
HAT: Heterogeneous Adaptive Throttling for On-Chip Networks

Kevin Kai-Wei Chang, Rachata Ausavarungnirun, Chris Fallin, Onur Mutlu
Carnegie Mellon University

{kevincha,rachata,cfallin,onur}@cmu.edu

Abstract—The network-on-chip (NoC) is a primary shared
resource in a chip multiprocessor (CMP) system. As core counts
continue to increase and applications become increasingly
data-intensive, the network load will also increase, leading
to more congestion in the network. This network congestion
can degrade system performance if the network load is not
appropriately controlled. Prior works have proposed source-
throttling congestion control, which limits the rate at which
new network traffic (packets) enters the NoC in order to reduce
congestion and improve performance. These prior congestion
control mechanisms have shortcomings that significantly limit
their performance: either 1) they are not application-aware,
but rather throttle all applications equally regardless of appli-
cations’ sensitivity to latency, or 2) they are not network-load-
aware, throttling according to application characteristics but
sometimes under- or over-throttling the cores.

In this work, we propose Heterogeneous Adaptive Throttling,
or HAT, a new source-throttling congestion control mecha-
nism based on two key principles: application-aware throttling
and network-load-aware throttling rate adjustment. First, we
observe that only network-bandwidth-intensive applications
(those which use the network most heavily) should be throttled,
allowing the other latency-sensitive applications to make faster
progress without as much interference. Second, we observe
that the throttling rate which yields the best performance
varies between workloads; a single, static, throttling rate under-
throttles some workloads while over-throttling others. Hence,
the throttling mechanism should observe network load dynami-
cally and adjust its throttling rate accordingly. While some past
works have also used a closed-loop control approach, none have
been application-aware. HAT is the first mechanism to combine
application-awareness and network-load-aware throttling rate
adjustment to address congestion in a NoC.

We evaluate HAT using a wide variety of multiprogrammed
workloads on several NoC-based CMP systems with 16-, 64-,
and 144-cores and compare its performance to two state-of-
the-art congestion control mechanisms. Our evaluations show
that HAT consistently provides higher system performance and
fairness than prior congestion control mechanisms.

I. INTRODUCTION

In chip multiprocessors (CMP), the interconnect serves as
the primary communication substrate for all cores, caches,
and memory controllers. Since the interconnect implements
cache coherence between fast L1 caches and lies on the
datapath for all memory accesses, its latency and bandwidth
are important. Hence, a high-performance interconnect is
necessary to provide high system performance. At high core
counts, simpler interconnects such as busses and crossbars
no longer scale adequately. The most commonly proposed
solution is a Network-on-Chip (NoC), which allows cores
to communicate with a packet-switched substrate [6]. A
two-dimensional mesh [5] is frequently implemented for
large CMPs [18], [20], [39].

NoC designers also encounter on-chip hardware imple-
mentation constraints, such as total power (due to ther-
mal limits) and chip area consumed by the network. Be-
cause these resources are often tight in modern CMPs,
NoC designs with a large amount of buffers and wires
are sometimes not practical. To maintain overall design
efficiency, the system must be provisioned reasonably, and
thus will sometimes experience network congestion when
the network load (the fraction of occupied links or buffers)
becomes too high. When this congestion occurs, packets
contend for shared network resources frequently, and this
can reduce overall system throughput. Congestion in on-
and off-chip interconnects is a well-known problem that has
been described in many prior works (e.g., [2], [9], [11], [15],
[30], [31], [32], [38]). Congestion can significantly degrade
system performance if it is not properly managed.

A common congestion-control approach is source throt-
tling in which network nodes (sources) that are injecting
significant amounts of traffic and interfering with the rest
of the network are throttled, or temporarily prevented from
injecting new traffic. A number of previous works have
shown source throttling to be effective in interconnects [2],
[15], [30], [31], [32], [38]. By reducing overall network
load, source throttling reduces congestion and thus improves
network performance.

Unfortunately, state-of-the-art source-throttling mecha-
nisms have shortcomings that limit their performance, which
we address in this work. First, many of the past works
are not application-aware (e.g., [2], [32], [38]), i.e., do not
take application characteristics into account when choos-
ing which applications to throttle. As we show in this
work, application-aware throttling decisions are essential
to achieving good performance. Second, in the works that
are application-aware (e.g., [30], [31]), the throttling rate
itself (how aggressively the throttled nodes are prevented
from injecting traffic) is adjusted in a manner that does
not take into account the load or utilization of the network,
which can lead to performance loss as it causes either over-
or under-throttling of the sources. Adjusting the throttling
rate by observing network load and using a closed-loop
feedback mechanism that takes into account network load
yields higher performance, as we show in this work.

To overcome these shortcomings, this paper proposes
Heterogeneous Adaptive Throttling (HAT), a new source-
throttling mechanism. Unlike past works, HAT is the first
to combine two key principles: application-aware throttling
and network-load-aware throttling rate adjustment. HAT
selectively throttles only some nodes (applications) in the
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network, chosen according to application characteristics,
such that overall congestion is reduced without significant
impact on any throttled node. This application-awareness
allows applications that have little impact on network load to
make fast forward progress. HAT then dynamically adjusts
throttling rate of throttled nodes in a closed-loop fashion
based on the total load (or utilization) of the network. Adapt-
ing the throttling rate to the load on the network minimizes
the over- or under-throttling that occurs in a mechanism that
does not adapt the throttling rate to network conditions. By
combining the aforementioned two key principles together,
HAT provides better performance than past source-throttling
mechanisms [30], [31], [38], as we show in our quantitative
evaluations.

