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Four Key Issues in Future Platforms

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency Architectures

n Architectures for Genomics, Medicine, Health

2



Solving the Hardest Problems

3Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg



Maslow’s Hierarchy of Needs, A Third Time
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Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Challenge and Opportunity for Future

Fundamentally
Low-Latency

Computing Architectures
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A Closer Look …
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Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck



The Memory Latency Problem

n High memory latency is a significant limiter of system 
performance and energy-efficiency

n It is becoming increasingly so with higher memory 
contention in multi-core and heterogeneous architectures
q Exacerbating the bandwidth need
q Exacerbating the QoS problem

n It increases processor design complexity due to the 
mechanisms incorporated to tolerate memory latency
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Retrospective: Conventional Latency Tolerance Techniques

n Caching [initially by Wilkes, 1965]
q Widely used, simple, effective, but inefficient, passive
q Not all applications/phases exhibit temporal or spatial locality

n Prefetching [initially in IBM 360/91, 1967]
q Works well for regular memory access patterns
q Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

n Multithreading [initially in CDC 6600, 1964]
q Works well if there are multiple threads
q Improving single thread performance using multithreading hardware is an 

ongoing research effort

n Out-of-order execution [initially by Tomasulo, 1967]
q Tolerates cache misses that cannot be prefetched
q Requires extensive hardware resources for tolerating long latencies



Runahead Execution
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Effect of Runahead in Sun ROCK
n Shailender Chaudhry talk, Aug 2008.
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More on Runahead Execution

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February 
2003. Slides (pdf)
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf


More on Runahead Execution (Short)

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Effective Alternative to Large 
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25, 
November/December 2003.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383


Runahead Readings
n Required

q Mutlu et al., “Runahead Execution”, HPCA 2003, Top Picks 2003.

n Recommended

q Mutlu et al., �Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,� ISCA 2005, IEEE Micro Top Picks 
2006.

q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005.

q Armstrong et al., “Wrong Path Events,” MICRO 2004.

17



18

Retrospective: Conventional Latency Tolerance Techniques

n Caching [initially by Wilkes, 1965]
q Widely used, simple, effective, but inefficient, passive
q Not all applications/phases exhibit temporal or spatial locality

n Prefetching [initially in IBM 360/91, 1967]
q Works well for regular memory access patterns
q Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

n Multithreading [initially in CDC 6600, 1964]
q Works well if there are multiple threads
q Improving single thread performance using multithreading hardware is an 

ongoing research effort

n Out-of-order execution [initially by Tomasulo, 1967]
q Tolerates cache misses that cannot be prefetched
q Requires extensive hardware resources for tolerating long latencies



Two Major Sources of Latency Inefficiency

n Modern DRAM is not designed for low latency
q Main focus is cost-per-bit (capacity)

n Modern DRAM latency is determined by worst case 
conditions and worst case devices
q Much of memory latency is unnecessary
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Truly Reducing Memory Latency

20



Two Major Sources of Latency Inefficiency

n Modern DRAM is not designed for low latency
q Main focus is cost-per-bit (capacity)

n Modern DRAM latency is determined by worst case 
conditions and worst case devices
q Much of memory latency is unnecessary
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Why the Long Memory Latency?

n Reason 1: Design of DRAM Micro-architecture
q Goal: Maximize capacity/area, not minimize latency

n Reason 2: “One size fits all” approach to latency specification
q Same latency parameters for all temperatures
q Same latency parameters for all DRAM chips
q Same latency parameters for all parts of a DRAM chip
q Same latency parameters for all supply voltage levels
q Same latency parameters for all application data 
q …

22



Tackling the Fixed Latency Mindset
n Reliable operation latency is actually very heterogeneous

q Across temperatures, chips, parts of a chip, voltage levels, …

n Idea: Dynamically find out and use the lowest latency one 
can reliably access a memory location with
q Adaptive-Latency DRAM [HPCA 2015]
q Flexible-Latency DRAM [SIGMETRICS 2016]
q Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]
q Voltron [SIGMETRICS 2017]
q DRAM Latency PUF [HPCA 2018]
q DRAM Latency True Random Number Generator [HPCA 2019]
q ...

n We would like to find sources of latency heterogeneity and 
exploit them to minimize latency (or create other benefits)
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Latency Variation in Memory Chips

24

HighLow
DRAM Latency

DRAM BDRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions→	
latency variation in timing parameters



Why is Latency High?

