
Prof. Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

13 July 2018

HiPEAC ACACES Summer School 2018

Memory Systems 

and Memory-Centric Computing Systems

Lecture 5, Topic 4: Low-Latency Memory

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu


Eliminating the Adoption Barriers

How to Enable Adoption 
of Processing in Memory
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Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping, 
access/sharing control

5. Infrastructures to assess benefits and feasibility
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We Need to Revisit the Entire Stack

4

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons



Key Challenge 1: Code Mapping

Logic layer 

SM

Crossbar switch

Vault 

Ctrl

…. Vault 

Ctrl

Logic layer

?

Main GPU

3D-stacked memory

(memory stack)

• Challenge 1: Which operations should be executed 
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)



Key Challenge 2: Data Mapping

Logic layer 

SM

Crossbar switch

Vault 

Ctrl

…. Vault 

Ctrl

Logic layer

Main GPU

3D-stacked memory

(memory stack)

• Challenge 2: How should data be mapped to 
different 3D memory stacks? 

SM (Streaming Multiprocessor)



How to Do the Code and Data Mapping?

◼ Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


How to Schedule Code?

◼ Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


Challenge: Coherence for Hybrid CPU-PIM Apps
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Traditional

coherence

No coherence

overhead



How to Maintain Coherence?

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


How to Support Virtual Memory?

◼ Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


How to Design Data Structures for PIM?

◼ Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms 
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf


Simulation Infrastructures for PIM

◼ Ramulator extended for PIM

❑ Flexible and extensible DRAM simulator

❑ Can model many different memory standards and proposals

❑ Kim+, “Ramulator: A Flexible and Extensible DRAM 
Simulator”, IEEE CAL 2015.

❑ https://github.com/CMU-SAFARI/ramulator
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https://github.com/CMU-SAFARI/ramulator


An FPGA-based Test-bed for PIM?

◼ Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies HPCA 2017.

◼ Flexible

◼ Easy to Use (C++ API)

◼ Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


New Applications and Use Cases for PIM

◼ Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Google Workloads

for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose,  Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,

Allan Knies, Parthasarathy Ranganathan, Onur Mutlu



Genome Read In-Memory (GRIM) Filter: 
Fast Seed Location Filtering in DNA Read Mapping 

using Processing-in-Memory Technologies

Jeremie Kim, 

Damla Senol, Hongyi Xin, Donghyuk Lee, 

Saugata Ghose, Mohammed Alser, Hasan Hassan, 

Oguz Ergin, Can Alkan, and Onur Mutlu



Executive Summary

◼ Genome Read Mapping is a very important problem and is the first 
step in many types of genomic analysis

❑ Could lead to improved health care, medicine, quality of life

◼ Read mapping is an approximate string matching problem

❑ Find the best fit of 100 character strings into a 3 billion character dictionary

❑ Alignment is currently the best method for determining the similarity between 
two strings, but is very expensive

◼ We propose an in-memory processing algorithm GRIM-Filter for 
accelerating read mapping, by reducing the number of required 
alignments

◼ We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.
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GRIM-Filter in 3D-stacked DRAM

◼ The layout of bit vectors in a bank enables filtering many bins in parallel

◼ Customized logic for accumulation and comparison per genome segment

❑ Low area overhead, simple implementation
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GRIM-Filter Performance
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Time (x1000 
seconds)

1.8x-3.7x performance benefit across real data sets

Benchmarks and their Execution Times



GRIM-Filter False Positive Rate
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False Positive 
Rate (%)

5.6x-6.4x False Positive reduction across real data sets

Benchmarks and their False Positive Rates



Conclusions

◼ We propose an in memory filter algorithm to accelerate end-
to-end genome read mapping by reducing the number of 
required alignments

◼ Compared to the previous best filter

❑ We observed 1.8x-3.7x speedup

❑ We observed 5.6x-6.4x fewer false positives

◼ GRIM-Filter is a universal filter that can be applied to any 
genome read mapper 
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In-Memory DNA Sequence Analysis

◼ Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Open Problems: PIM Adoption

https://arxiv.org/pdf/1802.00320.pdf
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https://arxiv.org/pdf/1802.00320.pdf


Enabling the Paradigm Shift



Computer Architecture Today

◼ You can revolutionize the way computers are built, if you 
understand both the hardware and the software (and 
change each accordingly)

◼ You can invent new paradigms for computation, 
communication, and storage

◼ Recommended book: Thomas Kuhn, “The Structure of 
Scientific Revolutions” (1962)

❑ Pre-paradigm science: no clear consensus in the field

❑ Normal science: dominant theory used to explain/improve 
things (business as usual); exceptions considered anomalies

❑ Revolutionary science: underlying assumptions re-examined

26



Computer Architecture Today (IV)

◼ You can revolutionize the way computers are built, if you 
understand both the hardware and the software (and 
change each accordingly)

◼ You can invent new paradigms for computation, 
communication, and storage

◼ Recommended book: Thomas Kuhn, “The Structure of 
Scientific Revolutions” (1962)

❑ Pre-paradigm science: no clear consensus in the field

❑ Normal science: dominant theory used to explain/improve 
things (business as usual); exceptions considered anomalies

❑ Revolutionary science: underlying assumptions re-examined
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What Will You Learn in This Course?