In summary, our contributions are:
• We observe that two key principles are necessary to

achieve high performance using source throttling in a
congested on-chip network: application-aware throttling
(choosing which applications to throttle based on appli-
cation characteristics), and network-load-aware throttling
rate adjustment (adjusting the aggressiveness of source
throttling dynamically to avoid under- or over-throttling
the applications).

• We introduce Heterogeneous Adaptive Throttling (HAT),
the first source-throttling mechanism that uses these two
key principles together to control congestion in a net-
work. HAT 1) throttles bandwidth-intensive applications,
thus allowing latency-sensitive applications to make fast
progress, and 2) throttles these selected applications at a
rate that is dynamically adjusted based on the network
load, thus maximizing efficient utilization of the network.

• We qualitatively and quantitatively compare our new con-
gestion control mechanism to two state-of-the-art source-
throttling congestion-control mechanisms [30], [31], [38]
on a variety of interconnect designs with different router
designs and network sizes using a wide variety of work-
loads. Our results show that HAT provides the best system
performance and fairness.

II. BACKGROUND

A. Networks-on-Chip for Multi-Core Processors
In CMP systems (e.g., [18], [43]), NoCs (networks-on-

chip) serve as communication fabrics to connect individual
processing nodes. Each node has a core, a private cache, and
a slice of the shared cache. One NoC router is placed at each
node, and the NoC routers are interconnected by links. The
routers convey packets between nodes. In the CMP system
that we evaluate, NoCs primarily service private cache miss
requests, carrying request and data packets between private
caches, shared caches, and memory controllers. Therefore,
NoCs are on the critical path of every cache miss, making
NoC performance important for providing good CMP system
performance. Many NoC topologies have been proposed;
however, a 2D mesh is one of the most commonly used
network topologies in commercial NoC-based manycore
CMPs [43] and research prototypes [16], [18], [20], [37]
because of the low layout complexity.

B. Network-on-Chip Operation and Router Design
NoCs carry packets between nodes (cores, caches, and

memory controllers) in a CMP. Each packet consists of one
or multiple flits, which are the unit of flow control. One flit
is typically the unit of data conveyed by one network link
in one cycle. When a router receives a packet, it decides
which link to forward the packet to. When many packets
are in the network, they can contend for shared resources,
such as links. Conventional router designs often have input
buffers at each router input [3], [5]. A packet that cannot
obtain a link to travel to its next hop can wait in an
input buffer. Alternatively, some other router designs [13],
[28] eliminate these input buffers and instead misroute a
contending packet to a different output link. The routing
algorithm in such a bufferless NoC design ensures that
each packet nevertheless eventually arrives at its destination.
(We will evaluate our mechanisms on both such network
designs.) In both input-buffered and bufferless NoC routers,
performance degrades when contention for links or buffers
occurs frequently. Source throttling reduces such congestion
by limiting the rate at which traffic can enter the network.

III. MOTIVATION

In this section, we first demonstrate that source-throttling
can improve system performance. Then, we show that
application-aware source-throttling is necessary when dif-
ferent applications share the same NoC. These two obser-
vations have motivated past work on source throttling [30],
[31]. Finally, we show that the throttling rate which provides
the best performance is not constant across workloads, moti-
vating the need for network-load-aware throttling rate adjust-
ment. This final observation leads to our application-aware
and network-load-aware Heterogeneous Adaptive Throttling
(HAT).
Source Throttling Congestion Control: Source throt-
tling [2], [15], [30], [31], [32], [38] is a commonly used
technique to address congestion in NoCs and general packet-
switched networks. The idea is to reduce network load
when the network is congested by throttling packets entering
the network in order to enhance system performance. In
a source-throttling system, sources (network nodes which
inject packets) are notified when they are causing network
congestion, either by other network nodes or by a central
controller. Upon receiving such a notification, the source
temporarily throttles (delays) its packets queued for network
injection. By reducing the injection rate (rate of packets
entering the network), throttling reduces network load and
hence reduces congestion.

To show the benefits of source throttling, we evaluate
the system performance of three heterogeneous application
workloads on a NoC-based CMP system (details in §VI)
when different static throttling rates are applied to all ap-
plications. As we will describe in detail later, a throttling
rate is simply the probability that any given injection of a
new packet into the network is blocked (e.g., 80% throttling
allows new packets to be injected only 20% of the time).
Figure 1 shows that as the network is throttled (increasing
throttling rate), the system performance also increases to
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a point, because the reduced rate of injecting new packets
reduces contention for the shared resources in the net-
work, hence reducing congestion. However, past a point,
the source-throttling is too aggressive: it not only reduces
congestion but also limits forward progress unnecessarily,
degrading performance. We conclude from this experiment
that throttling can improve system performance when ap-
plied appropriately.
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Figure 1. Performance of randomly mixed workloads with varied homoge-
neous throttling rate on 16-node (4x4) CMP systems.

Application-Aware Throttling: We motivate the impor-
tance of differentiating applications based on their intensity
by showing that the overall and per-application performance
can be significantly impacted when different applications are
throttled. To illustrate this point, we reproduce an exper-
iment shown in Nychis et al. [30], [31] to motivate their
application-aware technique. Source throttling is applied
in two different ways to a 16-application workload on
a 4x4-mesh NoC-based CMP. This workload consists of
eight instances of mcf, and eight of gromacs, which are
network-intensive (use significant bandwidth) and network-
non-intensive (use little bandwidth), respectively. Note that
although we are showing one particular workload here, its
behavior is representative of workloads with mixed applica-
tion intensities in general. Table I shows the performance of
this workload when (i) only mcf is throttled, and (ii) only
gromacs is throttled (in both cases, by a fixed throttling rate
of 95%), relative to the baseline where no applications are
throttled.

