Memory Systems
and Memory-Centric Computing Systems

Part 5;: Data-Driven & Data-Aware Arch.

Prof. Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
3 September 2019
Perugia NiPS Summer School

SAFARI ETHZzurich CarnegieMellon

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

The Problem

Computing
IS Bottlenecked by Data

SAFARI

Data Overwhelms Modern Machines ...

= Storage/memory capability

= Communication capability

= Computation capability

= Greatly impacts robustness, energy, performance, cost

SAFARI

Data Movement Overwhelms Modern Machines

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim?
Rachata Ausavarungnirun! Eric Shiv> Rahul Thakur’> Daehyun Kim*?
Aki Kuusela®> Allan Knies® Parthasarathy Ranganathan® Onur Mutlu”!

SAFARI 4

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Prediction

Future Innovations
Will Be Even More
Bottlenecked by Data

SAFARI

Axiom

An Intelligent Architecture
Handles Data Well

SAFARI

How to Handle Data Well

Ensure data does not overwhelm the components

o via intelligent algorithms

o via intelligent architectures

o via whole system designs: algorithm-architecture-devices

Take advantage of vast amounts of data and metadata
o to improve architectural & system-level decisions

Understand and exploit properties of (different) data
o to improve algorithms & architectures in various metrics

SAFARI

Corollaries: Architectures Today ...

= JArchitectures are terrible at dealing with data

o Designed to mainly store and move data vs. to compute
a They are processor-centric as opposed to data-centric

= Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them

o Designed to make simple decisions, ignoring lots of data
o They make human-driven decisions vs. data-driven decisions

= Architectures are terrible at knowing and exploiting
different properties of application data

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware

SAFARI 8

Data-Centric (Memory-Centric)
Architectures

Data-Centric Architectures: Properties

Process data where it resides (where it makes sense)
o Processing in and near memory structures

Low-latency & low-energy data access
o Low latency memory
o Low energy memory

Low-cost data storage & processing
o High capacity memory at low cost: hybrid memory, compression

Intelligent data management
o Intelligent controllers handling robustness, security, cost, scaling

SAFARI 10

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI

Challenge and Opportunity for Future

Data-Centric
Computing Architectures

SAFARI

Exploiting Data to Design
Intelligent Architectures

System Architecture Design Today

Human-driven
o Humans design the policies (how to do things)

Many (too) simple, short-sighted policies all over the system
No automatic data-driven policy learning

(Almost) no learning: cannot take lessons from past actions

Can we design
fundamentally intelligent architectures?

SAFARI 14

An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

How do we start?

SAFARI 15

Selt-Optimizing
Memory Controllers

Memory Controller

Resolves memory contention
by scheduling requests

- [

Controller 5

r r
Memory
Core .

How to schedule requests to maximize system performance?

SAFARI 17

Why are Memory Controllers Ditticult to Design?

Need to obey DRAM timing constraints for correctness

o There are many (50+) timing constraints in DRAM

o tWTR: Minimum number of cycles to wait before issuing a read command after
a write command is issued

o tRC: Minimum number of cycles between the issuing of two consecutive
activate commands to the same bank

Q

Need to keep track of many resources to prevent conflicts

o Channels, banks, ranks, data bus, address bus, row buffers, ...

Neec
Neec

Neec

to handle DRAM refresh
to manage power consumption
to optimize performance & QOS (in the presence of constraints)

o Reordering is not simple
o Fairness and QoS needs complicates the scheduling problem

18

Many Memory Timing Constraints

Latency | Symbol | DRAM cyeles H Latency | Symbol | DRAM cycles |

Precharge ‘RP 11 Activate to read/write ‘RCD 11

Read column address strobe CL 11 Write column address strobe CWL 8
Additive AL 0 Activate to activate ‘RC 39

Activate to precharge ‘RAS 28 Read to precharge ‘RTP 6

Burst length ‘BL 4 Column address strobe to column address strobe | ‘CC D 4

Activate to activate (different bank) | * RRD 6 Four activate windows ‘FAW 24
Write to read ‘WTR 6 Write recovery ‘WR 12

= From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing

Table 4. DDR3 1600 DRAM timing specifications

Write-Caused Interference in Memory Systems,” HPS Technical Report,

April 2010.

19

Many Memory Timing Constraints

= Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,"” ISCA 2012.