25

• DRAM latency: Delay as specified in DRAM standards
– Doesn’t reflect true DRAM device latency

• Imperfect manufacturing process →	latency variation
• High standard latency chosen to increase yield

HighLow
DRAM Latency

DRAM A DRAM B DRAM C

Manufacturing
Variation

Standard
Latency



What Causes the Long Memory Latency?

n Conservative timing margins! 

n DRAM timing parameters are set to cover the worst case

n Worst-case temperatures 
q 85 degrees vs. common-case
q to enable a wide range of operating conditions

n Worst-case devices 
q DRAM cell with smallest charge across any acceptable device
q to tolerate process variation at acceptable yield

n This leads to large timing margins for the common case

26



Understanding and Exploiting
Variation in DRAM Latency



DRAM Characterization Infrastructure

28Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



DRAM Characterization Infrastructure

n Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies, HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC: Open Source DRAM Infrastructure

n https://github.com/CMU-SAFARI/SoftMC

30

https://github.com/CMU-SAFARI/SoftMC
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Adaptive-Latency DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer provides multiple sets of 

reliable DRAM timing parameters at different 
temperatures for each DIMM

– System monitors DRAM temperature & uses 
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 

2015.
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Latency Reduction Summary of 115 DIMMs

• Latency reduction for read & write (55°C)
– Read Latency: 32.7%
– Write Latency: 55.1%

• Latency reduction for each timing 
parameter (55°C) 
– Sensing: 17.3%
– Restore: 37.3% (read), 54.8% (write)
– Precharge: 35.2%

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.
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AL-DRAM: Real System Evaluation
• System

– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)
– DRAM: 4GByte DDR3-1600 (800Mhz Clock)
– OS: Linux
– Storage: 128GByte SSD

• Workload
– 35 applications from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS
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Reducing Latency Also Reduces Energy

n AL-DRAM reduces DRAM power consumption by 5.8%

n Major reason: reduction in row activation time

36



AL-DRAM: Advantages & Disadvantages

n Advantages
+ Simple mechanism to reduce latency
+ Significant system performance and energy benefits

+ Benefits higher at low temperature
+ Low cost, low complexity 

n Disadvantages
- Need to determine reliable operating latencies for different 

temperatures and different DIMMs à higher testing cost
(might not be that difficult for low temperatures)

37



More on Adaptive-Latency DRAM
n Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 

Vivek Seshadri, Kevin Chang, and Onur Mutlu,

"Adaptive-Latency DRAM: Optimizing DRAM Timing for 
the Common-Case"
Proceedings of the 21st International Symposium on High-

Performance Computer Architecture (HPCA), Bay Area, CA, 

February 2015. 

[Slides (pptx) (pdf)] [Full data sets] 

38

http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html


Different Types of Latency Variation
n AL-DRAM exploits latency variation

q Across time (different temperatures)
q Across chips

n Is there also latency variation within a chip?
q Across different parts of a chip

39



Spatial Locality of Activation Errors

40

Activation errors are concentrated 
at certain columns of cells

One DIMM @ tRCD=7.5ns



Heterogeneous Latency within A Chip

• Observation: DRAM timing errors (slow DRAM 
cells) are concentrated on certain regions

• Flexible-LatencY (FLY) DRAM
– A software-transparent design that reduces latency

• Key idea:
1) Divide memory into regions of different latencies

2) Memory controller: Use lower latency for regions without 
slow cells; higher latency for other regions

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


FLY-DRAM Configurations
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Heterogeneous Latency within A Chip

43

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

40 Workloads

Baseline (DDR3)
FLY-DRAM (D1)
FLY-DRAM (D2)
FLY-DRAM (D3)
Upper Bound

17.6%
19.5%19.7%

13.3%

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.
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FLY-DRAM: Advantages & Disadvantages

n Advantages
+ Reduces latency significantly

+ Exploits significant within-chip latency variation

n Disadvantages
- Need to determine reliable operating latencies for different 

parts of a chip à higher testing cost
- Slightly more complicated controller

44



Analysis of Latency Variation in DRAM Chips
n Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh, 

Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and 

Onur Mutlu,

"Understanding Latency Variation in Modern DRAM Chips: 
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and 

Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins, 

France, June 2016. 