Table I shows three application (instruction) throughput
measurements for each throttling case normalized to no
throttling: overall system throughput, average across mcf
instances, and average across gromacs instances. We re-
iterate the following key observations demonstrated in prior
work [30], [31]. Throttling different applications affects
overall system performance differently. Throttling mcf (sec-
ond column) increases system performance by 9%, whereas
throttling gromacs (third column) decreases system perfor-
mance by 2%. The main reason is that applications respond
differently to network latency variations. Throttling mcf
significantly reduces network interference and this allows
gromacs to make faster progress (by 14%) with less net-
work latency. Also, mcf’s performance increases due to
reduced network congestion and because it is not sensitive
to increased network latency. In contrast, throttling gromacs
negatively impacts gromacs by 4% without any benefit to
mcf. The reason for this behavior is that gromacs injects
fewer network packets than mcf, thus each packet represents
a greater fraction of forward progress for gromacs. As a

result, network-non-intensive applications (e.g., gromacs)
are more sensitive to network latency and network-intensive
applications (e.g., mcf) are more tolerant to network latency.
Based on these observations, we conclude that throttling
network-intensive applications is more beneficial to system
performance than throttling network-non-intensive applica-
tions. We thus use application-aware throttling in HAT
based on network intensity.

Metric No Throttle Throttle mcf Throttle gromacs
System Throughput 1.0 1.09 0.98

mcf Throughput 1.0 1.05 1.0
gromacs Throughput 1.0 1.14 0.96

Table I. Normalized instruction throughput of selectively throttling in an
application-aware manner.
Network-Load-Aware Throttling Rate Adjustment: To
understand the benefits of adjusting throttling rate dynami-
cally, let us re-examine Figure 1. As we have already argued,
throttling can be applied to all the workloads evaluated in
this figure to improve system performance. However, each
workload requires a different throttling rate to achieve peak
performance (in the example given, 94% for workload 1,
92% for workload 2, and 90% for workload 3). Prior source-
throttling techniques use either a static throttling rate [38] or
an open-loop rate adjustment based on measured application
characteristics [30], [31]. As we will demonstrate in our re-
sults (§VII), adjusting the throttling rate dynamically with a
network-load-aware feedback mechanism can tune throttling
rate more precisely for higher performance. Thus, the second
key principle of Heterogeneous Adaptive Throttling (HAT)
is network-load-aware throttling rate adjustment.

IV. HAT: HETEROGENEOUS ADAPTIVE THROTTLING

A. Overview
Our proposed congestion-control mechanism, HAT, is

designed to improve system performance through source
throttling. HAT applies throttling to reduce network load
when the network is congested, reducing interference and
thus improving performance. In order to be most effective
at achieving high system throughput, HAT applies two key
ideas, as motivated above: application-aware throttling and
network-load-aware throttling rate adjustment.

The first component is application-aware throttling. HAT
throttles network-intensive applications that severely inter-
fere with network-non-intensive applications, and does not
throttle the network-non-intensive applications since they
do not significantly impact network load. As a result,
the unthrottled network-non-intensive applications can make
faster progress with less interference. To determine which
applications to throttle, HAT first measures applications’
network intensity. Then HAT divides applications into two
groups based on their intensities and performs throttling on
the network-intensive group. Since it applies throttling to
some applications, HAT is heterogeneous.

The second component, network-load-aware throttling
rate adjustment, aims to find a throttling rate that reduces
congestion sufficiently (i.e., does not throttle too lightly)
while not severely degrading performance (by throttling too
heavily). In order to dynamically adapt to different work-
loads, HAT measures network load (in a simple way that

3



we define below), and controls throttling rate in a closed-
loop manner to keep network load near an empirically-
determined optimal value (which is constant for a given
network topology and size). This ensures that the available
network bandwidth is efficiently used without undue con-
gestion.

B. Source Throttling
We define throttling as the blocking of new traffic in-

jection into the network from a particular application in
order to reduce load. We use a throttling technique that
is soft: throttled nodes can still inject with some non-zero
probability, explained below. We also assume that each node
has separate injection queues for request packets and data
response packets to other nodes, and that only a node’s own
request packets are throttled. For a throttling rate r, every
time a node attempts to inject a request packet, it chooses to
block the injection with probability r. Throttling rates range
from 0% (unthrottled) to 100% (fully blocked). In this work,
the maximum throttling rate is set to 95% (mostly blocked),
explained further in §IV-D. When a packet is blocked from
injection, it will retry its injection in subsequent cycles until
it is allowed to inject.

C. Application-Aware Throttling
To perform application-aware throttling, HAT first ob-

serves each application’s network intensity, classifies ap-
plications as network-intensive or network non-intensive
based on their intensities, and then applies throttling only
to network-intensive applications.
Measuring Application Intensity: HAT must measure
applications’ network intensity in order to classify them.
Because the network in our baseline CMP design primarily
serves L1 cache misses (due to the cache hierarchy design
which places the NoC between private L1 caches and a
shared, globally distributed L2 cache), HAT uses L1 MPKI
(misses per thousand instructions) as a metric that closely
correlates to network intensity (note that this measurement
also correlates with network injection rate). L1 MPKI is
easy to measure at each core with two counters (completed
instruction count and cache miss count).1 Other works [7],
[8], [24], [29] also use L1 MPKI to measure application
intensity.
Application Classification: Once application intensity is
measured, HAT must split applications into intensive
and non-intensive categories. Some past application-aware
source throttling techniques have used a threshold to split
applications: all applications with a network intensity above
a certain threshold are considered network-intensive. How-
ever, we observe that the NoC fundamentally has some
total network capacity, and that throttling an individual
application that is above some threshold may over- or under-
throttle it depending on the application’s network intensity.
If all applications have intensity just below the threshold,
none would be throttled. In contrast, if total network load

1Note that we do not use L1 MPKC (misses per thousand cycles) because
it is dependent on the throttling rate, hence dynamic throttling changes
could alter application classifications and induce control instability.

is low with only one application’s intensity just over the
threshold, that application could be unnecessarily throttled.
Thus, HAT instead sets a threshold on the total network
intensity of all unthrottled applications. This ensures that
unthrottled applications do not provide sufficient load to
cause network congestion. All other applications are then
throttled to limit their impact on total network load while
still allowing them to make some forward progress.