= Lee et al., "Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

Q .| Q
® & & Gi & Table 2. Timing Constraints (DDR3-1066) [43]
< &« Q < <
< tRC > | Phase Commands Name Value
——tRAS—— | < tRP—| ACT READ
; time -
Subarray —[1. Activation Ore 1. Activation — 1 ACT — WRITE CRCD 15ns
| |
Peripheral & <tRCD- G ! <tRCD~> 770 time ACT — PRE tRAS 37.5ns
I/O-Circuitry . ~ READ — data tCL 15ns
«—tCL— | <tCL—> ! time 2 WRITE — data tCWL 11.25ns
Bus data >
' ! : data burst tBL 7.5ns
, 'tBLY tBL, 3 PRE— ACT tRP 15ms
<—first access latency—> | i TRC
second access latency | 1&3 ACT — ACT (tRAS+tRP) 52.5ns

Figure 5. Three Phases of DRAM Access

20

Why So Many Timing Constraints? (1)

< Activating (tRAS=35ns) > Precharging

Precharged <« tRCD=15ns » <«—— READ/WRITE Allowed —> <« tRP=15ns —»
0 V V 0
"wa}Zﬁj}{é@_Q_ B —= T A B I @_0_ B
g S

N Q|S | ACTIVATE 2 PRECHARGE QO Q

al alE a N

O :&:5— 0 0O : — 0 &

oo

Figure 4. DRAM bank operation: Steps involved in serving a memory request [17] (Vpp >Vpp)

Category RowCmd<+»RowCmd RowCmd<+ColCmd ColCmd<+ColCmd ColCmd—DATA
Name tRC tRAS tRP tRCD tRTP tWR* tCCD tRTWT tWTR* CL CWL
Commands A—A A—-P P—A A—-R/W R—P W*—=P R(W)—=R(W) R—-W W*=R R—DATA W-DATA
Scope Bank Bank Bank Bank Bank Bank Channel Rank Rank Bank Bank
Value (ns) ~50 ~35 13-15 13-15 ~1.5 5-7.5 11-15 ~17.5 13-15 10-15
A: ACTIVATE- P: PRECHARGE— R: READ— W: WRITE x Goes into effect after the last write data, not from the WRITE command

1 Not explicitly specified by the JEDEC DDR3 standard [18]. Defined as a function of other timing constraints.
Table 1. Summary of DDR3-SDRAM timing constraints (derived from Micron’s 2Gb DDR3-SDRAM datasheet [33])

Kim et al., “"A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.

21

Why So Many Timing Constraints? (II)

T Q| .
® : @
I o:: a
0.75Vpp Voo
G £ £
g T Z —>7 T 2 —>7

Threshold Restored
1 "
1.2. Sensing & Amplification]
I

L |
1. Activation 3. Precharging

<«————tRCD (151’15)%:
€ tRAS (37.5ns) > ¢é—tRP (15ns)—>
< tRC (52.5ns) >
Figure 6. Charge Flow Between the Cell Capacitor (C'¢), Bitline Parasitic Capacitor (Cp), and the Sense-Amplifier (Cp =~ 3.5Cc [39])

——————————

|
|
|
Quiescent |
|
|
|

Fully Half
Charged Charged

Table 2. Timing Constraints (DDR3-1066) [43]

Phase Commands Name Value
— ACT =2 READ =y pep 15ms
Lee et al., "Tiered-Latency DRAM: A Low Latency 1 ACT — WRITE

and Low Cost DRAM Architecture,” HPCA 2013. ACT—PRE tRAS 37.5ns

READ — data tCL 15ns
2 WRITE — data tCWL 11.25ns

data burst tBL 7.5ns

3 PRE — ACT tRP 15ns

1&3 ACT — ACT LRC 52.5ns

(tRAS+tRP)

Memory Controller Design Is Becoming More Ditticult

CPU CPU
GPU
y v
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
= Main memory interference between CPUs, GPUs, HWAs
= Many timing constraints for various memory types

= Many goals at the same time: performance, fairness, QoS,
energy efficiency, ...

23

Reality and Dream

Reality: It difficult to design a policy that maximizes
performance, QoS, energy-efficiency, ...

o Too many things to think about
o Continuously changing workload and system behavior

Dream: Wouldn't it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

24

Selt-Optimizing DRAM Controllers

Problem: DRAM controllers are difficult to design

o It is difficult for human designers to design a policy that can adapt
itself very well to different workloads and different system conditions

Idea: A memory controller that adapts its scheduling policy to
workload behavior and system conditions using machine learning.

Observation: Reinforcement learning maps nicely to memory
control.

Design: Memory controller is a reinforcement learning agent

o It dynamically and continuously learns and employs the best
scheduling policy to maximize long-term performance.

