First, We Will Complete
Sequential Logic Design
We Covered A Lot of Sequential Logic

- **Circuits that can store information**
 - Cross-coupled inverter
 - R-S Latch
 - Gated D Latch
 - D Flip-Flop
 - Register
 - Memory

- **Sequential logic circuits**
 - State & Clock
 - Asynchronous vs. Synchronous

- **Finite State Machines (FSM)**
 - How to design FSMs
Recall: Sequential Circuits

- Circuits that produce output depending on current and past input values – circuits with memory
Recall: Sequential Logic Circuits

Combinational
Only depends on current inputs

Sequential
Opens depending on past inputs

https://www.easykeys.com/228_ESP_Combination_Lock.aspx
https://www.fosmon.com/product/tsa-approved-lock-4-dial-combo
Recall: State Diagram of Our Sequential Lock

- Completely describes the operation of the sequential lock

Recall: Finite State Machines (FSMs) Consist of:

- **Five elements:**
 1. A **finite** number of **states**
 - *State*: snapshot of all relevant elements of the system at the time of the snapshot
 2. A **finite** number of external **inputs**
 3. A **finite** number of external **outputs**
 4. An explicit **specification of all state transitions**
 - How to get from one state to another
 5. An explicit **specification of what determines each external output value**

FSM: A discrete-time model of a stateful system
Recall: Finite State Machines (FSMs)

- Each FSM consists of three separate parts:
 - next state logic
 - state register
 - output logic

At the beginning of the clock cycle, next state is latched into the state register.
Recall: Finite State Machines (FSMs) Consist of:

- **Sequential Circuits**
 - State register(s)
 - Store the current state and
 - Provide the next state at the clock edge

- **Combinational Circuits**
 - Next state logic
 - Determines what the next state will be
 - Output logic
 - Generates the outputs
Recall: State Register Implementation

- How can we implement a **state register**? Two properties:
 1. We need to store data at the **beginning** of every clock cycle
 2. The data must be **available** during the **entire clock cycle**

![Diagram showing clock transitions and register input/output behavior](image-url)
Currently, we cannot simply wire a clock to WE of a latch. When the clock is high, Q will not take on D's value AND when the clock is low, the latch will propagate D to Q.

Recall: The Problem with Latches: Transparency

Recall the Gated D Latch

How can we change the latch, so that

1) D (input) is **observable** at Q (output) only at the **beginning of next** clock cycle?

2) Q is **available for the full clock cycle**
Recall: The D Flip-Flop

- 1) state change on clock edge, 2) data available for full cycle

- When the clock is low, 1st latch propagates D to the input of the 2nd (Q unchanged)
- Only when the clock is high, 2nd latch latches D (Q stores D)
 - At the rising edge of clock (clock going from 0->1), Q gets assigned D
Recall: The D Flip-Flop

1) state change on clock edge, 2) data available for full cycle

- At the rising edge of clock (clock going from 0->1), \(Q \) gets assigned \(D \)
- At all other times, \(Q \) is unchanged
Recall: The D Flip-Flop

- 1) state change on clock edge, 2) data available for full cycle

At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged

We can use D Flip-Flops to implement the state register
Recall: Rising-Clock-Edge Triggered Flip-Flop

- **Two inputs**: CLK, D

- **Function**
 - The flip-flop “samples” D on the rising edge of CLK (positive edge)
 - When CLK rises from 0 to 1, D passes through to Q
 - Otherwise, Q holds its previous value
 - Q changes only on the rising edge of CLK

- A flip-flop is called an **edge-triggered state element** because it captures data on the clock edge
 - A latch is a **level-triggered** state element
D Flip-Flop Based Register

- Multiple parallel D flip-flops, each of which storing 1 bit

This register stores 4 bits

This line represents 4 wires

Condensed
A 4-Bit D-Flip-Flop-Based Register (Internally)

Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the **output logic**:
 - **Moore FSM**: outputs depend only on the current state
Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the **output logic**:
 - **Moore FSM**: outputs depend only on the current state
 - **Mealy FSM**: outputs depend on the current state and the inputs
Finite State Machine Example

- “Smart” traffic light controller
 - **2 inputs:**
 - Traffic sensors: T_A, T_B (TRUE when there’s traffic)
 - **2 outputs:**
 - Lights: L_A, L_B (Red, Yellow, Green)
 - State can change every 5 seconds
 - Except if green and traffic, stay green

