief Self Introduction

■ Onur Mutlu
 ■ Full Professor @ ETH Zurich ITET (INFK), since Sept 2015
 ■ Strecker Professor @ Carnegie Mellon University ECE (CS), 2009-2016, 2016-...
 ■ Started the Comp Arch Research Group @ Microsoft Research, 2006-2009
 ■ Worked @ Google, VMware, Microsoft Research, Intel, AMD
 ■ PhD in Computer Engineering from University of Texas at Austin in 2006
 ■ BS in Computer Engineering & Psychology from University of Michigan in 2000
 ■ https://people.inf.ethz.ch/omutlu/ omutlu@gmail.com

■ Research and Teaching in:
 ■ Computer architecture, systems, hardware security, bioinformatics
 ■ Memory and storage systems
 ■ Robust & dependable hardware systems: security, safety, predictability, reliability
 ■ Hardware/software cooperation
 ■ New computing paradigms; architectures with emerging technologies/devices
 ■ Architectures for bioinformatics, genomics, health, medicine, AI/ML
 ■ ...
Course Info: Lecturers & PhD Assistants

- Head Assistants
 - Dr. Mohammad Sadrosadati
 - Dr. Juan Gómez Luna

- Head Lab Assistant
 - Ataberk Olgun

- Lecturer
 - Dr. Frank Gurkaynak

- (Other) Key Assistants and Guest Lecturers
 - Dr. Mohammed Alser
Course Info: PhD Assistants

■ (Other) Key Assistants and Guest Lecturers (cont.)
 - Can Firtina
 - Giray Yaglikci
 - Geraldo De Oliveira Junior
 - Rahul Bera
 - Konstantinos Kanellopoulos
 - Nika Mansouri Ghiasi
 - Rakesh Nadig
 - Joel Lindegger
 - Nisa Bostancı
 - İsmail Emir Yüksel
 - Haocong Luo
 - Yahya Can Tuğrul
 - Julien Eudine
Course Info: Student Assistants

- Banu Cavlak
- Maria Makeenkova
- Liana Koleva
- Steve Rhyner
- Jinfan Chen
- Lukas Gygi
- Marc Rettenbacher
- Yumi Kim
- Bahar Açılan
- Aaron Zeller
- Jonathan Maillefaud
- Mark Sosman
- Talu Güloglu
- Jessie Li
- Athena Wang
Course Info: Lab Assistants (I)

- Tuesday 16-18
 - TBD

- Wednesday 16-18
 - TBD
Course Info: Lab Assistants (II)

- Friday 8-10
 - TBD

- Friday 10-12
 - TBD
If You Need Help

- **Post your question on Moodle Q&A Forum**
 - We will create a forum on Moodle for each activity
 - **Preferred for technical questions**

- **Write an e-mail to:**
 - digitaltechnik@lists.inf.ethz.ch
 - The instructor and all assistants will receive this e-mail

- **Come to office hours**
 - We will provide office locations & Zoom links
 - TBD
Where to Get Up-to-date Course Info?

- **Website:**
 - https://safari.ethz.ch/digitaltechnik/spring2023/
 - Lecture slides and videos
 - Readings
 - Lab information
 - Course schedule, handouts, FAQs
 - Software
 - Any other useful information for the course
 - Check frequently for announcements and due dates
 - *This is your single point of access to all resources*

- Your ETH Email
- Lecturers and Teaching Assistants
Lecture and Lab Times and Policies

- Lectures:
 - Thursday and Fridays, 14:00-16:00
 - YouTube livestream playlist: https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-EImKxYYY1SZuGiOAOBKaf
 - Zoom link provided via Moodle
 - Attendance is for your benefit and is therefore important
 - Some days, we may have guest lectures and exercise sessions

- Lab sessions:
 - See online
 - You should definitely attend the lab sessions
 - In-class evaluation (70%) and mandatory lab reports (30%)
 - Labs will start on March 7th
 - Lab information and handouts are here:
Lab Organization (I)

- Groups

 - Choose your preferred group in Moodle
 - Due 03.03.2023 at 11:59pm

 - Choose your partner
 - Due 03.03.2023 at 11:59pm

 - Choose onsite or online
 - Due 03.03.2023 at 11:59pm
Lab Organization (II)

- Lab grades from previous years
 - [link](https://moodle-app2.let.ethz.ch/mod/choice/view.php?id=877115)

- Choose one of the options (due **03.03.2023 at 11:59pm**):
 - 1) I will use my lab grades from previous years, and I won't do the labs this year
 - 2) I will use my lab grades from previous years, but I will do the labs this year
 - 3) I won't use my lab grades from previous years. I will do the labs this year
Final Exam

- 180-minute written exam

- Find examination rules in Course Catalogue

- Also: study the first pages of previous exams

- Some exam questions are similar to questions in Optional HWs and Past Exams
 - Optional HWs are not graded, but highly recommended to solve
 - Solving past exams could also be useful
Reading Assignments for This Week

- Chapter 1 in Harris & Harris
- Supplementary Lecture Slides on Binary Numbers
- Chapters 1-2 in Patt and Patel
Reading Assignments for Next Week

- Combinational Logic chapters from both books
 - Patt and Patel, Chapter 3
 - Harris and Harris, Chapter 2

- Check course website for all future readings
 - Required
 - Recommended
 - Mentioned
Future Lectures and Assignments

- You can also anticipate (and plan for) future lectures and assignments based on Spring 2022 schedule:
 - https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
 - https://www.youtube.com/playlist?list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoAG7c6

- An example of “Last Time Prediction”
 - Speculative Execution
 - The concept of doing something before knowing it is needed
 - A key concept we will cover in the design of microprocessors