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Selt-Optimizing DRAM Controllers

’ ‘ ENVIRONMENT

<+— Reward r(t)
<+— State s(t)

Goal: Learn to choose actions to maximize ro + yri + y2r, + ... (0 <y < 1)

Action a(t+1) Agent

Figure 2: (a) Intelligent agent based on reinforcement learning
principles;

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Selt-Optimizing DRAM Controllers

Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

o Associate system states and actions (commands) with long term
reward values: each action at a given state leads to a learned reward

o Schedule command with highest estimated long-term reward value in
each state

o Continuously update reward values for <state, action> pairs based on
feedback from system

>| SYSTEM

Data Bus

Scheduled DRAM Utilization (t)
Command (t+1) Scheduler State

Attributes (1)

27

Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

State \ Actio/n\
/ / Command

Transaction Queue

o)
CFTETTTIe 3 e
C | 3| [oess)| 5
o
~ O
-~ ~ wn
-~ ~
-~ ~
. ~. <
-~ ~~ \ —
Valid {Bank | Row | Col | Data | "edue®t Rewa\rty
tate

Figure 4: High-level overview of an RL-based scheduler.

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

** Reward function

e +1 for scheduling
Read and Write
commands

e (at all other
times

Goal is to maximize
long-term
data bus
utilization

** State attributes

Number of reads,
writes, and load
misses in
transaction queue

Number of pending
writes and ROB
heads waiting for
referenced row

Request’s relative
ROB order

** Actions

Activate

Write

Read - load miss
Read - store miss
Precharge - pending

Precharge - preemptive
NOP

29

Performance Results

g 2%
318
Y 140
g 1.20
3 1.00
a 0.80
3 0.60
B 0.40
.% ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN

M In-Order MW FR-FCFS mRL M Optimistic

Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

Large, robust performance improvements
over many human-designed policies

BEREBREN

Speedup over
1-Channel FR-FCFS
O Bt

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN

M FR-FCFS - 1 Channel " RL-1 Channel M FR-FCFS -2 Channels MRL - 2 Channels

Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB/s peak
DRAM bandwidth

30

Selt Optimizing DRAM Controllers

+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy.
Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, ...)
-- Hardware complexity?

-- Design mindset and flow

31

More on Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin Ipek> Onur Mutlu?> José F. Martinez! Rich Caruana!

LCornell University, Ithaca, NY 14850 USA
2 Microsoft Research, Redmond, WA 98052 USA

32

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

We need to rethink design
(of all controllers)

SAFARI 53

Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)
Computing Architectures

SAFARI

Corollaries: Architectures Today ...

= Architectures are terrible at dealing with data
o Designed to mainly store and move data vs. to compute
a They are processor-centric as opposed to data-centric

= Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them

o Designed to make simple decisions, ignoring lots of data
o They make human-driven decisions vs. data-driven decisions

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware

SAFARI 3

Data-Aware Architectures

A data-aware architecture understands what it can do with
and to each piece of data

It makes use of different properties of data to improve
performance, efficiency and other metrics

Compressibility
Approximability

Locality

Sparsity

Criticality for Computation X
Access Semantics

o o o o o o O

36

One Problem: Limited Interfaces

Higher-level information is not visible to HW

(C)
./5\. g ()

é .’\ N’ Code Optimizations

~ Data Structures \1/ Z
SN
) S

Software

Access Patterns

Data Type

i
)’0

AA

&

Hardware

100011111.. Instructions
101010011.. Memory Addresses

37

A Solution: More Expressive Interfaces

Performance | »_ M
Software , % ‘

Higher-level Expressive
ISA Program Mpemory
Virtual Memory YT TS “YMem”

Hardware

38

Expressive (Memory) Intertaces

= Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady
Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons and Onur Mutlu,
"A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap
with Expressive Memory"
Proceedings of the 45th International Symposium on Computer Architecture (ISCA),
Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]

A Case for Richer Cross-layer Abstractions:
Bridging the Semantic Gap with Expressive Memory

Nandita Vijaykumar'® Abhilasha Jain' Diptesh MajumdarT Kevin Hsieh” Gennady Pekhimenko*
Eiman Ebrahimi® Nastaran Hajinazar™ Phillip B. Gibbons" Onur Mutlu®?

TCarnegie Mellon Universit *University of Toronto XNVIDIA
g , Yy ty
*TSimon Fraser University SETH Ziirich

39

https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-lightning-talk.pdf
https://youtu.be/hasM-p7Ag_g

X-MeM Aids Many Optimizations

Table 1: Summary of the example memory optimizations that XMem aids.

Memory Example semantics provided by Example Benefits of XMem

optimization XMem (described in §3.3)

Cache (i) Distinguishing between data Enables: (i) applying different caching policies to different data structures or pools of data;
management structures or pools of similar data; (ii) avoiding cache thrashing by knowing the active working set size; (iii) bypassing/prioritizing

(ii) Working set size; (iii) Data reuse

data that has no/high reuse. (§5)

Page placement

(i) Distinguishing between data

Enables page placement at the data structure granularity to (i) isolate data structures that have

in DRAM structures; (ii) Access pattern; high row buffer locality and (ii) spread out concurrently-accessed irregular data structures

e.g. [23,24] (iii) Access intensity across banks and channels to improve parallelism. (§6)

Cache/memory (i) Data type: integer, float, char; Enables using a different compression algorithm for each data structure based on data type and

compression (ii) Data properties: sparse, pointer, data properties, e.g., sparse data encodings, FP-specific compression, delta-based compression

e.g., [25-32] data index for pointers [27].