[Slides (pptx) (pdf)] 

[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study


Why Is There 
Spatial Latency Variation 

Within a Chip?

46
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What Is Design-Induced Variation?
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DIVA Online Profiling
inherently slow

Profile only slow regions to determine min. latency
àDynamic & low cost latency optimization

sense amplifier

w
ordline

driver

Design-Induced-Variation-Aware
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inherently slow

DIVA Online Profiling
slow cells  

design-induced
variation

process
variation

localized errorrandom error

online profilingerror-correcting 
code

Combine error-correcting codes & online profiling
à Reliably reduce DRAM latency

sense amplifier

w
ordline

driver

Design-Induced-Variation-Aware



50

DIVA-DRAM Reduces Latency
Read Write
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DIVA-DRAM: Advantages & Disadvantages

n Advantages
++ Automatically finds the lowest reliable operating latency 

at system runtime (lower production-time testing cost)
+ Reduces latency more than prior methods (w/ ECC)
+ Reduces latency at high temperatures as well

n Disadvantages
- Requires knowledge of inherently-slow regions
- Requires ECC (Error Correcting Codes)
- Imposes overhead during runtime profiling

51



Design-Induced Latency Variation in DRAM
n Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, 

Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and 
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips: 
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


Understanding & Exploiting the 
Voltage-Latency-Reliability 

Relationship

53



High DRAM Power Consumption

• Problem: High DRAM (memory) power in today’s 
systems

54

>40% in POWER7 (Ware+, HPCA’10) >40% in GPU (Paul+, ISCA’15)



Executive Summary
• DRAM (memory) power is significant in today’s systems

– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of 
real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:
– Huge voltage margin -- Errors occur beyond some voltage
– Errors exhibit spatial locality
– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism 
– Reduce DRAM voltage without introducing errors 
– Use a regression model to select voltage that does not degrade 

performance beyond a chosen target à 7.3% system energy reduction
55



Custom Testing Platform

SoftMC [Hassan+, HPCA’17]: FPGA testing platform to 
1) Adjust supply voltage to DRAM modules
2) Schedule DRAM commands to DRAM modules

Existing systems: DRAM commands not exposed to users

56

Voltage
controller

DRAM
module FPGA

https://github.com/CMU-SAFARI/DRAM-Voltage-Study



Reliability Worsens with Lower Voltage
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Source of Errors
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Reliable low-voltage operation requires higher latency



Higher Access Latency à Fewer Errors
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Measured minimum latency that does not cause errors in DRAM modules

Lower bound of latency as our latency adjustment granularity is 2.5ns 
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Spatial Locality of Errors
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A module under 1.175V (12% voltage reduction)

Errors concentrate in certain regions



Voltron Overview

61

How do we predict performance loss due to 
increased latency under low DRAM voltage?

Voltron

User specifies the 
performance loss target

Select the minimum DRAM voltage 
without violating the target



Linear Model to Predict Performance
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Voltron
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Linear regression model
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Energy Savings with Bounded Performance
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Voltron: Advantages & Disadvantages

n Advantages
+ Can trade-off between voltage and latency to improve 

energy or performance
+ Can exploit the high voltage margin present in DRAM

n Disadvantages
- Requires finding the reliable operating voltage for each 

chip à higher testing cost
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Analysis of Latency-Voltage in DRAM Chips
n Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish

Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


And, What If …

n … we can sacrifice reliability of some data to access it with 
even lower latency?
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The	DRAM	Latency	PUF:	
Quickly	Evaluating	Physical	Unclonable Functions	
by	Exploiting	the	Latency-Reliability	Tradeoff	

in	Modern	Commodity	DRAM	Devices

Jeremie S.	Kim Minesh Patel		
Hasan	Hassan			Onur Mutlu
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Motivation
•A	PUF is	function	that	generates	a	signature	
unique to	a	given	device	

•Used	in	a	Challenge-Response	Protocol
- Each	device	generates	a	unique	PUF	response	
depending	the	inputs
- A	trusted	server	authenticates a	device	if	it	
generates	the	expected	PUF	response
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DRAM	Latency	Characterization	of	
223	LPDDR4	DRAM	Devices

•Latency	failures	come	from	accessing	
DRAM	with	reduced timing	parameters.