Algorithm 1 shows HAT’s per-epoch application classi-
fication procedure which implements this key idea. Every
epoch, each application’s network intensity (measured as L1
MPKI) is collected. At the end of the epoch, applications
are sorted by measured network intensity. Starting with
the least network-intensive application, the applications are
placed into the network-non-intensive unthrottled applica-
tion category until the total network intensity (sum of
L1 MPKIs) for this category exceeds a pre-set threshold,
which we call NonIntensiveCap (we will examine the
impact of this parameter in §VII-G; in brief, it should be
scaled with network capacity and tuned for the particular
network design). All remaining applications (which are more
network-intensive than these unthrottled applications) are
then considered network-intensive and are throttled with
the same global throttling rate for the following epoch.
Note that these throttled applications can still make some
forward progress, since throttling does not prevent all packet
injections, but only delays some of them. However, the
network-intensive applications’ impact on network conges-
tion is reduced significantly, and the network non-intensive
applications’ performance is therefore likely to increase.
Algorithm 1 HAT: Application Classification Algorithm

at the beginning of each epoch:
empty the groups
sort N applications by MPKI measurements MPKIi
for sorted application i in N do

if total MPKI of network-non-intensive group +MPKIi ≤
NonIntensiveCap then

Place application i into the network-non-intensive group
else

Place application i into the network-intensive group
end if

end for

D. Network-Load-Aware Throttling Rate Adjustment
Recall that we observed in §III that workloads achieve

their peak performance at different global throttling rates.
We have observed that despite the differences in throttling
rate, the network utilization, or measure of the fraction of
links and buffers in the network occupied on average, is a
good indicator of where peak performance will occur. HAT
thus adjusts the global throttling rate that is applied to every
classified network-intensive application within a workload
dynamically using a feedback-based mechanism that targets
a network utilization target. The network utilization target is
fixed for a given network design (a sensitivity study on its
effect is presented §VII-G). This minimizes over-throttling
(which could hinder forward progress unnecessarily) or
under-throttling (which could fail to alleviate congestion) of
the workload. Controlling Throttling Rate: At each epoch,
HAT compares actual network utilization with a target uti-
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lization set statically for the network design. HAT adjusts the
global throttling rate upward when the network utilization
is higher than the target and downward when the network
utilization is lower than the target by a throttling rate step.
Per-epoch rate steps are given in Table II: the rate moves
with larger steps when it is lower, and smaller steps when
it is higher, because most applications are more sensitive to
throttling at higher throttling rates.2 The throttling rate has
a maximum value at 95%, based on empirical sensitivity
sweeps that show a good performance improvement at that
point without unduly impacting the throttled nodes. Note
that when the baseline network utilization is below the
target (indicating a lightly-used network that will likely have
very little congestion), HAT will converge to a rate of 0%,
effectively deactivating the throttling mechanism.

Current Throttling Rate Throttling Rate Step
0% – 70% 10%
70% – 90% 2%
90% – 94% 1%

Table II. Throttling rate adjustment used in each epoch.

E. Implementation Cost
Our mechanism consists of two major parts in each epoch:

(i) measurement of L1 MPKI and network utilization, and
(ii) application classification and throttling rate computation.

First, L1 MPKI and network utilization are measured
in hardware with integer counter structures resetting every
epoch. Each core requires two hardware counters to measure
L1 MPKI: one L1 miss counter and one instruction counter.
Measuring network utilization requires one hardware counter
in each router to monitor the number of flits that are routed
to direct neighboring nodes. Second, throttling rates must
be enforced at each node. Throttling can be implemented
as a fixed duty cycle in which injection is allowed. Finally,
the application classification computation must be done in
some central node. The algorithm consists of (i) a sort by
MPKI and (ii) one pass over the application list. Although
a detailed model is outside the scope of this work, such a
computation requires at most several thousand cycles out of
a 100K-cycle epoch, running on one central CPU node. This
computation and communication overhead is small given a
100K-cycle epoch. Assuming the computation takes 1000
cycles, then the overhead is only 1% on a single core. Similar
coordination mechanisms have been proposed in previous
work (e.g., [7], [8], [30], [31]) and are shown to have low
overhead.

V. RELATED WORK

To our knowledge, HAT is the first work to combine
application-aware source-throttling and dynamic network
load-aware throttling adjustment to reduce network conges-
tion. In this section, we discuss prior work that addresses
network congestion in other ways.
Congestion Control in NoCs: The congestion problem in
NoCs has been widely explored in many previous works.
Various approaches use available buffers [22], available

2We observe that non-linear steps help reduce the settling time of the
throttling rate. In all of our experiments, we choose an epoch length that
allows the throttling rate to settle before the end of an epoch.

virtual channels [4], output queue size [33] or a combina-
tion of these [17] to detect congestion, and then perform
adaptive routing to avoid congested regions. However, these
techniques do not actually reduce high network load because
they do not throttle sources injecting intensive traffic into the
network. As congestion increases with higher network load,
adaptive routing can no longer find productive paths to route
around congested regions, leading to system performance
degradation. Furthermore, adaptive routing is less effective
in bufferless networks because deflection routing provides
adaptive routing anyway when network congestion is high.
In contrast to adaptive-routing approaches, our source-
throttling proposal (i) reduces network congestion by source
throttling, effectively improving performance when network
load is too high, (ii) uses application-aware throttling rather
than network-level measurement to provide application-level
performance gains, and (iii) works on both buffered and
bufferless networks.