From H&H Section 3.4.1
Finite State Machine Black Box

- **Inputs:** CLK, Reset, T_A, T_B
- **Outputs:** L_A, L_B

![Traffic Light Controller Diagram]

CLK

T_A

T_B

Traffic Light Controller

L_A

L_B

Reset
Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs
Finite State Machine Transition Diagram

- **Moore FSM:** outputs labeled in each state
 - **States:** Circles
 - **Transitions:** Arcs

In the diagram:
- **States:** S0, S1
- **Transitions:** TA
- **Signals:** LA: green, LB: red
 - From S0 to S1: LA: yellow, LB: red
- **Locations:**
 - Academic Ave.
 - Bravado Blvd.
 - Labs
 - Dorms
 - Fields

Reset arrow indicates the start of the sequence.
Finite State Machine Transition Diagram

- **Moore FSM**: outputs labeled in each state
 - **States**: Circles
 - **Transitions**: Arcs
Finite State Machine Transition Diagram

- **Moore FSM**: outputs labeled in each state
 - **States**: Circles
 - **Transitions**: Arcs

Diagram Details:

- **States**: Circles labeled with states and transitions.
- **Transitions**: Arrows between states indicating transitions.
- **Labels**: Each state is labeled with specific transitions and outputs.
- **Output Colors**: States S0, S1, S2, S3 are labeled with output colors:
 - S0: L_A: green, L_B: red
 - S1: L_A: yellow, L_B: red
 - S2: L_A: red, L_B: green
 - S3: L_A: red, L_B: yellow
- **Reset**: An arrow labeled 'Reset' points back to state S0.

Location Labels:

- **Academic Ave.**
- **Bravado Blvd.**
- **Dining Hall**
- **Fields**
- **Labs**
- **Dorms**
Finite State Machine Transition Diagram

- **Moore FSM:** outputs labeled in each state
 - **States:** Circles
 - **Transitions:** Arcs
Finite State Machine:
State Transition Table
FSM State Transition Table

<table>
<thead>
<tr>
<th>Current State</th>
<th>Inputs</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>S0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>S1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S2</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>S3</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- **S0**: L_A: green, L_B: red
- **S1**: L_A: yellow, L_B: red
- **S2**: L_A: red, L_B: green
- **S3**: L_A: red, L_B: yellow

Transitions:
- T_A: Reset
- T_B: Input A

LEDs:
- **LA**: green
- **LB**: red
- **LA**: yellow
- **LB**: red
- **LA**: red
- **LB**: yellow
- **LA**: red
- **LB**: green
FSM State Transition Table

<table>
<thead>
<tr>
<th>Current State</th>
<th>Inputs</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T_A</td>
<td>T_B</td>
</tr>
<tr>
<td>S0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>S0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>S1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S2</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>S3</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
FSM State Transition Table

<table>
<thead>
<tr>
<th>Current State</th>
<th>Inputs</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>S0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>S1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S2</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>S3</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>00</td>
</tr>
<tr>
<td>S1</td>
<td>01</td>
</tr>
<tr>
<td>S2</td>
<td>10</td>
</tr>
<tr>
<td>S3</td>
<td>11</td>
</tr>
</tbody>
</table>
FSM State Transition Table

<table>
<thead>
<tr>
<th>Current State</th>
<th>Inputs</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>0</td>
<td>S_0'</td>
</tr>
<tr>
<td>S_1</td>
<td>0</td>
<td>S_0'</td>
</tr>
<tr>
<td>S_2</td>
<td>1</td>
<td>S_1</td>
</tr>
<tr>
<td>S_3</td>
<td>1</td>
<td>S_0'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S_1</th>
<th>S_0</th>
<th>T_A</th>
<th>T_B</th>
<th>S_1'</th>
<th>S_0'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

State Encoding

<table>
<thead>
<tr>
<th>State</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>00</td>
</tr>
<tr>
<td>S1</td>
<td>01</td>
</tr>
<tr>
<td>S2</td>
<td>10</td>
</tr>
<tr>
<td>S3</td>
<td>11</td>
</tr>
</tbody>
</table>
FSM State Transition Table

<table>
<thead>
<tr>
<th>Current State</th>
<th>Inputs</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>S_0</td>
<td>T_A</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
</tbody>
</table>