•Key	Observations:
1. A	cell’s	latency	failure probability	is	
determined	by	random	process	variation

2. Latency	failure	patterns	are	repeatable	and	
unique	to	a	device
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DRAM	Accesses	and	Failures
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The	DRAM	Latency	PUF	Evaluation

•We	generate	PUF	responses	using	latency
errors	in	a	region	of	DRAM

•The	latency	error	patterns	satisfy	PUF	
requirements

•The	DRAM	Latency	PUF	generates	PUF	
responses	in	88.2ms



74/8

Results

•DL-PUF	is	orders	of	magnitude	faster	than	
prior	DRAM	PUFs	&	temperature	independent

o

DRAM Retention PUF 
Manufacturer A 
Manufacturer B  
Manufacturer C  

DRAM Latency PUF  
All Manufacturers

Temperature ( C)
56          58             60               62                       64                    66                    68          70
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The	DRAM	Latency	PUF:	
Quickly	Evaluating	Physical	Unclonable Functions	
by	Exploiting	the	Latency-Reliability	Tradeoff	

in	Modern	Commodity	DRAM	Devices

Jeremie S.	Kim Minesh Patel		
Hasan	Hassan			Onur Mutlu

QR Code for the paper
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf



DRAM Latency PUFs
n Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,

"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable 
Functions by Exploiting the Latency-Reliability Tradeoff in 
Modern DRAM Devices"
Proceedings of the 24th International Symposium on High-Performance 
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf


D-RaNGe:	Using	Commodity	DRAM	Devices	
to	Generate	True	Random	Numbers	

with	Low	Latency	and	High	Throughput

Jeremie S.	Kim Minesh Patel		
Hasan	Hassan			Lois	Orosa Onur Mutlu

HPCA 2019



78/8

DRAM	Latency	Characterization	of	
282	LPDDR4	DRAM	Devices

• Latency	failures	come	from	accessing	DRAM	with	
reduced timing	parameters.

• Key	Observations:
1. A	cell’s	latency	failure probability	is	determined	

by	random	process	variation

2. Some	cells	fail	randomly
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D-RaNGe Key	Idea
High	%	chance	to	fail	
with	reduced	tRCD

Low	%	chance	to	fail	
with	reduced	tRCD

SASASASASASASA

Fails	randomly	
with	reduced	tRCD

We	refer	to	cells	that	fail	randomly
when	accessed	with	a	reduced	tRCD

as	RNG	cells



81/8

Our	D-RaNGe Evaluation
•We	generate	random	values	by	repeatedly	
accessing	RNG	cells and	aggregating	the	data	
read	
• The	random	data	satisfies	the	NIST	statistical	
test	suite	for	randomness	
• The	D-RaNGE generates	random	numbers	
- Throughput:	717.4	Mb/s	
- Latency:	64	bits	in	<1us
- Power:	4.4	nJ/bit



D-RaNGe:	Using	Commodity	DRAM	Devices	
to	Generate	True	Random	Numbers	

with	Low	Latency	and	High	Throughput

Jeremie S.	Kim Minesh Patel		
Hasan	Hassan			Lois	Orosa Onur Mutlu

HPCA 2019



DRAM Latency True Random Number Generator
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n Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True 
Random Numbers with Low Latency and High Throughput"
Proceedings of the 25th International Symposium on High-Performance 
Computer Architecture (HPCA), Washington, DC, USA, February 2019.

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/


Other Ideas on 
Reducing DRAM Latency
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Solar-DRAM: Exploiting Spatial Variation
n Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,

"Solar-DRAM: Reducing DRAM Access Latency by Exploiting 
the Variation in Local Bitlines"
Proceedings of the 36th IEEE International Conference on Computer 
Design (ICCD), Orlando, FL, USA, October 2018.
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https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18.pdf
http://www.iccd-conf.com/


ChargeCache: Exploiting Access Patterns
n Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek

Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,

"ChargeCache: Reducing DRAM Latency by Exploiting Row 
Access Locality"
Proceedings of the 22nd International Symposium on High-

Performance Computer Architecture (HPCA), Barcelona, Spain, March 

2016. 