A few prior works use throttling to manage congestion
in NoCs. In particular, Nychis et al. [30], [31] propose an
application-aware throttling mechanism to mitigate the effect
of congestion in bufferless NoCs. The proposed technique
detects congestion based on each application’s progress and
triggers throttling when any application’s starvation rate
(fraction of cycles a node attempts to inject a flit but
cannot) is above a threshold. Then it throttles applications
that have network intensity above average with a fixed
throttling rate proportional to their intensities. However, their
mechanism is not adaptive to varying network conditions,
hence can under- or over-throttle the applications (which
reduces performance) as we will show in §VII.
Congestion Control in Off-chip Networks: Congestion
control in off-chip interconnects (e.g., between compute
nodes in a supercomputer) has been studied extensively.
While these networks resemble NoCs in some regards, and
use some of the same design techniques, many of the
congestion control mechanisms for off-chip networks are not
directly applicable to NoCs. Off-chip networks differ from
on-chip networks in terms of both architecture and scale.
For example, the popular Infiniband [15], [19] interconnect
which is used in many large-scale supercomputers uses a
multistage switch topology and can scale to thousands of
nodes. In this topology, switch nodes are separate from com-
pute nodes, and switches are large devices with many input
and output ports. Thus, there are relatively fewer switches
(since each switch serves more compute nodes). Latencies
are also typically orders of magnitude longer because link
distances are greater (meters rather than millimeters). For
both these reasons, each switch in an off-chip interconnect
can employ more complex routing and congestion control
algorithms than what is possible in on-chip networks, where
each router must be relatively small and very fast. Further-
more, central coordination (as we propose) is much more
difficult in such an environment. More complex distributed
schemes are typically used instead.

Despite these differences, source throttling is a common
technique used by many works [2], [15], [32], [38] to remove
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Parameter Setting
System topology 8x8 or 12x12 2D-mesh; core and shared cache slice at every node
Core model Out-of-order, 128-entry instruction window, 16 miss buffers (i.e., MSHRs), stall when buffers are full
Private L1 cache 64 KB, 4-way associative, 32-byte block size
Shared L2 cache perfect (always hits), cache-block-interleaved mapping
Cache coherence directory-based with cache-to-cache transfers, perfect striped directory
Interconnect Links 1-cycle latency, 32-bit width (1-flit request packets, 8-flit data packets)
Bufferless router 2-cycle latency, FLIT-BLESS [28] or CHIPPER [13]
Buffered router 2-cycle latency, 4 VCs [3], 4 flits/VC, buffer bypassing [42]

Table III. Simulated system parameters.

congestion in an off-chip network. Thottethodi et al. [38]
propose a mechanism to completely block the injection of
every source when the globally measured virtual-channel
buffer occupancy in a buffered interconnect exceeds a thresh-
old. This threshold is dynamically tuned to maximize system
throughput. This mechanism thus is triggered by network-
level conditions rather than application-level performance
measurements, and treats all applications the same (hence
reducing fairness when applications have differing network
requirements). In addition, to determine when to throttle
and to adjust its threshold, this throttling mechanism mea-
sures and exchanges congestion and throughput information
globally at fine-grained intervals (every 32 and 96 cycles,
respectively), which requires a dedicated side-band network
to avoid making congestion worse. Despite its high hardware
overhead, we compare, in §VII, HAT to a variant of this
mechanism adapted to the on-chip network design. We
assume that global communication incurs no overhead for
[38], which benefits the performance of this mechanism.

Another common off-chip congestion control approach is
based on avoiding head-of-line (HoL) blocking, in which
packets at the head of a queue cannot allocate downstream
buffers and make forward progress. These blocked packets in
turn block other packets further upstream. Many works [1],
[9], [11], [36] have proposed allocating separate queues for
different packet flows within a switch to avoid HoL blocking.
For example, separate queues could be allocated by output
port [1] or dynamically for congested packet flows [9].
However, such techniques rely on large hardware buffers,
and require more complex packet processing, both of which
are poorly adapted to on-chip routers that have limited power
and on-die area, and only a short time to process each packet.

VI. EXPERIMENTAL METHODOLOGY

Simulator Model: We use an in-house cycle-level CMP
simulator that consumes instruction traces of x86 applica-
tions for our evaluation of application-level performance. We
model 64- and 144-node CMP systems with 8x8 and 12x12
2D-mesh cycle-level networks, respectively. Each node stalls
when its request buffers, instruction window, etc are full.
We faithfully model private L1 data caches and a shared L2
cache with a directory-based cache coherence protocol [26].
All private L1 caches use Miss Status Holding Registers
(MSHRs) [25] to track requests to the shared L2 cache
until they are serviced. Unless stated otherwise, our detailed
system configuration is as shown in Table III.

Note that we model a perfect shared L2 cache to stress the
network, as also evaluated for CHIPPER [13], BLESS [28]

and previous work on throttling [30], [31]. In this model, all
L1 misses hit in their destination L2 cache slice. This setup
potentially increases the network load compared to a system
with realistic off-chip memory that often becomes the system
bottleneck. Note that we still use realistic configurations
(e.g., access latency and MSHRs) for the cache hierarchy.
As a result, using a perfect shared L2 cache allows us to
conduct studies on the fundamental congestion problem due
to capacity of the evaluated networks.