Data (i) Access pattern: strided, irregular, Enables (i) highly accurate software-driven prefetching while leveraging the benefits of hard-

prefetching irregular but repeated (e.g., graphs), ware prefetching (e.g., by being memory bandwidth-aware, avoiding cache thrashing); (ii) using

e.g., [33-36] access stride; (ii) Data type: index, different prefetcher types for different data structures: e.g., stride [33], tile-based [20], pattern-
pointer based [34-37], data-based for indices/pointers [38,39], etc.

DRAM cache (i) Access intensity; (ii) Data reuse; (i) Helps avoid cache thrashing by knowing working set size [44]; (ii) Better DRAM cache

management (iii) Working set size management via reuse behavior and access intensity information.

e.g., [40-46]

Approximation (i) Distinguishing between pools of Enables (i) each memory component to track how approximable data is (at a fine granularity)

in memory similar data; (ii) Data properties: to inform approximation techniques; (ii) data placement in heterogeneous reliability memo-

e.g., [47-53] tolerance towards approximation ries [54].

Data placement: (i) Data partitioning across threads (i.e., ~ Reduces the need for profiling or data migration (i) to co-locate data with threads that access it

NUMA systems relating data to threads that access it); and (ii) to identify Read-Only data, thereby enabling techniques such as replication.

e.g., [55,56] (ii) Read-Write properties

Data placement: (i) Read-Write properties Avoids the need for profiling/migration of data in hybrid memories to (i) effectively manage the

hybrid (Read-Only/Read-Write); (ii) Access asymmetric read-write properties in NVM (e.g., placing Read-Only data in the NVM) [16,57];

memories intensity; (iii) Data structure size; (ii) make tradeoffs between data structure "hotness" and size to allocate fast/high bandwidth

e.g., [16,57,58]

(iv) Access pattern

memory [14]; and (iii) leverage row-buffer locality in placement based on access pattern [45].

Managing
NUCA systems
e.g. [15,59]

(i) Distinguishing pools of similar data;
(ii) Access intensity; (iii) Read-Write or
Private-Shared properties

(i) Enables using different cache policies for different data pools (similar to [15]); (ii) Reduces
the need for reactive mechanisms that detect sharing and read-write characteristics to inform
cache policies.

Expressive (Memory) Interfaces for GPUs

= Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons and Onur Mutlu,
"The Locality Descriptor: A Holistic Cross-Layer Abstraction to Express
Data Locality in GPUs"
Proceedings of the 45th International Symposium on Computer Architecture (ISCA),
Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]

The Locality Descriptor:
A Holistic Cross-Layer Abstraction to Express Data Locality in GPUs

Nandita VijaykumarJr§ Eiman Ebrahimi* Kevin Hsieh"
Phillip B. Gibbons" ~ Onur Mutlu®"

"Carnegie Mellon University *NVIDIA SETH Ziirich

41

https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18-lightning-talk.pdf
https://youtu.be/M_0qvO97_hM

An Example: Hybrid Memory Management

DRAM PCM

DRAM Ctrl Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

SAFARI

An Example: Heterogeneous-Reliability Memory

= Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

Characterizing Application Memory Error Vulnerability to
Optimize Datacenter Cost via Heterogeneous-Reliability Memory

Yixin Luo Sriram Govindan® Bikash Sharma® Mark Santaniello” Justin Meza
Aman Kansal® Jie Liu® Badriddine Khessib® Kushagra Vaid® Onur Mutlu

Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu
“Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com

SAFARI +

http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/

Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Vulnerable
data

Reliable memory

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory [psn 2014]

44

Challenge and Opportunity for Future

Data-Aware
(Expressive)
Computing Architectures

SAFARI

Recap: Corollaries: Architectures Today

& JArchitectures are terrible at dealing with data

o Designed to mainly store and move data vs. to compute
o They are processor-centric as opposed to data-centric

= JArchitectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them
o Designed to make simple decisions, ignoring lots of data

o They make human-driven decisions vs. data-driven decisions

= JArchitectures are terrible at knowing and exploiting
' oroperties of application data

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware

SAFARI 46

Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware

SAFARI

47

SA FA Rl Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg

We Need to Think Across the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI +

Memory Systems
and Memory-Centric Computing Systems

Part 5;: Data-Driven & Data-Aware Arch.

Prof. Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
3 September 2019
Perugia NiPS Summer School

SAFARI ETHZzurich CarnegieMellon

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