State Encoding

<table>
<thead>
<tr>
<th>State</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>00</td>
</tr>
<tr>
<td>S1</td>
<td>01</td>
</tr>
<tr>
<td>S2</td>
<td>10</td>
</tr>
<tr>
<td>S3</td>
<td>11</td>
</tr>
</tbody>
</table>

$S'_1 = _?
FSM State Transition Table

#### Current State	Inputs	Next State
S_1 | S_0 | T_A | T_B | S'_1 | S'_0
0 | 0 | 0 | X | 0 | 1
0 | 0 | 1 | X | 0 | 0
0 | 1 | X | X | 1 | 0
1 | 0 | X | 0 | 1 | 1
1 | 0 | X | 1 | 1 | 0
1 | 1 | X | X | 0 | 0

State Encoding

<table>
<thead>
<tr>
<th>State</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>00</td>
</tr>
<tr>
<td>S1</td>
<td>01</td>
</tr>
<tr>
<td>S2</td>
<td>10</td>
</tr>
<tr>
<td>S3</td>
<td>11</td>
</tr>
</tbody>
</table>

State Equation

$$S'_1 = (\bar{S}_1 \cdot S_0) + (S_1 \cdot \bar{S}_0 \cdot \bar{T}_B) + (S_1 \cdot \bar{S}_0 \cdot T_B)$$
FSM State Transition Table

Current State	Inputs	Next State
S_1 | S_0 | T_A | T_B | S'_1 | S'_0
0 | 0 | 0 | 1 | 0 | 1
0 | 0 | 1 | 1 | 0 | 0
0 | 1 | 1 | 1 | 1 | 0
1 | 0 | 0 | 0 | 1 | 1
1 | 0 | 1 | 1 | 1 | 0
1 | 1 | 0 | 0 | 0 | 0

State Encoding

- S0: 00
- S1: 01
- S2: 10
- S3: 11

\[S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B) \]

\[S'_0 = ? \]
FSM State Transition Table

\[
S'_{1} = (\overline{S_{1}} \cdot S_{0}) + (S_{1} \cdot \overline{S_{0}} \cdot \overline{T_{B}}) + (S_{1} \cdot S_{0} \cdot T_{B})
\]

\[
S'_{0} = (\overline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{T_{A}}) + (S_{1} \cdot \overline{S_{0}} \cdot \overline{T_{B}})
\]

<table>
<thead>
<tr>
<th>Current State</th>
<th>Inputs</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(_1)</td>
<td>S(_0)</td>
<td>T(_A)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>00</td>
</tr>
<tr>
<td>S1</td>
<td>01</td>
</tr>
<tr>
<td>S2</td>
<td>10</td>
</tr>
<tr>
<td>S3</td>
<td>11</td>
</tr>
</tbody>
</table>
FSM State Transition Table

<table>
<thead>
<tr>
<th>Current State</th>
<th>Inputs</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>S_0</td>
<td>T_A</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
</tbody>
</table>

Simplified

$S'_1 = S_1 \ XOR S_0$

$S'_0 = (S_1 \cdot S_0 \cdot \overline{T_A}) + (S_1 \cdot S_0 \cdot \overline{T_B})$

State Encoding

<table>
<thead>
<tr>
<th>State</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>00</td>
</tr>
<tr>
<td>S1</td>
<td>01</td>
</tr>
<tr>
<td>S2</td>
<td>10</td>
</tr>
<tr>
<td>S3</td>
<td>11</td>
</tr>
</tbody>
</table>
Finite State Machine:
Output Table
FSM Output Table

<table>
<thead>
<tr>
<th>Current State</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>(S_0)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Reset

\[S_0 \]
- \(L_A \): green
- \(L_B \): red

\[S_1 \]
- \(L_A \): yellow
- \(L_B \): red

\[S_2 \]
- \(L_A \): red
- \(L_B \): green

\[S_3 \]
- \(L_A \): red
- \(L_B \): yellow
FSM Output Table

<table>
<thead>
<tr>
<th>Current State</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>S_0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>green</td>
<td>00</td>
</tr>
<tr>
<td>yellow</td>
<td>01</td>
</tr>
<tr>
<td>red</td>
<td>10</td>
</tr>
</tbody>
</table>
FSM Output Table

Current State	Outputs
S_1	S_0
0	0
0	1
1	0
1	1

Output Encoding

<table>
<thead>
<tr>
<th>Output</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>green</td>
<td>00</td>
</tr>
<tr>
<td>yellow</td>
<td>01</td>
</tr>
<tr>
<td>red</td>
<td>10</td>
</tr>
</tbody>
</table>