Because only the L1 caches require warming with a
perfect shared cache, 5M cycles of warmup is found to be
sufficient. We find that 25M cycles of execution gives stable
results for the applications simulated.
Evaluated Router Designs: We evaluate HAT and prior
throttling mechanisms on NoCs with the following router
designs: i) BLESS [28], ii) CHIPPER [13], and iii) VC-
buffered router with buffer bypassing [42].
Workloads: We focus on network-intensive workloads for
our main evaluations since the problem we are solving oc-
curs only when the network is under high load. In a sensitiv-
ity study in §VII-G, we will separately show behavior in net-
work non-intensive workloads. To form suitable workloads
for our main evaluations, we split the SPEC CPU2006 [35]
benchmarks based on L1 MPKI into three categories: High,
Medium and Low. In particular, High-intensity benchmarks
have MPKI greater than 50, Medium-intensity benchmarks
fall between 5 and 50 MPKI, and Low-intensity benchmarks
form the remainder. Based on these three categories, we
randomly pick a number of applications from each cate-
gory and form seven intensity mixes with each containing
15 workloads: L (All Low), ML (Medium/Low), M (All
Medium), HL (High/Low), HML (High/Medium/Low), HM
(High/Medium), and H (All High).

We also evaluate multithreaded workloads in §VII-F using
the SPLASH-2 [44] applications. For these workloads, an
8x8 network runs 64 threads of a single application. Sim-
ulations are run for a fixed number of barriers (i.e., main
loop iterations) and total execution times are compared.
Performance Metrics: We measure application-level system
performance with the commonly-used Weighted Speedup
metric: WS =

∑N
i=1

IPCshared
i

IPCalone
i

[12], [34]. All IPCalone
i

values are measured on the baseline network without throt-
tling. We also briefly report our results in System IPC [12]
and Harmonic Speedup [12], [27], but we do not present full
results for brevity.

Additionally, to show that throttling does not unfairly
penalize any single application to benefit the others, we
report unfairness using maximum application slowdown:
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Unfairness = maxi
IPCalone

i

IPCshared
i

[7], [23], [24], [29],
[40]. For this metric, lower is better (more fair). Because
slowdown is the inverse metric of speedup, we report the
harmonic mean rather than arithmetic mean of unfairness.
HAT Parameters: Unless stated otherwise, we set the the
epoch length to 100K cycles. For the NonIntensiveCap
(network utilization target), we use 150 (60%), 150 (55%),
and 350 (5%) for BLESS, CHIPPER, and VC-buffered,
respectively (all determined empirically).
Comparisons to Other Mechanisms: We compare our
mechanism to two state-of-the-art throttling techniques in
our evaluation. The first comparison is to an implementation
of prior work on throttling in bufferless networks proposed
by Nychis et al. [30], [31], which we discussed in §V (called
Heterogeneous Throttling in §VII). We adapt this work to
buffered NoCs for comparisons as well. Second, we compare
to the mechanism proposed by Thottethodi et al. [38] that is
also described in §V (called Self-Tuned in §VII). Note that
Self-Tuned was proposed explicitly for buffered networks,
and its adaptation to bufferless networks is non-trivial be-
cause the algorithm measures buffer utilization; hence we
compare against Self-Tuned only in VC-buffered networks.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of HAT on
NoCs with different router designs: BLESS [28], CHIP-
PER [13], and VC-buffered [3]. We demonstrate that HAT
provides better system performance than prior throttling
mechanisms on all designs. In addition, we report results
on fairness, and show that HAT does not impair fairness
when throttling to improve overall performance.

A. Results on Buffered NoCs
Figure 2 shows the application-level system performance

(left panel) and fairness (right panel) of the VC-buffered
network in a 64-node (8x8) CMP system. In fairness plots,
a higher number indicates higher maximum slowdown and
thus worse fairness. For each bar group, results are presented
in the order of baseline, Heterogeneous Throttling [30], [31],
Self-Tuned [38], and HAT. Results are split by workload cat-
egories as defined in §VI, with network intensities increasing
from left to right. Based on the results, we find that HAT
consistently provides better system performance and fairness
than the two previously proposed mechanisms. We make the
following observations:

1. HAT improves system performance by 3.9% and fair-
ness by 4.9% on average across all workloads on the VC-
buffered network. The main reason for this performance gain
over the baseline is that HAT performs throttling on appli-
cations according to their network intensities. By throttling
network-intensive applications that contribute the majority
of congestion at all times, HAT reduces network load and
allows better network access for the other applications.

2. Compared to Heterogeneous Throttling, which is the
best previous throttling mechanism that we evaluate, HAT
attains 3.5% (4.4%) better system performance (fairness) on
average across all workloads. This is because Heterogeneous
Throttling does not adjust its throttling rate according to

network load when it throttles network-intensive applica-
tions. Instead, it triggers throttling when at least one node
is starved and uses a fixed throttling rate that is independent
of actual network load. This can result in network under- or
over-utilization.

3. As the workload’s network intensity increases, HAT’s
performance improvement becomes more significant be-
cause congestion increases. This trend changes in the
highest-load category (“H”) because these workloads consist
only of network-intensive applications, which are nearly
always network-bound, frequently stalling on outstanding
requests. In such a uniformly high-network-intensity work-
load, applications are not sensitive to network latency, thus
throttling cannot help as much. Throttling is most effective
when some applications in the “L” and “M” categories are in
the network, because these applications are more sensitive to
network latency and can benefit from reduced interference.
To confirm our qualitative explanation, we observe that HAT
reduces packet latency by 28.3% and 18.2% on average
across applications in the “L” and “M” categories, respec-
tively. On the other hand, HAT increases packet latency by
3.0% on average across applications in the “H” category
with little system performance degradation. This is because
these applications have better network latency tolerance
compared to latency-sensitive applications. As a result, we
conclude that HAT provides the highest improvement when
the workload mix is heterogeneous.