◼ Memory Systems and Memory-Centric Computing Systems

❑ July 9-13, 2018

◼ Topic 1: Main Memory Trends and Basics

◼ Topic 2: Memory Reliability & Security: RowHammer and Beyond

◼ Topic 3: In-memory Computation

◼ Topic 4: Low-Latency (and Low-Energy) Memory

◼ Topic 5 (unlikely): Enabling and Exploiting Non-Volatile Memory

◼ Topic 6 (unlikely): Flash Memory and SSD Scaling

◼ Major Overview Reading:

❑ Mutlu and Subramaniam, “Research Problems and Opportunities 
in Memory Systems,” SUPERFRI 2014.
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Agenda

◼ Brief Introduction

◼ A Motivating Example

◼ Memory System Trends

◼ What Will You Learn In This Course

❑ And, how to make the best of it…

◼ Memory Fundamentals

◼ Key Memory Challenges and Solution Directions

❑ Security, Reliability, Safety

❑ Energy and Performance: Data-Centric Systems

❑ Latency and Latency-Reliability Tradeoffs 

◼ Summary and Future Lookout
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Four Key Directions

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for Genomics, Medicine, Health

30



Maslow’s Hierarchy of Needs, A Third Time

31

Speed

Speed

Speed

Speed

Speed

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Challenge and Opportunity for Future

Fundamentally

Low-Latency

Computing Architectures
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Memory Latency: 

Fundamental Tradeoffs
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DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  

Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  

Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance 

bottleneck



The Memory Latency Problem

◼ High memory latency is a significant limiter of system 
performance and energy-efficiency

◼ It is becoming increasingly so with higher memory 
contention in multi-core and heterogeneous architectures

❑ Exacerbating the bandwidth need

❑ Exacerbating the QoS problem

◼ It increases processor design complexity due to the 
mechanisms incorporated to tolerate memory latency
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Retrospective: Conventional Latency Tolerance Techniques

◼ Caching [initially by Wilkes, 1965]
❑ Widely used, simple, effective, but inefficient, passive
❑ Not all applications/phases exhibit temporal or spatial locality

◼ Prefetching [initially in IBM 360/91, 1967]
❑ Works well for regular memory access patterns
❑ Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

◼ Multithreading [initially in CDC 6600, 1964]
❑ Works well if there are multiple threads
❑ Improving single thread performance using multithreading hardware is an 

ongoing research effort

◼ Out-of-order execution [initially by Tomasulo, 1967]
❑ Tolerates cache misses that cannot be prefetched
❑ Requires extensive hardware resources for tolerating long latencies



Two Major Sources of Latency Inefficiency

◼ Modern DRAM is not designed for low latency

❑ Main focus is cost-per-bit (capacity)

◼ Modern DRAM latency is determined by worst case 
conditions and worst case devices

❑ Much of memory latency is unnecessary

39



What Causes 

the Long Memory Latency?



Why the Long Memory Latency?

◼ Reason 1: Design of DRAM Micro-architecture

❑ Goal: Maximize capacity/area, not minimize latency

◼ Reason 2: “One size fits all” approach to latency specification

❑ Same latency parameters for all temperatures

❑ Same latency parameters for all DRAM chips (e.g., rows)

❑ Same latency parameters for all parts of a DRAM chip

❑ Same latency parameters for all supply voltage levels

❑ Same latency parameters for all application data 

❑ …

41



Tackling the Fixed Latency Mindset
◼ Reliable operation latency is actually very heterogeneous

❑ Across temperatures, chips, parts of a chip, voltage levels, …

◼ Idea: Dynamically find out and use the lowest latency one 
can reliably access a memory location with

❑ Adaptive-Latency DRAM [HPCA 2015]

❑ Flexible-Latency DRAM [SIGMETRICS 2016]

❑ Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]

❑ Voltron [SIGMETRICS 2017]

❑ DRAM Latency PUF [HPCA 2018]

❑ ...

◼ We would like to find sources of latency heterogeneity and 
exploit them to minimize latency

42



Latency Variation in Memory Chips

43

HighLow

DRAM Latency

DRAM BDRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions → 
latency variation in timing parameters



Why is Latency High?

44

• DRAM latency: Delay as specified in DRAM standards

– Doesn’t reflect true DRAM device latency

• Imperfect manufacturing process → latency variation

• High standard latency chosen to increase yield

HighLow

DRAM Latency

DRAM A DRAM B DRAM C

Manufacturing

Variation

Standard

Latency



What Causes the Long Memory Latency?

◼ Conservative timing margins! 

◼ DRAM timing parameters are set to cover the worst case

◼ Worst-case temperatures 

❑ 85 degrees vs. common-case

❑ to enable a wide range of operating conditions

◼ Worst-case devices 

❑ DRAM cell with smallest charge across any acceptable device

❑ to tolerate process variation at acceptable yield

◼ This leads to large timing margins for the common case
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Understanding and Exploiting

Variation in DRAM Latency
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DRAM Stores Data as Charge

1. Sensing
2. Restore
3. Precharge

DRAM Cell

Sense-Amplifier

Three steps of 
charge movement
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Data 0

Data 1

Cell

time

ch
ar

ge

Sense-Amplifier

DRAM Charge over Time

Sensing Restore

Why does DRAM need the extra timing margin?