$L_{A1} = S_1$
FSM Output Table

Current State	Outputs
	L_{A1}
0 | 0 | 0 | 0 | 1 | 0
0 | 1 | 0 | 1 | 1 | 0
1 | 0 | 1 | 0 | 0 | 0
1 | 1 | 1 | 0 | 0 | 1

Output	Encoding
green | 00
yellow | 01
red | 10
FSM Output Table

Current State	Outputs
\(S_1\) | \(S_0\) | \(L_{A1}\) | \(L_{A0}\) | \(L_{B1}\) | \(L_{B0}\)
0 | 0 | 0 | 0 | 1 | 0
0 | 1 | 0 | 1 | 1 | 0
1 | 0 | 1 | 0 | 0 | 0
1 | 1 | 1 | 0 | 0 | 1

\[L_{A1} = S_1\]
\[L_{A0} = \overline{S_1} \cdot S_0\]
\[L_{B1} = \overline{S_1}\]

Output	Encoding
green | 00
yellow | 01
red | 10
FSM Output Table

Current State

<table>
<thead>
<tr>
<th></th>
<th>S₁</th>
<th>S₀</th>
<th>Lₐ₁</th>
<th>Lₐ₀</th>
<th>L₉₁</th>
<th>L₉₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th></th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>green</td>
<td>00</td>
</tr>
<tr>
<td>yellow</td>
<td>01</td>
</tr>
<tr>
<td>red</td>
<td>10</td>
</tr>
</tbody>
</table>

\[
L_{A1} = S_1 \\
L_{A0} = S_1 \cdot S_0 \\
L_{B1} = \overline{S_1} \\
L_{B0} = S_1 \cdot S_0
\]
Finite State Machine: Schematic
FSM Schematic: State Register
FSM Schematic: State Register

CLK

S'_1
S'_0

S_1
S_0

r

Reset
state register
FSM Schematic: Next State Logic

\[S'_1 = S_1 \text{xor} S_0 \]

\[S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) \]
FSM Schematic: Output Logic

\[
\begin{align*}
L_{A1} &= S_1 \\
L_{A0} &= \overline{S_1} \cdot S_0 \\
L_{B1} &= \overline{S_1} \\
L_{B0} &= S_1 \cdot S_0
\end{align*}
\]
FSM Timing Diagram

S0
L_A: yellow
L_B: red

S1
L_A: yellow
L_B: red

S2
L_A: red
L_B: green

S3
L_A: red
L_B: yellow

Cycle 1
CLK
Reset
T_A
T_B
S'_{1:0}
S_{1:0}
L_{A1:0}
L_{B1:0}

T_A
T_B

0 5

Green (00)
Red (10)
Yellow (01)
FSM Timing Diagram

- Cycle 1: S0 (00), L_A: yellow, L_B: red
- Cycle 2: S0 (00), L_A: yellow, L_B: red
- Cycle 3: S1 (10), L_A: red, L_B: green
- Cycle 4: S2 (01), L_A: red, L_B: yellow
- Cycle 5: S3 (11), L_A: red, L_B: yellow

- CLK, Reset, T_A, T_B

- S’_1:0, S_1:0, L_A1:0, L_B1:0

- Time: 0, 5, 10 seconds
FSM Timing Diagram

CLK
Reset
T_A
T_B
S'_1:0
S_1:0
L_{A1:0}
L_{B1:0}

Cycle 1 Cycle 2 Cycle 3 Cycle 4

S_0
L_A: yellow
L_B: red

S_1
L_A: yellow
L_B: red

S_2
L_A: red
L_B: green

S_3
L_A: red
L_B: yellow

0 5 10 15
FSM Timing Diagram

CLK
Reset
TA
TB
S'1:0
S1:0
LA1:0
LB1:0
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

CLK
Reset
TA
TB
S'1:0
S1:0
LA1:0
LB1:0

S0
L_A: yellow
L_B: red

S1
L_A: yellow
L_B: red

S2
L_A: red
L_B: green

S3
L_A: red
L_B: yellow

Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5

0 5 10 15 20

Green (00)
Red (10)
Yellow (01)
FSM Timing Diagram
FSM Timing Diagram
This is from H&H Section 3.4.1
FSM Timing Diagram

See H&H Chapter 3.4
Finite State Machine:
State Encoding
How do we encode the state bits?