4. In our evaluations, Self-Tuned provides little per-
formance gain over the baseline (and HAT attains 5.0%
better system performance and 5.3% better fairness than
Self-Tuned). This is because the throttling algorithm in
Self-Tuned performs hard throttling: when the network is
throttled, no new packet injections are allowed until the
congestion (measured as the fraction of full packet buffers)
reduces below a threshold. Thus, Self-Tuned will temporarily
reduce congestion by halting all network injections, but the
congestion will return as soon as injections are allowed
again. Self-Tuned [38] was previously evaluated only with
synthetic network traffic, rather than with a realistic, closed-
loop CMP model as we do. This previous evaluation also
found that network throughput improvements only occur
near network saturation. In contrast to Self-Tuned, HAT is
able to obtain performance and fairness improvements over
a wide range of network load by (i) adaptively adjusting
its throttling rate according to network load and (ii) selec-
tively throttling certain applications based to their network
intensity.

We conclude that, by using application-aware throttling
with adaptive rate adjustment, HAT reduces inter-application
interference to achieve better system performance and fair-
ness than previously proposed mechanisms.
B. Results on Bufferless NoCs

In this section, we present results on 64-node (8x8) sys-
tems with two different bufferless network designs. Figure 3
shows the application-level system performance and fairness
for CHIPPER and BLESS with the same set of workloads
shown in the previous section. For each network’s bar group,
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Figure 2. System performance and fairness of 64-node (8x8) CMP systems with VC-buffered NoCs. % values are gains of HAT over VC-buffered.
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Figure 3. System performance and fairness of 64-node CMP systems with CHIPPER and BLESS. % values are gains of HAT over CHIPPER or BLESS.

we show results in the order of baseline, Heterogeneous
Throttling [30], [31], and HAT. Self-Tuned [38] is not
evaluated because the mechanism detects congestion based
on the fraction of full VC-buffers, which are not available
in these bufferless router designs. Several observations are
made based on the results:

1. Similar to our results on VC-buffered networks pre-
sented above, HAT provides the best performance and
fairness among all evaluated mechanisms. Compared to
Heterogeneous Throttling (the best previous mechanism) in
a CHIPPER (BLESS) network, HAT improves system per-
formance by 5.1% (7.4%) and fairness by 4.5% (23.7%) on
average. Relative to a baseline network with no congestion
control, HAT improves system performance by 5.9% (CHIP-
PER) and 10.4% (BLESS) on average across all workloads.
Furthermore, HAT attains 20.0% (CHIPPER) and 17.2%
(BLESS) better fairness than the baseline network. The
reason for the performance improvement is that in a CHIP-
PER (BLESS) network, HAT reduces average packet latency
by 22.4% (37.4%) and 9.1% (18.6%) for latency-sensitive
applications in the “L” and “M” categories, respectively.
Although the average packet latency increases by 14.5%
(16.1%) for “H” applications, HAT still improves both
system performance and fairness since these applications are
tolerant to network latency. Note that congestion is more
severe in bufferless networks than in VC-buffered networks
because the lack of buffers reduces total network throughput.
Because of this increased congestion, HAT attains larger im-
provements over baseline in both performance and fairness
in these bufferless networks than in VC-buffered networks.

2. In the “H” workload category that consists of only
high-intensity applications, in the CHIPPER network, Het-
erogeneous Throttling provides better fairness than HAT
(contrary to the trend in other workload categories). This
behavior is due to the way Heterogeneous Throttling picks
nodes to throttle: the throttling mechanism happens to favor
the single most-slowed down application. This decision
causes improvement in the maximum-slowdown definition
of unfairness that we use. However, if we examine Harmonic

Speedup (another measure of fairness [12], [27]), HAT
actually provides 4.3% higher fairness than Heterogeneous
Throttling for this workload category.

We conclude that HAT is effective for a variety of NoC
designs, and in fact it provides higher performance gains
when the network capacity is limited, as is the case in
bufferless deflection networks.

C. Scalability with Network Size
Figure 4 presents system performance (left panel) and

fairness (right panel) of HAT on VC-buffered, CHIPPER,
and BLESS NoCs with the network size varied from 4x4
(16 nodes) to 12x12 (144 nodes). The percentage on top
of each bar indicates the performance improvement of HAT
over the baseline network. HAT always improves system
performance and fairness over the baselines. The best per-
formance gain is observed on 8x8 networks because we
reasonably optimized HAT’s parameters for these network
configurations. For other networks (4x4 and 12x12), we
did not optimize the parameters. Even with non-optimized
parameters, HAT still improves both system performance
and fairness. We expect that further performance gain can be
achieved when parameters are tuned for these other network
sizes.

D. Sensitivity to Performance Metrics
To ensure no bias in selecting metrics to report our system

performance, we briefly present our results in system IPC
and harmonic speedup (described in §VI). HAT improves
average system IPC by 4.8%/6.1%/11.0% and average har-
monic speedup by 2.2%/7.1%/10.5% over the best previous
mechanism on VC-buffered/CHIPPER/BLESS 8x8 NoCs.
We conclude that HAT provides consistent performance
improvement over all evaluated mechanisms.

E. Energy Efficiency
In addition to system performance, we report energy effi-

ciency as performance-per-Watt, which is weighted speedup
divided by average network power. We use a power
model developed by Fallin et al. [14], which is based
on ORION 2.0 [41], to evaluate static and dynamic power
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Figure 4. System performance and fairness of CMP systems with varied
network sizes and VC-buffered, CHIPPER, and BLESS routers.

consumed by the on-chip network. Table IV shows the
energy efficiency improvement of HAT compared to dif-
ferent networks without source throttling. HAT improves
energy efficiency by up to 14.7% because it allows packets
to traverse through the network more quickly with less
congestion, thus reducing dynamic energy consumption.
HAT shows the greatest improvement on CHIPPER because
dynamic energy dominates the total energy due to higher
deflection rate in CHIPPER.