Timing Parameters
In theory

In practice
margin

Cell

Sense-Amplifier
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1. Process Variation 
– DRAM cells are not equal

– Leads to extra timing margin for cell that can 
store small amount of charge

`2. Temperature Dependence
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin when operating at 
low temperature 

Two Reasons for Timing Margin

1. Process Variation 
– DRAM cells are not equal

– Leads to extra timing margin for a cell that can 
store a large amount of charge

1. Process Variation 
– DRAM cells are not equal

– Leads to extra timing margin for a cell that can 
store a large amount of charge
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DRAM Cells are Not Equal
RealIdeal

Same Size ➔
Same Charge ➔

Different Size ➔
Different Charge ➔

Largest Cell

Smallest Cell

Same Latency Different Latency

Large variation in cell size ➔
Large variation in charge ➔

Large variation in access latency
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Contact

Process Variation

Access Transistor

Bitline

Capacitor

Small cell can store small 
charge

• Small cell capacitance
• High contact resistance
• Slow access transistor

❶ Cell Capacitance

❷ Contact Resistance

❸ Transistor Performance

ACCESS

DRAM Cell

➔ High access latency 
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Two Reasons for Timing Margin

1. Process Variation 
– DRAM cells are not equal

– Leads to extra timing margin for a cell that can 
store a large amount of charge

`2. Temperature Dependence 
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin for cells that 
operate at the high temperature 

2. Temperature Dependence 
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin for cells that 
operate at the high temperature 

2. Temperature Dependence 
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin for cells that 
operate at low temperature 
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Charge Leakage  Temperature

Room Temp. Hot Temp. (85°C)

Small Leakage Large LeakageCells store small charge at high temperature 
and large charge at low temperature 
→ Large variation in access latency
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DRAM Timing Parameters

• DRAM timing parameters are dictated by 
the worst-case 

– The smallest cell with the smallest charge in 
all DRAM products

– Operating at the highest temperature

• Large timing margin for the common-case



Adaptive-Latency DRAM [HPCA 2015] 

◼ Idea: Optimize DRAM timing for the common case

❑ Current temperature

❑ Current DRAM module

◼ Why would this reduce latency?

❑ A DRAM cell can store much more charge in the common case 
(low temperature, strong cell) than in the worst case

❑ More charge in a DRAM cell

→ Faster sensing, charge restoration, precharging

→ Faster access (read, write, refresh, …)

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
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Extra Charge → Reduced Latency

1. Sensing

2. Restore

3. Precharge

Sense cells with extra charge faster 
→ Lower sensing latency

No need to fully restore cells with extra charge
→ Lower restoration latency

No need to fully precharge bitlines for cells with 
extra charge
→ Lower precharge latency



DRAM Characterization Infrastructure

57Kim+, “Flipping Bits in Memory Without Accessing Them: An 

Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



DRAM Characterization Infrastructure

◼ Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies, HPCA 2017.

◼ Flexible

◼ Easy to Use (C++ API)

◼ Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC: Open Source DRAM Infrastructure

◼ https://github.com/CMU-SAFARI/SoftMC
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https://github.com/CMU-SAFARI/SoftMC
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Typical DIMM at 
Low Temperature

Observation 1. Faster Sensing

More Charge

Strong Charge
Flow

Faster Sensing

Typical DIMM at Low Temperature
➔More charge ➔ Faster sensing

Timing
(tRCD)

17% ↓
No Errors

115 DIMM 
Characterization



61

Observation 2. Reducing Restore Time

Less Leakage ➔
Extra Charge

No Need to Fully
Restore Charge

Typical DIMM at lower temperature
➔More charge ➔ Restore time reduction

Typical DIMM at 
Low Temperature

Read (tRAS)

37% ↓
Write (tWR)

54% ↓
No Errors

115 DIMM 
Characterization
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AL-DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer provides multiple sets of 

reliable DRAM timing parameters at different 
temperatures for each DIMM

– System monitors DRAM temperature & uses 
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
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DRAM Temperature
• DRAM temperature measurement

• Server cluster: Operates at under 34°C
• Desktop: Operates at under 50°C
• DRAM standard optimized for 85°C

• Previous works – DRAM temperature is low
• El-Sayed+ SIGMETRICS 2012
• Liu+ ISCA 2007

• Previous works – Maintain low DRAM temperature 
• David+ ICAC 2011
• Liu+ ISCA 2007
• Zhu+ ITHERM 2008

DRAM operates at low temperatures   
in the common-case
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Latency Reduction Summary of 115 DIMMs

• Latency reduction for read & write (55°C)
– Read Latency: 32.7%

– Write Latency: 55.1%

• Latency reduction for each timing 
parameter (55°C) 
– Sensing: 17.3%

– Restore: 37.3% (read), 54.8% (write)

– Precharge: 35.2%

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.
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AL-DRAM: Real System Evaluation

• System
– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)

– OS: Linux

– Storage: 128GByte SSD

• Workload
– 35 applications from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS
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Reducing Latency Also Reduces Energy

◼ AL-DRAM reduces DRAM power consumption by 5.8%

◼ Major reason: reduction in row activation time
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AL-DRAM: Advantages & Disadvantages

◼ Advantages

+ Simple mechanism to reduce latency

+ Significant system performance and energy benefits

+ Benefits higher at low temperature

+ Low cost, low complexity 

◼ Disadvantages

- Need to determine reliable operating latencies for different 
temperatures and different DIMMs → higher testing cost

(might not be that difficult for low temperatures)
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More on AL-DRAM

◼ Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for 
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA, 
February 2015. 
[Slides (pptx) (pdf)] [Full data sets] 
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http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html


Different Types of Latency Variation

◼ AL-DRAM exploits latency variation

❑ Across time (different temperatures)

❑ Across chips

◼ Is there also latency variation within a chip?