[Slides (pptx) (pdf)] 

[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp


Reducing Refresh Latency
n Anup Das, Hasan Hassan, and Onur Mutlu,

"VRL-DRAM: Improving DRAM Performance via 
Variable Refresh Latency"
Proceedings of the 55th Design Automation 
Conference (DAC), San Francisco, CA, USA, June 2018.
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https://people.inf.ethz.ch/omutlu/pub/VRL-DRAM_reduced-refresh-latency_dac18.pdf
https://dac.com/


Why the Long Memory Latency?

n Reason 1: Design of DRAM Micro-architecture
q Goal: Maximize capacity/area, not minimize latency

n Reason 2: “One size fits all” approach to latency specification
q Same latency parameters for all temperatures
q Same latency parameters for all DRAM chips
q Same latency parameters for all parts of a DRAM chip
q Same latency parameters for all supply voltage levels
q Same latency parameters for all application data 
q …
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Tiered-Latency DRAM
n Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya 

Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost 
DRAM Architecture"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)

89

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/lee_hpca13_talk.pptx


LISA: Low-cost Inter-linked Subarrays

n Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee, 
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast 
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain, 
March 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 

90

https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp


Tiered Latency DRAM
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DRAM Latency = Subarray Latency + I/O Latency

What Causes the Long Latency?
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Why is the Subarray So Slow?
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Trade-Off: Area (Die Size) vs. Latency
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Trade-Off: Area (Die Size) vs. Latency
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Approximating the Best of Both Worlds
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Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM 
• TL-DRAM is a substrate that can be leveraged by 

the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment
2. Use near segment as hardware-managed exclusive

cache to far segment
3. Profile-based page mapping by operating system
4. Simply replace DRAM with TL-DRAM 

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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subarray

Near Segment as Hardware-Managed Cache
TL-DRAM

I/O

cache

main
memory

• Challenge 1: How to efficiently migrate a row between 
segments?

• Challenge 2: How to efficiently manage the cache?

far segment
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More on TL-DRAM
n Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya 

Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost 
DRAM Architecture"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/lee_hpca13_talk.pptx


LISA: Low-Cost Inter-Linked Subarrays
[HPCA 2016]
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Problem: Inefficient Bulk Data Movement

105

Bulk data movement is a key operation in many applications
–memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]
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Moving Data Inside DRAM?
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DRAM 
cell

Subarray 1
Subarray 2
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Subarray N
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Internal 
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512
rows

Bank
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Bank

DRAM

…

Low connectivity in DRAM is the fundamental 
bottleneck for bulk data movement

Goal: Provide a new substrate to enable 
wide connectivity between subarrays



Key Idea and Applications
• Low-cost Inter-linked subarrays (LISA)
– Fast bulk data movement between subarrays
– Wide datapath via isolation transistors: 0.8% DRAM chip area

• LISA is a versatile substrate → new applications
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Subarray 1

Subarray 2
…

Fast bulk data copy: Copy latency 1.363ms→0.148ms	(9.2x)
→	66% speedup, -55% DRAM energy

In-DRAM caching: Hot data access latency 48.7ns→21.5ns	(2.2x)
→	5% speedup

Fast precharge: Precharge latency 13.1ns→5.0ns	(2.6x)
→	8% speedup



3. Linked Precharge (LIP)
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• Problem: The precharge time is limited by the strength 
of one precharge unit

• Linked Precharge (LIP): LISA precharges a subarray 
using multiple precharge units
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More on LISA
n Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee, 

Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast 
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain, 
March 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp


CROW: The Copy Row Substrate
[ISCA 2019]
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Challenges	of	DRAM	Scaling
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Row	copy	
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ØCROW-cache	
üreduces	access	latency