Router design VC-Buffered BLESS CHIPPER
∆ Perf/Watt 5.0% 8.5% 14.7%

Table IV. Energy efficiency improvement of HAT.

F. Effect on Multithreaded and Low-Intensity Workloads
Multithreaded Workloads: Table V shows execution time
reduction of HAT relative to baselines without throttling
on 64-node systems with different network designs run-
ning four 64-threaded workloads from SPLASH-2 [44].
Although HAT is not explicitly designed for multithreaded
workloads, it can still provide benefit by reducing net-
work contention. HAT improves performance of lun,
which has roughly 20 MPKI, by 7.5%/4.2%/1.0% on VC-
buffered/BLESS/CHIPPER NoCs. This is because HAT re-
duces the average network latency by 15.2% (VC-buffered),
9.0% (BLESS), and 12.8% (CHIPPER). On the other hand,
Heterogeneous Throttling improves performance of lun by
1.6%/0.8%/2.0% on VC-buffered/BLESS/CHIPPER NoCs.
The reason that Heterogeneous Throttling shows less per-
formance gain than HAT is that starvation rate, the metric
monitored by Heterogeneous Throttling to make the throt-
tling decision, remains low through the execution.

In addition, neither HAT or Heterogeneous Throttling
shows performance impact on fft, luc, and cholesky
because these workloads have very low network intensity
with 4.3 MPKI, 2.0 MPKI, and 4.9 MPKI, respectively.
We do not present results on these applications for Het-
erogeneous Throttling because they show similar trend (no
performance improvement) as HAT. New throttling mecha-
nisms that selectively throttle non-bottleneck or non-limiter

threads (e.g., as determined in [21], [10]), can provide better
performance in multithreaded workloads compared to HAT,
and the development of such mechanisms is a promising
avenue of future work.

Benchmark fft luc lun cholesky
VC-Buffered 0.1% 0.0% 7.5% -0.1%

BLESS 0.1% 0.0% 4.2% 0.0%
CHIPPER 0.1% -0.1% 1.0% -0.1%

Table V. Execution time reduction of HAT on multithreaded workloads.

Low-Intensity Workloads: We observe that HAT does not
impact system performance of low-intensity workloads (i.e.,
L, ML, and M mixes). Since these workloads have minimal
contention, there is no need for throttling. All techniques
that we evaluate perform essentially the same.
G. Sensitivity Analysis

For brevity, we only present sensitivity results for 4x4
BLESS network and we do not present extensive results for
some studies.
Capacity of Network-Non-Intensive Applications: The
total network intensity of applications which are not throt-
tled (NonIntensiveCap) determines what portion of the
network-non-intensive nodes are unthrottled. It is important
that this parameter is set appropriately for a given network
design: if it is too large, then the network will be overloaded
because too many network-intensive applications will be
allowed unthrottled access to the network. On the other hand,
if it is too small, then too few applications will be allowed
unthrottled network access, and some network non-intensive
applications may be throttled despite their low impact on
network load.

Table VI shows the performance of HAT compared to
the baseline with no throttling as NonIntensiveCap varies.
When every node is throttled (NonIntensiveCap= 0), HAT
provides the best fairness because the most slowed down
application can make faster progress with reduced conges-
tion. As NonIntensiveCap increases, system performance
increases since the low-intensity applications are given more
opportunities to freely inject, but fairness slightly degrades
because some nodes are throttled more heavily to reduce
the network load. When the parameter is increased past a
certain point, HAT will be unable to bring the network load
down to the target even if the throttling rate is near 100%
because too few nodes are throttled. Such a situation results
in unfair treatment of the few applications that are throttled
and small performance gains overall because network load
is lowered only slightly.

0 50 100 150 200 250
∆ WS 8.5% 10.1% 10.6% 10.8% 10.3% 9.6%

∆ Unfairness -11% -9.5% -7.1% -5.0% -2.5% -2.1%
Table VI. Sensitivity of HAT improvements to NonIntensiveCap.

Epoch Length: We use an epoch length of 100K cycles
which shows a good trade-off between responsiveness and
overhead. The performance delta is less than 1% if we vary
the epoch length from 20K to 1M cycles. A shorter epoch
captures more fine-grained changes in application behavior,
but with higher overhead. A longer epoch amortizes HAT’s
computation over more time, but does not promptly capture
fine-grained changes in applications’ behavior.
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Target Network Utilization: This parameter controls the
throttling aggressiveness of HAT and thus its effectiveness.
We find that weighted speedup peaks at between 50% and
65% network utilization with less than 1% variation at points
within this range. In addition, we observe that fairness is best
in this range. Beyond 65%, performance drops significantly
(by as much as 10%) because throttling is not aggressive
enough, and the network remains congested.

VIII. CONCLUSION

In this paper, we present Heterogeneous Adaptive Throt-
tling (HAT), a new application-aware throttling mechanism
that reduces congestion to improve performance in NoC-
based multi-core systems. HAT achieves this improvement
by using two key principles. First, to improve system
performance, HAT observes applications’ network intensity
and selectively throttles network-intensive applications, al-
lowing latency-sensitive applications to make fast progress
with reduced network congestion. Second, to minimize
the over- and under-throttling of applications, which limits
system performance, HAT observes the network load and
dynamically adjusts the throttling rate in a closed-loop
fashion. To our knowledge, HAT is the first source-throttling
mechanism that combines application aware throttling and
network-load-aware throttling rate adjustment. We show that
HAT outperforms two different state-of-the-art congestion-
control mechanisms, providing the best system performance
and fairness. We conclude that HAT is an effective high-
performance congestion-control substrate for network-on-
chip-based multi-core systems.
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