❑ Across different parts of a chip

71



Variation in Activation Errors
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Different characteristics across DIMMs

No ACT Errors

Results from 7500 rounds over 240 chips

Very few errors

Modern DRAM chips exhibit 

significant variation in activation latency

Rife w/ errors

13.1ns

standard

Many errors
Max

Min

Quartiles



Spatial Locality of Activation Errors
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Activation errors are concentrated 

at certain columns of cells

One DIMM @ tRCD=7.5ns



Mechanism to Reduce DRAM Latency

• Observation: DRAM timing errors (slow DRAM 

cells) are concentrated on certain regions

• Flexible-LatencY (FLY) DRAM

– A software-transparent design that reduces latency

• Key idea:

1) Divide memory into regions of different latencies

2) Memory controller: Use lower latency for regions without 

slow cells; higher latency for other regions

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


FLY-DRAM Configurations
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https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.
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FLY-DRAM improves performance 

by exploiting spatial latency variation in DRAM

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


FLY-DRAM: Advantages & Disadvantages

◼ Advantages

+ Reduces latency significantly

+ Exploits significant within-chip latency variation

◼ Disadvantages

- Need to determine reliable operating latencies for different 
parts of a chip → higher testing cost

- Slightly more complicated controller
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Analysis of Latency Variation in DRAM Chips

◼ Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh, 
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and 
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips: 
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins, 
France, June 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study


Why Is There 

Spatial Latency Variation 

Within a Chip?
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Inherently fast
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What Is Design-Induced Variation?
slowfast
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w
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wordline driver
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DIVA Online Profiling

inherently slow

Profile only slow regions to determine min. latency
→Dynamic & low cost latency optimization

sense amplifier
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Design-Induced-Variation-Aware
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inherently slow

DIVA Online Profiling

slow cells  

design-induced
variation

process
variation

localized errorrandom error

online profilingerror-correcting 
code

Combine error-correcting codes & online profiling
→ Reliably reduce DRAM latency

sense amplifier
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river

Design-Induced-Variation-Aware



83

DIVA-DRAM Reduces Latency
Read Write
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DIVA-DRAM: Advantages & Disadvantages

◼ Advantages

++ Automatically finds the lowest reliable operating latency 
at system runtime (lower production-time testing cost)

+ Reduces latency more than prior methods (w/ ECC)

+ Reduces latency at high temperatures as well

◼ Disadvantages

- Requires knowledge of inherently-slow regions

- Requires ECC (Error Correcting Codes)

- Imposes overhead during runtime profiling
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Design-Induced Latency Variation in DRAM

◼ Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, 
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and 
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips: 
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


Understanding & Exploiting the 

Voltage-Latency-Reliability 

Relationship
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High DRAM Power Consumption

• Problem: High DRAM (memory) power in today’s 

systems

87

>40% in POWER7 (Ware+, HPCA’10) >40% in GPU (Paul+, ISCA’15)



Low-Voltage Memory

• Existing DRAM designs to help reduce DRAM power 

by lowering supply voltage conservatively

– 𝑃𝑜𝑤𝑒𝑟 ∝ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒2

• DDR3L (low-voltage) reduces voltage from 1.5V to 

1.35V (-10%)

• LPDDR4 (low-power) employs low-power I/O 

interface with 1.2V (lower bandwidth)
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Can we reduce DRAM power and energy by

further reducing supply voltage?



Goals

89

1 Understand and characterize the various 

characteristics of DRAM under reduced voltage

2 Develop a mechanism that reduces DRAM energy by 

lowering voltage while keeping performance loss 

within a target



Key Questions

• How does reducing voltage affect 

reliability (errors)?

• How does reducing voltage affect 

DRAM latency?

• How do we design a new DRAM energy 

reduction mechanism?
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Supply Voltage Control on DRAM
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Supply Voltage

Adjust the supply voltage to every chip on the same module

DRAM Module



Custom Testing Platform

SoftMC [Hassan+, HPCA’17]: FPGA testing platform to 

1) Adjust supply voltage to DRAM modules

2) Schedule DRAM commands to DRAM modules

Existing systems: DRAM commands not exposed to users

92

Voltage

controller

DRAM

module FPGA

https://github.com/CMU-SAFARI/DRAM-Voltage-Study

https://github.com/CMU-SAFARI/DRAM-Voltage-Study


Tested DRAM Modules

• 124 DDR3L (low-voltage) DRAM chips

– 31 SO-DIMMs

– 1.35V (DDR3 uses 1.5V)

– Density: 4Gb per chip

– Three major vendors/manufacturers

– Manufacturing dates: 2014-2016

• Iteratively read every bit in each 4Gb chip under a wide 

range of supply voltage levels: 1.35V to 1.0V (-26%)
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Reliability Worsens with Lower Voltage
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Nominal

Voltage

Min. voltage (Vmin) 

without errors

Reducing voltage below Vmin causes 

an increasing number of errors

Errors induced by 

reduced-voltage operation



Source of Errors
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DIMMs Operating at Higher Latency
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Measured minimum latency that does not cause errors in DRAM modules

Lower bound of latency as our latency adjustment granularity is 2.5ns 
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Spatial Locality of Errors
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A module under 1.175V (12% voltage reduction)

Errors concentrate in certain regions



Summary of Key Experimental Observations

• Voltage-induced errors increase as 

voltage reduces further below Vmin

• Errors exhibit spatial locality

• Increasing the latency of DRAM operations 

mitigates voltage-induced errors
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DRAM Voltage Adjustment to Reduce Energy

• Goal: Exploit the trade-off between voltage and latency 

to reduce energy consumption

• Approach: Reduce DRAM voltage reliably

– Performance loss due to increased latency at lower voltage
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Voltron Overview
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How do we predict performance loss due to 

increased latency under low DRAM voltage?