ØCROW-ref	
üreduces	DRAM	refresh	overhead

ØA	mechanism	for	protecting	against	RowHammer

Use	Cases	of	CROW

SA SA SA SA SASA SA SA SA SA SASA SA SA SA SA SASA

weak

strong
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CROW-cache	+	CROW-ref
•20%	speedup
•22%	less	DRAM	energy

Hardware	Overhead
•0.5%	DRAM	chip	area
•1.6%	DRAM	capacity
•11.3	KiB	memory	controller	storage

Key	Results



More on CROW
n Hasan Hassan, Minesh Patel, Jeremie S. Kim, A. Giray Yaglikci, 

Nandita Vijaykumar, Nika Mansourighiasi, Saugata Ghose, 
and Onur Mutlu,
"CROW: A Low-Cost Substrate for Improving DRAM 
Performance, Energy Efficiency, and Reliability"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.
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https://people.inf.ethz.ch/omutlu/pub/CROW-DRAM-substrate-for-performance-energy-reliability_isca19.pdf
http://iscaconf.org/isca2019/


SALP: Reducing DRAM Bank 
Conflict Impact

117

Kim, Seshadri, Lee, Liu, Mutlu

A Case for Exploiting Subarray-Level Parallelism 

(SALP) in DRAM

ISCA 2012.

http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf


SALP: Problem, Goal, Observations
n Problem: Bank conflicts are costly for performance and energy

q serialized requests, wasted energy (thrashing of row buffer, busy wait)
n Goal: Reduce bank conflicts without adding more banks (low cost)
n Observation 1: A DRAM bank is divided into subarrays and each 

subarray has its own local row buffer
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SALP: Key Ideas
n Observation 2: Subarrays are mostly independent

q Except when sharing global structures to reduce cost
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Key Idea of SALP: Minimally reduce sharing of global structures
Reduce the sharing of …
Global decoder à Enables almost parallel access to subarrays
Global row buffer à Utilizes multiple local row buffers



SALP: Reduce Sharing of Global Decoder
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SALP: Reduce Sharing of Global Row-Buffer
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SALP: Baseline Bank Organization
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SALP: Proposed Bank Organization
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SALP: Results
n Wide variety of systems with different #channels, banks, 

ranks, subarrays
n Server, streaming, random-access, SPEC workloads

n Dynamic DRAM energy reduction: 19%
q DRAM row hit rate improvement: 13% 

n System performance improvement: 17%
q Within 3% of ideal (all independent banks)

n DRAM die area overhead: 0.15%
q vs. 36% overhead of independent banks
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More on SALP
n Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, 

and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism 
(SALP) in DRAM"
Proceedings of the 39th International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 
2012. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx
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More on SALP
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More on SALP

http://www.cs.utah.edu/thememoryforum/kang_slides.pdf

http://www.cs.utah.edu/thememoryforum/kang_slides.pdf


More on SALP

128http://www.cs.utah.edu/thememoryforum/kang_slides.pdf

http://www.cs.utah.edu/thememoryforum/kang_slides.pdf


Summary: Low-Latency Memory
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Summary: Tackling Long Memory Latency

n Reason 1: Design of DRAM Micro-architecture
q Goal: Maximize capacity/area, not minimize latency

n Reason 2: “One size fits all” approach to latency specification
q Same latency parameters for all temperatures
q Same latency parameters for all DRAM chips
q Same latency parameters for all parts of a DRAM chip
q Same latency parameters for all supply voltage levels
q Same latency parameters for all application data 
q …
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Challenge and Opportunity for Future

Fundamentally
Low-Latency

Computing Architectures
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One Important Takeaway

Main Memory Needs 
Intelligent Controllers
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On DRAM Power Consumption
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VAMPIRE DRAM Power Model
n Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais 

Kudrolli, William X. Liu, Hasan Hassan, Kevin K. Chang, Niladrish
Chatterjee, Aditya Agrawal, Mike O'Connor, and Onur Mutlu,
"What Your DRAM Power Models Are Not Telling You: Lessons 
from a Detailed Experimental Study"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June 
2018.
[Abstract]
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More Motivation 
to Reduce Memory Latency
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Workload-DRAM Interaction Analysis
n Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, 

and Onur Mutlu,
"Demystifying Workload–DRAM Interactions: An Experimental 
Study"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, 
June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
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