- Three common state binary encodings with different tradeoffs
 1. Fully Encoded
 2. 1-Hot Encoded
 3. Output Encoded

Let’s see an example Swiss traffic light with 4 states

- Green, Yellow, Red, Yellow+Red
1. Binary Encoding (Full Encoding):
 - Use the minimum possible number of bits
 - Use $\log_2(\text{num_states})$ bits to represent the states
 - Example state encodings: 00, 01, 10, 11
 - Minimizes # flip-flops, but not necessarily output logic or next state logic

2. One-Hot Encoding:
 - Each bit encodes a different state
 - Uses num_states bits to represent the states
 - Exactly 1 bit is “hot” for a given state
 - Example state encodings: 0001, 0010, 0100, 1000
 - Simplest design process – very automatable
 - Maximizes # flip-flops, minimizes next state logic
3. **Output Encoding:**

- Outputs are **directly accessible** in the state encoding.

- For example, since we have **3 outputs** (light color), encode state with **3 bits**, where each bit represents a color.

 - **Example states:** 001, 010, 100, 110
 - Bit\(_0\) encodes **green** light output,
 - Bit\(_1\) encodes **yellow** light output
 - Bit\(_2\) encodes **red** light output

- **Minimizes** output logic.

- Only works for Moore Machines (output function of state).
3. Output Encoding:
 - Outputs are directly accessible in the state encoding
 - For example, since we have 3 outputs (light color), encode state with 3 bits, where each bit represents a color
 - Example states: 001, 010, 100, 110
 - Bit 0 encodes green light output
 - Bit 1 encodes yellow light output
 - Bit 2 encodes red light output
 - Minimizes output logic
 - Only works for Moore Machines (output depends only on state)

The designer must carefully choose an encoding scheme to optimize the design under given constraints

- Minimizes output logic
- Only works for Moore Machines (output depends only on state)
Moore vs. Mealy Machines
Recall: Moore vs. Mealy FSMs

- Next state is determined by the current state and the inputs
- Two types of FSMs differ in the **output logic**:
 - **Moore FSM**: outputs depend only on the current state
 - **Mealy FSM**: outputs depend on the current state and the inputs
Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1’s and 0’s on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail’s brain.

Moore FSM

```
inputs M next state logic k next state CLK k state output logic N outputs
```
Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1’s and 0’s on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail’s brain.
State Transition Diagrams

Moore FSM

Mealy FSM

What are the tradeoffs?
FSM Design Procedure

- **Determine** all possible states of your machine

- **Develop** a *state transition diagram*
 - Generally this is done from a textual description
 - You need to 1) determine the **inputs** and **outputs** for each **state** and 2) figure out how to get from one state to another

- **Approach**
 - Start by defining the **reset state** and what happens from it – this is typically an easy point to start from
 - Then continue to add **transitions** and **states**
 - Picking **good state names** is very important
 - Building an FSM is **like** programming (but it *is not* programming!)
 - An FSM has a sequential “control-flow” like a program with conditionals and goto’s
 - The if-then-else construct is controlled by one or more inputs
 - The outputs are controlled by the state or the inputs
 - In hardware, we typically have many concurrent FSMs

FSM: A discrete-time model of a stateful system
What is to Come: LC-3 Processor

Figure 4.3 The LC-3 as an example of the von Neumann model
What is to Come: LC-3 Datapath
Backup Slides:
Different Flip-Flop Types
Enabled Flip-Flops

- **Inputs**: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored
- **Function**:
 - **EN = 1**: D passes through to Q on the clock edge
 - **EN = 0**: the flip-flop retains its previous state
Resettable Flip-Flop

- **Inputs:** CLK, D, Reset
 - The Reset is used to set the output to 0.

- **Function:**
 - \textit{Reset} = \textbf{1}: Q is forced to 0
 - \textit{Reset} = \textbf{0}: the flip-flop behaves like an ordinary D flip-flop

Symbols

\[D \quad Q \quad \text{Reset} \]

\[r \]
Resettable Flip-Flops

- Two types:
 - **Synchronous**: resets at the clock edge only
 - **Asynchronous**: resets immediately when Reset = 1

- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop (see Exercise 3.10)

- Synchronously resettable flip-flop?
Settable Flip-Flop

- **Inputs:** CLK, D, Set
- **Function:**
 - Set = 1: Q is set to 1
 - Set = 0: the flip-flop behaves like an ordinary D flip-flop