Voltron

User specifies the 

performance loss target

Select the minimum DRAM voltage 

without violating the target



Linear Model to Predict Performance
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Voltron

User specifies the 

performance loss target

Select the minimum DRAM voltage 

without violating the target

Linear regression model

Application’s 

characteristics

[1.3V, 1.25V, …]

DRAM Voltage

[-1%, -3%, …]

Predicted 

performance loss

Min.

Voltage

Target

Final

Voltage



Regression Model to Predict Performance

• Application’s characteristics for the model:

– Memory intensity: Frequency of last-level cache misses

– Memory stall time: Amount of time memory requests stall 

commit inside CPU

• Handling multiple applications:

– Predict a performance loss for each application

– Select the minimum voltage that satisfies the performance 

target for all applications
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Comparison to Prior Work

• Prior work: Dynamically scale frequency and voltage of the entire 

DRAM based on bandwidth demand [David+, ICAC’11]

– Problem: Lowering voltage on the peripheral circuitry 

decreases channel frequency (memory data throughput)

• Voltron: Reduce voltage to only DRAM array without changing 

the voltage to peripheral circuitry
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Exploiting Spatial Locality of Errors

Key idea: Increase the latency only for DRAM banks that 

observe errors under low voltage

– Benefit: Higher performance
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Voltron Evaluation Methodology

• Cycle-level simulator: Ramulator [CAL’15]

– McPAT and DRAMPower for energy measurement

• 4-core system with DDR3L memory

• Benchmarks: SPEC2006, YCSB

• Comparison to prior work: MemDVFS [David+, ICAC’11]

– Dynamic DRAM frequency and voltage scaling

– Scaling based on the memory bandwidth consumption
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https://github.com/CMU-SAFARI/ramulator

https://github.com/CMU-SAFARI/DRAM-Voltage-Study
https://github.com/CMU-SAFARI/ramulator


Energy Savings with Bounded Performance
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Voltron: Advantages & Disadvantages

◼ Advantages

+ Can trade-off between voltage and latency to improve 
energy or performance

+ Can exploit the high voltage margin present in DRAM

◼ Disadvantages

- Requires finding the reliable operating voltage for each 
chip → higher testing cost
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Analysis of Latency-Voltage in DRAM Chips

◼ Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


And, What If …

◼ … we can sacrifice reliability of some data to access it with 
even lower latency?
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The DRAM Latency PUF: 
Quickly Evaluating Physical Unclonable Functions 

by Exploiting the Latency-Reliability Tradeoff 
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel  

Hasan Hassan   Onur Mutlu
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Motivation

• A PUF is function that generates a signature 
unique to a given device 

• Used in a Challenge-Response Protocol
- Each device generates a unique PUF response 

depending the inputs

- A trusted server authenticates a device if it 
generates the expected PUF response
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DRAM Latency Characterization of 
223 LPDDR4 DRAM Devices

• Latency failures come from accessing 
DRAM with reduced timing parameters.

• Key Observations:
1. A cell’s latency failure probability is 

determined by random process variation

2. Latency failure patterns are repeatable and 
unique to a device
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DRAM Accesses and Failures
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The DRAM Latency PUF Evaluation

• We generate PUF responses using latency
errors in a region of DRAM

• The latency error patterns satisfy PUF 
requirements

• The DRAM Latency PUF generates PUF 
responses in 88.2ms
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Results

• DL-PUF is orders of magnitude faster 
than prior DRAM PUFs!



The DRAM Latency PUF: 
Quickly Evaluating Physical Unclonable Functions 

by Exploiting the Latency-Reliability Tradeoff 
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel  

Hasan Hassan   Onur Mutlu

QR Code for the paper
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf

HPCA 2018



DRAM Latency PUFs

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable 
Functions by Exploiting the Latency-Reliability Tradeoff in 
Modern DRAM Devices"
Proceedings of the 24th International Symposium on High-Performance 
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf


Reducing Refresh Latency
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On Reducing Refresh Latency

◼ Anup Das, Hasan Hassan, and Onur Mutlu,
"VRL-DRAM: Improving DRAM Performance via 
Variable Refresh Latency"
Proceedings of the 55th Design Automation 
Conference (DAC), San Francisco, CA, USA, June 2018.
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https://people.inf.ethz.ch/omutlu/pub/VRL-DRAM_reduced-refresh-latency_dac18.pdf
https://dac.com/


Why the Long Memory Latency?

◼ Reason 1: Design of DRAM Micro-architecture

❑ Goal: Maximize capacity/area, not minimize latency

◼ Reason 2: “One size fits all” approach to latency specification

❑ Same latency parameters for all temperatures

❑ Same latency parameters for all DRAM chips (e.g., rows)

❑ Same latency parameters for all parts of a DRAM chip

❑ Same latency parameters for all supply voltage levels

❑ Same latency parameters for all application data 

❑ …
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Tiered Latency DRAM

123



124

DRAM Latency = Subarray Latency + I/O Latency

What Causes the Long Latency?
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Why is the Subarray So Slow?
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Trade-Off: Area (Die Size) vs. Latency
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Trade-Off: Area (Die Size) vs. Latency
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Short Bitline

Low Latency 

Approximating the Best of Both Worlds
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Approximating the Best of Both Worlds
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Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM 

• TL-DRAM is a substrate that can be leveraged by 
the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM 

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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subarray

Near Segment as Hardware-Managed Cache

TL-DRAM

I/O

cache

main
memory

• Challenge 1: How to efficiently migrate a row between 
segments?

• Challenge 2: How to efficiently manage the cache?

far segment

near segment
sense amplifier

channel
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Inter-Segment Migration

Near Segment

Far Segment

Isolation Transistor

Sense Amplifier

Source

Destination

• Goal: Migrate source row into destination row

• Naïve way: Memory controller reads the source row 
byte by byte and writes to destination row byte by byte

→ High latency
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Inter-Segment Migration
• Our way: 

– Source and destination cells share bitlines

– Transfer data from source to destination across 
shared bitlines concurrently

Near Segment

Far Segment

Isolation Transistor

Sense Amplifier

Source

Destination
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Inter-Segment Migration

Near Segment

Far Segment

Isolation Transistor

Sense Amplifier

• Our way: 
– Source and destination cells share bitlines

– Transfer data from source to destination across
shared bitlines concurrently

Step 2: Activate destination 
row to connect cell and bitline

Step 1: Activate source row

Additional ~4ns over row access latency

Migration is overlapped with source row access
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subarray

Near Segment as Hardware-Managed Cache

TL-DRAM

I/O

cache

main
memory

• Challenge 1: How to efficiently migrate a row between 
segments?

• Challenge 2: How to efficiently manage the cache?

far segment

near segment
sense amplifier

channel
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Using near segment as a cache improves 
performance and reduces power consumption

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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More on TL-DRAM

◼ Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya 
Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost 
DRAM Architecture"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/lee_hpca13_talk.pptx


LISA: Low-Cost Inter-Linked Subarrays
[HPCA 2016]
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Problem: Inefficient Bulk Data Movement
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Bulk data movement is a key operation in many applications

– memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]
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Moving Data Inside DRAM?
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DRAM 

cell

Subarray 1

Subarray 2

Subarray 3

Subarray N

…

Internal 

Data Bus (64b)

8Kb
512

rows
Bank

Bank

Bank

Bank

DRAM

…

Low connectivity in DRAM is the fundamental 

bottleneck for bulk data movement

Goal: Provide a new substrate to enable 

wide connectivity between subarrays



Key Idea and Applications

• Low-cost Inter-linked subarrays (LISA)

– Fast bulk data movement between subarrays

– Wide datapath via isolation transistors: 0.8% DRAM chip area

• LISA is a versatile substrate → new applications
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Subarray 1

Subarray 2

…

Fast bulk data copy: Copy latency 1.363ms→0.148ms (9.2x)
→ 66% speedup, -55% DRAM energy

In-DRAM caching: Hot data access latency 48.7ns→21.5ns (2.2x)
→ 5% speedup

Fast precharge: Precharge latency 13.1ns→5.0ns (2.6x)
→ 8% speedup



New DRAM Command to Use LISA

Row Buffer Movement (RBM): Move a row of data in 

an activated row buffer to a precharged one
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…
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Charge

Sharing

Activated

Precharged Amplify the chargeActivatedRBM transfers an entire row b/w subarrays



RBM Analysis

• The range of RBM depends on the DRAM design

– Multiple RBMs to move data across > 3 subarrays

• Validated with SPICE using worst-case cells

– NCSU FreePDK 45nm library

• 4KB data in 8ns (w/ 60% guardband)

→ 500 GB/s, 26x bandwidth of a DDR4-2400 channel

• 0.8% DRAM chip area overhead [O+ ISCA’14]
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Subarray 1

Subarray 2

Subarray 3



1. Rapid Inter-Subarray Copying (RISC)

• Goal: Efficiently copy a row across subarrays

• Key idea: Use RBM to form a new command sequence

147

S
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S
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S
P

S
P

Subarray 1

Subarray 2

Activate dst row

(write row buffer into dst row)3

RBM SA1→SA22

Activate src row1 src row

dst rowReduces row-copy latency by 9.2x,

DRAM energy by 48.1x



2.Variable Latency DRAM (VILLA)

• Goal: Reduce DRAM latency with low area overhead

• Motivation: Trade-off between area and latency
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High area overhead: >40%

Long Bitline 

(DDRx)

Short Bitline 

(RLDRAM)

Shorter bitlines → faster 
activate and precharge time



2. Variable Latency DRAM (VILLA)

• Key idea: Reduce access latency of hot data via a 

heterogeneous DRAM design [Lee+ HPCA’13, Son+ ISCA’13]

• VILLA: Add fast subarrays as a cache in each bank
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Slow Subarray

Slow Subarray

Fast Subarray LISA: Cache rows rapidly from slow 

to fast subarrays

32

rows

512

rows

Reduces hot data access latency by 2.2x 

at only 1.6% area overhead

Challenge: VILLA cache requires 

frequent movement of data rows



3. Linked Precharge (LIP)
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• Problem: The precharge time is limited by the strength 

of one precharge unit

• Linked Precharge (LIP): LISA precharges a subarray 

using multiple precharge units
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More on LISA

◼ Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee, 
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast 
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain, 
March 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp


Reducing Memory Latency by 

Exploiting Memory Access Patterns
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ChargeCache: Executive Summary

• Goal: Reduce average DRAM access latency with no 
modification to the existing DRAM chips

• Observations: 

1) A highly-charged DRAM row can be accessed with low latency

2) A row’s charge is restored when the row is accessed

3) A recently-accessed row is likely to be accessed again: 

Row Level Temporal Locality (RLTL)

• Key Idea: Track recently-accessed DRAM rows and use lower 
timing parameters if such rows are accessed again

• ChargeCache:

– Low cost & no modifications to the DRAM

– Higher performance (8.6-10.6% on average for 8-core)

– Lower DRAM energy (7.9% on average)
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Accessing Highly-charged Rows
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Observation 1

A highly-charged DRAM row can be 
accessed with low latency
• tRCD: 44%

• tRAS: 37%

How does a row become 
highly-charged?
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How Does a Row Become Highly-Charged?

DRAM cells lose charge over time

Two ways of restoring a row’s charge:

• Refresh Operation

• Access

timeRefresh

ch
a

rg
e

RefreshAccess
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Observation 2

A row’s charge is restored when the row 
is accessed

How likely is a recently-accessed
row to be accessed again?
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A recently-accessed DRAM row is likely to be 
accessed again.

• t-RLTL: Fraction of rows that are accessed 
within time t after their previous access

8ms – RLTL for single-core workloads8ms – RLTL for eight-core workloads
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Key Idea

Track recently-accessed DRAM rows 
and use lower timing parameters if 

such rows are accessed again
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ChargeCache Overview

Memory Controller

ChargeCache

A

:B

:D

:C

:E

:F

Requests: 

:A

D A

DRAM

A
D

ChargeCache Miss: Use Default TimingsChargeCache Hit: Use Lower Timings
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Area and Power Overhead

• Modeled with CACTI

• Area
– ~5KB for 128-entry ChargeCache
– 0.24% of a 4MB Last Level Cache (LLC) 

area

• Power Consumption
– 0.15 mW on average (static + dynamic)
– 0.23% of the 4MB LLC power consumption
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Methodology
• Simulator

– DRAM Simulator (Ramulator [Kim+, CAL’15])
https://github.com/CMU-SAFARI/ramulator

• Workloads
– 22 single-core workloads

• SPEC CPU2006, TPC, STREAM

– 20 multi-programmed 8-core workloads
• By randomly choosing from single-core workloads

– Execute at least 1 billion representative instructions per 
core (Pinpoints)

• System Parameters
– 1/8 core system with 4MB LLC

– Default tRCD/tRAS of 11/28 cycles
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Eight-core Performance
NUAT ChargeCache

ChargeCache + NUAT LL-DRAM (Upperbound)
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ChargeCache significantly improves 
multi-core performance
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DRAM Energy Savings
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More on ChargeCache

◼ Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek
Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,
"ChargeCache: Reducing DRAM Latency by Exploiting Row 
Access Locality"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain, March 
2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp


Summary: Low-Latency Memory
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Summary: Tackling Long Memory Latency

◼ Reason 1: Design of DRAM Micro-architecture

❑ Goal: Maximize capacity/area, not minimize latency

◼ Reason 2: “One size fits all” approach to latency specification

❑ Same latency parameters for all temperatures

❑ Same latency parameters for all DRAM chips (e.g., rows)

❑ Same latency parameters for all parts of a DRAM chip

❑ Same latency parameters for all supply voltage levels

❑ Same latency parameters for all application data 

❑ …

169



Challenge and Opportunity for Future

Fundamentally

Low Latency

Computing Architectures
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On DRAM Power Consumption

171



VAMPIRE DRAM Power Model

◼ Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais 
Kudrolli, William X. Liu, Hasan Hassan, Kevin K. Chang, Niladrish
Chatterjee, Aditya Agrawal, Mike O'Connor, and Onur Mutlu,
"What Your DRAM Power Models Are Not Telling You: Lessons 
from a Detailed Experimental Study"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June 
2018.
[Abstract]
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http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-abstract.pdf


Conclusion
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Agenda

◼ Brief Introduction

◼ A Motivating Example

◼ Memory System Trends

◼ What Will You Learn In This Course

❑ And, how to make the best of it…

◼ Memory Fundamentals

◼ Key Memory Challenges and Solution Directions

❑ Security, Reliability, Safety

❑ Energy and Performance: Data-Centric Systems

❑ Latency and Latency-Reliability Tradeoffs 

◼ Summary and Future Lookout
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Four Key Directions

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for Genomics, Medicine, Health
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What Have We Learned In This Course?

◼ Memory Systems and Memory-Centric Computing Systems

❑ July 9-13, 2018

◼ Topic 1: Main Memory Trends and Basics

◼ Topic 2: Memory Reliability & Security: RowHammer and Beyond

◼ Topic 3: In-memory Computation

◼ Topic 4: Low-Latency (and Low-Energy) Memory

◼ Topic 5 (unlikely): Enabling and Exploiting Non-Volatile Memory

◼ Topic 6 (unlikely): Flash Memory and SSD Scaling

◼ Major Overview Reading:

❑ Mutlu and Subramaniam, “Research Problems and Opportunities 
in Memory Systems,” SUPERFRI 2014.
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Some Solution Principles (So Far)

◼ More data-centric system design

❑ Do not center everything around computation units

◼ Better cooperation across layers of the system

❑ Careful co-design of components and layers: system/arch/device

❑ Better, richer, more expressive and flexible interfaces

◼ Better-than-worst-case design

❑ Do not optimize for the worst case

❑ Worst case should not determine the common case

◼ Heterogeneity in design (specialization, asymmetry)

❑ Enables a more efficient design (No one size fits all) 
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It Is Time to …

◼ … design principled system architectures to solve the 
memory problem

◼ … design complete systems to be balanced, high-performance, 
and energy-efficient, i.e., data-centric (or memory-centric)

◼ … make memory a key priority in system design and 
optimize it & integrate it better into the system

◼ This can

❑ Lead to orders-of-magnitude improvements 

❑ Enable new applications & computing platforms

❑ Enable better understanding of nature

❑ …
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We Need to Revisit the Entire Stack
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Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons



Course Materials and Beyond

◼ Website for Course Slides and Papers

❑ https://people.inf.ethz.ch/omutlu/acaces2018.html

❑ https://people.inf.ethz.ch/omutlu/projects.htm

❑ Final lecture notes and readings (for all topics)
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https://people.inf.ethz.ch/omutlu/acaces2018.html
https://people.inf.ethz.ch/omutlu/projects.htm


You Can Contact Me Any Time

◼ My Contact Information

❑ Onur Mutlu

❑ omutlu@gmail.com

❑ https://people.inf.ethz.ch/omutlu/index.html

❑ +41-79-572-1444 (my cell phone)

❑ You can contact me any time with questions and ideas.
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mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu/index.html


Thank You!
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Keep in Touch!
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Prof. Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

13 July 2018

HiPEAC ACACES Summer School 2018

Memory Systems 

and Memory-Centric Computing Systems

Lecture 5, Topic 4: Low-Latency Memory

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu


Readings, Videos, Reference Materials



Reference Overview Paper I

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, 
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]

186https://arxiv.org/pdf/1802.00320.pdf

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf


Reference Overview Paper II

◼ Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory 
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015. 

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri
https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf


Reference Overview Paper III

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

◼ Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


Reference Overview Paper IV

◼ Onur Mutlu,
"Memory Scaling: A Systems Architecture 
Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, 
CA, August 2013. [Slides (pptx) (pdf)]
[Video] [Coverage on StorageSearch] 

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://www.storagesearch.com/ram-new-thinking.html
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf


Reference Overview Paper V
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https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


Related Videos and Course Materials (I)

◼ Undergraduate Computer Architecture Course Lecture 
Videos (2015, 2014, 2013)

◼ Undergraduate Computer Architecture Course 
Materials (2015, 2014, 2013)

◼ Graduate Computer Architecture Course Lecture 
Videos (2017, 2015, 2013)

◼ Graduate Computer Architecture Course 
Materials (2017, 2015, 2013)

◼ Parallel Computer Architecture Course Materials
(Lecture Videos)

191

https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch?v=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s14/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
http://www.ece.cmu.edu/~ece740/f15/doku.php?id=schedule
http://www.ece.cmu.edu/~ece740/f13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece742/f12/doku.php?id=lectures
https://www.youtube.com/playlist?feature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4


Related Videos and Course Materials (II)

◼ Freshman Digital Circuits and Computer Architecture 
Course Lecture Videos (2018, 2017)

◼ Freshman Digital Circuits and Computer Architecture 
Course Materials (2018)

◼ Memory Systems Short Course Materials

(Lecture Video on Main Memory and DRAM Basics)
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https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_QedyPWtRmFUJ2F8DdYP7l
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch?v=ZLCy3pG7Rc0


Some Open Source Tools (I)
◼ Rowhammer – Program to Induce RowHammer Errors

❑ https://github.com/CMU-SAFARI/rowhammer

◼ Ramulator – Fast and Extensible DRAM Simulator

❑ https://github.com/CMU-SAFARI/ramulator

◼ MemSim – Simple Memory Simulator

❑ https://github.com/CMU-SAFARI/memsim

◼ NOCulator – Flexible Network-on-Chip Simulator

❑ https://github.com/CMU-SAFARI/NOCulator

◼ SoftMC – FPGA-Based DRAM Testing Infrastructure

❑ https://github.com/CMU-SAFARI/SoftMC

◼ Other open-source software from my group

❑ https://github.com/CMU-SAFARI/

❑ http://www.ece.cmu.edu/~safari/tools.html
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Some Open Source Tools (II)
◼ MQSim – A Fast Modern SSD Simulator 

❑ https://github.com/CMU-SAFARI/MQSim

◼ Mosaic – GPU Simulator Supporting Concurrent Applications

❑ https://github.com/CMU-SAFARI/Mosaic

◼ IMPICA – Processing in 3D-Stacked Memory Simulator

❑ https://github.com/CMU-SAFARI/IMPICA

◼ SMLA – Detailed 3D-Stacked Memory Simulator

❑ https://github.com/CMU-SAFARI/SMLA

◼ HWASim – Simulator for Heterogeneous CPU-HWA Systems

❑ https://github.com/CMU-SAFARI/HWASim

◼ Other open-source software from my group

❑ https://github.com/CMU-SAFARI/

❑ http://www.ece.cmu.edu/~safari/tools.html
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More Open Source Tools (III)

◼ A lot more open-source software from my group

❑ https://github.com/CMU-SAFARI/

❑ http://www.ece.cmu.edu/~safari/tools.html
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Referenced Papers

◼ All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

https://people.inf.ethz.ch/omutlu/acaces2018.html
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Ramulator: A Fast and Extensible 

DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed
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Ramulator

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

◼ ~2.5X faster than fastest open-source simulator

◼ Modular and extensible to different standards
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Case Study: Comparison of DRAM Standards
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Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator

201

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

